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A b s t r A c t

Resveratrol is a stilbene substance that belongs to the superfamily of phytoalexins, 
which are compounds synthesized by plants when stress occurs, such as during plant 
infection. It is abundant in red wine, red grapes, blueberries, peanuts and pistachios. 
Resveratrol induces p53-dependent apoptosis. A novel resveratrol analogue, HS-1793, 
has recently been demonstrated to inhibit vascular endothelial growth factor in hu-
man prostate cancer cells. Pterostilbene, an analog of resveratrol, has been demon-
strated to exert both autophagy and apoptosis in human bladder and breast cancer 
cell lines. It has also been found to cause accumulation of autophagic vacuoles, as well 
as promote cell death via a mechanism involving lysosomal membrane permeabiliza-
tion in human melanoma, colon, lung and breast cancer cell lines. Identification of a 
receptor site for resveratrol in cancer cells supports the potential of this compound 
as a therapeutic agent. The receptor could also serve as a vehicle for studies of future 
resveratrol analogues. Resveratrol has also been documented to overcome chemo-
resistance by inhibiting NF-κB and STAT3 pathway. Resveratrol has shown much 
promise in preclinical trials and because of its good safety profile it may be an ideal 
chemo-preventive and chemotherapeutic agent.

I n t r o d u c t I o n

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) (Fig. 1) is a stilbene substance belong-
ing to the superfamily of phytoalexins, which are compounds synthesized by plants in 
response to injury or stress, such as when the plant is infected by bacteria or fungi. It 
is abundant in red wine, in red grapes, blueberries, peanuts, and pistachios (Table 1).1-3

Resveratrol exerts beneficial effects in humans and may be helpful in preventing 
and treating metabolic diseases, such as obesity, cardiovascular disease and diabetes 
mellitus.4-6 Resveratrol also possesses anti-oxidant and anti-cancerous properties, 
which will be discussed in this review.7,8 The anti-cancerous mechanisms of action of 
resveratrol are not well-understood, but it has been suggested from several studies that 
they are the result of resveratrol’s action in inducing apoptosis.9-15

r e s v e r A t r o l  A n d  p 5 3

Resveratrol induces p53-dependent apoptosis.9-16 The p53 gene is a suppressive 
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AMPK = adenosine monophosphate-
activated protein kinase 

COX = cyclooxygenase
CREB = cyclic AMP response element-

binding (protein)
ERK = extracellularly-regulated kinase(s) 
MAPK = mitogen-activated protein 

kinases 
mTOR = mammalian target of rapamycin 
nF-kB = nuclear factor kappa-light-chain-

enhancer of activated B cells 
SIR = silent information regulator 
STAT3 = signal transducer and activator 

of transcription 3 (factor)
VEGF = vascular endothelial growth 

factor
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oncogene, which exists at low concentrations in normal cells, 
whilst if there is DNA damage, levels of p53 activity rise, 
because of a post-translational mechanism that stabilizes 
the p53 encoded protein.17-19 p53 is involved in apoptosis and 
DNA repair.17,18 Phosphorylation of p53 occurs at some serine 
and threonine residues.19,20 Activated p53 binds to DNA by a 
mechanism, which depends on phosphorylation and acetyla-
tion of this protein. Phosphorylation of p53 at N-terminal 
site may promote stabilization of p53, and may be a factor 
that facilitates or is required for the acetylation of p53 at a 
C-terminal site. Acetylation has been reported to increase 
sequence-specific DNA binding of p53 in vitro and has been 
found to be essential for recruitment of the protein to coactiva-
tors-–such as cyclic AMP response element-binding (CREB) 
protein/p300.21 These co-activators contain intrinsic histone 
acetyl-transferase properties. Acetylation of the p53 protein 
appears to be a related with p300/CREB-binding protein-
associated factor (PCAF) (a histone acetyltransferase) and 

several other p53 co-activators.22 It has also been suggested 
that resveratrol induces acetylation of p53. Phosphorylation of 
specific p53 residues is considered necessary for the activation 
of certain promoter regions.23

Resveratrol-induced apoptosis factor (PCAF), another 
p53 co-activator, and CREB-binding protein/p300 are also 
co-activators for various transcription factors besides p53. 
Resveratrol is capable of phosphorylating p53 at N-terminal 
and C-terminal serine residues in many human cancer cell 
lines and also of promoting acetylation of p53. Activation of 
extracellularly-regulated kinases (ERK)-1 and -2 has been 
implicated in resveratrol-induced serine phosphorylation 
of p53 in cancer cells.9-15 It has been documented that res-
veratrol induces serine residue phosphorylation of a mutant 
p53 in prostate cancer cells, a phenomenon which induces 
apoptosis.9,10

r e s v e r A t r o l  A n d  c y c l o o x y g e n A s e 
( c o x ) - 2

Cyclooxygenase (COX), the enzyme involved in pros-
taglandin synthesis, is secreted by increased production of 
various inflammatory mediators. Two COX iso-enzymes 
have been described until now.24,25 COX-1 is a constitutively 
expressed form of the enzyme and is present everywhere, 
whereas COX-2 is inducible and is present in inflammatory 
lesions, and is known to be constitutively expressed in tumors. 
Constitutive expression of COX-2 in cells and animal models 
is associated with tumor cell growth and metastasis, enhanced 
cellular adhesion and inhibition of apoptosis.26

COX-2 has been found in the endoplasmic reticulum, Golgi 
complex, and nuclear envelope.27,28 COX-1 and COX-2 are 
localized in the nuclear envelope and endoplasmic reticulum of 
prostaglandin-2 releasing cells. Recent data have documented 
that prostaglandin-2 biosynthesis, COX iso-enzymes, and pros-
taglandin-2 are located in the perinuclear region. Resveratrol 
induces nuclear accumulation of COX-2 in various cancer 
cells, such as human breast tumor cells, glioma, head and 
neck squamous cells, ovarian and prostate tumor cells.28 These 
results suggest that inducible COX-2 may play a major role 
in p53-dependent apoptosis in tumor cells. Other researchers 
have also documented that COX-2 can be pro-apoptotic, while 
Hinz et al have demonstrated that COX-2 inhibitors could be 
deleterious for certain tumors because of the pro-apoptotic 
action of this protein.29-31 Nevertheless, pharmacologic inhibi-
tion of COX-2 has resulted in conflicting results.32,33 Other 
data have suggested that over-expression of COX-2 could 
induce an anti-proliferative effect, which is attributed to p53 
and p21 expression.34,35 Other studies support the notion that 
constitutive COX-2 expression induces tumor growth and is 
anti-apoptotic, whereas inducible COX-2, induced, e.g. by 
resveratrol and localized largely to the cell nucleus, is pro-

FIgure 1. The chemical structure of resveratrol (3,5,4’-trihy-
droxy-trans-stilbene).

tAble 1. Foods rich in resveratrol.
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apoptotic by means of phosphorylation of the serine residue 
of p53. Such a mechanism may be unique for the treatment of 
many cancers. Clinical anti-cancer regimens could possibly be 
designed to target the constitutively expressed and inducible 
pools of COX-2, particularly for the management of tumors 
in which pharmacologic COX-2 inhibition produces cell cycle 
arrest, rather than apoptosis, and when resveratrol or other 
agents capable of inducing COX-2 result in apoptosis.36,37

r e s v e r A t r o l  A n d  s I r t u I n s

The silent information regulator (SIR) genes (sirtuins) 
comprise a highly conserved family of proteins, with one or 
more sirtuins present in virtually all species, from prokaryotic 
organisms to eukaryotic ones. In mammals, 7 sirtuin genes 
-SIRT1 to SIRT7- have been identified.38 There is emerging 
evidence that sirtuins constitute a very perplexed biological 
response system, which has a major impact on many other 
molecular pathways, such as aging, apoptosis and inflam-
mation in complex manners. Resveratrol has been the first 
compound discovered, able to mimic calorie restriction by 
stimulating sirtuins.39,40 Calorie restriction is a process that 
alters the concentrations of many genes implicated in a variety 
of biological processes, such as growth, metabolism, immune 
system, as well as oxidative stress and DNA damage repair.41 
The molecular effects induced by calorie restriction overlap 
with two major pathways linked with lifespan modulation in 
vitro, insulin/insulin-like growth factor signaling and target 
of rapamycin signaling.41 Calorie restriction is suggested to 
induce gene expression patterns in multiple tissues. Indeed, 
treatment with resveratrol has reduced tumorigenesis in 
SIRT1+/−;p53+/− mice, and this protective effect has been 
attributed to SIRT1 activation.42

r e s v e r A t r o l  A n d  e x t r A c e l l u l A r 
s I g n A l - r e g u l A t e d  K I n A s e s  ( e r K ) 

1 / 2

Identification of a receptor site for resveratrol in cancer 
cells, by the implication of extracellular signal-regulated ki-
nases 1 and 2 (ERK1/2) of the resveratrol signal downstream 
into p53-dependent apoptosis, supports the potential of this 
compound as a therapeutic agent.41 The receptor could also 
serve as a vehicle for studies of future resveratrol analogues.

Regarding tumor cells, the role of integrins is more com-
plex than simply the transduction of outside in signals originat-
ing from integrin-matrix protein interactions. It is noteworthy 
that dysregulation of the β-3 integrins has been involved in 
the pathogenesis of cancer. Tumor growth and angiogenesis, 
such as those associated with vascular endothelial growth 
factor pathway, are enhanced in β-3-null mice.43 On the con-

trary, integrin β-3 overexpression may suppress tumor growth 
of a human glioma model in rats.44 The above-mentioned 
paradigms suggest that promotion of integrin β-3 expression 
in tumor cells could act as a therapeutic goal combating the 
process of carcinogenesis.

ERK1/2 are mitogen-activated protein kinases (MAPK) 
iso-enzymes, which serve as inducible components of the 
normal cellular signal transduction process. ERK1/2 activa-
tion pathway may be triggered in the setting of growth factor 
stimulated cells or by inflammation. MAPK-kinase activates 
ERK1/2 straight-forward.45 Resveratrol activates MAPK at 
low concentrations, but higher concentrations of resveratrol 
can inhibit this signal transducing kinase in tumor cells.46 It has 
been demonstrated that resveratrol induces ERK1/2 activation 
in prostate, breast, glial, head and neck, and ovarian cancer 
cells.47 The activation of ERK1/2 by resveratrol may be blocked 
by a MAPK kinase or mitogen/extracellular signal-regulated 
kinase (MEK) inhibitor, PD98059.48

r e s v e r A t r o l  A n d  A d e n o s I n e 
M o n o p h o s p h A t e - A c t I v A t e d  p r o t e I n 

K I n A s e  ( A M p K ) / M A M M A l I A n  t A r g e t 
o F  r A p A M y c I n  ( M t o r )  p A t h w A y

Adenosine mono phosphate-activated protein kinase 
(AMPK) is linked with the phosphatidyl-inositol-3 kinase/
AKT/mTOR signaling pathway, a cellular signaling cascade, 
which is of vital importance for cell growth, in response to mito-
genic stimuli.49,50 AMP-activated protein kinase (AMPK) acti-
vation inhibits phosphorylation and activation of the mTORC1 
complex and is partly controlled by the upstream kinase AKT 
(protein kinase B), whose activation decreases the AMP:ATP 
ratio”.51 Resveratrol has also been shown to modulate AMPK 
in breakpoint cluster region protein (BCR)- Abelson murine 
leukemia viral oncogene homolog 1 (ABL 1) (BCR/ABL) 
gene transformed cells and to exhibit antileukemic effects.53-55 
Treatment of either imatinib mesylate-sensitive or imatinib 
mesylate-resistant chronic myelogenous leukemia cells with 
resveratrol has resulted in apoptosis.56

r e s v e r A t r o l ,  n u c l e A r  F A c t o r 
K A p p A - l I g h t - c h A I n - e n h A n c e r  o F 

A c t I v A t e d  b  c e l l s  ( n F - κ b )  A n d 
s I g n A l  t r A n s d u c e r  A n d  A c t I v A t o r 
o F  t r A n s c r I p t I o n  3  ( s t A t 3 )  F A c t o r 

The transcription factor, nuclear factor (NF)-κB, regulates 
many genes implicated in growth regulation and inflamma-
tion.57,58 In vitro and in vivo studies have documented that 
constitutive activation of NF-κB results in inhibition of che-
motherapy-induced apoptosis in a number of cancer cells.59-64 
Signal transducer and activator of transcription 3 (STAT3) 
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factor is also a ubiquitously expressed –like NF-κB- member 
of the STAT family of transcription factors, which is activated 
by tyrosine phosphorylation by means of upstream receptors 
such as epidermal growth factor, platelet-derived growth fac-
tor and cytokines, for example interleukin-6.65 Recent studies 
have demonstrated that STAT3 may confer cancer resistance 
to chemotherapeutic agents.66-69

STAT3 is one of the major compounds implicated in car-
cinogenesis.70,71 The oncogenic significance of activated STAT3 
molecules is due to their effects on apoptosis, cell proliferation, 
angiogenesis, and immune system evasion.72,73 Constitutively 
active STAT3 has been involved in the promotion of resist-
ance to apoptosis, probably through the expression of B-cell 
lymphoma-extra large (Bcl-xL) and cyclin D1 proteins.74,75 
Its role in carcinogenesis is mediated through the induction 
of genes that suppress apoptosis and mediate proliferation 
and angiogenesis. Constitutive activation of STAT3 has been 
implicated in a variety of cancers, including breast, brain, co-
lon, gastric, esophageal, ovarian, nasopharyngeal, pancreatic, 
prostate cancer, head and neck squamous cell carcinoma, 
multiple myeloma, lymphomas and leukemia.76-78 Nevertheless, 
it is not completely understood why STAT3 is constitutively 
active in cancer cells.

Resveratrol exerts its sensitization effect by modulating 
one or more mechanisms of chemo-resistance. Recent data 
have shown that resveratrol may overcome chemo-resistance 
in cancer cells by modulating apoptotic pathways, down-
regulating drug transporters and down-modulating proteins 
involved in tumor cell proliferation. In addition, resveratrol 
has also been documented to overcome chemo-resistance by 
inhibiting NF-κB and STAT3 pathway.79,80 Resveratrol has 
been suggested to enhance the apoptotic and anti-proliferative 
potential of bortezomib and thalidomide in multiple myeloma 
cells. Such an enhancement has been related to the inhibi-
tion of NF-κB and STAT-3 activation pathways. Resveratrol 
administration has also been associated with accumulation of 
sub-G(1) population, increase in Bax release, and activation of 
caspase-3. This has been further related with down-regulation 
of various proliferative and anti-apoptotic gene products, in-
cluding cyclin D1, cellular inhibitor of apoptosis 2 (cIAP-2), 
X-linked inhibitor of apoptosis protein (XIAP), survivin, B-cell 
lymphoma 2 (Bcl-2), Bcl-xL, Bfl-1/A1, and tumor necrosis fac-
tor receptor-associated factor 2 (TRAF2).81 Investigation of 
the mechanism has revealed that resveratrol inhibited NF-κB 
activation through inhibition of IκBα phosphorylation and 
(IκB kinase) IKK activation. These observations have been 
further supported by an inhibition of NF-κB and STAT-3 in 
patients with multiple myeloma.82

r e s v e r A t r o l  A n d  A u t o p h A g y

Autophagy is an evolutionarily conserved intracellular 

process, characterized by lysosomal degradation of proteins, 
which is essential for survival of eukaryotic cells under meta-
bolic stress. It has also been suggesting to act as a form of 
programmed cell death.83-86 Pterostilbene, an analog of res-
veratrol, has been demonstrated to exert both autophagy and 
apoptosis in human bladder and breast cancer cell lines.87, 88 
It has also been found to cause accumulation of autophagic 
vacuoles as well as promote cell death via a mechanism 
involving lysosomal membrane permeabilization in human 
melanoma, colon, lung and breast cancer cell lines.89, 90 Pter-
ostilbene has been documented to produce autophagy in 
human leukemia cells.91

r e s v e r A t r o l ,  v A s c u l A r 
e n d o t h e l I A l  g r o w t h  F A c t o r 

( v e g F )  A n d  p I 3 K / A k t

A novel resveratrol analogue, HS-1793, has recently been 
demonstrated to inhibit vascular endothelial growth factor 
(VEGF) in human prostate cancer cells. HS-1793 has been 
suggested to inhibit phosphorylation of PI3K and Akt in human 
prostate cancer cells.92 Resveratrol itself has been suggested to 
inhibit the PI3K and Akt pathway in acute lymphoblastic leu-
kemia cells.93 Also, it has substantially induced HIF-1a protein 
degradation by means of the proteasome pathway. Moreover, 
HS-1793 has shown more potent effects than resveratrol on the 
cytotoxic effects on PC-3 cells.94 Resveratrol has been found 
to possess anti-angiogenic properties, through the inhibition 
of VEGF, useful for the prevention of breast cancer, too.95 
Also, this resveratrol analogue, HS-1793, has been shown to 
induce cell cycle arrest and apoptotic cell death, in human 
breast cancer cells. In particular, it has been found to induce 
G2/M cell arrest in human breast cancer cells.96

r e s v e r A t r o l  A n d  A t F 3 
t r A n s c r I p t I o n  F A c t o r

Recently, ATF3 has been identified as a novel target of 
resveratrol in colorectal cancer cells.97 ATF3, a member of 
the ATF/CREB family of transcription factors, is character-
ized as an adaptive response gene.98 Latest data suggest that 
ATF3 may function as a tumor suppressor gene in colorectal 
tumorigenesis. First, ATF3 expression is substantially reduced 
in cancer tissues, compared to normal tissue.99 Second, ATF3 
over-expression is reported to produce inhibition of prolif-
eration, promotion of apoptosis, inhibition of invasion and 
decrease of tumor formation in vivo.100-103 Finally, ATF3 is 
demonstrated to enhance induction of apoptosis by substances 
known to possess anti-cancerous properties.104-106 Thus, it is sug-
gested that ATF3 plays an anti-carcinogenic role in colorectal 
cancer (Fig. 2).107
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b I o A v A I l A b I l I t y  o F  r e s v e r A t r o l

Resveratrol’s bioavailability is compromised by its physico-
chemical properties, such as low stability, increased oxidation 
on heat and light exposure, low water solubility as well as its 
high hepatic uptake. Data obtained from human pharmacoki-
netic studies have shown a low amount of intact resveratrol in 
the systemic circulation, which does not justify its therapeutic 
activities, raising doubts about resveratrol’s potential in vivo.108 
Recently, a soluble form of trans-resveratrol has been devel-
oped, which has been demonstrated to be better absorbed and 
to have efficient serum levels compared to the dry powder. 
A single dose of 40 mg of this soluble galenic form resulted 
in blood levels of 0.1-6μM for several hours and without any 
observed intolerance or toxicity.109

c o n c l u s I o n

Resveratrol has shown much promise in preclinical trials 
and because of its good safety profile it may be an ideal chemo-
preventive and chemotherapeutic agent. However, the rapid 
metabolism of resveratrol has been a continuing challenge. 
Researchers now are focusing on approaches to overcome this 
problem, which appears to be a major obstacle in the clinical 
use of resveratrol. However, resveratrol seems to have a long 
way ahead until it could find its place as an effective chemo-
therapeutic agent. 
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