INTERVENTIONAL CARDIOLOGY UPDATE

Current Concepts on Revascularization Strategy in Patients with Diabetes Mellitus

Gregory Pavlides, MD, FACC

First Cardiology Division, Onassis Cardiac Surgery Center, Athens, Greece

ABBREVIATIONS

BMS = bare metal stent(s)

CABG = coronary artery bypass grafting

CAD = coronary artery disease

CVD = cardiovascular disease

DES = drug-eluting stent(s)

DM = diabetes mellitus

PCI = percutaneous coronary intervention

RCT = randomized controlled trial

Correspondence to: Gregory Pavlides, MD, Onassis Hospital, Athens, Greece; e-mail:

gripav@otenet.gr

Conflict of Interest: none declared

PRESENTATION SLIDES

Diabetes Mellitus and Epidemiology of CVD

- Estimated 170 million people worldwide suffer from DM
- DM, an atherosclerotic risk equivalent to a history of myocardial infarction
- Threefold to fivefold increased risk of acute coronary events
- 80% of diabetic patients succumb to atherosclerosis related conditions

CAD in Patients With Diabetes

- More advanced CAD with:
 - 1. Greater plaque burden
 - 2. Longer lesions
- 3. Smaller, more diffusely diseased vessels
- About 25% of pts undergoing CABG or PCI have DM
- Regardless of the type of revascularization DM pts have a worse prognosis compared to pts without DM
- When it comes to PCI, pts with DM have a higher restenosis rate and are at greater risk for MI and stent thrombosis than pts without DM

Key issues (Currently unclear) in managing diabetic pts with CAD

- 1. How tight should the glycemic control be (based on HbA1C levels) to decrease the risk for clinical events and improve prognosis?
- 2. Are insulin sensitization medical strategies preferred?
- Is revascularization beneficial?
- 4. What type of revascularization is best?

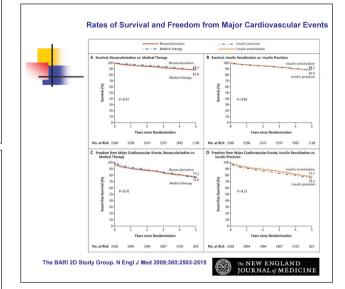
Long-term follow up of the UKPDS study. NEJM 2008; 359:1577

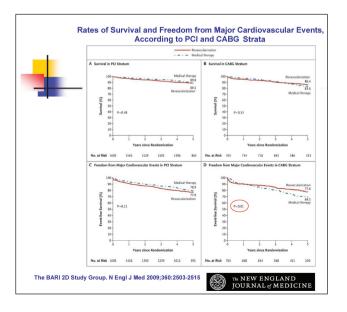
Trial Period	Intense versus control	onventional	Follow-up period		
UKPDS 33 ⁴	First 5 yr, median HbA _{1c}	5-10 yr, median HbA _{1c}	10-15 yr, median HbA _{1c}	15-20 yr, HbA _{1c} in final year ²	
Initially Intense	6.6	7.5	8.1	8	
Conventional	7.4	8.4	8.7	8.1	

Glycemic control contributed 22%, blood pressure control 33% and lipid control 45% to overall long-term outcome

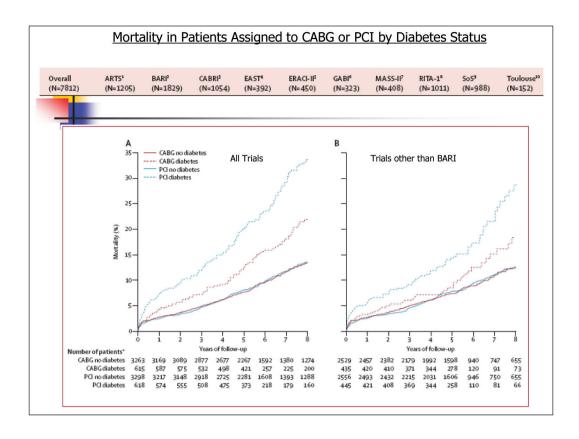
Glycemic Control and Outcome in DM

- Ultra-tight glycemic control may have adverse rather than beneficial outcome
- Tight blood pressure and lipid control, with tight but not ultra-tight glycemic control seems currently the most appropriate management of pts with DM


Danish study by Geade et al. *NEJM 2008; 358:580*Long-term follow up of the UKPDS study. *NEJM 2008; 359:1577*ACCORD Trial. *NEJM 2008; 358:2545*ADVANCE Trial. *NEJM 2008; 358:2560*VADT Trial. *NEJM 2009; 360:129*

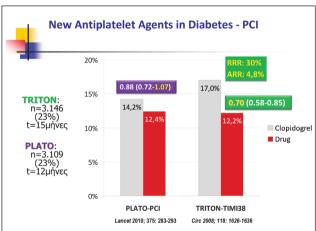


BARI 2D Trial


- Multi-center 2X2 factorial RCT
 - -Elective Revascularization + Medical Rx versus Medical Rx Only
- -Insulin Sensitization versus Insulin Provision
- 2368 patients with type 2 diabetes and stable CAD
- 5 years follow up
- HbA1C goal <7.0%
- End Points:
 - -Primary: All cause mortality (300 expected)
 - -Secondary: All cause mortality + non-fatal MI and stroke

The BARI 2D Study Group. N Engl J Med 2009;360:2503-2515

REVASCULARIZATION IN DIABETICS



SYNTAX Three Year Results in Patients with DM

2. Diabetes - Oral Hypoglycemic vs. Insulin

	Oral Hypoglycemic Agents (N=270)			Insulin (N=182)			Inter-
	CABG (N=128)	PES (N=142)	P Value	CABG (N=93)	PES (N=89)	P Value	action P Value
MACCE	22.1% (26)	32.2% (45)	0.07	24.0% (21)	44.5% (39)	0.005	0.33
Death/CVA/MI (composite)	14.2% (17)	12.2% (17)	0.59	13.6% (12)	22.7% (20)	0.11	0.13
Death	8.4% (10)	11.5% (16)	0.45	9.1% (8)	17.1% (15)	0.11	0.53
Cardiac death	5.0% (6)	6.5% (9)	0.63	4.5% (4)	12.6% (11)	0.06	
Cerebrovascular accident	5.2% (6)	0.7% (1)	0.03	1.3% (1)	5.2% (4)	0.16	0.03
MI	4.1% (5)	5.8% (8)	0.57	5.7% (5)	5.8% (5)	0.92	0.72
Repeat revascularization	10.1% (11)	24.8% (34)	0.002	16.8% (14)	33.2% (27)	0.02	0.59
PCI CABG	9.4% (10) 0.8% (1)	22.2% (30) 4.4% (6)	0.004 0.09	13.6% (11) 3.3% (3)	24.7% (20) 10.2% (8)	0.05 0.11	
Graft Occlusion/Stent thrombosis	3.7% (4)	2.3% (3)	0.52	1.1% (1)	5.8% (5)	0.09	0.10

The Changing Impact of Clinical Trials of Revascularization in Diabetics Selected Randomized Clinical Trials of Revascularization and Diabetes Mellitus Table 1 Diabetic Patients All Diabetic Patients BARI SYNTAX BARI 2D N 353 452 2,368 Randomization PTCA vs. CABG DES vs. CABG All revascularization vs. Med Rx Follow-up reported 10 yrs 1 yr 5 yrs PCI method Balloon angloplasty Taxus DES 35% DES Patients Symptomatic multivessel CAD Symptomatic left main and/or multivessel CAD Elective, left main excluded Primary end point Death 5 yrs Death, MI, stroke, or revascularization 1 yr Death 5 yrs PTCA: 34.5% DES: 8,4% All revascularization: 11.7% Death CABG: 19.4% CABG: 6.4% Med Rx: 12.2% p = 0.002 p = 0.43p = 0.97Death Not reported At 1 yr: At 5 yrs: DES: 10.1% All revascularization: 22.8% Stroke CABG: 10.3% Med Rx: 24.1% p - 0.96 p = 0.70Death Not reported DES: 26.0% Not reported CARG: 14.2% p = 0.003Stroke Revascularization PTCA: 69.9% 42% of Med Rx patients crossover to Repeat revascularization DES: 20.3% revascularization group CABG: 11.1% (at 7 yrs) CABG: 6.4% p < 0.001 Interaction with anatomic complexity Yes Not reported BARI = Bypass Angioplasty Revascularization Investigation; CABIG = coronary artery bypass graft surgery; CAD = coronary artery disease; DES = drug-cluting stent(s); Med Rx = medical treatment; MI = myocardial infarction; PTCA = percutaneous transluminal coronary angiography; SYNTAX = SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery.

Characteristics of Current Clinical Practice (Based on the Practice of BARI 2D)

- Investigators could choose between PCI or CABG (as it was the case in the old BARI Registry)
- The majority of diabetic patients with multivessel disease (56%) underwent PCI than CABG
- Among patients assigned to PCI only 49% were deemed equally suitable for CABG
- Among patients selected for CABG only 11% were deemed suitable for PCI
- The study was not designed to compare CABG to PCI

Conclusions

- Patients with diabetes mellitus who undergo revascularization have a worse outcome compared to non-diabetics regardless of the method of revascularization (CABG or PCI)
- PCI has evolved to an effective method of revascularization even in diabetic patients with multivessel CAD
- There is no short or mid-term death penalty with DES-PCI in diabetic patients, as it was shown in the past with PTCA-BMS/PCI
- The risk or repeat revascularization remains higher in diabetics than non-diabetics despite the DES use, and three fold higher than for patients undergoing CABG