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1. Introduction 

 

In this paper we give a generalization of some results due to T. Takahashi [5] and M. 
Okumura [4]. Explicitly, we study an equation of the form R(X,Y)A=0 where X,Y 
are arbitrary vector fields on a Sasakian manifold and A a (1,3)-tensor field which 
generalizes the Riemann curvature tensor, Weyl conformal curvature tensor, Weyl 
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projective curvature tensor and Yano concircular curvature tensor. The result which 
we obtain says that in complementary conditions the manifold is of constant 
curvature. 

 

2. Preliminaries 

 

Let M=Mm a C∞-differentiable connected manifold with dim M=m=2n+1. 

Definition  M is said to have an almost contact structure if it admits a field of 

endomorphisms, named ϕ, of the tangent spaces, a vector field ξ and a 1-form η 
satisfying: 

η(ξ)=1 

η(ϕX)=0 ∀X∈X(M) 

ϕ2X=-X+η(X)ξ ∀X∈X(M) 

ϕξ=0 

Definition  M has an almost contact metric structure if it admits an almost contact 

structure (ϕ,ξ,η) and a Riemannian metric g such that: 

g(ϕX,ϕY)=g(X,Y)-η(X)η(Y) ∀X,Y∈X(M) 

g(X,ξ)=η(X) ∀X∈X(M) 

where ∇ is the Levi-Civita connection corresponding to g. 

Definition  A manifold M with a normal contact metric structure is called Sasakian 
manifold. 

On a Sasakian manifold we have: 

(1) R(X,Y)ξ=η(Y)X-η(X)Y ∀X,Y∈X(M) 

(2) R(ξ,X)Y=g(X,Y)ξ-η(Y)X ∀X,Y∈X(M) 

 

In what follows all the tensors are defined locally and we shall consider only the 
restrictions of tensor fields on neighborhoods of the manifold points. 
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Let E1,...,Em an orthonormal basis for X(M) and let λ1,...,λm be the dual 1-forms for 

Ei, i=1,...,m. We have λi(Ej)= i

jδ , i,j=1,...,m. We define the Ricci tensor Ric: 

X(M)2→F(M): 

Ric(X,Y)=∑
=

λ
m

1i
i

i )Y)X,E(R(  ∀X,Y∈X(M) 

and the Ricci operator ric:X(M)→X(M): g(ric X,Y)=g(X,ric Y)=Ric(X,Y) 

∀X,Y∈X(M). 

The scalar of curvature is: 

S=∑
=

m

1i
ii )E,E(Ric =∑

=

λ
m

1i
i

i )ricE(  

From (2) we have on a Sasakian manifold: 

(3) Ric(ξ,X)=(m-1)η(X) ∀X∈X(M) 

(4) ric ξ=(m-1)ξ 

Let (M,g) a Riemannian manifold and p∈M. Let X,Y∈TpM independent vectors. 
We define the sectional curvature k(X,Y) by 

k(X,Y)=
2)Y,X(g)Y,Y(g)X,X(g

)X,Y)Y,X(R(g

−
  

If k is independent of the choice of p∈M and X,Y∈TpM we call M with constant 
curvature. 

Theorem (F.SCHUR) A connected Riemannian manifold M with dim M≥3 for 
which the sectional curvature is constant at every point has constant curvature. In 
this case, we have: 

(5) R(X,Y)Z=k[g(Y,Z)X-g(X,Z)Y] ∀X,Y,Z∈X(M), 

k being the constant curvature. 

On a Sasakian manifold we have ([1]) that k(X,ξ)=1 for X⊥ξ therefore if a Sasakian 
manifold has constant curvature these must be 1. 

3. Main theorem 

Let A:X(M)3→X(M), 
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(6) A(X,Y)Z=R(X,Y)Z-a[Ric(Y,Z)X-Ric(X,Z)Y]-b[g(Y,Z)ricX -g(X,Z)ricY]+ 

c[g(Y,Z)X-g(X,Z)Y] ∀X,Y,Z∈X(M), ∀a,b,c∈F(M), a≠-1. 

• For a=b=c=0 we obtain the Riemann curvature tensor 

• For a=
1m

1

−
,b=c=0 we have the Weyl projective tensor P 

• For a=b=0, c=
)1m(m

S

−
−  we have the Yano concircular curvature tensor 

• For a=b=
2m

1

−
, c=

)2m)(1m(

S

−−
 we obtain the Weyl conformal curvature 

tensor. 

If M is a Sasakian manifold, we have: 

(7) A(ξ,Y)Z=[1+c-b(m-1)]g(Y,Z)ξ+[a(m-1)-1-c]η(Z)Y-a⋅Ric(Y,Z)ξ+b⋅η(Z)⋅ricY 

∀Y,Z∈X(M) 

(8) A(ξ,Y)ξ=[1+c-(a+b)(m-1)]η(Y)ξ+[a(m-1)-1-c]Y+b⋅ricY ∀Y∈X(M) 

From [3] we know that we can consider R(X,Y) operating on the tensor 
algebra like a derivation. Therefore, let the equation: 

(9) R(X,Y)A=0 ∀X,Y∈X(M) 

From (6),(9) we have: 

(10) 0=(R(X,ξ)A))(ξ,Y)Z=R(X,ξ)A(ξ,Y)Z-A(R(X,ξ)ξ,Y)Z-A(ξ,R(X,ξ)Y)Z-

A(ξ,Y)R(X,ξ)Z ∀X,Y,Z∈X(M) 

Using now (1),(2),(3),(4),(6),(7),(8) we have that (10) becomes: 

(11) R(X,Y)Z=-a(m-1)η(Y)g(X,Z)ξ-(a-b)(m-1)η(Z)g(X,Y)ξ+(1+b-bm)g(Y,Z)X- 

(1+a-am)g(X,Z)Y+b(m-1)η(Y)η(Z)X-bη(Y)η(Z)ricX+(a-b)η(Z)Ric(X,y)ξ+ 

aη(Y)Ric(X,Z)ξ-aRic(X,Z)Y+bg(Y,Z)ricX 

If in (11) we put X=Ei, apply λi in both sides of the equality and summing 
for i=1,...,m, we obtain: 

(12) (a+1)Ric(Y,Z)=bη(Y)η(Z)(m2-m-S)+g(Y,Z)[(m-1)(a+1)-b(m2-m-S)] 

∀Y,Z∈X(M) 

Introducing (12) in (11) we obtain: 
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(13) R(X,Y)Z=
1a

)Smm)(ba(b2 2

+
−−− η(X)η(Y)η(Z)ξ+[g(Y,Z)X-

g(X,Z)Y]+
1a

)Smm(b 2

+
−−

[b(η(Y)η(Z)X-g(Y,Z)X+η(X)g(Y,Z)ξ)-a(η(X)η(Z)Y-

g(X,Z)Y+η(Y)g(X,Z)ξ)-(a-b)η(Z)g(X,Y)ξ] 

If in (13) we replace b=0, we obtain: 

(14) R(X,Y)Z=g(Y,Z)X-g(X,Z)Y 

therefore M is of constant curvature. 

 If a=b we have from (13): 

(15) R(X,Y)Z= 








+
−−−

1a

)Smm(a
1

2

[g(Y,Z)X-g(X,Z)Y]-

a2

1a

)Smm(a 2

+
−−

[η(X)η(Z)Y-η(Y)η(Z)X-η(X)g(Y,Z)ξ+η(Y)g(X,Z)ξ] 

If in (15) we have S=m(m-1) we obtain (14) therefore M is of constant 
curvature 1. 

 If S=m(m-1) in (13) we obtain also (14). 

 Let suppose now that M is of constant curvature. From (13) and (14) we 
have: 

(16) 
1a

)Smm(b 2

+
−−

[(a-b)η(Z)(2η(X)η(Y)-g(X,Y))ξ+b(η(Y)η(Z)X-g(Y,Z)X+ 

η(X)g(Y,Z)ξ)-a(η(X)η(Z)Y-g(X,Z)Y+η(Y)g(X,Z)ξ)]=0 

 Suppose now that b≠0, S≠m2-m. If in (16) we take X=Y such that η(X)=0 

and Z=ξ, X≠0 we have: 

(16) –(a-b)g(X,X)ξ=0 

therefore a=b. But from the preceding discussion we must have S==m2-m. 
Contradiction. We can conclude: 

Theorem 1 A Sasakian manifold with R(X,Y)A=0 ∀X,Y∈X(M) is of constant 

curvature if and only if b=0 or b≠0 but S=m2-m where m=dim M. The constant 
curvature is 1. 
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Corollary 1 ([5])  A Sasakian manifold satisfying R(X,Y)R=0 ∀X,Y∈X(M) is of 
constant curvature. 

Corollary 2 A Sasakian manifold with R(X,Y)P=0 where P is the Weyl projective 
curvature tensor is of constant curvature 1. 

Corollary 3 A Sasakian manifold projectively flat is of constant curvature 1. 

Corollary 4 A Sasakian manifold with R(X,Y)K=0 where K is the Yano concircular 
curvature tensor is of constant curvature 1. 

Corollary 5 Sasakian manifold with R(X,Y)C=0 and S=m2-m where C is the Weyl 
conformal curvature tensor is of constant curvature 1. 

Corollary 6 ([4])  A Sasakian manifold conformally flat is of constant curvature (if it 
has S=m(m-1)). 
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