HOSPITAL CHRONICLES 2008, 3(4): 167-171

REVIEW

Migraine Headaches: the Immunologist's View

Theoharis C. Theoharides, PhD, MD

ABSTRACT

Departments of

Pharmacology and Experimental Therapeutics, Biochemistry, Internal Medicine, Tufts University School of Medicine and Tufts – New England Medical Center, Boston, MA, USA

KEY WORDS: *inflammation, mast cells, stress, vascular permeability*

LIST OF ABBREVIATIONS: ACS = acute coronary syndromes CRH = corticotropin releasing hormone IL = interleukin SP = substance P VEGF = vascular endothelial growth factor

Correspondence to: Theoharis C. Theoharides, PhD, MD Professor of Medicine & Pharmacology Department of Pharmacology and Experimental Therapeutics Tufts University School of Medicine 136 Harrison Avenue Boston, MA 02111, USA Phone: (617) 636-6866 Fax: (617) 636-2456 E-mail: theoharis.theoharides@tufts.edu OBJECTIVE: Review evidence supporting the role of mast cells in migraine pathophysiology.

BACKGROUND: Mast cells are known for their role in allergic reactions, but they are also important in immunity and inflammatory diseases, especially those precipitated or worsened by stress. Such are migraine headaches that are associated with spreading neuronal depression and neurogenic inflammation intracranially. Migraines are also comorbid with allergies and could precipitate acute coronary syndromes (ACS). Mast cells are located perivascularly, in close association with neurons, especially in the meninges. Mast cells can be activated by trigeminal nerve stimulation and by acute stress, leading to increased vascular permeability and neurogenic inflammation dependent on NK-1 receptors, but not necessarily on substance P (SP).

METHODS: We reviewed relevant literature and summarized our own findings.

RESULTS: Corticotropin-releasing hormone (CRH), a mediator of the stress response released from the hypothalamus, can activate CRH receptors either on the sensory nuclei of the trigeminal nerve or directly on the mast cells. They, then release proinflammatory, nociceptive and vasoactive mediators including histamine, tryptase and vascular endothelial growth factor (VEGF), thereby triggering migraine headaches.

CONCLUSIONS: These results indicate that there are several novel points of intervention for the development of therapeutic agents to help alleviate migraines. Preliminary clinical studies with brain mast cell blockers and CRH receptor antagonists suggest that they could be useful prophylactically.

1. SELECTIVE RELEASE OF MAST CELL MEDIATORS

Mast cells derive from a distinct precursor in the bone marrow¹ and mature under local tissue microenvironmental factors.² Mast cells are necessary for the development of allergic reactions, through crosslinking of their surface receptors for IgE (FccRI), leading to degranulation and the release of vasoactive, pro-inflammatory and nocicep-

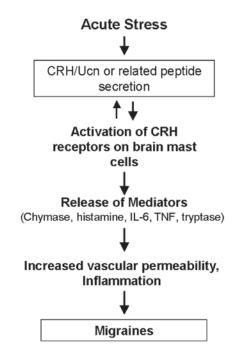
Presented in part at "Cardiology Update 2006", International Cardiology Symposium of Evagelismos General Hospital of Athens, Athens, Greece, April 13-15, 2006

Aspects of the work discussed were supported in part by grants from US NIH #AR47652 and NS 38326. Theta Biomedical Consulting and Development Co., Inc. (Brookline, MA) TCT has been awarded US patents #5,250,529; #6,020,305; #5,648,350; #5,855,884; #5,821,259; #5,994,357; #6,624,148 covering the use of CRH and mast cell blockers in inflammatory diseases.

tive mediators that include histamine, cytokines and proteolytic enzymes (Table 1).^{3,4} The multitude of mediators that could be secreted, especially in response to many non-immunologic triggers (Table 2) has given rise to new speculations about the possible role of mast cells in immune responses, especially acquired immunity⁵ and inflammation.⁶

Unlike allergic reactions, mast cells are rarely seen to degranulate during autoimmune⁷ or inflammatory processes.8 Instead, mast cells can secrete mediators without overt degranulation,⁹ through differential or selective release,¹⁰ probably regulated by the action of distinct protein kinases on a unique phosphoprotein.^{11,12} In such cases, mast cells undergo ultrastructural alterations of their electron dense granular core indicative of secretion, but without overt degranulation, a process that has been termed "activation", 13-15 "intragranular activation"¹⁶ or "piecemeal" degranulation.¹⁷ Selective release has been reported for a number of mediators,¹⁸⁻²⁰ especially serotonin,¹⁰ eicosanoids²¹⁻²³ or IL-6.²⁴⁻²⁷ In fact, we showed that interleukin-1 (IL-1) can stimulate human mast cells to release IL-6 selectively without degranulation, through a unique process utilizing 40-80 nm vesicles unrelated to the secretory granules (800-1000 nm).²⁸ We also recently showed that corticotropin releasing hormone (CRH) secreted under stress can stimulate human mast cells through specific CRH receptors to release vascular endothelial growth factor (VEGF) selectively.²⁹

These findings suggest that mast cells may also be involved in inflammatory diseases^{6,30} that include migraines³¹ and cardiovascular disease.³²


2. MENINGEAL INFLAMMATION AND MIGRAINES

Migraine headache is still a descriptive term that has been used primarily to refer to the brain and is usually associated with meningeal and cerebral vasodilation, as well as "spreading" neuronal depression.³³ It was hypothesized that mast cells may be involved in the pathophysiology of migraines.³¹ Mast cells are located in close apposition to neurons in the meninges ^{34,35} and can be activated by neuropeptides,³⁶ by antidromic nerve stimulation,¹⁴ as well as by acute immobilization stress.¹⁵ Brain mast cells were also activated by acute stress leading to increased vascular permeability,³⁷ effects dependent on mast cells and CRH.³⁸

Stress is known to precipitate or exacerbate migraines, raising the possibility of some underlying pathologic mechanism. One such possibility comes from one study of children migraineurs, in whom the frequency and severity of migraines was reduced, along with the unique mast cell biochemical marker tryptase, when they were taught relaxation techniques.³⁹ Recent studies have shown that stress-induced neurogenic inflammation depends on NK-1 receptors, but does not require SP,⁴⁰

TABLE 1. Mast cell Triggers		
Antigen + IgE		
Anaphylatoxins		
CRH		
IL-1		
Immunoglobulin – free light chains		
LPS		
NGF		
NT		
SCF		
SP		
Superantigens		
Ucn		
VIP		
Viral DNA sequences		

while it may involve a direct action of CRH on brain microvessels.⁴¹ Yet, delayed responses may also involve IL-6 and nitric oxide elevations in dura macrophages.⁴² These findings have led to a new model for the pathogenesis of intracranial neurogenic inflammation (Fig. 1) that calls for hypothalamic CRH acting on the sensory nucleus of the trigeminal nerve, which has been reported to express CRH receptors;⁴³ CRH

Figure 1. Schematic representation of the sequence of events that may induce brain mast cell activation and neurogenic inflammation, leading to migraines.

MIGRAINE & IMMUNOLOGY

TABLE 2. Mast Cell Mediators

Mediators		Main Pathophysiologic Effects
Prestored		
Biogenic Amines		
Histamine		Vasodilation, angiogenesis, mitogenesis, pain
5-Hydroxytryptamine (5-HT, serotonin)		Vasoconstriction, pain
Chemokines		
IL-8, MCP-1, MCP-3, MCP-4, RANTES		Chemoattraction and tissue infiltration of leukocytes
Enzymes		
Arylsulfatases		Lipid/proteoglycan hydrolysis
Carboxypeptidase A		Peptide processing
Chymase		Tissue damage, angiotensin II synthesis, cholesterol liberation
Kinogenases		Synthesis of vasodilatory kinins, pain
Phospholipases		Arachidonic acid generation
Tryptase		Tissue damage, activation of PAR, inflammation, pain
Peptides		
Corticotropin-releasing hormone (CRH)		Inflammation, vasodilation
Endorphins		Analgesia
Endothelin		Sepsis
Kinins (bradykinin)		Inflammation, pain, vasodilation
Somatostatin (SRIF)		Anti-inflammatory (?)
Substance P (SP)		Inflammation, pain
Vasoactive intestinal peptide (VIP)		Vasodilation
Urocortin		Inflammation, vasodilation
Vascular endothelial growth factor (VGEF)	Neovascularization, vasodilation
Proteoglycans		Cartilaga gunthagia anti inflammatagu
Chondroitin sulfate		Cartilage synthesis, anti-inflammatory Angiogenesis, nerve growth factor stabilization
Heparin Hyaluronic acid		Connective tissue, nerve growth factor stabilization
De novo synthesized		connective tissue, herve growth factor stabilization
Cytokines Interleukins (IL)-1,2,3,4,5,6,9,10,13,16		Inflammation, leukocyte migration, pain
INF-γ; MIF; TNF-α		Inflammation, leukocyte migration, pain
Growth Factors		initialititation, leakoeyte promeration/activation
SCF, GM-CSF, b-FGF, NGF, VEGF		Growth of a variety of cells
Phospholipid metabolites		Showin of a variety of cons
Leukotriene B ₄ LTB ₄		Leukocyte chemotaxis
Leukotriene C_4 (LTC ₄)		Vasoconstriction, pain
Platelet activating factor (PAF)		Platelet activation, vasodilation
Prostaglandin D_2 (PGD ₂)		Bronchonstriction, pain
Nitric oxide (NO)		Vasodilation
CRH = corticotropin-releasing hormone CSF = colony stimulating factor INF γ = Interferon- γ MIF = macrophage inflammatory factor b-FGF = fibroblast growth factor SCF = Stem cell factor	TGF- β = transforming growth factor- β TNF- α = tumor necrosis factor- α SRIF = somatomedin release inhibitory factor, somatostatin GM-CSF = granulocyte monocyte-colony stimulating factor NGF = nerve growth factor VEGF = vascular endothelial growth factor	

could then secrete mast cell stimulating peptides and/or have a direct action on mast cells and/or on the vasculature.⁶ These processes have recently been reviewed,⁴⁴ as has been the important role of mast cells in migraine pathophysiology.⁴⁵

CONCLUSION

In summary, the mast cell has emerged as a unique immune cell that could be activated by many non-immune processes, including acute stress, ⁴⁶ and could participate in a variety of inflammatory diseases including the brain. ³⁰

ACKNOWLEDGMENTS

We thank Ms. Jessica Christian for her word processing skills.

REFERENCES

- 1. Rodewald HR, Dessing M, Dvorak AM, Galli SJ. Identification of a committed precursor for the mast cell lineage. *Science* 1996; 271:818-822.
- 2. Galli SJ. New concepts about the mast cell. *N Engl J Med* 1993; 328:257-265.
- Kobayashi H, Ishizuka T, Okayama Y. Human mast cells and basophils as sources of cytokines. *Clin Exp Allergy* 2000; 30:1205-1212.
- 4. Galli SJ, Wedemeyer J, Tsai M. Analyzing the roles of mast cells and basophils in host defense and other biological responses. *Int J Hematol* 2002; 75:363-369.
- Galli SJ, Kalesnikoff J, Grimbaldeston MA, et al. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749-786.
- Theoharides TC, Cochrane DE. Critical role of mast cells in inflammatory diseases and the effect of acute stress. *J Neuroimmunol* 2004; 146:1-12.
- 7. Benoist C, Mathis D. Mast cells in autoimmune disease. *Nature* 2002; 420:875-878.
- Woolley DE. The mast cell in inflammatory arthritis. N Engl J Med 2003; 348:1709-1711.
- Theoharides TC, Douglas WW. Secretion in mast cells induced by calcium entrapped within phospholipid vesicles. *Science* 1978; 201:1143-1145.
- Theoharides TC, Bondy PK, Tsakalos ND, Askenase PW. Differential release of serotonin and histamine from mast cells. *Nature* 1982; 297:229-231.
- Theoharides TC, Sieghart W, Greengard P, Douglas WW. Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. *Science* 1980; 207:80-82.
- 12. Sieghart W, Theoharides TC, Alper SL, et al. Calcium-dependent protein phosphorylation during secretion by exocytosis in

the mast cell. Nature 1978; 275:329-331.

- Dimitriadou V, Lambracht-Hall M, Reichler J, Theoharides TC. Histochemical and ultrastructural characteristics of rat brain perivascular mast cells stimulated with compound 48/80 and carbachol. *Neuroscience* 1990; 39:209-224.
- Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC. Trigeminal sensory fiber stimulation induces morphologic changes reflecting secretion in rat dura mast cells. *Neuroscience* 1991; 44:97-112.
- Theoharides TC, Sant GR, El-Mansoury M, et al. Activation of bladder mast cells in interstitial cystitis: a light and electron microscopic study. J Urol 1995; 153:629-636.
- Letourneau R, Pang X, Sant GR, Theoharides TC. Intragranular activation of bladder mast cells and their association with nerve processes in interstitial cystitis. *Br J Urol* 1996; 77:41-54.
- Dvorak AM, McLeod RS, Onderdonk A, et al. Ultrastructural evidence for piecemeal and anaphylactic degranulation of human gut mucosal mast cells in vivo. Int Arch Allergy Immunol 1992; 99:74-83.
- Kops SK, Van Loveren H, Rosenstein RW, et al. Mast cell activation and vascular alterations in immediate hypersensitivitylike reactions induced by a T cell derived antigen-binding factor. Lab Invest 1984; 50:421-434.
- Van Loveren H, Kops SK, Askenase PW. Different mechanisms of release of vasoactive amines by mast cells occur in T cell-dependent compared to IgE-dependent cutaneous hypersensitivity responses. *Eur J Immunol* 1984; 14:40-47.
- Kops SK, Theoharides TC, Cronin CT, et al. Ultrastructural characteristics of rat peritoneal mast cells undergoing differential release of serotonin without histamine and without degranulation. Cell Tissue Res 1990; 262:415-424.
- Benyon R, Robinson C, Church MK. Differential release of histamine and eicosanoids from human skin mast cells activated by IgE-dependent and non-immunological stimuli. *Br J Pharmacol* 1989; 97:898-904.
- Levi-Schaffer F, Shalit M. Differential release of histamine and prostaglandin D₂ in rat peritoneal mast cells activated with peptides. *Int Arch Allergy Appl Immunol* 1989; 90:352-357.
- 23. van Haaster CM, Engels W, Lemmens PJMR, et al. Differential release of histamine and prostaglandin D₂ in rat peritoneal mast cells; roles of cytosolic calcium and protein tyrosine kinases. *Biochim Biophys Acta* 1995; 1265:79-88.
- Leal-Berumen I, Conlon P, Marshall JS. IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 1994; 152:5468-5476.
- Marquardt DL, Alongi JL, Walker LL. The phosphatidylinositol 3-kinase inhibitor wortmannin blocks mast cell exocytosis but not IL-6 production. *J Immunol* 1996; 156:1942-1945.
- Gagari E, Tsai M, Lantz CS, et al. Differential release of mast cell interleukin-6 via c-kit. Blood 1997; 89:2654-2663.
- Hojo H, Sun R, Ono Y, *et al.* Differential production of interleukin-6 and its close relation to liver metastasis in clones from murine P815 mastocytoma. *Cancer Let* 1996; 108:55-59.
- 28. Kandere-Grzybowska K, Letourneau R, Boucher W, et al. IL-1

induces vesicular secretion of IL-6 without degranulation from human mast cells. *J Immunol* 2003; 171:4830-4836.

- Cao J, Papadopoulou N, Kempuraj D, *et al.* Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. *J Immunol* 2005; 174:7665-7675.
- Theoharides TC. Mast cell: a neuroimmunoendocrine master player. Int J Tissue React 1996; 18:1-21.
- 31. Theoharides TC. Mast cells and migraines. *Perspect Biol Med* 1983; 26:672-675.
- Constantinides P. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. *Circulation* 1995; 92:1083-1088.
- 33. Spierings EL. Pathogenesis of the migraine attack. *Clin J Pain* 2003; 19:255-262.
- 34. Dimitriadou V, Aubineau P, Taxi J, Seylaz J. Ultrastructural evidence for a functional unit between nerve fibers and type II cerebral mast cells in the cerebral vascular wall. *Neuroscience* 1987; 22:621-630.
- Rozniecki JJ, Letourneau R, Sugiultzoglu M, *et al.* Differential effect of histamine-3 receptor active agents on brain, but not peritoneal, mast cell activation. *J Pharmacol Exp Ther* 1999; 290:1427-1435.
- Goetzl EJ, Chernov T, Renold F, Payan DG. Neuropeptide regulation of the expression of immediate hypersensitivity. J Immunol 1985; 135:802s-805s.
- 37. Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA. Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. *Neuroscience* 1992; 48:187-

203.

- Esposito P, Chandler N, Kandere-Grzybowska K, et al. Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 2002; 303:1061-1066.
- Olness K, Hall H, Rozniecki JJ, *et al.* Mast cell activation in children with migraine before and after training in self-regulation. *Headache* 1999; 39:101-107.
- Kandere-Grzybowska K, Gheorghe D, Priller J, et al. Stressinduced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice. Brain Res 2003; 980:213-220.
- Esposito P, Basu S, Letourneau R, et al. Corticotropin-releasing factor (CRF) can directly affect brain microvessel endothelial cells. *Brain Res* 2003; 968:192-198.
- Reuter U, Bolay H, Jansen-Olesen I, *et al.* Delayed inflammation in rat meninges: implications for migraine pathophysiology. *Brain* 2001; 124:2490-2502.
- Rivest S, Laflamme N, Nappi RE. Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus. J Neurosci 1995; 15:2680-2695.
- Theoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as targets of corticotropin-releasing factor and related peptides. *Trends Pharmacol Sci* 2004; 25:563-568.
- Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A. The role of mast cells in migraine pathophysiology. *Brain Res Rev* 2005; 49:65-76.
- Theoharides TC. Mast cells and stress a psychoneuroimmunological perspective. J Clin Psychopharmacol 2002; 22:103-108.