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A b s t r ac  t

Contrary to the initial belief that the heart is a terminally differentiated organ that 
cannot replace its own cell damage, there is now proof that the circulating blood pro-
vides the injured tissue with adult stem and progenitor cells, which have the potential 
to differentiate into cardiomyocytes and ultimately improve cardiac function. Thus, 
transplantation of stem cells into the myocardium in patients with severe myocardial 
dysfunction post-myocardial infarction is being currently investigated for experimen-
tal as well as for clinical purposes. Many issues regarding the mode of action remain 
to be elucidated. The BOOST trial was the first completed, randomized study that 
showed safety, feasibility and efficacy of the method. However, a more recent double-
blind, placebo-controlled study failed to reveal an increase in global left ventricular 
ejection fraction and cast doubt on the efficacy of the method. Thus, further rand-
omized studies are needed to evaluate this novel approach in the treatment of ischem-
ic heart failure and determine its role, safety and efficacy.

Until recently it was believed that the heart is a terminally differentiated organ 
with no ability to repair any tissue injury. However, recent evidence suggests1-4 that 
the myocardium may have some potential to repair its own tissue injury, but this re-
generative ability is limited and can only repair minor cardiomyocyte damage. Any 
tissue loss that outbalances the regenerative and self-renewing properties of the heart 
would lead to an overt clinical picture of heart failure.

The healing process of the myocardium is undertaken by cardiac stem cells, the 
origin of which is a subject of debate. These cells might represent either local resident 
cardiac stem cells3-9 that have been suggested to differentiate into cardiomyocytes or 
bone marrow derived stem cells that reside in the myocardium as part of the natural 
myocardium homeostasis mechanism or in response to tissue damage10-12. In a recent 
report by Laugwitz and colleagues7, an endogenous cardiac progenitor (cardioblast) 
was identified in the postnatal rat, mouse and human myocardium. This cell is capable 
of obtaining a mature cardiomyocyte phenotype, expressing myocytic markers and 
generating action potentials. The epicardium has also been suggested as a potential 
source of cardiac stem cells, which then migrate into the myocardium and transdif-
ferentiate into multiple cell lines13.

Cardiac repair is a very complex and not fully understood mechanism that com-
prises many interacting steps. Certain cytokines play a critical role in this cascade, 
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that act as mediators of this complex process. Damaged tis-
sue secretes stem cell factor (SCF), CXCR4, stromal-derived 
factor-1 (SDF-1), granulocyte colony stimulating factor (G-
CSF), vascular endothelial growth factor (VEGF), monocyte 
chemoattractant proteins-1 (MCP-1) and other substances, 
which determine the mobilization and recruitment of stem/
progenitor cells to the injury site in the periphery. Homing of 
the activated stem cells to the injury site is the next crucial 
step as they adhere to the activated endothelium, migrate 
through the endothelial cells and finally invade and home in 
the damaged myocardium. The final step of this cascade is 
the transdifferentiation of the integrated stem cells, which is a 
process determined not only by their genetic material but also 
but the microenviroment they are attracted to14-16.

With all experimental data showing improvement of 
cardiac function after stem cell and skeletal myoblast trans-
plantation, regardless of the exact mode of action, the next 
logical step was the conduction of studies in humans. Most 
of them were small, uncontrolled and nonrandomized, thus 
causing difficulties in estimating the exact role of cardiac 
repair therapy in patients with acute or chronic coronary 
artery disease10,11,17-20.

A .  P a t i e n t s  w i t h  n o n - via   b l e , 
c h r o n ica   l l y  i s c h e m ic   

ca  r d i o m y o pa  t h y

In patients with chronic ischemic cardiomyopathy as a 
result of postinfarction scars, Pagani and colleagues injected 
autologous skeletal myoblasts intramyocardially in 5 patients 
awaiting heart transplantation during left ventricular assist 
device (LVAD) implantation. Examination of the hearts 
from 3 patients who finally underwent transplantation and 
from one who succumbed revealed development of myotubes 
in the scarred myocardium.21 Menasche and colleagues 
implanted autologous skeletal myoblasts intramyocardially 
(in-scar injection) in 10 patients with severely depressed left 
ventricular (LV) function (LV ejection fraction-EF <35%) 
during coronary artery bypass grafting (CABG) surgery. By-
pass grafting was carried out in noninjected territories only. 
Almost one year later he reported an improvement in regional 
wall motion and global LVEF, but 4 patients had to undergo 
cardioverter-defibrillator implantation due to episodes of 
sustained ventricular tachycardia22.

Almost similar in design was the study by Siminiak and 
colleagues23, who also combined CABG surgery, with grafting 
both injected and noninjected territories, in 10 patients with 
severely compromised LV function and intramyocardial skel-
etal myoblast injection in the akinetic/dyskinetic areas. Four 
months later there was an improvement in regional and global 
contractility, which was sustained over a period of 12 months. 
Ventricular arrhythmias, especially in the early postoperative 

stage, were also a serious concern in this group of patients.
Autologous skeletal myoblasts were also injected intramyo-

cardially by 2 other groups and were also combined with sur-
gical revascularization treatment. Herreros and colleagues24 
treated 11 patients while revascularizing both injected and 
noninjected segments, whereas Chachques and colleagues25 
treated 20 patients in combination with revascularization of 
the noninjected territories only. Both groups reported an 
improvement in regional and global contractility as well as 
enhancement of viability in the injected area. An interesting 
finding in the former study was the lack of cardiac arrhythmias 
and especially ventricular tachyarrhythmias in contrast to the 2 
aforementioned studies by Pagani and Menasche. This finding 
is probably associated with the selection of patients with higher 
baseline LVEF and to the effect of revascularisation on the 
infarcted myocardial segments during CABG surgery.

The percutaneous, transendocardial route reported by 
Smits26 consisted of targeted intramyocardial injection of au-
tologous skeletal myoblasts guided by electromechanical map-
ping. This group treated 5 patients with heart failure and after 
a follow-up period of 6 months, cell transplantation resulted 
in an increase of LVEF and improvement of wall thickening 
at areas of injection. This technique was also complicated 
by serious ventricular arrhythmias or even reported sudden 
deaths, that made the implantation of cardioverter-defibril-
lator (ICD) mandatory. Siminiak and colleagues27 applied in 
a phase I trial a novel technique of trans-coronary-venous 
for skeletal myoblast transplantation (TransAccess catheter 
system) in 9 patients with akinetic/dyskinetic scar tissue and 
moderately depressed LVEF. The process was feasible and 
safe, but he only reported an improvement of New York Heart 
Association (NYHA) functional class and a nonsignificant 
LVEF increase in a period of 6 months.

A recent study of a 4-year follow-up28 in 30 patients who 
underwent in-scar injection of skeletal myoblasts during 
CABG surgery (n=24) or LVAD implantation (n=6) reported 
new evidence of cell viability in the region of myocardial 
scar, an increase in LVEF (from 28% at baseline to 36% at 
2 years) and a reduction in LV dimensions. However, these 
results on cardiac function should be interpreted with caution 
since skeletal myoblast transplantation was associated with 
bypass surgery. Histological analysis of 4 of 6 patients from 
the LVAD arm who underwent heart transplantation revealed 
survival of skeletal myoblasts in the infarcted myocardium, 
minimal localized migration of myoblasts and myofiber for-
mation. The procedure was safe, with absence of increased 
arrhythmogenicity and deaths in the follow-up period that 
could be attributed to cell therapy. The only procedure-related 
arrhythmia was nonsustained ventricular tachycardia in 3 of 
24 CABG patients and was managed with medications and 
ICD implantation.

Only a few groups used bone marrow derived cells 
for transplantation in this cohort of patients with chronic 
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ischemic heart failure and postinfarction scars. Stamm and 
colleagues29,30 injected selected CD133+ bone marrow stem 
cells along the infarct border zone during CABG surgery in 
patients with depressed LVEF. These studies were safe and 
resulted in improvement of perfusion in the cell-treated area, 
global LVEF and favorable LV remodeling.

Strauer and colleagues reported recently the results of 
the IACT study, which showed a favorable effect of intrac-
oronarilly (in the infarct-related artery) infused unselected 
bone marrow derived mononuclear cells on functional and 
metabolic regeneration of chronic, non-viable myocardial 
infarction (MI). This study included also a nonrandomized 
control group. Cell therapy which was applied in 18 patients 
resulted in an improvement of global and regional LV func-
tion, reduction of infarct size and enhanced regional viability 
of the infarcted tissue 3 months later. There was no evidence 
of arrhythmia exacerbation and only one patient (out of the 18 
treated) showed significant restenosis which was successfully 
treated with stent implantation31.

Thus, in the clinical setting of nonviable, postinfarction 
scarred myocardium, most studies conducted are small, non-
randomized and used intramyocardial injection of skeletal 
myoblasts, with surgical or percutaneous approach. Most of 
them showed increase in LVEF and regional contractility but 
the effects of the cell treatment should be assessed cautiously 
due to the concomitant revascularization procedure. Increased 
arrhythmogenicity, including ventricular dysrrhythmias and 
deaths also raises concern about the potential for widespread 
use. Recent work presenting use of bone marrow-derived 
selected or unselected stem cells in the same clinical setting 
also seem efficacious without any serious side effects.

B .  P a t i e n t s  w i t h  c h r o n ica   l l y 
i s c h e m ic   b u t  via   b l e  m y o ca  r d iu  m

Hamano and colleagues32, for the first time, injected in-
tramyocardialy autologous unselected bone marrow-derived 
mononuclear cells during CABG in 5 patients with old MI and 
chronic, severe ischemic cardiomyopathy. After 12 months, 
they reported enhancement of myocardial perfusion and the 
safety of the method. In the next 2 studies published in 2003, 
autologous unselected bone marrow stem cells (BMSCs) 
were injected transendocardially (guided by electromechani-
cal mapping) in small, uncontrolled studies. At 3 months, 
all patients experienced less angina attacks and enhanced 
myocardial perfusion33,34, while magnetic resonance imag-
ing (MRI) also revealed improved regional wall motion in 
the injected areas33. In the only study with a nonrandomized 
control group35. Perin and colleagues also used the percutane-
ous transendocardial (electromechanically guided) approach 
in 14 patients with severe, chronic ischemic heart failure with 
a mean LVEF of 30%. Two months later, they reported less 

angina attacks, improved NYHA functional class, enhance-
ment of perfusion, regional wall motion, global LVEF and a 
significant reduction in left ventricular end-systolic volume in 
the cell treated group. One patient died 3 months after cell 
treatment. A recent report from this group36 focuses on the 
postmortem analysis of the heart of one patient who received 
cell therapy. In the cell treated myocardium, enhanced angio-
genesis was present, partially combined with a special pericyte 
population, which was located in areas suggesting migration 
towards adjacent bundles of cardiomyocytes. These pericytes 
were characterized not only by the presence of cytoskeletal 
elements and contractile proteins (troponin, sarcomeric α-ac-
tinin, actinin) but also by the expression of specific myocardial 
proteins, suggesting a partial transdifferentiation.

A recent randomized, double-blind placebo-controlled 
study37 assessed the impact of intracoronarilly delivered 
blood-derived circulating progenitor cells (mobilized with 
G-CSF) combined with recanalization of chronic coronary 
total occlusion on hibernating myocardium. At 3 months, 
coronary flow reserve in the reperfused artery improved, 
the number of hibernating myocardial segments treated 
declined, the infarct size was reduced and LVEF increased 
significantly in the treatment group. Of note that no serious 
adverse events were reported including in-stent reocclusion 
or in-stent restenosis.

Thus, in the setting of chronic, severe hibernating and/or 
ischemic cardiomyopathy, transendocardial (electromechani-
cally guided) approach seems to increase myocardial perfusion 
and probably regional wall motion, but only two studies35,37 
showed an increase in global LVEF. All studies reported 
substantial relief from angina pectoris, but this could be at-
tributed to a significant placebo effect. This technique seems 
to be feasible and safe, but final conclusions cannot be drawn 
from these small, uncontrolled studies.

C .  P a t i e n t s  i n  t h e  e a r l y 
p o s t i n f a r c t i o n  p e r i o d

The most widely investigated clinical scenario however 
concerns patients during the early postinfarction period, 
who undergo percutaneous coronary intervention (PCI) and 
stent implantation of the infarct related artery (IRA), through 
which several days later selected or unselected BMSCs are 
infused. Strauer and colleagues38, delivered in 10 patients 
intracoronarilly-via the central lumen of an over-the-wire 
system- unselected BMSCs, 5-9 days post MI, whereas 10 
other patients served as a nonrandomized control group. 
Three months later they reported a decrease in the infarct size 
and an increase in myocardial perfusion and improvement in 
regional wall motion, while global LVEF and LV dimensions 
remained unchanged.

Another group that used unselected bone marrow stem 
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cells and a nonrandomized control group was that of Fernan-
dez-Aviles and colleagues. They also delivered (in 20 patients) 
mononuclear cells intracoronarily almost 2 weeks after MI. 
At 6 months, they reported an improvement in regional wall 
motion, global LVEF, LV endsystolic volume and increased 
thickness of the infarcted wall39.

Assmuss and colleagues40 administered intracoronarily 
BMSCs almost 4 days after MI and subsequent PCI with stent 
implantation. Eleven patients received circulating blood-de-
rived progenitor cells (CPCs), 9 patients received bone mar-
row-derived mononuclear cells (BMCs) and 11 patients served 
as a nonrandomized, control group. At 4 months follow-up, 
they reported a significant increase in global LVEF, regional 
wall motion in the infarcted territory, coronary flow reserve 
of the infarct related artery, the viability of the infarcted seg-
ment and also improvement of the LV end-systolic volumes 
in both cell treated groups compared to the control group. 
Of note that no malignant arrhythmias in either cell-treated 
group were observed and that there was no difference in the 
above mentioned parameters between the two different cell 
groups administered.

In the context of the same study, Schachinger and col-
leagues41 also reported a sustained improvement in LV 
remodeling and cardiac function in patients randomized to 
intracoronary infusion of either circulating blood-derived 
progenitor cells (30 patients) or bone marrow-derived mono-
nuclear cells (29 patients) as a complementary therapy to 
stenting of the IRA. At 4 months, quantitative LV angiog-
raphy revealed a significant increase in LVEF and reduction 
in LV end-systolic volumes with no difference between the 2 
cell groups. Cardiac performance was also assessed by MRI 
at 4 and 12 months after cell treatment. Interestingly, global 
LVEF not only improved significantly in the first 4 months, 
but increased further in the next 8 months, thus resulting in a 
total increase of almost 9% one year after cell therapy.

Another group administered selected BMSCs, namely 
MSCs, via the intracoronary route in the infarct related artery 
18 days after MI and subsequent PCI42. Thirty-four patients 
were randomized for cell therapy (4.8-6x1010 cells) and 35 for 
the control group. At 3-6 months follow-up, the cell-treated 
group showed a decrease in the size of the infarction, LV 
dimensions and an improvement in regional and global 
contractility. Even though intracoronary delivery of MSCs 
in dogs43 was associated with “microinfarctions” due to the 
size of this particular cell type, this study did not report any 
periprocedural adverse events. Autologous culture-expanded 
MSCs combined with EPCs were administered intraconon-
arilly also by another group in patients with both recent and 
old anteroseptal MIs44. Four months after cell therapy, they 
reported an uneventful course and partial improvement in 
contractility and viability in some of previously non-viable 
myocardial segments, but no effect on global LVEF or LV 

remodeling.
Intracoronary infusion of selected BMSCs in patients with 

acute MI and PCI with stenting of the IRA was also reported 
by Bartunek and colleagues45 who administered 12.6±2.2x 
106 bone marrow-derived CD133 positive progenitor cells in 
19 patients 12 days after acute MI while 16 patients served 
as a nonrandomized control group. At 4 months, there was a 
significant improvement in myocardial perfusion, viability and 
function and absence of stem-cell related arrhythmias in the 
cell-treated group. On the other hand, the cell treated-group 
showed in-stent restenosis (7/19 patients) and reocclusion 
(2/19 patients) as well as significant de novo lesion of the IRA 
(2/19 patients).

In the BOne marrOw transfer to enhance ST-elevation 
infarct regeneration (BOOST) trial, 30 patients received 
2.5±0.9x109 unselected bone marrow-derived nucleated cells 
intracoronarily and 30 patients served as the control group Ap-
proximately 6 days after successful PCI and stent implantation 
in the IRA46. At 6 months, cardiac MRI revealed significant 
improvement of global LVEF in the cell-treated group due 
to an increased systolic wall motion of the segments adja-
cent to the infarcted segment. Cell therapy did not increase 
in-stent restenosis, arrhythmogenic complications or cause 
microinfarctions. There was no change in LV dimensions or 
viability of the infarcted area. Based on this latter finding, 
Wollert and colleagues attributed the recovery of the cardiac 
function probably to the paracrine effects of bone marrow-
derived stem cells, and not to their transdifferentiation into 
cardiomyocytes.

Very recently the benefit of bone marrow-derived unse-
lected stem/progenitor cell therapy was questioned in a truly 
randomized, double-blind, placebo-controlled study in 67 
patients after PCI for ST-elevation MI47. At 4 months, no ad-
ditive effect of cell therapy was noted on global LV functional 
recovery in patients with moderately depressed global LV 
function. Whether this novel treatment modality could be of 
practical use in patients with greater myocardial area at risk 
and greater LV dysfunction still has to be elucidated with 
similarly designed trials.

Thus, in the setting of the early postinfarction period 
clinical trials use mostly unselected bone marrow stem cells 
via the intracoronary over-the wire approach in the IRA. They 
show improvement of regional wall motion contractility of the 
infarcted or the infarct border area, which accounts for the 
enhancement of global LVEF reported in most of them. On 
the other hand, the fact that there are confounding data on the 
actual effect of BMSCs on myocardial perfusion, infarct size 
and LV dimensions, emphasizes the need to further elucidate 
the mechanisms of action of these cells. One important advan-
tage of this cell type is the lack of adverse events and especially 
ventricular arrhythmias or sudden cardiac deaths.
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Table 1. Clinical Studies Using Cytokines for Stem Cell Mobilization

Study Clinical setting Patients treated
Cell type  
infused

Delivery 
route Outcome/Adverse events

Kang et al  
[62]

Onset of G-CSF 
treatment 4 days 
before PCI for MI 
(MI 2-270 days 
old)

G-CSF only (10 pts) vs 
apheresis after G-CSF 
(10 pts) vs controls

Peripheral 
collected MNCs 
(mobilized with 
G-CSF)

ic Improvement in systolic function and 
myocardial perfusion (ic cell infusion). 
Mild elevation of CPK-MB (ic cell 
infusion group). Increased rate of 
in-stent restenosis of the IRA (Only 
G-CSF group).

Ince et al 
[63]

Onset of G-CSF 
treatment 89±35 
minutes after 
primary PCI

PCI + G-CSF (25 pts) vs 
PCI (25 pts)

NA NA Improvement in systolic function, LV 
dimensions and ↑ viability of infarcted 
tissue; No serious adverse events, 
including restenosis

Hill et al  
[64]

CCS ≥3, Severe 
reversible ischemia 
(Dobutamine 
MRI), LVEF 
52±2,6%

G-CSF (16 pts) vs 15 
healthy subjects

NA NA 2 pts with NSTEMI and MI/death. No 
benefit in cardiac function

Jorgensen 
et al [65]

Onset of G-CSF 
treatment 30±12 
hours after primary 
PCI

G-CSF treated (n=20) vs 
controls (n=21)

NA
 

NA No difference between the 2 groups
in in-stent neo-intimal hyperplasia or
restenosis (IVUS) at 5 months
invasive follow-up

Boyle et al Severe reversible 
ischemia (SPECT) 
with CCS ≥3; 
LVEF 50± 4,7%

G-CSF (5 pts) vs 5 
controls

Peripheral 
collected CD 34+ 
cells

ic Angina ↓, collateral flow grade ↑ 
(angiography). No in-stent restenosis, 
but in pts with documented enhanced 
collaterals one with Acute Coronary 
Syndrome and one with Lentigo 
maligna of the scalp)

Huettmann  
et al [67]

Chronic severe HF, 
LVEF<30%

G-CSF treated DCM 
pts (n=7) vs G-CSF 
treated ICM pts (n=9) vs 
controls (ICM, n=8)

NA NA Improvement in NYHA class and 
6MWT, echo unchanged; Occasional 
dyspnea, angina and 1 fatal Vfib 
(Treated ICM group)

Wang et al 
[68]

Severe reversible 
ischemia (SPECT) 
with CCS ≥3; 
LVEF 39±13%

G-CSF (n=13)  
vs controls (n=16) 

NA NA Myocardial perfusion unchanged, 
LVEF (SPECT: no change, MRI: ↓) 
- Improvement in symptoms, NTG use. 
No adverse events

Kuethe et al 
[69]

Onset of G-CSF 
treatment PCI 7.6 
±5.2 hours after 
primary PCI

G-CSF treated (n=14) vs. 
controls (n=9)

NA NA No serious adverse events. ↑ regional 
wall motion, perfusion and LVEF 
(treatment group). 1/13 treated pts 
with in-stent restenosis (angiography)

Pompilio  
et al [70]

10 days -3 months 
after MI or large 
ischemic areas

4 pts (3 with MI treated 
with off-pump CABG, 
1 with ischemia treated 
with transdiaphragmatic 
approach)

Peripheral 
collected CD133+ 
cells (mobilized 
with Lenogastrim)

Transepi-
cardial

2 pts with follow-up (1 with perfusion, 
1 with viability of the infarcted area); 
No serious adverse events

G-CSF, granulocyte colony-stimulating factor; PCI, percutaneous coronary intervention ; MNC, mononuclear cells; IRA, infarct-related artery; 
LVEF, left ventricular ejection fraction; CCS, Canadian Cardiovascular Society ; SPECT, single photon-emission CT; NTG, nitroglycerin; CABG; 
coronary artery bypass grafting; IVUS; intracoronary intravascular ultrasound; DCM, dilated cardiomyopathy; ICM, ischemic cardiomyopathy; 
NYHA, New York Heart Association; Vfib, Ventricular fibrillation; ic, intracoronary; LV, left ventricle; NSTEMI, Non-ST-elevation myocardial 
infarction
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M o b i l i z a t i o n  o f  s t e m / p r o g e n i t o r 
c e l l s

Based on the knowledge that bone marrow-derived pro-
genitor cells can reach the target organ through peripheral 
blood47,48 and that tissue repair is mediated by cytokines se-
creted from sites of ischemic injury16,49-52, an effort was made to 
evaluate the enhancement of the natural repair mechanism by 
exogenous delivery of G-CSF (Granulocyte-colony-stimulat-
ing-factor) and/or other cytokines on cardiac repair.

Stem and progenitor cell mobilization with granulocyte 
colony-stimulating factor (G-CSF) and/or stem cell factor 
(SCF) and other cytokines has been shown to improve cardiac 
function after MI in the experimental setting, but results do 
not seem to be uniform in different species or even differing 
human populations. It also seems that the exact mechanism is 
still to be elucidated since early reports on differentiation of 
mobilized stem cells into cardiomyocytes and endothelial cells 
in the infarcted area are challenged by recent experimental 
work. These latter studies reported a direct antiapoptotic 
effect of G-CSF on cardiomyocytes and endothelial cells 
in infarcted hearts as well as an accelerated wound healing 
process in the necrotic tissue along with the myocardial re-
generation effect10,53-60.

For clinical purposes, G-CSF induced mobilization of stem 
cells offers a more practical and noninvasive approach but 
the increased rate of in-stent restenosis reported in the first 
clinical trial conducted (MAGIC trial) raised great scepticism 
on the safety of the method. However, the late FIRSTLINE-
AMI and STEMMI trials reported a restenosis rate within the 
expected range. This was partly due to a different and more 
strict selection of patients in the latter studies regarding age, 
severity of coronary artery disease, chronicity of myocardial 
infarction and onset of subcutaneous G-CSF delivery after 
PCI of the IRA (Table 1)61-70.

Our group has administered autologous selected CD 133+ 
stem/progenitor cells via the intracoronary route in 12 patients 
with an old, non-viable anterior wall MI with a LVEF lower 
than 40%71,72. These patients underwent echocardiographic 

and Tl-201 reinjection scintigraphic studies 4.4±2.0 months 
(mid-term) and 11.3±3.0 months (long-term) after BMSC 
delivery. We found a progressive and sustained benefit in 
myocardial perfusion as documented by an increase in per-
fusion ratio in the infarcted anterior wall and apex of the 
left ventricle. Perfusion ratio (calculated as the percentage 
of normalized radioactivity -counts/pixel- in the infarcted 
segment vs maximum Tl-201 uptake) increased during long-
term follow-up by 22.6% (p=0.005) in the anterior wall and 
34.7% in the apex (p<0.001). We also found a progressive and 
gradual effect on LV remodeling as manifested by a decrease 
in end-diastolic and end-systolic volumes of the left ventricle. 
Tissue Doppler imaging performed at 6 months after bone 
marrow transplantation revealed that local deformation 
increased significantly as indicated by the improvement of 
ejection time and maximum strain as well as peak systolic 
strain rate (Table 2).

S U MM  A RY   A ND   C ON  C L U S I ON

Transplantation of stem cells for myocardial dysfunction 
after myocardial infarction is being intensively investigated 
for experimental as well as for clinical purposes. Contrary to 
the dogma that the heart is a terminally differentiated organ 
that cannot replace its own cell damage, there is now proof 
that the circulating blood provides the injured tissue with 
adult stem and progenitor cells, which have the potential to 
differentiate into multiple cell lineages and ultimately improve 
cardiac function. Many questions regarding the exact mode 
of action remain unanswered. The BOOST trial was the first 
completed, randomized study that showed safety, feasibility 
and efficacy of the method. The latest study published by 
Janssens and colleagues was the first double-blind, placebo-
controlled study and failed to reveal an increase in global 
LV ejection fraction reported in the former study. Thus, it is 
imperative to conduct more double-blind randomized studies 
in order to evaluate this novel method and its exact role in the 
treatment of ischemic heart failure, but safety should always 
a primary concern.

Table 2. Baseline and Follow-up Echocardiographic Data

	R est EDV (ml)	 Rest ESV (ml)	 Rest LVEF (%)	 Eet	E mx	 PSySR

Baseline	 191.5±53.6	 139.7±37.0	 25.5±6.7	 -7.55±3	 -10.2±3.4	 -0.7±0.23

Mid-term f/up	 182.6±52.1	 130.7±37.4	 28.0±7.7	 -	 -	 -

Long-term f/up	 171.7±47.6	 121.3±35.2	 29.2±7.3	 -11±5	 -13.7±5.6	 -1.1±0.24

p value	 0.006	 0.002	 0.02	 0.046	 0.029	 0.001

EDV, End-diastolic volume; ESV, End-sysolic volume; LVEF, Left ventricular ejection fraction; Eet= ejection time strain; Emx= maximum 
systolic strain; PsySR= peak systolic strain rate
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