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Abstract
We consider auctions/tenders for the procurement of goods and services in

the setting where the potential contractors face ex-post risks that may lead to
cost overruns. The contractors have limited access to credit and are protected
by limited liability. We identify the trade-offs that the procurement agency
faces in such settings and show that the procuring agency minimizing the ex-
pected costs of the project greatly benefits by allocating a share of the award
ex-ante, at the time of contracting, with the remainder due ex-post, after the
completion of the project.

1 Introduction

Procurement of goods and services has attracted much attention in the economic
literature because of the volume of transactions it generates. The procurement by
federal, state and local governments is the USA accounts for more than 10% or
GDP. The goods and services procured range in complexity and cost, as a result
a variety of procurement mechanisms are utilized. The rights to provide complex
goods, like new buildings, infrastructure or weaponry are allocated at government
tenders. These involve several potential contractors engaged in the consultations
about the objectives of the procurer, building prototypes, estimating production costs
and finally submitting the offers at the tender where the price is determined by
competitive bidding. In USA, Federal Acquisition Regulation strongly encourages
the use of such tenders and particularly open competitive bidding whenever possible.1

Private sector engages in similar tender process when building or renovating homes.
Procurement tender can be analyzed along the same lines as an auction, except

that the roles of the sellers and the buyers are reversed. The buyer in, say, real estate
auction possesses private information about the value of the house. The contractor
that participates in a government tender possesses private information about its own
cost of providing the object, say constructing a new bridge.2 The seller seeks to

1https://www.acquisition.gov/far/
2The motivation for why the cost of construction can be thought of as private information of the

contractor is given in the description of the model.
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maximize the sale price of the house, analogously, the agency responsible for the
procurement minimizes the cost of construction. The methodology developed for the
analysis of auctions can, indeed, be applied directly to the procurement settings if the
cost of the project is known with certainty to the potential contractors at the time of
the tender. In fact, quite to the contrary, neither the true value of an old house sold
at an auction, nor the cost of constructing the bridge, is known at the tender and is
discovered by the winner much after the bidding is over.
Here lies a distinction between the auction and the tender. If the winner of the

real estate auction discovers later that the value of his house is lower because it is
more expensive to renovate, the winner cannot ask the seller for a compensation. If
the winner of the procurement tender learns later that the bridge is impossible or
unprofitable to complete given the budget, the contractor abandons the project pro-
tected by the limited liability.3 The government is then left to finish the construction
at an extra cost. The buyer in the procurement tender therefore suffers from the bid-
ders flawed cost estimates, whereas the seller in the auction is impervious to similar
mistakes of the bidders.
The flaws in the costs estimates, that lead to the cost overruns as the project

unfolds can be very substantial. Peck and Scherer (1962) estimate that for U.S.
defence programs development cost exceed the original predictions by 220 percent on
average. Cost overruns are also prevalent in the building industry. “Big Dig”—a
highway tunnel under the central part of Boston has been constructed at the cost of
8.6 billion dollars over the original estimate. Opera House in Sydney took extra ten
years to complete, went through numerous design revisions with an intent to lower the
cost and yet exceeded the original budget by more than 14 times. The responsibility
for the cost overrun can lie with the procurer– unexpected change of objectives,
the contractor– inadequate design, or “third party”– geological risks, shocks to the
material prices, new environmental and building regulations. As is often the case, the
responsibility is hard to assign and remains a subject of the heated debate for years,
see Boston Globe on the issues surrounding Big Dig project.4 Bajari and Tadelis
(2001) observe that the majority of the building contracts in the USA are either cost
plus or fixed price contracts. Banerjee and Duflo (2000) observe that same in the
Indian software industry oriented for the USA clients. Banerjee nd Duflo “contracts
that target the sourse of the cost overrun are probably unenforsable.”
We provide an original model of procurement process with asymmetric information

about the cost of the project. The cost of the project is subject to the shock which
is realized after the construction has started. The value of the cost overrun is private
information of the winner of the tender. This precludes the use of cost plus contracts,
where the burden of the cost overrun is transferred to the buyer, see Bajari and Tadelis

3In the US during 1990-1997 more than 80,000 contractors filed for bankruptcy leaving behind
unfinished private and public construction projects with liabilities exceeding $21 billion. (Dun &
Bradstreet Business Failure Record).

4http://www.boston.com/news/specials/bechtel/part_1
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(2001). Our analysis thus concentrates on so called fixed-price contracts, with the
level of the price determined by competitive bidding. This form of the contract is most
commonly used in the government defence procurement, see Fox (1974), McAfee and
McMillan (1986) and in the public infrastructure procurement, see Tadelis and Bajari
(2006). The government allocates the project via the second lowest bid tender.5 The
overall amount of the award that the winner is set to receive is determined at the
time of the tender. The novelty of the approach is that the award can be allocation
in proportions, one part ex-ante– before the construction starts and the remainder
ex-post– after the completion of the project. The proportion is known to the bidders
at the time of the tender and certainly affects their bidding behavior. We consider
two settings, in one the firms have unlimited budgets to cover any possible costs, in
the more general one the firms have limited access to credit. The budget constraint
constitutes another aspect of the contractor’s private information in the spirit of Che
and Gale (1998). We assume that the contractors are protected by limited liability
therefore our work also contributes to the new and growing field of mechanism design
without commitment.
As we show, the following fundamental tensions arise. The higher is the proportion

of the tender paid ex-ante, the lower are the bids. The bidders protected by the
limited liability are not afraid to walk away from the project in case of the large cost
overrun and bid quite aggressively. In the extreme case of full ex-ante payment, the
bidders bid their private costs and abandon the project whenever the shock causes
cost overruns. The buyer contracts to complete the project at the lowest possible price
but faces the additional costs due to incomplete projects more often. We assume that
it is more costly to complete the project for the buyer than for the winning contractor.
With fully ex-post payment the contractors are more exposed to the risks associated
with the shocks and inflate their bids accordingly. They, however, have the strongest
incentives to complete the project. In case of unlimited budgets we show that it is
optimal to pay the whole amount of the award ex-post. When the budgets are limited
fully ex-post payment often leads to incomplete projects because the winner has no
funds to finish the project. At the same time if the award is fully paid ex-ante the
winner has no incentive to finish the project in case of the cost overrun. We show
that in the case of limited budgets the optimal proportion is interior, it is optimal to
pay a fraction r ∈

(
0, 1

2

)
of the tender ex-ante and the remainder (1 − r) ex-post if

and when the project is completed.
The rest of the paper is organized as follows. Section 2 summarizes the relevant

literature, Section 3 presents the model, Section 4 deals with the special case of
unlimited budget, Section 5 with the case of “lean budget”where each bidder just
has enough own funds for the initial investment. The special cases are not only of
independent interest but also serve as building blocks of the equilibrium construction

5While the second lowest bid format is rarely used for procurement, we use it as a notation-
ally simpler equivalent to an open descending price format that is commonly used. The results
qualitatively are likely to be the same.
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for the general two dimensional case of arbitrary budgets presented in Section 6.
Section 6 also contains our main result. Section 7 extends the results for unlimited
and lean budgets to the case where shocks z arrive from distribution with continuous
c.d.f. Fz. The equilibrium strategies then cannot be obtained in closed form but
optimal sharing schemes are the same as for binary distribution of shocks in sections
4 and 5. We expect to generalize the main result in Section 6 to the general continuous
distribution of the shocks.

2 Related Literature

The asymmetric information literature on procurement is quite large, see the books by
Laffont and Tirole (1993) and McAfee and McMillan (1988) for surveys. The modern
approach to the procurement problem recognizes the elements of adverse selection,
the contractor has better information about the production cost than the buyer, and
of moral hazard, the contractor may reduce the cost of production by exerting more
effort. The approach to the adverse selection is the usual screening, the buyer offers a
menu of contracts from which the seller selects a particular one thereby reducing the
informational asymmetry. To our knowledge, the screening stage is always modelled
as one on one interaction, that is the buyer has already selected the contractor for
the project and now the problem is reduced to providing incentives for this particular
contractor.
Another approach to informational asymmetry is competitive bidding. Here of

course, there are multiple potential contractors who posses private information about
the production cost. The competitive bidding in the setting where the contractors
know with certainty what the cost will be before they start production is equivalent
to an auction and can be analyzed along the lines of Myerson (1981) or Riley and
Samuelson (1981) optimal auction, (see also Manelli and Vincent (1995) for opti-
mal procurement mechanism when goods vary in quality.)6 This setting is however,
unrealistic. Ashley and Workman (1986) in a survey of contractors and buyers in
USA building industry report that project engineering must be 40-60% complete to
establish the reasonable estimate for the cost.
McAfee and McMillan (1986) consider a model similar to ours where the costs

are subject to ex-post shocks but also may be reduced by the winner’s effort. The
buyer therefore faces both adverse selection and moral hazard. McAfee and McMillan
consider bidding for a linear incentive contract that factors in both the cost (assumed
observable ex-post) and the winning bid and derive the optimal contract in this class.
The contract in McAfee and McMillan therefore combines the elements of the fixed
price and cost plus contracts. Such contracts are infeasible in our setting as both
the original estimate and the final value of the cost remain the private information of

6The literature on auctions with budget constrained bidders is small, see Che and Gale (1998)
and (2000), Che, Gale and Kim (2011), Pai and Vohra (2009).
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the winner. Parlane (2003) also deals with bidding in the model with potential cost
overruns and bidders protected by limited liability. She shows that among all effi cient
mechanisms in which only the winner gets paid, the lowest bid tender leads to the
highest expected price, thus minimizing the chances of bankruptcy. In our setting
where the bidders are budget constrained neither the first nor the second lowest bid
tender is effi cient.
Piccione and Tan (1996) consider a model in which ex-ante symmetric potential

contractors invest in the cost reduction technology and then compete for the procure-
ment contract. The cost can be further reduced by exerting effort with no exogenous
shocks. If the buyer is able to commit to the procurement mechanism before the
investment stage the first best solution can be implemented by either first or second
price auction under quite general conditions. If the buyer chooses the mechanism
after the initial investment stage the level of investment is suboptimal. Arozamena
and Cantillon (2004) consider a similar model, however, the firms are ex-ante het-
erogeneous, investment is only made by one firm and the level of investment is made
observable introducing asymmetry in the competition. If investment affects which
firm is the most effi cient then the first-price auction will induce less investment than
second-price auction. In all of these papers the contractors have suffi cient budgets to
cover all possible costs and it is assumed that the award is paid ex-post.
Burguet et. al. (2006) study procurement in the setting where the bidders are

symmetric with respect to both ex-ante and ex-post costs, but have privately known
budgets. With limited liability and budget being the only screening variable incen-
tive compatibility implies that win probabilities are monotonically decreasing with
the budgets, thus an auction allocates the contract to the least financially solvent
contractor. In our setting, naturally, privately known budgets affect the bidding
strategies but those mainly depend on the privately known costs, see the equilibrium
construction in Section 6.
Contract theory literature that deals with one on one relationship between the

buyer and the contractor is huge. Here we concentrate on the papers that deal
with procurement and issues of cost overruns. Again with few exceptions all of this
literature assumes no credit constraints. Bajari and Tadelis (2001) build the model
in which there is no role for the ex-ante asymmetric information, however, the design
may be subject to ex-post changes. The contractor possesses private information
about the cost of the change of the original design. The buyer ex-ante decides on
the completeness of the design. With more complete design the likelihood that it
will need to be renegotiated ex-post is smaller, which reduces the ex-post cost of
the buyer. Providing more complete designs is, however, costly ex-ante. Bajari and
Tadelis compare cost plus and fixed price contracts and show that simple projects will
be procured via fixed price contracts and will have a high level of design completeness.
More complex projects will be procured at cost plus contracts and will have low level
of completeness. Crocker and Reynolds (1993) provide an empirical study of the
effects of various types of contracts used in defence procurement.
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In Riordan and Sappington (1988) the buyer either uses contingent prices or can
commit to negotiate a price in the second period once uncertainty about the shock
is realized. It is often diffi cult to provide a complete contract that will cover any
contingency and impossible to do so if the costs are not verifiable like in our model.
Committing to negotiate a price in the future may be suboptimal since the contracts
will be submitting very low bids trying to lock in the contract before the shock is
realized and take advantage of the situation to increase the price at the renegotiation
stage.
Tirole (1986) in an incomplete contract setting examines the ex-ante investment

in cost reduction by the contractor. Parties bound by an incomplete contract have
an incentive to renegotiate after acquiring the information about the shock. If the
contractor’s investment is not observed by the buyer, in a vast majority of bargain-
ing schemes, the firm invests less than it would under symmetric information and a
complete contract. If the investment can be observed by the two parties that jointly
decide on the firm’s investment level (and on the investment sharing rule). the mu-
tually agreed-on investment may be lower than its level under unobservability, higher
than the first-best level, or intermediate between the two values.

3 Model

The government, later a buyer, needs to realize a new project that once completed
it values at V . There is a number N of contractors/firms that have a capacity to
complete the project. Each contractor i is given the right to examine the require-
ments of the project to be completed and forms its estimate of the cost of the initial
investment, ci. This cost is private information of firm i, it is unverifiable and can-
not be contracted upon.7 The buyer, though, can ascertain if the necessary initial
investment has been made.8

Any contractor that is awarded the contract and invests in it faced ex post risk.
Before completion, but after the initial investment of ci, the winner may have to
incur extra costs Z > 0 with probability of such an adverse event occurring p > 0.
9 These costs can arise due to a management oversight, an adverse shock to input

7We implicitly assume here that each contractor is endowed with exogenously given amount of
capital and labor and that contractors are symmetric in that respect. The asset of the contractor that
is responsible for the private information in the model is the managerial talent of the contractor.
This talent is intangible and unverifiable, cannot be therefore used as collateral, but can reduce
the cost of the project. A large construction project involves coordination of work of hundreds
of independent sub-contractors and managerial costs can be very substantial. Bajari and Tadelis
(2001) provide an excellent description of construction industry in the USA and the work on Getty
Art Centre in Los Angeles.

8This assumption is needed for off equilibrium considerations. In equilibrium the contractor is
provided with incentives to make an initial investment.

9Parlane (2003) considers similar model but there the shock occurs without any investment,
purely as the time unfolds. It is left unspecified why the tender is not delayed untill all the uncertainty
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costs, or some other unforeseen contingencies. We assume that these costs are also
not verifiable and so cannot be contracted upon and that they are the same both in
magnitude and probability for any firm. The latter assumption is made solely for
simplicity of exposition. The firm may decide not to cover these extra costs, in which
case the project will not be completed.10

The buyer uses a second-lowest sealed bid auction to allocate the contract, that
is, it asks for each contractor to make a bid, awards the contract to the one with the
lowest bid, and sets the value of the award β equal to the second lowest bid. The
crucial choice of the buyer is to decide on the share of the award to be transferred at
the initial investment stage, r ∈ [0, 1]. Thus, once the tender finishes and the award is
set at β, the buyer pays to the winner rβ, and once the project is completed, it pays
the remainder (1− r)β. We assume that if the shock hits and the winner decides not
to cover extra costs, the buyer is not obligated to pay the ex-post part of the award.
If she decides to complete the project it has to incur extra costs of X > Z.11 The
inequality reflects possible extra costs (in addition to Z) from time delays, inadequate
expertise, and other factors.
Each contractor faces a “hard budget”constraint when making each investment.

Contractor i initially has mi in cash, which is her private information. For each
investment it wants to make, i has to have enough cash to cover it. We assume that
each contractor has limited liability in the sense that it cannot be forced to make
an unprofitable initial or additional investment. Thus, each contractor has a two-
dimensional private information (ci,mi), independently drawn from other firms from
the same cumulative distribution F . Thus, the common knowledge includes values
of V , X, Z, p, and c.d.f. F [c,m] on

[
Cmin, Cmax

]
×
[
Smin, Smax

]
.12 We assume that

V > Cmax + pZ and X < V , so that it is always optimal for the buyer to procure for
the project and complete an incomplete project if it comes to that.
Finally, the objective of the buyer is to maximize its value from having the project

completed considering the payments to be made. Given our assumptions it amounts
to minimizing the expected cost of the project, inclusive or all the payments the buyer
faces. The objective of each contractor is to maximize its profits. Both the buyer
and contractor are risk-neutral and have the same value for money.
A trivial immediate observation is that it is optimal for the buyer to make the

is realized. Our model better captures the feature of the reality that for the contractor to realize
the actual cost of the project she has to actually work on it.
10This is an extreme form of limited liability, a more realistic assumption that the buyer can

enforse a contract by incuring a cost σ > 0 leads to the same qualitative results.
11Implicitly we assume that there is another tender process that results in some contractor being

chosen to complete the project. It is important that the original contract is not renegotiated. In
addition, the winner of the original tender is excluded from participation in the second tender.
12At this stage we make no further assumptions on F [c,m]. Deriving the expected cost of the

project we will assume that mi ≥ ci for each contractor. We will discuss this assumption in more
detail after the equilibrium is derived. Roughly mi ≥ ci in our model is guaranteed if the contractors
have access to competitive banking sector.
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incentives for the initial and additional investments the strongest, that is, pay rβ if
and only if the necessary initial investment occurs, pay (1 − r)β if and only if the
additional investment is made and the project is actually completed, and pay nothing
otherwise. We will show that in equilibrium the winner indeed has the incentives to
invest ci.
Thus, the timing of the game can be represented as follows. At time 0, the buyer

announces r, each contractor i learns (ci,mi). At time 1, the tender is being con-
ducted, the contractors submit bids, the government selects the winner, say bidder
j, the size of the award β is determined. Shortly thereafter, the first installment of
rβ is made and the initial investment of cj is made. At time 2, the shock– the need
of an extra investment– may hit. If it does not, the project is completed and the ex
post payment is made. If the shock hits, the winner decides whether to make the
extra investment. If she does not, she does not receive an ex post payment, and the
buyer pays X to the third party, otherwise the project is completed and the ex-post
payment is made. The timing is therefore as follows.

-

t0

all learn r
all learn (ci, mi)

and bid

1

winner gets rβ
invests cj

2

learns Z
finishes and gets
(1− r)β or quits

Figure 1: Timeline

Our model therefore extends the conventional screening model of procurement
in three dimensions. We add post-allocation shocks, limited liability and budget
constraints. The buyer’s sole control variable is r, the idea is that such modest
departure from the standard ex-post payment scheme may be well received by the
industry regulators.
We further provide some illuminating examples where the distributions F (c,m) is

of special interest. The equilibria derived in these examples are later used as building
blocks for the equilibrium construction in the general case.

4 Unlimited Budgets

In this section we examine the simplified problem where for each firm the budget
constraint is never binding si > ci + Z. To gain the intuition we start with consid-
ering the regimes of fully ex-post and fully ex-ante payments. Then we consider the
payment scheme that corresponds to arbitrary r. We show that with unlimited bud-
gets fully ex-post payment is optimal. Note that this case corresponds to degenerate
distribution with si = S > C + Z for every bidder.
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4.1 Full Ex-post Payment

We first examine the case of fully ex-post payment and derive the equilibrium bidding
strategies. Consider bidder i with cost ci. Suppose this bidder submits bid b. The
amount of the awarded tender, β ≥ b, by the rules of the tender. To calculate the
expected profit and the optimal value of b consider the following realizations. If total
cost Z + ci ≤ β, it is optimal to complete the project which leads to the profit of
bidder i : πi = β − Z − ci. If Z + ci > β, then πi = max {−ci, β − Z − ci} . Since
the amount ci is sunk before bidder i learns Z, when β < Z the winning bidder
optimally abandons the project and the profit πi = −ci. If β ≥ Z, the project will be
completed and the profit is again πi = β − Z − ci ≥ −ci. Thus if b > Z the profit of
bidder i conditional on winning the tender is either β − ci or β − ci − Z depending
on whether the shock hits or not. To derive the expected payoff of bidder i, consider
all the bidders but bidder i, find among them the bidder with the lowest cost and
denote with β1 (c) his bidding function. Assume that β1 is strictly increasing and
continuous such that inverse β−11 (b) is well defined. Denote with G (β1) the c.d.f. of
β1. Introduce

π (c, b) =

β−11 (c)∫
b

(β1 − c) dG (β1) .

If bidder i with cost ci submits bid b > Z, her expected payoff

E [πi] = (1− p) πi (ci, b) + p

β−11 (c)∫
b

(β1 − Z − ci) dG (β1) =

E [πi] =

β−11 (c)∫
b

(β1 − pZ − ci) dG (β1)

Therefore it is optimal to bid b∗ = ci + pZ as long as b∗ ≥ Z, Note that at b∗ = Z,
ci = (1− p)Z that is the optimal bid

b∗ = ci + pZ for ci ≥ (1− p)Z

Now, if bidder i with cost ci submits bid b < Z the awarded tender β can be above
or below Z. If β ≥ Z as before there are two realizations of the profit πi = β − ci
or πi = β − ci − Z depending on whether the shock hits or not. If β < Z and there
happens to be a shock Z, extra investment will not be undertaken and bidder i will
optimally leave the project with the profit πi = −ci. The expected payoff of bidder i
who submits bid bi < Z :

Eπi = (1− p) πi (ci, b) + p

 Z∫
b

(−ci) dG (β1) +
β−11 (c)∫
Z

(β1 − Z − ci) dG (β1)
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collecting the terms and simplifying:

Eπi = (1− p)
β−11 (c)∫
b

(β1 − ci/ (1− p)) dG (β1) + p

β−11 (c)∫
Z

(β1 − Z) dG (β1)

The optimal bid is therefore

b∗ = ci/ (1− p) for b∗ < Z.

Note again that at b∗ = Z, ci = (1− p)Z so that for bidders with cost c < (1− p)Z
it is optimal to bid according to b∗ = ci/ (1− p) . The optimal bid overall

b∗ =

{
ci/ (1− p) if ci < (1− p)Z
ci + pZ if ci ≥ (1− p)Z

Note also that at ci = (1− p)Z.

ci + pZ = ci/ (1− p)

so that the derived optimal bidding function is increasing and continuous but involves
a kink at c = (1− p)Z.
Now let’s examine the expected cost of the project. Denote with c1 the cost

of the winner, the lowest cost. When c1 ≥ (1− p)Z in equilibrium the project is
always completed. In case the shock hits, the contractor compares the extra cost
of completing the project Z with the payment that will result only if the project is
completed. This payment exceeds c1 + pZ and the contractor optimally completes.
The cost of the project in such realization is c2 + pZ, where c2 is the second lowest
cost. The expected cost over these realizations is E [c2] + pZ. In case c1 < (1− p)Z
and β > Z the project is also completed by the winner. Note that since the bid of the
winner c1/ (1− p) < c1+pZ the expected cost of the project is lower than E [c2]+pZ.
In case β < Z the project is not completed, but c1 is invested from bidder 1 funds.
The buyer has to pay X to complete the project.
Overall the project costs at most E [c2] + pZ when completed by the winner and

X when completed by the buyer when the tender is paid ex-post.

4.2 Full Ex-ante Payment

Now suppose the payment is made ex-ante. The winning bidder invests ci to carry
on with the project until the shock is realized. When the realized shock is 0 the
project is competed and the winner of the tender gets the payoff β − ci. When the
realized shock is Z, the project is not completed and the winner of the tender quits
the project. Since the initial costs and the value of the shock are not verifiable the
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winner optimally expropriates the residual β − ci no matter what the shock is. Thus
i’s expected payoff conditional on winning is β − ci. The optimal bid

b∗ = ci for all ci.

The buyer obtains the project at the second highest cost but whenever the shock hits
they have to complete the project for the cost X > Z.

E [β]− = E [c2] + pX,

In the realizations where with ex-post payment the project cost is X it is E [c2] +
X with ex-ante payment. In all other realizations the expected cost with ex-post
payment

E [β]+ ≤ E (c2) + pZ ≤ E (c2) + pX = E [β]−

Thus with unlimited budgets ex-post financing dominates ex-ante if X > Z.

4.3 Fixed Share Scheme

More generally suppose the fraction r of the award β is being paid ex-ante and the
remainder upon completion of the project. Even though the bidders do not face hard
budget constraints they may be unwilling to finish the project if the ex-post portion
of the award (1− r) β < Z. For bidder i with cost ci in case the shock hits the payoff
is πi = β − ci − Z if β (1− r) ≥ Z. If β (1− r) < Z bidder i will optimally quit the
project with the payoff πi = rβ−ci. Suppose bidder i with cost ci bids b ≥ Z/ (1− r)
and β−11 (·) is the inverse of the bidding function of the opponent with the lowest cost.
Bidder i’s expected payoff is:

β−11 (c)∫
b

(β1 − ci − pZ) dG (β1)

which is again optimized with b∗ = ci + pZ.
When bidder i with cost ci bids b < Z/ (1− r) her expected payoff is

Eπi = (1− p)πi (ci, b) + p

Z/(1−r)∫
b

(rβ1 − ci) dG (β1) + p

β−11 (c)∫
Z/(1−r)

(β1 − ci − Z) dG (β1) .

Collecting the terms that are affected by b

Eπi =

Z/(1−r)∫
b

((1− p (1− r)) β1 − ci) dG (β1) +
β−11 (c)∫

Z/(1−r)

(β1 − ci − pZ) dG (β1)

11



For b < Z/ (1− r) with q = 1 − r the optimal bid is then b∗ = ci/ (1− pq) .
Introduce

c∗ =
Z

q
− pZ.

The optimal bid overall

b∗ =

{
ci/ (1− pq) if ci < c∗

ci + pZ if ci ≥ c∗
.

Note that at c∗, c∗ + pZ = c∗/ (1− pq) , and b∗ (c∗) = Z/q so that the bidding
strategy involves a kink at c∗, see Figure 2.

-
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Figure 2: Bidding strategy when the bidder faces “willing”to finish constraint

4.4 Expected Cost of the Project

Note that the buyer always finishes the project even if the contractor abandons the
projects after the cost overrun. The government naturally only pays the ex-ante
portion of the award in such event. Note that the second lowest cost c2 determines
the amount of the award. Recall that X is the extra cost of completion if the winner
abandons the project after the cost overrun. Suppose c2 < c∗. Then in case of no cost
overrun, with probability 1 − p, the project is completed and costs c2/ (1− pq) to
the government. In case of cost overrun, with probability p, the project is optimally
abandoned by the contractor, since b (c2) < Z/q. The contractor then receives only
the ex-ante part of the award rc2/ (1− pq). In addition, in these realizations the buyer
invests X > Z to finish the project. Thus conditional on c2 < c∗ (r) the expected
cost of the project is c2+ pX. If c2 ≥ c∗ (r) the project is completed regardless of the
cost overrun, since b∗ (c2) > Z/q, and costs c2 + pZ to the buyer. Denote with H (c)
the distribution of the second lowest cost, the second lowest order statistics from n
draws. The expected cost of the project:

E [C] = H(c∗) [E [c2|c2 < c∗] + pX] + (1−H(c∗)) [E [c2|c2 ≥ c∗] + pZ]
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Since H(c∗)E [c2|c2 < c∗] + (1−H(c∗))E [c2|c2 ≥ c∗] = E [c2] the expected cost

E [C] = p (X − Z)H(c∗ (r)) + E [c2] + pZ

Since H is increasing and X > Z the expected cost is minimized when c∗ is
minimized, by setting r = 0.

Proposition 1 With unlimited budgets it is optimal to pay the entire award ex-post.

Corollary 1 With X = Z any r is optimal.

Note that the case of X = Z effective assumes that any contractor– the original
or the replacement one can fix the cost overrun for the same price. Therefore it may
seem that the optimal contract can be written as fixed price with a contingency that
in case of the cost overrun the contract switches into cost plus. Indeed in equilibrium
the fact that the contractor walks away from the project reveals to all the parties
that the shock is Z and with the cost being common knowledge cost plus contract is
optimal. This intuition is false, since introducing such a contingency in the contract
destroys the incentives of the original contractor to invest ci. It is important for
the result that the original contract is not renegotiated and remains fixed price. In
case of the cost overrun it is better to let the contractor walk away and replace him
with a new one. This may not always be feasible in defence procurement or major
infrastructure projects, but is quite feasible in case of house renovation or car repair.
After the original contractor walks away from the house renovation there is nor-

mally more quotes solicited and the tender process (for the works left to do) is re-
peated. This tender process generates some price. We are not modelling this tender
process, instead assume that it generates price X to complete the project. Due to
adaptation costs alone X > Z, which is what is needed for the result. Section 7 deals
with the case when shock z is drawn from an arbitrary distribution Fz. There the
fact that the original contractor quits the project does not reveal to the buyer the
true value of z. Any other contractor invited to the project knows z but also knows
that the buyer does not know it perfectly. We abstain from modelling the interaction
between the new contractor and the buyer and assume instead that in case the orig-
inal contractor left the project and the realized shock is z it costs z + δ to complete
the project. Out of these only the value of δ > 0 is common knowledge and reflects
adaptation costs, the effects of delays, etc.
Note that in the auction setting with iid private values the second price auction

with correctly chosen reserve price is optimal, Myerson (1981). The analog of reserve
price in our setting is a “award floor”. The award is constrained from the bottom so
that the winner receives max {R, β} . This amount is also being paid in proportion r
ex-ante and 1 − r upon completion. Clearly the choice of R will affect the expected
cost of the project. It is suboptimal to choose R such that the winner who is willing
to finish the project and receive (1− r) β is getting extra compensation. That is

13



optimal R ≤ Z/q. It is also suboptimal to pay the award that does not provide
enough incentives to finish the project, that is R ≥ Z/q.With R = Z/q if c2 ≥ c∗ the
project is completed by the winner and the award is c2+ pZ. If c2 < c∗ the project is
also completed and the award is Z/q. Since c∗ (r) = Z/q − pZ, the expected cost of
the project can be written as

E [C] = pZ +

∫ c∗

0

c∗dH (c2) +

∫ C

c∗
c2dH (c2) .

Clearly the loss is increasing in c∗, therefore it is optimal to again choose r = 0 and
R = Z. The optimal expected cost with the award floor is E [C]∗ = pZ + c∗H (c∗) +∫ C
c∗ c2dH (c2) .Without the award floor with the same optimal choice of c

∗ the expected
cost is

E [C]∗∗ = pZ + p (X − Z)H (c∗) +
∫ c∗

0

c2dH (c2) +

∫ C

c∗
c2dH (c2) ,

so that it is optimal to introduce the award floor if

p (X − Z)H (c∗) +
∫ c∗

0

c2dH (c2) > c∗H (c∗)

Recall that optimal c∗ = (1− p)Z. It is then optimal to pay the entire award
ex-post and introduce the award floor R = Z if

E [c2|c2 ≤ (1− p)Z] > Z − pX.

Note that in the second price action optimally set reserve price always improves
expected revenue. In particular, a small reserve price always helps. This is not the
case here. In our setting a small award floor will almost for sure lead to higher
payment to the winner that does not, however, provide him any additional incentives
to finish the project. Small award floors are therefore worse than none. Because
of such inflexibility with the choice of the award floor they only improve expected
revenue if the loss from incomplete projects are high enough,

5 Budget Constrained Bidders

In this section we assume that the bidders’types are two dimensional. Bidder i’s type
is [ci, mi], where mi is i’s financial reserves. This mi constitutes a “hard”budget
constraint. Bidder i in case she wins the tender can only use the portion of the tender
allocated ex-ante and her own reserves mi to cover the cost of the project. The initial
investment of ci is feasible if

mi + rβ ≥ ci

14



After initial investment in case shock Z is realized the winner will continue with
the project if two conditions are met. First, if Z < (1 − r)β the ex-post part of
the award covers the shock and the winner will prefer to finish the project. Second,
after the initial investment the winner has to have enough funds to finish the project:
mi + rβ − ci ≥ Z

Z ≤ min{(1− r)β, rβ +mi − ci} (1)

We will derive the equilibrium bidding strategies in this setting. Even though we
restrict our attention to the second price auction, the resulting equilibrium is quite
involved. We therefore start with a simplified case where mi = ci for every bidder.
The elements of the equilibrium construction will be later used as building blocks for
the equilibrium in the general case.

5.1 Lean Budgets

Suppose mi = ci for every bidder. Then condition (1) simplifies to

Z ≤ min{(1− r), r}β

and there are two cases to consider. With r < 1
2
only the “able”to finish constraint

Z ≤ rβ may be binding. With r ≥ 1
2
only the “willing” to finish Z ≤ (1 − r)β

constraint may be binding.
Suppose first that r < 1

2
. In case of a negative shock if β ≥ Z/r then the bidder

will be able to cover the shock, finish the project and receive β − Z − ci as payoff.
If β < Z/r the bidder will initially invest, will not be able to cover the shock, will
lose original ci, and further quit the project with payoff rβ − ci. If b < Z/r both
options are possible. If b > Z/r only β ≥ Z/r is possible. Suppose bidder i with cost
ci submits bid bi ≥ Z/r. The project is always finished and the expected payoff of
bidder i

Eπi =

β−11 (c)∫
b

(β1 − ci − pZ) dG (β1) ,

The optimal bid is then b∗ (ci) = ci + pZ if b∗ > Z/r. Again comparing such b∗

with Z/r introduce

c′′ (r) =
Z

r
− pZ.

For bidders with ci ≥ c′′ (r) it is optimal to bid according to b∗ (ci) = ci + pZ.
Next suppose bidder i with cost ci submits bid bi < Z/r. The expected payoff

Eπi = (1− p) πi (ci, b) + p

Z/r∫
b

(rβ1 − ci) dG (β1) + p

β−11 (c)∫
Z/r

(β1 − ci − Z) dG (β1)
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Collecting the terms that are affected by the choice of b

Eπi =

Z/r∫
b

((1− p (1− r)) β1 − ci) dG (β1) +
β−11 (c)∫
Z/r

(β1 − ci − pZ) dG (β1)

The second integral in the expected payoff is positive and the first integral is
maximized by setting b∗ (ci) = ci/ (1− p+ pr) if b∗ < Z/r. With q = 1 − r, for
b∗ < Z/r, b∗ (ci) = ci/ (1− pq) . Comparing such b∗ with Z/r introduce

c′ (r) =
Z

r
(1− pq) = Z

r
(1− p) + pZ.

For bidders with ci ≤ c′ (r) it is optimal to bid according to b∗ = ci/ (1− pq) .
Note that for any r < 1

2
, c′ (r) < c′′ (r) and for r = 1

2
, c′ (r) = c′′ (r) . Note also

that both c′ (r) and c′′ (r) are strictly decreasing in r. With r < 1
2
the optimal bid is

therefore

b∗ (ci, di) =


ci/ (1− pq) if ci < c′ (r)

Z/r if ci ∈ (c′ (r) , c′′ (r))
ci + pZ if ci > c′′ (r) .

The bidding function above is increasing and continuous and incorporates a flat
interval at the level b∗ = Z/r for ci ∈ (c′ (r) , c′′ (r)) . It may seem that bidder i who is
supposed to submit a bid Z/r is facing a mass point in the bidding strategies of the
opponents and will benefit from submitting a slightly lower bid. It is true that doing
so will increase i’s chances of winning but at the same time increases her expose to
the risks of incompletion. After the deviation she may win and only receive β < Z/r
in ex-ante portion of the award and will lose her initial investment of ci. It is helpful
to remember for future reference that when bidding strategy passes through the level
of “able”to finish constraint it involves a flat interval and a kink, see Figure 3.
Suppose now r ≥ 1

2
, so that the constraint (1 − r)β < Z may be binding. In

case of a negative shock if β ≥ Z/ (1− r) then the bidder will finish the project
and receive β − Z − ci as payoff. If β < Z/ (1− r) the bidder will lose his original
investment of ci and further quit the project with payoff rβ − ci. If b < Z/ (1− r)
both options are possible. If b > Z/ (1− r) only β ≥ Z/ (1− r) is possible. As in
the preceding analysis if bidder i with cost ci submits bid bi < Z/ (1− r) the optimal
bid is b∗ (ci) = ci/ (1− p+ pr) = ci/ (1− pq) . If bidder i with cost ci submits bid
bi > Z/ (1− r) the optimal bid is b∗ (ci) = ci + pZ. Note that at c∗ (r) = Z/q − pZ

c∗ (r) / (1− pq) = c∗ (r) + pZ = Z/q

so that the derived bidding strategies are strictly increasing and continuous and in-
volves a kink at c∗ (r).
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Figure 3: Bidding strategy when the bidder faces “able”to finish constraint

5.2 Expected Cost of the Project

Proposition 2 With lean budgets the expected cost of the project is minimized by
setting r = 1

2
.

Proof. Since with r ≥ 1
2
the equilibrium bidding strategy is exactly the same as

with unlimited budgets, with r ≥ 1
2
to minimize the expected cost it is optimal to set

r = 1/2. Note that with r ≥ 1
2
the expected cost is strictly increasing in r.

With r < 1/2 the project is completed when b∗ (c2) ≥ Z/r despite of the cost
overruns and is only completed with probability 1 − p when b∗ (c2) < Z/r. In our
earlier notations when c2 ≤ c′ (r) the project is completed by the contractor with
probability 1− p and abandoned with probability p. In the latter case the contractor
only collects the ex-ante portion of the award rb∗ (c2) and the buyer finishes the
project at extra cost X. Therefore conditional on c2 ≤ c′ (r) the expected cost of the
project is c2 + pX. The contractor finishes the project if c2 ≥ c′′ (r) and the buyer
pays c2 + pZ, and when c2 ∈ (c′ (r) , c′′ (r)) in which case the buyer pays Z/r.
If the second lowest cost, c2 is distributed according to c.d.f. H (·) , the expected

cost of the project

E [C (r)] = H (c′ (r)) [E [c2|c2 ≤ c′ (r)] + pX] +

+ (H (c′′ (r))−H (c′ (r)))Z/r + (1−H (c′′ (r))) [E [c2|c2 ≥ c′′ (r)] + pZ] .

It is more convenient to minimize the expected cost after c2 + pZ is added and
subtracted in every realization. Since

(H (c′′)−H (c′))E [c2|c′ < c2 < c′′] =

∫ c′′

c′
c2dH (c2) ,

the expected cost simplifies to

E [C (r)] = E [c2] + pZ + p (X − Z)H (c′ (r)) +
∫ c′′(r)

c′(r)

(Z/r − pZ − c2) dH (c2)
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SinceH is strictly increasing and c′ (r) is strictly decreasing the term p (X − Z)H (c′ (r))
strictly decreases in r. It is convenient to rewrite the last term as

E [C ′ (r)] =

∫ c′′(r)

c′(r)

(Z/r − pZ − c2) dH (c2) =
∫ c′′(r)

c′(r)

(c′′ (r)− c2) dH (c2) .

From the definitions of c′ (r) and c′′ (r) follows that E
[
C ′
(
1
2

)]
= 0 and E [C ′ (r)] > 0

for any r < 1
2
. Therefore the expected cost is minimized at r = 1

2
and this argmin is

unique.

Remark 1 Note that the expected cost is strictly decreasing when r is reduced to r = 1
2

from above. We are not arguing that the expected cost is monotonically decreasing
when r is increased to 1

2
from below, only that the minimum is reached only at r = 1

2
.

Remark 2 Intuitively the optimality of r = 1/2 follows from the fact that for given
β and Z such r makes it most likely that both willing to finish and able to finish
constraints are satisfied. The result is not trivial since, first, β itself depends on r
and, second, β is a random variable at the time when r is chosen.

Corollary 2 With X = Z any r ≥ 1/2 is optimal.

Note that with the optimal choice of r the expected cost of the project is E [C] =
E [c2] + pZ + p (X − Z)H ((2− p)Z) so that when X is high it may be optimal to
introduce the award floor. Similarly to the case of unlimited budgets with r ≥ 1

2
it

is optimal to choose R = Z/q and set r = 1
2
, so that c∗ = (2− p)Z and R = 2Z.

When r < 1
2
the optimal award floor R = Z/r and again it can be shown that optimal

r = 1
2
. With optimal choice of r and R = 2Z the expected cost of the project is

E [C]∗ = 2ZH (c∗) +

∫ C

c∗
(c2 + pZ) dH (c2) .

The same choice of c∗ = (2− p)Z is optimal without the award floor. The expected
cost of the project is then

E [C]∗∗ =

∫ c∗

0

(c2 + pX) dH (c2) +

∫ C

c∗
(c2 + pZ) dH (c2) .

It is optimal to choose r = 1
2
and install the award floor R = 2Z if

E [c2|c2 ≤ (2− p)Z] > 2Z − pX.
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5.3 Linear problems

Consider linear problem with di = d. We do not place restrictions on the sign of d,
however we ignore the initial investment constraint

β ≤ d/r,

and concentrate on the inequality

β ≤ max {(Z + d) /r, Z/q} ,

Proposition 3 When di = d > −Z for all bidders, optimal r (d) solves (Z + d) /r =
Z/q. When d ≤ −Z, optimal r = 0 and the expected cost is strictly increasing in r.

Proof. Note that for d > Z, r (d) > 0 and for all finite d, r (d) < 1. Consider linear
problem with di = d > Z. Suppose in this problem it is optimal to set r′ > r (d) .
Then for every bidder only (1− r′) β ≤ Z can be binding. As before introduce

c∗ (r′) =
Z

1− r′ − pZ ≡
Z

q′
− pZ.

For bidder i the optimal bidding strategy satisfies

b∗ (ci) =

{
ci/ (1− pq′) if ci < c∗ (r′)
ci + pZ if ci ≥ c∗ (r′)

.

As before the project is finished by the winner if c2 ≥ c∗ (r′) and costs c2 + pZ to
the buyer. If c2 < c∗ (r′) the project is finished by the buyer and costs c2 + pX. The
expected cost is then increasing in c∗ and therefore decreasing in r′. Starting from
r′ > r (d) it is always optimal to reduce r′. The expected cost is therefore increasing
in r when r > r (d) .
Suppose now that it is optimal to set r′ < r (d) . Then only r′β ≤ Z + d can be

binding. Given r′ introduce

c′ (r′) = (Z + d) /r′ − p (Z + d) q′/r′ = (Z + d) (1− p) /r′ + p (Z + d)

and c′′ (r′) = (Z + d) /r′ − pZ.

Note that both c′ (r′) and c′′ (r′) decrease with r′. Note that c′′ (r (d)) = c′ (r (d)) and
c′′ (r′) > c′ (r′) for r′ < r (d) .

c′′ (r′)− c′ (r′) = p (Z + d) /r′ − p (Z + d)− pZ = p

(
(Z + d)

q′

r′
− Z

)
.

The optimal bidding strategy satisfies

b∗ (ci) =


ci/ (1− pq′) if ci ≤ c′ (r′)
(Z + d) /r′ if c′′ (r′) > ci > c′ (r′)
ci + pZ if ci ≥ c′′ (r′) .
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As in the case of d = 0, the expected cost of the project can be written as

E [C (r)] = E [c2] + pZ + p (X − Z)H (c′ (r′)) +
∫ c′′(r′)

c′(r′)

(
Z + d

r′
− pZ − c2

)
dH (c2)

Since H is strictly increasing and c′ (r′) is strictly decreasing, p (X − Z)H (c′ (r′))
strictly decreases in r′. Consider now

E [C ′ (r)] =

∫ c′′(r′)

c′(r′)

(
Z + d

r′
− pZ − c2

)
dH (c2) =

∫ c′′(r′)

c′(r′)

(c′′ (r′)− c2) dH (c2)

From the definitions of c′ (r′) and c′′ (r′) follows thatE [C ′ (r (d))] = 0 andE [C ′ (r′)] >
0 for any r′ < r (d) . Therefore the expected cost is minimized at r = r (d) and this
argmin is unique.

Note that
r (d) = (Z + d) / (2Z + d) (2)

with r (0) = 1
2
. Moreover r (d) is strictly increasing and r (−Z) = 0. Note that with

d < −Z for every bidder only the willing to finish constraint may be binding so that
with d < −Z we are in the case of unlimited budgets.

6 Arbitrary Budgets

Now we relax the constraint mi = ci and deal with arbitrary ci and mi. For each
bidder i it is convenient to introduce the deficit di = ci − mi. We need to consider
the following constraints

rβ ≥ di, (3)

When award β satisfies this constraint bidder i will make the initial investment of ci.
If, in addition, β satisfies

rβ − di ≥ Z, (4)

bidder i will be able to cover the cost overrun due to the shock Z and if, in addition,
β satisfies

(1− r) β = qβ ≥ Z (5)

bidder i will be willing to cover the cost overrun. Therefore for given award level β
and shock value Z bidder i will face either constraint (4) or (5) if

β ≤ max {(Z + di) /r, Z/q}

We will ignore constraint (3) for the moment and derive the equilibrium only taking
into account the constraints (4) and (5). We will later argue that with competitive
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banking sector andmi representing the credit limit that the winner can securemi ≥ ci
so that constraint (3) will not be binding. Introduce D (r) that satisfies

(Z +D (r)) /r = Z/q.

Note that
D (r) =

(
1
q
− 2
)
Z =

2r − 1
1− r Z (6)

is increasing in r and D (r) is inverse function to r (d) in (2). Note also that D (r) <

c∗ (r) =
(
1
q
− p
)
Z. Note also that di > D implies that (Z + di) /r > Z/q for bidder

i, that is only constraint (4) can be binding. Just like in the case of lean budgets for
bidder i with cost ci and deficit di > D it is therefore optimal to bid according to

b∗ (ci, di) =


ci/ (1− pq) if ci/ (1− pq) ≤ (Z + di) /r

(Z + di) /r
if ci/ (1− pq) > (Z + di) /r and

ci + pZ < (Z + di) /r
ci + pZ if ci + pZ ≥ (Z + di) /r.

(7)

Note that for bidder i with given di introduce c′′i (di) , the solution to c
′′
i (di)+pZ =

(Z + di) /r and c′i (di) , the solution to c
′
i (di) / (1− pq) = (Z + di) /r. Note that for

each bidder i, di > D implies that c′′i (di) > c′i (di) . Indeed,

c′′i (di) =
Z + di
r
− pZ >

Z + di
r
− p (Z + di)

q

r
= c′i (di) ,

where the inequality follows from di > D.
For bidder i with di ≤ D, only constraint (5) can be binding, the strategy therefore

changes regime at c∗ = Z/q − pZ. For bidder i with cost ci and deficit di ≤ D it is
optimal to bid according to

b∗ (ci) =

{
ci/ (1− pq) if ci < c∗

ci + pZ if ci ≥ c∗
. (8)

Note that c∗ solves c∗/ (1− pq) = (Z +D) /r. Therefore all the bidders with types
ci ≤ c∗ are affected by either (4) or (5) and all bid ci/ (1− pq) irrespective of their
budget si. For bidders with ci > c∗ and di ≤ D neither of the constraints is binding
and they bid ci+ pZ again irrespective of their budget. For bidders with di > D only
constraint (4) can be binding. Budgets m affect the bidding strategies only through
the thresholds at which the regime changes from bidding c/ (1− pq) to bidding c+pZ.
Note that for bidder i with ci and di for the regime to change ci/ (1− pq) = (Z + di) /r
must hold. Since Z > 0, di = ci − si and r < 1− pq, for low enough si the change of
regime will never occur. Bidders with mi = 0, in particular, always bid according to
ci/ (1− pq) .
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Consider bidders with di > D. For given c > c∗ introduce m− (c) , the solution to

Z + c−m− (c)
r

= c/ (1− pq) .

Note that m− (c∗) = (2− p)Z so that for type (c∗,m− (c∗)) the corresponding
d = D. Therefore ray (c,m− (c)) originates at (c∗, (2− p)Z) on the line di = D. Since
r < 1− pq ray (c,m− (c)) has positive slope ∂m−(c)

∂c
= 1− r/ (1− pq). Given c all the

bidders with deficits di > D and budgets mi ≤ m− (c) bid according to c/ (1− pq) .
Again consider bidders with di > D and for given c > c∗ introduce m+ (c) , the

solution to
Z + c−m+ (c)

r
= c+ pZ.

Again m+ (c∗) = (2− p)Z so that c∗ −m+ (c∗) = D. The slope of ray (c,m+ (c))

is ∂m+(c)
∂c

= 1 − r > ∂m−(c)
∂c

. Therefore the rays (c,m+ (c)) and (c,m− (c)) have the
same origin and (c,m+ (c)) always lies above (c,m− (c)) . Given c all the bidders with
deficits di > D and budgets mi ≥ m+ (c) bid according to c+ pZ.
Bidders with di > D, ci > c∗ and mi ∈ (m− (ci) ,m+ (ci)) such that (Z + di) /r >

c+pZ and (Z + di) /r < c/ (1− pq) bid (Z + di) /r. For these types of bidders budgets
mi affect the bids, however, only in a particular combination with ci.
Figure 3 represents the isobid curves in the space (c,m) with D < 0, r < 1

2
. Solid

lines join the types that submit the same bid in equilibrium.
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Figure 4: Isobid curves. Note the change of regimes for c > c∗

Note that for c ≤ c∗ the isobid curves are vertical. To construct the isobid curve
for a higher cost type fix c′ > c∗, the cost of a type with di < D that bids c′ + pZ in
equilibrium. The corresponding type that submits the same bid but bids according
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to c/ (1− pq) is σ (c′) = (1− pq) (c′ + pZ) < c′. For such bidder di > D. Note that

0 <
∂σ (c)

∂c
= 1− pq < 1,

that is when c rises, σ (c) rises at a lower rate. Therefore the types that submit bids
b′ and b′′ = b′ + δ for any δ > 0 “lie denser” for low s where they bid according to
c/ (1− pq) and lie less dense for high m where they bid according to c + pZ. Recall
that m− (c) and m+ (c) define the thresholds where the bidding changes the regime
for bidder with cost c and deficit d < D. The isobid curve therefore is vertical for
m ≥ m+ (c′) and m ≤ m− (c′) and involves kinks at (c′,m+ (c′)) and (σ (c′) ,m− (c′)).
In between the kinks the isobid curve slopes upwards along di = Const. Note also
that

∂m+ (c)

∂c
= q < 1 and

∂m− (c)

∂c
=

q − pq
1− pq < 1

so that the isobid curves that correspond to different c do not intersect.
At this stage we would like to motivate an additional on the budget constraints.

Suppose that budget mi represents the credit limit. Our paper is concerned with
the situations in which the winning bidder has a signed contract with a buyer, the
government or private party that stipulates the award that the contractor receives
at the start and upon completion of the project. This contract can be viewed as
collateral. Note that in equilibrium in every realization, regardless of whether the
project is finished or not the contractor receives at least ci as a payment. Competitive
banking sector will therefore lend at least ci to the winner of the tender prior to
the initial investment stage. In what follows we assume that mi ≥ ci for every
bidder. Note that our assumption does not remove budget constraints entirely since
the winner of the tender may run into a cost overrun. The banks are naturally
reluctant to extend his credit line in such situations. What is guaranteed though and
what motivates our assumption is that in any realization of the shock in equilibrium
whether the winner of the tender finishes the project or decides to quit he has enough
cash to pay back ci. Note also that mi is still to be understood as exogenously given
budget of bidder i and constitutes her private information.13

Assumption For every contractor mi ≥ ci.

With such additional assumption constraint (3) does not bind and our equilibrium
construction is complete.

13Our intention is to abstain from explicitly modeling banking sector, since we realize that by
introducing it formally we create avenues for off equilibrium behaviour. However, it would be
unrealistic to say that the winner of the government procurement contract cannot borrow against
the contracted award.
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6.1 Expected Cost of the Project

The diffi culty with calculating the expected cost with arbitrary budgets stems from
the fact that the equilibrium just derived depends on the budgets and we are not
guaranteed that the bid of the contractor with the second lowest cost determines the
award. Indeed, it may be that the bidder with the second lowest cost has a large
deficit but the bidder with, say, third lowest cost has smaller deficit and bids more
aggressively. In fact, we are not even guaranteed that the winner is the contractor
with the lowest private component of the cost.14 We however, will make an argument
for the general case through a sequence of arguments for the cases each of which deals
with degenerate F (c,m). Consider again a procurement problem where di = d for
each bidder i. This corresponds to the case where costs and budgets for each bidder
are distributed on a line parallel to d = D. This problem has one dimensional private
information and therefore the award will be determined by the bid of the contractor
with the second lowest cost just as in the case of lean budgets, Section 5.1. As is
easy to see that the equilibrium in this degenerate distribution problem will be either
of the type studied in Section 4 for unlimited budgets and involve a kink or the one
from Section 5.1 and r < 1

2
, that is, involve a step. Which of the two cases arises

depends on whether d ≥ D or d < D applies, that is whether the line di = d crosses
the area in between the rays (c,m−(c)) and (c,m+(c)) or lies wholly to the left of it,
see Figure 4 with the isobid curves.
For d < D straightforward replication of Proposition 1 suggests that it is optimal

to choose r = 0. For d ≥ D equally straightforward replication of Proposition 2
suggests that it is optimal to choose r = 1

2
.Note that neither of the arguments depends

on the distribution of c2 and therefore the corresponding optimal r would remain
optimal if the award were always determined by c3 or c5.. Now consider a hypothetical
procurement problem {c2} where the private information is two dimensional but the
award is always determined by the bid of the contractor with the second lowest
cost. Note that in equilibrium the project will be completed by the winner when
neither of the constraints bind. The cost of the project is then c2 + pZ for c2 ≥ c∗

and m ≥ m+(c2). The project is also completed by the winner when c2 ≥ c∗ and
m−(c2) ≤ m < m+(c2) and costs the government (Z + d2) /r > c2 + pZ in these
realizations. In the realizations with c < c∗ the bidder with the second lowest cost
bids c2/ (1− pq) , the winner is unwilling to finish the project in case of a shock. The
project is completed by the winner only with probability 1− p. The government pays
only the ex-ante fraction of the award and finishes the project with probability p.
The expected cost in these realizations is c2 + pX. With c > c∗ and m < m−(c2) the
winner is willing to finish the project but is unable to because of the large deficit.
The cost to the government is again c2 + pX. Figure 5 places the expected payments
in the respective areas when r < 1

2
.

14Same applies to open descending price tender and results from the fact that the budget con-
straints are present in the model, not from our choice of the tender mechanism.
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Figure 5: Expected cost of the project by realization

With di ≥ 0 only the upper part of the expected costs diagram matters. Assume
r ≥ 1

2
, then D ≥ 0 and d = D lies to the left of d = 0. Figure 6 represents the

expected payments for this case.
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Figure 6: Expected cost of the project by realization r ≥ 1
2

It is obvious from the picture that with r ≥ 1
2
andX > Z it is optimal to minimize

c∗ that is to choose r = 1
2
. Now consider r < 1

2
.We can further show that the optimal

r ∈
(
0, 1

2

)
. Note that on each of the lines d = Const the optimal r is either 0 or 1

2
.

Note also that the calculation of the expected cost of the project can be performed
as integration of the costs over the area above d = 0, since mi ≥ ci for every i. This
integration in our hypothetical case, where c2 always determines the award, can be
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performed in a conventional way, first integrate over c2 and for each c2 over m2 or
in the system of coordinates where the outer integral is over a variable orthogonal
to d = 0 and the inner integral along the lines parallel to d = 0. Such integration
amounts to averaging out the cases where r = 0 is optimal with the cases where
r = 1

2
is optimal. Therefore optimal r in the hypothetical procurement problem

satisfies 0 < r < 1
2
.

Now consider another hypothetical procurement problem {c3} where the award is
always determined by the bid of the bidder with the third lowest cost. Since none of
the arguments above explicitly depends on the distribution again optimal r satisfies
0 < r < 1

2
. Note that in our general procurement problem there are realizations where

the award is determined by c2, realizations where it is determined by c3, etc. The
optimal r in the general procurement problem is again the weighted average of the
optimal r’s in hypothetical procurement problems.

Proposition 4 With X > Z optimal r satisfies 0 < r < 1
2
.

Corollary 3 With X = Z optimal r ≥ 1
2
.

Note that with X > Z fully ex-post payment is optimal with unlimited budgets
and suboptimal when budget constraints may bind. The result for the Corollary
follows from the fact that r ≥ 1

2
is optimal for every d ≤ D and any r is optimal for

d > D. Note that optimal r for X > Z is not a subset of the set of optimal r for
X = Z. Indeed with X = Z the bankruptcy problem is absent, the buyer can finish
the project at the same cost as the contractor. Therefore it is optimal to motivate
aggressive bidding for the right to invest initial ci. The award paid fully ex-ante does
precisely that. With X > Z the buyer has to balance the incentives to complete the
project with the ability to complete it. Intermediate r is more suitable for the task.

7 Arbitrary Shocks

In this section we generalize our findings to the case where shock z is drawn from
distribution with continuous c.d.f. Fz on support [0, Zmax]15 Apart from being more
general such modification of the shocks process supports other aspects of the model.
With the shock on two possible values 0, and Z the fact that the original contractor
walked away from the project reveals to all the parties that the shock is indeed Z.
Therefore it can be argued that any contractor that replaces the original one should
not be paid more than Z, however, the assumption that X > Z is crucial for the
results. In this section all that can be possibly revealed by the original contractor
quitting the project is that z ≥ z where z is some endogenously determined threshold.
In the spirit of our original model we do not model the process of tendering or
contracting to fix the cost overrun, but rather assume that this process generates

15The distribution Fz studied before was placing mass p on Z and the remainder on 0.
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price z + δ that the buyer is liable to pay for the cost overrun. The value of δ > 0
is exogenously given.16 Again we stress that z + δ is being paid not to the original
contractor who is given no indication that his fixed price contract can be turned into
cost plus contract in case of cost overruns.
We derive the equilibria and optimal r for the two leading examples, unlimited

and lean budgets. We do not get closed form solutions and instead reason from
the equations that describe the bidding strategies. Apart from introducing more
generality in the model this modification of the shock process allows for more smooth
bidding strategies, for given r, the bidding strategy is not separated into regions
anymore and make the assumption that the ex-post shock is not verifiable more
plausible.

7.1 Unlimited budgets

Given the award β the project is finished if z is such that

z ≤ (1− r) β.

Then bidder i with cost ci who bids b when the lowest bid submitted by the
opponents is β1 receives the payoff

17

πi (ci, b, β1) = (β1 − ci)Fz [(1− r) β1]−
∫ (1−r)β1

0

zdFz+(rβ1 − ci) (1− Fz [(1− r) β1]) .

This results in bidder i’s expected payoff

E [πi (ci, b)] =

∫ β−1(c)

b

(
rβ1 +

∫ (1−r)β1

0

[(1− r) β1 − z] dFz − ci

)
dG (β1) ,

where G is the distribution of β1. Consider

W (β1, r) = rβ1 +

∫ (1−r)β1

0

[(1− r) β1 − z] dFz.

Such W (β1, r) is increasing in β1 and W (0, r) = 0. Optimal bW (ci, r) then solves

W (bW , r) = ci. (9)

16The buyer here acts as a price taker. Of course, when the replacement contractor asks for z+ δ
the buyer learns the true value of the shock and may be strategic but all we need for the result is
that δ > 0 so for small δ we believe it is reasonable to assume that the buyer acts as a price taker
at this stage.
17This and similar expressions remain valid for (1− r)β1 > Zmax with the convention that dFz = 0

for z < 0 and z > Zmax. This implies in particular that
∫ Y
0
zdFz = E [z] and

∫ Zmax
Y

dFz = 0 if
Y > Zmax.
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Note that bW (ci, r) that satisfies the above increases in ci for given r and decreases in
r for given ci. Note also that with Fz [(1− r) b] = 1 for any b, that is in the model with
no ex-post shocks, optimal bi = ci for any r. It can be verified that (1− r) bW (ci, r)
strictly decreases in r for given ci. Note also that

(1− r) bFz [(1− r) b] + rb = W (b, r)−
∫ (1−r)b

0

zdFz. (10)

The buyer’s expected cost depends on δ and distribution of z and c2. The project
is completed if z ≤ (1− r) b2, b2 is then paid to the contractor, and not completed
otherwise with the total contracted payment and the payment for completion rb2 +
z + δ. The exact value of z is not known at this stage, all that the buyer knows is
that z > (1− r) β, where award β is itself endogenously determined by the second
lowest bid. This results in the expected cost of the project

E [C] =

∫ Cmax

Cmin

[
b2Fz [(1− r) b2] + rb2 (1− Fz [(1− r) b2]) +

∫ Zmax

(1−r)b2
(z + δ) dFz

]
dH,

where H stands for the distribution of the second lowest cost. The expected cost can
be simplified to form

E [C] =

∫ Cmax

Cmin

[
(1− r) b2Fz [(1− r) b2] + rb2 +

∫ Zmax

(1−r)b2
(z + δ) dFz

]
dH

Note from equations (9) and (10) that the first two terms form c2 +
∫ (1−r)b
0

zdFz
therefore the expected cost can be reduced to

E [C] = E [c2] + E [z] + δ

∫ Cmax

Cmin

∫ Zmax

(1−r)bW (c2,r)
dFzdH (c2) (11)

Since (1− r) bW (c2, r) strictly decreases in r for every c2, the expected cost is mini-
mized by setting r = 0.18

7.2 Lean Budgets

When di = 0 the project will be completed if

z ≤ min {r, (1− r)} β,

where again β is the award which is endogenously determined.

18Note that for some c, it may be that (1− r) bW (c, r) > Zmax for some r > 0 so that further
decrease in r does not decrease the value of the inner integral. Since bW (0, r) = 0, for suffi ciently
small c > Cmin, (1− r) bW (c, r) < Zmax as Zmax > Cmin so that the expected cost is strictly
increasing in r.
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Case 1 r ≤ 1
2
.

When r ≤ 1
2
then only the constraint z ≤ rβ can be binding and the payoff of

bidder i with cost ci who bids b

πi (ci, b, β1) = (β1 − ci)Fz [rβ1]−
∫ rβ1

0

zdFz + (rβ1 − ci) (1− Fz [rβ1])

After collecting the terms the expected payoff

E [πi (ci, b)] =

∫ β−1(c)

b

[
rβ1 +

∫ rβ1

0

[(1− r) β1 − z] dFz − ci
]
dG (β1)

Note that for r ≤ 1
2
the integral with respect to Fz is positive. Consider

A (β1, r) = rβ1 +

∫ rβ1

0

[(1− r) β1 − z] dFz.

W (β1, r) = rβ1 +

∫ (1−r)β1

0

[(1− r) β1 − z] dFz.

A (β1, r) is strictly increasing in β1 and A (0, r) = 0. Therefore the expected payoff
for bidder i is maximized when A (b, r) = ci. For r ≤ 1

2
for bidder i it is optimal to

submit bid bA (ci, r) that solves

A (bA, r) = ci (12)

Note that bA (ci, r) is increasing in ci for given r and decreases in r for given ci.
Note also that in the model with no ex-post shocks Fz [rb] = 1 and it is optimal to
bid bi = ci. Note also that A

(
b, 1
2

)
= W

(
b, 1
2

)
so that at r = 1

2
equations (12) and

(??) are identical. The expected cost of the project

E [C] =

∫ Cmax

Cmin

[
b2Fz [rb2] + rb2 (1− Fz [rb2]) +

∫ Zmax

rb2

(z + δ) dFz

]
dH2

Equivalently

E [C] =

∫ Cmax

Cmin

[
rb2 + (1− r) b2Fz [rb2] +

∫ Zmax

rb2

(z + δ) dFz

]
dH2

which using (12) can be simplified to.

E [C] = E [c2] + E [z] + δ

∫ Cmax

Cmin

∫ Zmax

rbA(c2,r)

dFzdH (c2)

Again direct computation shows that rbA (c2, r) , is strictly increasing in r for
every c2. Therefore with δ > 0 and r ≤ 1

2
optimal r = 1

2
and the expected cost is

strictly decreasing in r when r < 1
2
.
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Case 2 r ≥ 1
2
.

With r ≥ 1
2
as before only constraint z ≤ (1− r) β can bind and for bidder i with

cost ci it is optimal to submit b (ci, r) that solves (??) above. The expected cost of
the project is given by (11) and is minimized by r = 1

2
. In addition the expected cost

is strictly increasing in r when r > 1
2
. Therefore with lean budgets optimal r = 1

2
.We

summarize the results form this Section so far in

Proposition 5 With arbitrary distribution of shocks and unlimited budgets r = 0 is
optimal, with lean budgets r = 1

2
is optimal.

7.3 Linear problems

Again we ignore the initial investment phase and concentrate on the reinvestment.
After initial investment of ci bidder i with deficit d will complete the project if

z ≤ min {rβ − d, (1− r) β} ,

Clearly when d is low enough only the willing to finish constraint may be binding
and optimal r = 0. For d that are not so low there exists optimal r (d) ∈ (0, 1) such
that if r > r (d) , for every bidder only the willing to finish constraint z ≤ (1− r) β
may be binding, and if r < r (d) , only the able to finish constraint z ≤ rβ − d may
be binding.
Suppose r > r (d) then by definition of r (d) bidder i with cost ci bids according

to bW (ci, r) that solves

W (bW , r) = ci, with W (b, r) = rb+

∫ (1−r)b

0

[(1− r) b− z] dFz, (13)

as in the case of unlimited budgets. Recall that (1− r) bW (c2, r) strictly decreases in
r for every c2 and the expected cost

E [C] = E [c2] + E [z] + δ

∫ Cmax

Cmin

∫ Zmax

(1−r)bW (c2,r)
dFzdH (c2)

is strictly increasing when r > r (d) .
Now consider the case where r < r (d) . Then only the constraint z ≤ rβ − d can

be binding and the payoff of bidder i with cost ci who bids b

πi (ci, b, β1) = (β1 − ci)Fz [rβ1 − d]−
∫ rβ1−d

0

zdFz + (rβ1 − ci) (1− Fz [rβ1 − d])

After collecting the terms the expected payoff

E [πi (ci, b)] =

∫ β−1(c)

b

[
rβ1 +

∫ rβ1−d

0

[(1− r) β1 − z] dFz − ci
]
dG (β1)
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Note that for r < r (d) , rβ1 − d < (1− r) β1 so that the integral with respect to
Fz is positive. Consider

A (β1, d, r) = rβ1 +

∫ rβ1−d

0

[(1− r) β1 − z] dFz.

W (β1, r) = rβ1 +

∫ (1−r)β1

0

[(1− r) β1 − z] dFz.

It is strictly increasing in β1 and A (0, d, r) = −
∫ −d
0

zdFz ≤ 0. If d > 0 then
A (0, d, r) = 0 since the support of z is to the right of 0. Therefore the expected
payoff for bidder i is maximized when A (b, d, r) = ci. For r ≤ r (d) for bidder i it is
optimal to submit bid bA (ci, d, r) that solves

A (bA, d, r) = ci, with A (b, d, r) = rb+

∫ rb−d

0

[(1− r) b− z] dFz (14)

Note that bA (ci, d, r) is increasing in ci for given r and d, increases in d for given
ci and r and decreases in r for given ci and d. Note also that in the model with
no ex-post shocks Fz [rb− d] = 1 and it is optimal to bid bi = ci. Note also that
A (b, d, r (d)) = W (b, r (d)) so that at r = r (d) equations (14) and (13) are identical.
The expected cost of the project when r < r (d)

E [C] =

∫ Cmax

Cmin

[
b2Fz [rb2 − d] + rb2 (1− Fz [rb2 − d]) +

∫ Zmax

rb2−d
(z + δ) dFz

]
dH2

Equivalently

E [C] =

∫ Cmax

Cmin

[
rb2 + (1− r) b2Fz [rb2 − d] +

∫ Zmax

rb2−d
(z + δ) dFz

]
dH2

which using (14) can be simplified

E [C] = E [c2] + E [z] + δ

∫ Cmax

Cmin

∫ Zmax

rbA(c2,d,r)−d
dFzdH (c2)

Again direct computation shows that rbA (c2, d, r) − d is strictly increasing in r
for every c2 and d. Therefore with δ > 0 and r < r (d) the expected cost is strictly
decreasing in r. Optimal r (d) therefore solves∫ Cmax

Cmin

∫ Zmax

(1−r(d))bW (c2,r(d))
dFzdH2 =

∫ Cmax

Cmin

∫ Zmax

r(d)bA(c2,d,r(d))−d
dFzdH2, (15)

where bW (c, r) solves (13) and bA (c, d, r) solves (14).
Note that if for given c2, (1− r (d)) bW (c2, r (d)) ≥ Zmax, the corresponding inner

integral in LHS is 0. However, since Cmin < Zmax and bW (0, r) = 0, for small enough
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c2 the corresponding (1− r (d)) bW (c2, r (d)) < Zmax so that LHS(r) in (15) is strictly
positive for any r and attains its minimum at r = 0, see footnote 17. In contrast,
there are pairs r and d, for instance, r = 0 and any d < −Zmax such that RHS(r, d) in
(15) is zero, and more generally the pairs r and d such that RHS(r, d) < {LHS (0)}.
For such d only the willing to finish constraint may be binding and therefore optimal
r = 0. For r and d such that (15) has a solution, the solution r (d) is unique. Indeed
LHS is strictly increasing in r and RHS is strictly decreasing in r for any d. Also since
LHS strictly increases in r and is independent of d, while RHS is strictly decreasing
in r and strictly increasing in d, the solution r (d) is strictly increasing in d.
FromA

(
b, 0, 1

2

)
= A

(
b, 1
2

)
= W

(
b, 1
2

)
follows that r (0) = 1

2
. Since RHS(0,−Zmax) <

LHS(0) and RHS is strictly increasing in d there exists threshold d∗ > −Zmax such
that r (d∗) = 0 and r (d) > 0 for any d > d∗.

7.4 Arbitrary budgets

For bidders with di ≤ d∗ only the willing to finish constraint may bind, therefore they
bid according to bW (ci, r) . To determine the bidding strategies for those with d > d∗

given strictly increasing r (d) introduce its inverse D (r). This D (r) plays exactly the
same role as D (r) given by (6) for the case where the value of the (only possible)
shock Z is common knowledge. For given r for the bidders with di > D (r) only the
able to finish constraint can be binding, therefore they bid according to bA (ci, di, r)
such that

A (bA, di, r) = ci, with A (b, di, r) = rb+

∫ rb−di

0

[(1− r) b− z] dFz (16)

whereas for the bidders with di ≤ D (r) only the willing to finish constraint can be
binding, therefore they bid according to bW (ci, r) such that

W (bW , r) = ci, with W (b, r) = rb+

∫ (1−r)b

0

[(1− r) b− z] dFz.

Note that even though the value of the future shock is not known to the bidders
at the tender stage they have enough information to compute r (d) and its inverse.
Note that di > D (r) guarantees that rb − di < (1− r) b so that the integral in (16)
is positive.

8 Conclusions

This paper concerns with the issue of cost overruns in public procurement projects
which rightfully attracts the attention of the regulators. We view the problem of cost
overruns as an incentive problem. Those problems in procurement literature were
traditionally approached from two sides: contract theory provides incentives at the
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after the tender stage, auction theory provides incentives at the tender stage. The
procurement game in this paper combines both at the tender and after the tender
stages. We stand on the premise that when private information needs to be revealed
competitive bidding, where one buyer deals with multiple contractors, provides better
incentives than a clever contract in which the buyer is by definition locked in one
on one relationship with the contractor. The leverage that the buyer has at the
tender stage simply because she still has a choice of which contractor to deal with
dissipates once the contract is signed if the contractor retains private information.
The fixed price contract is therefore superior to cost plus contract since the terms
are “negotiated” at the stage where the buyer still has the leverage and then stay
unchanged by the definition of the contract. We therefore concentrate on fixed price
contracts and offer the regulators a modest departure to the contract terms, the fixed
award determined by the competitive bidding is to be split into the ex-ante and ex-
post parts. We show that this approach has a potential to reduce the cost of the
procured projects and lower the likelihood of the contractor’s default.

Remark 3 It may appear that the buyer is suffering from the consequences of the
winner’s curse by running an effi cient procurement tender. Since the cost overrun is
typically measured as the ratio of the actual cost to the original estimate (c+ z) /c
and this is decreasing in c, the cost overruns are higher because the contractor with
the low ci is selected. This is not the reason to select the contractor with higher c,
however. The cost overruns will be lower, but the actual cost, which is the one that
the buyer is concerned about in this paper, will be higher.

Remark 4 Bankrupticies happen a lot according to Department of Fair Trading.
<20’000 no home insurance. builders have up to 500’000 liabilities.
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