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1. Introduction 

It may seem that all that leafy thing your mom keeps on the windowsill does is 

pathetically wilt. However, under examination, that poor potted excuse of a pet truly is a 

fascinating tangle of chemical drama. Plants produce a range of secondary compounds, or 

secondary metabolites, which are chemicals that are not necessary for the plant’s most basic, 

immediate survival, its primary metabolism.1 While some of these compounds have currently 

unidentified functions, we have reason to believe they do serve some real purpose, as the 

secondary compounds’ roles we have recognized are not trivial. Some of these secondary 

metabolites are used to attract pollinators, while others are defense chemicals. Many plants 

produce a variety of toxic compounds which aim to harm either herbivores, competing plants, or 

pests.2 Some are produced in reaction to some sort of attack or adverse conditions, while others 

are present continually, latently ready to protect from potential harm. The latter are termed 

constitutive, as they exist in active forms in healthy plants, although their abundance may 

increase or decrease depending on conditions. The distribution of these defense chemicals are 

often tissue specific, targeting places that other organisms may be more likely to invade.3 In the 

following chapters, we will explore the constitutive toxic secondary metabolites tomatine and 

furocoumarins. They both prevalently exist in those parts of plants we as humans consume.  

 

2. A Profile of Tomatine 

Tomatine is a glycoalkaloid that is present naturally in all parts of tomato plants. 

Tomatine, as it was originally isolated and is still sometimes talked about, is actually a mixture 

of two compounds: -tomatine and dehydrotomatine. As seen in Figures 1-2, these differ only in 

one double bond.4 
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The R group in both complexes is a solatriose group, C18H32O15, a carbohydrate chain. As can be 

seen in Figure 3, it is composed of a xylose and glucose attached to another glucose which is 

bonded to a galactose and finally, by an oxygen, to the alkaloid. However, -tomatine is the 

molecule focused on here, as it is better studied and understood. Also, the amount of 

dehydrotomatine in tomatoes is typically an order of magnitude below that of -tomatine, further 

justifying this choice.4 So, from now on, ‘tomatine’ will refer specifically to -tomatine. 

 Tomatine has interesting chemical properties, having a hydrophilic saccharide side chain, 

a hydrophobic steroidal moiety, “and a polar–NH group, which can participate in acid–base 

equilibria.”4 While nitrogen is needed for tomatine’s creation, carbon – rather than nitrogen – is 

the limiting factor in tomatine’s synthesis; increasing N concentration in soil decreases tomatine 

synthesis in tomato plants. A likely explanation for this is that the ring with the substituted O 

forms first, followed by the glycosylation which adds the N-containing ring to the structure. 

Figure 1. -tomatine4 Figure 2. Dehydrotomatine4 

Figure 3. -tomatine5 
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Tomatine, as well as other glycoalkaloids, originates as cholesterol, which in plants never 

accumulates but is immediately converted to other molecules.4   

Tomatine’s toxicity comes from the fact that it can form complexes with membrane-

bound 3β-hydroxy sterols, form 1:1 insoluble complexes with these susceptible sterols.4 When 

tomatine binds to these sterols, the integrity of the cell membrane is compromised.5 The extent to 

which tomatine is able to disrupt membranes has been observed to be correlated with 3β-hydroxy 

sterol concentration in the membrane, supporting this mechanism of toxicity.  

In more detail, as Figure 4 below shows, the glycoalkaloid tomatine (GA) binds to 

cholesterol in the cell membrane.4 The alkaloid portion of tomatine interacts with the sterols, 

while the sugar groups are left outside of the bilipid membrane. Those sugar moieties interact 

with each other, hydrogen bonding with each other and forming a matrix. Even at this stage, the 

presence of the glycoalkaloids may be enough to cause a “loss of barrier function” for the 

cellular membrane. Eventually, when the matrix becomes large enough, a spherical or tubular 

vesicle may separate, which may immediately cause cell lysing or simply leave part of the 

membrane in need of repair.6 Another possibility after tomatine binds with membrane sterols is 

shown in Figure 5; the tomatine present may cause a pore in the lipid bilayer to form as the sugar 

moiety matrix splits in two.7 Increasing porosity of the cell membrane and lack of barrier 

between the cytosol and extracellular fluid creates a lack of cellular control over the cytosol’s 

chemistry. This can lead to eventual cell death if severe enough or if the cell does not have the 

resources to repair. 
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Membrane disruption is the most prominent chemical manifestation of tomatine’s toxicity; the 

cell membrane is essentially broken open and extracellular fluid leaks in or cytosol leaks out, 

damaging or killing the cell.4   

However, tomatine has been observed as toxic to species that do not contain 3β-hydroxy 

sterols in there membranes. Therefore, it must be deduced that tomatine is capable of some other 

method of toxicity.8 During attempts to find this method, an alternative mechanism of tomatine-

induced cell death has been observed, but has not been fully understood or characterized yet. In 

this additional mode of toxicity, it is theorized that tomatine first induces the production of 

reactive oxygen species (superoxide radical and hydrogen peroxide) in the target cell – 

potentially through the mitochondria. These hyper-reactive species do damage to the cell’s 

Figure 4. Membrane domain disruption and vesicle formation by tomatine6 

Figure 5. Pore formation by tomatine7 
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proteins. Simultaneously, the tomatine activates tyrosine kinase and G-protein signaling 

pathways which cause an elevation of calcium ion levels. Osmotic flow of water into the cell 

increases as the concentration of ions within the cell becomes unusually high. Eventual cell 

bursting results, releasing the reactive oxygen species to do damage to other cells. Calcium 

precipitating agents and tyrosine kinase inhibitors blocked this type of programmed cell death 

from tomatine, supporting this hypothesis.5 This mechanism of toxicity explains the observation 

that cells without sterols are affected by tomatine. Both activities of tomatine have been observed 

to be correlated to rising pH, or indirectly correlated to rising H+ concentration, indicating that 

tomatine in its unprotonated form is active, with maximal activity at pH 7.2.4,9 In an acidic or 

especially basic solution, tomatine is then rendered benign. Tomatine’s chemical toxicity is 

evident, but only partially understood at this time. 

As a plant’s secondary metabolite, tomatine’s role has been shown to be as a defense 

chemical. Tomatine is most present in the leaves, flowers, and green fruits of tomato plants.3 The 

tomatine in a tomato plant actually degrades at a predictable rate as the plant matures and the 

fruit ripens.10 Thinking about the purpose of tomatine, to protect from animals and fungi that 

could harm the tomato plant, it makes sense that the levels are the most high in these vulnerable 

areas and before the fruit is mature. Some researchers suppose that tomatine production is under 

“separate genetic control” in different parts of the plant as an explanation for how varied the 

levels are between more vulnerable and less vulnerable areas of the plant.11   

Tomatine defends the plants that produce it by fungal destruction and insect deterrant.3 

Tomatine strongly inhibits development of fungal phytopathogens that grow closely to the 

tomato plants’ own tomatine-containing cells.11 A couple of years ago, India’s Departments of 

Crop Protection and Agricultural Entomology studied tomatine’s insecticidal effects. Their 
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findings showed that tomatine exhibited antifeedant, repellant effects on all castes of termites 

when it was added to their food and chamber. This is one specific evidence of how tomatine is 

effective in keeping insect threats at bay.12  

 Some fungi have developed mechanisms to degrade tomatine with tomatinases – 

enzymes that break down tomatine – to combat tomatine’s toxic effects. One study by the 

Southern Weed Science Research Unit showed a strong correlation between “tolerance to α-

tomatine, the ability to degrade this compound, and pathogenicity on tomato.”8 This correlation 

points to tomatine as the barrier to fungal attacks on tomato plants; for fungi to successfully 

subvert tomato plants’ defenses they must be immune to and have some way to break down 

tomatine. In Figure 6, the arrows represent some of the most common tomatinases fungal 

phytopathogens have developed, and the fungal species next to the arrow is one that contains the 

enzyme. The arrow points to the bond that the tomatinase cleaves; as can be seen, the 

mechanisms for action in each of these enzymes are different.7 This is not a complete list of all 

fungi or all enzymes that can degrade tomatine, but represents well that they uniformly 

hydrolyze sugar residues. Some even cleave all four monosaccharides, leaving the aglycone 

tomatidine.8 For tomatine, even the cleaving of one of the monosaccharides can eliminate almost 

all membrane-disruption due to the fact that it inhibits the sugar-sugar interactions which create 

Figure 6. Cleavage sites of some tonatinases in fungal phytopathogens of tomato7 



 7 

the irreversible glycoalkaloid matrix.6 This is evidence of how integral the hydrogen bonding of 

the carbohydrate chains is to tomatine’s toxicity. 

Tomatine’s aforementioned reduced presence and therefore toxicity over the course of 

tomato ripening is not a mistake of nature at all, but rather a brilliant tactic. At the beginning of 

the fruit’s life, it is not advantageous for it to be eaten. It will stop maturing and stop developing 

the seeds. However, when the fruit is ripe, invasion is actually beneficial for the plant. If insects 

eat through the tomato’s flesh, the mature seeds will probably fall out onto the fertile ground 

below. Should a larger animal eat the ripe tomato, the seeds will be digested and deposited 

elsewhere. This provides a mechanism for the tomato species’ spread which it absolutely would 

not be able to supply on its own.13 Of course, there is the threat of fungal or bacterial infection 

when the tomato plants lower their defenses. However, the cost-benefit analysis and exact pace 

of disarming has been fine-tuned by years of natural selection. 

Tomatine’s toxic effect can indeed take place in human cells if applied, and one should 

not be injecting this chemical. However, one should not avoid tomatoes at all costs in order to 

avoid these toxic effects. For one, in ripe, red tomatoes, tomatine levels are at their lowest 

compared to the unripe fruit.4 Furthermore, tomatine is not absorbed very well in the human gut, 

and most of it is hydrolyzed to the harmless aglycone tomatidine.14 There are not currently FDA 

guidelines about the maximum daily consumption of tomatine simply because the maximum 

plausible amount a person could eat does not come close to the toxic threshold for a human.15  

To illustrate that point, in vitro studies with mammalian tissue have shown that about 20 µg/mL 

is the concentration of tomatine needed to do significant damage, with 40 µg/mL necessary to 

kill the tissue.16 In an actual tomato, tomatine is about 1,000 times less concentrated than that 

toxic density.4 Considering the low concentration in a tomato being lowered even more as it is 
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spread throughout a human body, it is ludicrous to supposed that from ingesting tomatoes the 

toxic threshold of tomatine will be reached. With a functioning digestive system, we are not 

susceptible to tomatine’s harmful effects. And of course, tomato consumption leads to many 

positive health benefits. Tomatoes contribute fiber and antioxidants to human health and also 

contain lycopene, which is well-established as inversely related to prostate cancer.4 Interestingly, 

the counterpart to tomatine’s disruption to cell membranes is that it can form its strong, insoluble 

complex with sterols in blood plasma. In an in vivo study on this effect in hamsters the blood 

plasma LDL cholesterol levels of the hamsters were lowered by tomatine consumption. This at 

least suggests that the same beneficial effect may take place in humans as well as we consume 

tomatine.15 So, there is no need to be scared of bruschetta or reject too many slices of pizza. At a 

normal rate of consumption, tomato’s tomatine is not toxic to humans.14   

 

2. A Profile of Furocoumarins 

 Furocoumarins – also called furanocoumarins – are a class of secondary metabolites and 

are also defense chemicals. While the term furocoumarin denotes a whole class of compounds 

with variations, there are hallmarks that all have in common. Furocoumarins contain a furan ring 

bonded to a coumarin, which contributes the functional group of a ketone as part of its pyrone 

ring. As the furan may be joined anywhere, there are many isomers of these structures, and many 

derivatives with different atoms bonded to the core structure, making furocoumarins an 

overwhelmingly huge and variable class of chemicals. However, there are two isomers that by 

far dominate the distribution of these variations. Psoralen, shown in Figure 7, and angelicin, 

shown in Figure 8, are the two most common isomeric forms of the core structure of 
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furocoumarins. Psoralen and its derivatives are referred to as linear furocoumarins; angelicin and 

its derivatives are referred to as angular furocoumarins.17  

 

In fact, in nature, furocoumarins are never present as just a single compound, pure and 

unadulterated. Rather, furocoumarins in plants are a mixture of many isomers and derivatives, 

some surely dominating, but none alone.18 Furocoumarins are found in a variety of plants 

humans consume from the Umbelliferae and Rutaceae families. This includes parsley, carrots, 

celery, pansnips, and possibly most notably, all citrus contain relatively high concentrations of 

furocoumarins.19 Still, each type of citrus contains a different distribution of isomers and 

derivatives of furocoumarins.20 

 Furocoumarins are phototoxic; UV light, specifically UVA light, initiates mutations in 

and involving them which lead to increased toxicity.18  When exposed to UVA light, 

furocoumarins can be photoionized to radical cations. As is widely known, radicals within living 

organisms can do considerable damage. However, the most damaging way furocoumarins wreak 

havoc on cells is their interactions with DNA. Furocoumarins – usually linear – can intercalate in 

DNA, inhibiting replication or expression. Even without UV radiation, in darkness, 

furocoumarins form a molecular complex with DNA involving very weak bonds, really just 

intermolecular forces. Like shown in the Figure 9, the furocoumarin sits in-between the planes 

formed by the bases.21 A linear furcoumarin is then in prime position to form bonds with the 

Figure 7. Psoralen18 Figure 8. Angelicin18 
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DNA strands.22 Furocoumarins only bind with pyrimidine bases – thymine, cytosine, and uracil, 

and do not form bonds with purine bases.23 This preferential bonding may be due to pyrimidine’s 

electron deficiency paired with the excited, free electron a furocoumarin generates.24 

Monoadducts within DNA form with one pyrimidine base and the furocoumarin; if this is to then 

form a diadduct there must be another pyrimidine base directly adjacent either above or below.23 

As shown in Figure 10,  this happens when a photon in the UVA range – 365 nm being most 

favorable for the reaction – leads to photoinduced electron transfer and binding to the pyrimidine 

base above.25 Then, another photon may excite the furocoumarin to bind with the pyrimidine 

base below, completing a diadduct cross-linkage.26  

Figure 9. Psoralen intercalating between two thymines21 

Figure 10. The furocoumarin 8-MOP forming a cross-link between two strands of DNA26 
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The first linkage between the furocoumarin and the DNA to form is a C4 

photocycloaddition between the double bond at the 3-4 position of the coumarin’s pyrone or the 

4’-5’ position of the furan and the 5-6 position of the pyrimidine base.23 Whichever double bond 

in the furocoumarin was not involved in the first linkage may interact with the thymine on the 

opposite strand to form the diadduct cross-linkage. However, computational studies have 

determined that the two possible monoadducts differ electronically and that this has implications 

for if another bond can actually form afterward. If the first bond to a nuclear base involves the 

pyrone, the bond is formed in the triplet manifold of the system, and the initially irradiated 

excited singlet state populates the lowest triplet state. This makes the resulting monoadducts 

relatively inaccessible to excited singlet states and a diadduct is very unlikely to form. However, 

if the furan side of the furocoumarin is the first to form a bond, it forms in the singlet manifold. 

After absorbing a photon, the singlet state of the furocoumarin is populated. An intermediate 

structure which is a conical intersection with the ground state leads to the formation of a ground-

state, lowest singlet state monoadduct. From there, absorbing another photon leads to a diadduct. 

Almost exclusively, furan monoadducts lead to diadducts. However, even if a furocoumarin has 

formed a furan-side monadduct with DNA, if it has a sterically hindered pyrone, it will not easily 

form diadducts. The pyrone must also be accessible for cross-linking.27  

Another aspect of this is that bifunctional furocoumarins are much more likely to cross-

link than monofunctional furocoumarins; almost all monofunctional furocoumarins do not form 

diadducts.27 Truly monofunctional furocoumarins, or de facto monofunctional furocoumarins 

due to an inaccessible pyrone, do not form a cross-link and therefore do not block DNA 

transcription or replication as efficiently as diadducts.28 Consequently, bifunctional 

furocoumarins with accessible pyrones are more lethal to cells than monofunctional 
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furocoumarins. However, at very high concentrations, monofunctional furocoumarins can be just 

as lethal as bifunctional furocoumarins if they overload the cell’s capacity for DNA repair.29  

Interestingly, both monoadducts and diadducts may split into the original reactants of 

furocoumarin and nuclear bases if short-wave UV light reaches them. However, this does not 

guarantee DNA repair.27 Another unique characteristic of these complexes is that unlike many 

phototoxic chemicals, furocoumarins are not photooxidative; diatomic oxygen is not necessary 

for their interactions with DNA.30 Through their interactions with DNA, furocoumarins far 

increase the toxicity UV light usually has on organismal tissue.18 

 As defense chemicals, furocoumarins target and repel fungus and “various types of 

predators ranging from insects to mammals.”17 They even may serve as protection against 

bacterial threats. A study showed that furocoumarins were able to inhibit bacterial auto-inducers 

and communications between gram-positive and gram-negative bacteria. The furocoumarins 

found in grapefruit juice were also able to suppress biofilm formation of E. coli, Salmonella 

typhimurium and Pseudomonas aeruginosa.31 Clearly, furocoumarins are a versatile defense 

system. Interestingly, like tomatine, furocoumarins do decrease in concentration in fruits as they 

ripen.32 For example, it has been repeatedly observed that early-season grapefruit contain more 

furocoumarins than late-season grapefruit.33 Again, like tomatine, this is generally attributed to 

ecological, evolutionary pressures.34 At the beginning of the fruit’s lifetime, while the seeds are 

still maturing, it is inopportune for their development to be halted. However, after ripeness, the 

advantage of having the seeds exposed, scattered, and planted outweighs the risk of the seeds 

being decimated by an herbivore. 

 Furocoumarins can also have detrimental effects on the human body. They can cause 

photosensitization toward UV light when administered to skin, which can cause pigmentation, 
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sunburn, blistering, and increased risk of skin cancer.35 Ironically, furocoumarins used to be 

applied to skin therapeutically and added to sunscreens. The theory was that they could increase 

melanin production to protect against UV radiation. While this sometimes helped in the short-

term, it did increase cancer in the long-term, even after furocoumarin contact ceased.36 Besides 

sunscreen, furocoumarins used to be rife in cosmetics, where citrus oils are often a key 

ingredient. Again, applying a phototoxin directly to skin proved dangerous.20 Resultingly, 

regulations on the furocoumarin concentration allowed in commercial cosmetics have been 

passed and enforced.20 Many governmental regulatory agencies, including the European 

Commision, have enforced a limit of 1 ppm for furocoumarins in cosmetic products.37 With this 

level present, use of cosmetics from legal manufacturers should not contribute to unhealth in the 

majority of the population.  

When foods containing furocoumarins are ingested orally, the bioavailability of the 

furocoumarins is quite variable, dependent on things like dissolution from and stability in the 

matrix of the food. Whatever furocoumarins are available are quickly absorbed by the 

gastrointestinal tract and circulate in the blood. They are detectable in the blood plasma for an 

average of four hours after ingestion before being almost totally absorbed elsewhere or 

excreted.38 The furocoumarins are taken up by the liver, brain, adipose tissue, kidneys, and, most 

notably, the skin.36 Clearly, even if not smeared directly onto the skin by contact with a fruit or 

dermal product, furocoumarins may still travel close to the surface of the skin. There, within 

reach of UV light, they again become hazardous. To that point, a study last year found an 

association, albeit a tentative one in a study with a small sample size, between consumption of 

furocoumarin-containing citrus fruits and incidence of skin cancer.19 However, independent of 

UV light, furocoumarins have the potential for harm as well. Furocoumarins interfere with the 
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uptake and metabolism of certain prescription drugs.17 Depending on the mechanism by which 

the drug is delivered to the target cells, the furocoumarins may either cause an overdose or a 

reduced dose. This is so widely noticed that it has been termed the “grapefruit juice effect” as 

grapefruit is one of the most common fruits containing the furocoumarins that induce this 

phenomenon. In-vitro studies have confirmed that this is due to the furocoumarins inhibiting the 

intestinal cytochrome P450 3A4, which is integral to the metabolism of those drugs that are 

affected.39 As far as the metabolism of the furocoumarins themselves, that subject is still cloudy 

for the scientific community. However, we do know that the human body does metabolize 

furocoumarins to a certain extent. The furocoumarin derivatives and their ratios found in human 

urine are different than those found in the food source or in the blood plasma, indicating 

metabolism in the body.38 

 So, how much is the average person exposed to furocoumarins? Data is not available for 

all of the world, but is for some developed nations. “Estimates for the average daily intake of 

furocoumarins via food in adults were published being in the range of 1.3 mg for the United 

States, 1.2 mg for the United Kingdom, and 1.45 mg for Germany.”18 The phototoxic threshold 

for furocoumarins is 20-30 ng of furocoumarin per milliliter of blood, or 20 mg of furocoumarin 

spread throughout the entire body. In a study with humans as subjects, this phototoxic limit “was 

not reached by the consumption of celery roots and other conventional vegetables under normal 

dietary habits…. However, the safety factor between the possible actual intake of furocoumarins 

and the phototoxic threshold dose is about 2–10, which is relatively small.”40 The safety factor in 

this context is the ratio between the phototoxic threshold and the maximum possible intake of 

furocoumarins a person could consume in food before encountering other complications, not to 

speak of personal discomfort. For orally ingested furocoumarins, in one day a person would have 
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to eat about ten kilograms of grapefruit or celery and even more of other plants to reach the 

threshold.15 While this may seem like ridiculously much, and is, it is actually not as far out of 

reality as for other toxins. For most toxins in foods, like tomatine, the safety factor is typically 

between 100 and 1,000.41 The maximum amount of furocoumarins one could ingest from food in 

a day is only two to ten times the phototoxic limit. If one’s diet is even marginally varied, the 

amount of furocoumarins ingested will not be above the recommended amount.  

Still, should one worry about the amount ingested? It’s unclear. Our understanding of the 

metabolism of furocoumarins is currently underdeveloped.38 Also, the exact mixtures of 

furocoumarins in plants are various. One study from University of Kaiserslautern in Germany 

concluded that a “practical threshold” of furocoumarin intake is difficult to decree.18 My take is 

that the limit is probably different for every person and probably unknowable. We all have 

disparate genetic predispositions to skin cancer, unequal exposures to UV light, different levels 

of protective melanin in our skin. The “last straw”, so to speak, to one person getting cancer and 

another not is often unknowable. For some, furocoumarin intake may be marginally important to 

a later health development, to others not. To prescribe a rigorous diet aimed at eliminating 

furocoumarins does not seem helpful. Actually, furocoumarins do have positive impacts on the 

human body. They are being investigated for potential free-radical scavenging activity. In 

moderate levels they can promote healthy bone growth and strengthening by activating 

osteoblast cells and inhibiting osteoclast reabsorption.42 Additionally, the plants – celery, carrots, 

parsley, citrus – that contain furocoumarins have myriad health benefits which might outweigh 

the dubious advantage of cutting such foods out of one’s diet.  

In reflection, one of the aspects of furocoumarins that I think is most interesting is their 

varied nature in plants, that there is never just one compound in its pure form present or 
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produced in a plant.18 Keeping in mind the furocoumarins’ role as defense chemicals, I surmise 

that this belies the mixture’s cure-all nature. The plants have a variety of weaponry that they can 

use indiscriminately, just as one concoction, and hopefully at least one of the specific compounds 

included work against the predator or fungi invading the plant. Of course, the trade-off here is 

that the one specific component that works best is in a lower concentration in the mixture than if 

it were secreted in pure form. However, it seems that natural selection has decided that the 

reward of being able to target more than one type of animal is far better than what potency is 

lost. Another benefit I see to a plant making several derivatives of furocoumarins rather than just 

one distinct compound is that no matter what elements or small compounds the plant happens to 

have excesses of at the time, they can be useful in making the defense compounds. If 

environmental factors mean that the plant cannot make one specific furocoumarin, be it lack of 

reactants or catalyst, it likely has the resources for the pathway to make at least one of the other 

derivatives at that time. Essentially, this means that there are rarely stalls in furocoumarin 

production. As long as psoralen or angelicin can be made, convenient derivatives can be as well.  

 

4. Anticarcinogenic Applications  

 Ironically, after discussing the toxicity and damage these toxins have the potential to do 

to living tissue, it is salient to consider the applications tomatine and furocoumarins both have as 

anticarcinogens. When we consider the reality of cancer, the uncontrolled division of abnormal 

cells, this makes sense. Treating cancer necessitates killing a part of an organism. As that is what 

natural toxins already do, they are a promising avenue for scientists pursuing novel and 

alternative treatments for cancer. 
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4a. Tomatine 

Tomatine is being investigated in various avenues as an anti-cancer drug, showing great 

potential.14,43 Tomatine was shown in an in vitro study from a Malyasian group to be effective 

against prostate cancer by increasing cell membrane porosity and eventually inducing apoptosis. 

Tomatine also inhibited Nuclear Factor kappa-B activation, which contributes to the vitality and 

reproduction of cancerous cells through a variety of signaling pathways. The tomatine also 

showed a cytotoxic specificity and was not as toxic to normal human liver and prostate cells as it 

was to the prostate cancer strains.44 While the group performing this experiment did not provide 

a rationale for this, I believe it may have been due to the fact that prostate cancer cells have a 

higher cholesterol content in their membranes.45 The increased cholesterol in the membrane 

would make the prostate cancer cells more susceptible than the normal cells to tomatine’s 

membrane disruption mechanism, which necessitates a binding to a 3β-hydroxy sterol. In fact, 

across the literature it is evidenced that almost all forms of human cancer involve some type of 

lipid metabolic reprogramming in the cancerous cells. Often, a symptom of this is increased 

cholesterol in the membrane. Another of the important manifestations of this metabolic 

dysfunction is the proliferation of lipid rafts. Sphingolipid and cholesterol tightly pack together 

and form a microdomain in the cell membrane. The compacted lipids are represented by the 

green lines and orange hexagons as sphingolipids and cholesterol, respectively, in Figure 11. In a 

normal human cell, these lipid rafts serve the purpose of compartmentalizing certain membrane 

functions. 
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In a cancerous cell, these lipid rafts greatly increase in the membrane and encapsulate crucial 

receptors that regulate pro-oncogenic (left of Figure 11) pathways. Disrupting the abundant lipid 

rafts in cancerous tissue can destabilize the receptors that promote survival, migration, and 

invasion, limiting metastasis and cancerous spread.46 Tomatine could be the drug that capitalizes 

on this fact of cancerous tissue. By binding to the cholesterol in the lipid rafts, tomatine would 

disrupt the structure. When lipid rafts containing these favorable receptors in cancerous cells are 

disrupted, cancer development and migration are reduced.46 However, lipid rafts also stabilize 

CASMERs, ‘cluster of apoptotic signaling molecule-enriched rafts’ (right of Figure 11), which 

can lead quickly to apoptosis. While these form to some extent in normal cells, developing drugs 

to promote CASMER formation in cell membranes is another promising cancer treatment being 

pursued at this time. Of course, as this CASMER treatment is being applied, cholesterol to form 

the lipid raft is necessary, and cholesterol-depleting agents, including tomatine, are 

counterproductive.47 

Alone, there is more evidence tomatine has been found to be an effective anticarcinogen 

even in vivo. A study by Friedman at the USDA was conducted with rainbow trout in which 

Figure 11. Lipid rafts compartmentalizing a protein receptor and a CASMER
45 
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tomatine clearly reduced tumor multiplicity. The trout were fed dibenzopyrene (DBP), a 

cancerous agent, and all developed tumors in the liver and stomach. While the same dosage of 

DBP was administered, tomatine was added to their daily regimen. After this addition to their 

diet, the tumor multiplicity was clearly reduced, as shown in Figure 12.  

   

In an in vitro study, also conducted by Friedman, with human cancer cells, not only pure 

tomatine, but simply green tomato extract dramatically inhibited cell growth.43 In a similar study, 

Sucha et al. also found that tomatine had an antiproliferative effect on cancer cells. However, in 

their study, after a couple of days, the human cancer cells recovered from the initial bout 

tomatine served them and the levels of tomatine in the solution decreased. As the cells and the 

culture did not contain chemicals that could transform the tomatine, this disappearance was 

probably due to the tomatine molecules binding with cholesterol in the media the group used.48 

Tomatine is an exciting possibility on the front in the fight against cancer with built-in targeting 

for cholesterol-rich cancerous cells. 

 

Figure 12. Tumor multiplicity with and without tomatine treatment42 
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4b. Furocoumarins 

Unlike tomatine, furocoumarins can attack cancerous cells at their source – 

dysfunctional, mutated DNA. Thanks to their inhibition of DNA replication, furocoumarins are a 

promising route for anti-cancer therapy. In vitro studies have shown that furocoumarins are able 

to inhibit the growth of breast and lung cancer.36 Furocoumarins, through forming mono-adducts 

or cross-links in DNA, slow transcription and can induce p53, tumor suppressor gene, causing 

apoptosis. Another in vitro study with human cells at the University of Michigan found a strong 

dose-response relationship between the application of furocoumarins and the expression of p53 

and resulting apoptosis. Diadducts rather than monoadducts were found to be more effective in 

inducing apoptosis as they slowed down transcription longer and allowed more time for p53 to 

be expressed. This sounds promising, but one must consider that p53 inactivation is a hallmark 

of most cancers.28 This study was done using healthy cells, and in already cancerous cells the 

p53 gene may not be so easily activated. Outside of the question of p53, however, furocoumarins 

have continued to show promise in inhibiting cancerous cell growth. A treatment that has 

become relatively common is extracorporeal photophoresis. In this process, cutaneous T cell 

lymphoma has been treated by taking cancerous cells out of the body, adding furocoumarins, 

irradiating with UVA light, and injecting them back into the body. In long-term studies with 

human patients, this has improved overall survival and was met with relatively few side 

effects.36,49 The exact mechanism of how and why this treatment works is still unclear.50 What is 

known is that when these apoptotic cells are injected back into the patient, they are taken up by 

phagocytes and induce several changes in the phagocyte that may explain the effectiveness of 

extracorporeal photophoresis. While which change may be responsible is unknown, the changes 

are: decrease of proinflammatory cytokines; increase of anti-inflammatory cytokines; lowered 
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effectiveness at inducing T-cell responses, killing T effector cells, and inducing regulatory T 

cells.51 This intervention in lymphoma is therefore termed immunomodulator treatment.52 Using 

furocoumarins more extensively as anti-cancer agents depends on the development of some safe 

and specific form of administering them, some way of targeting just cancerous cells. This is 

especially important as furocoumarins can themselves induce cancer in healthy cells.  

 

5. Consequent Philosophical Considerations 

For secondary metabolites, the levels of the compound in the plant are impacted by the 

environment in which the plant is grown. As a secondary metabolite, variation in tomatine levels 

in plants can be observed to correlate with external factors. One especially interesting finding is 

that in one study, organic-grown tomatoes had double the mean levels of tomatine than 

conventionally-grown tomatoes. This comparison has a p-value of less than 0.001, which is 

extremely statistically significant.14  

This result has many implications. For one, it supports the observation that carbon, not 

nitrogen, is the limiting reactant in tomatine synthesis. Since nitrogen is not available to plants 

due to photosynthesis, one may assume that it would be the limiting reactant in tomatine 

synthesis and surely adding more nitrogen would increase tomatine production. In that reality, 

the human-applied fertilizer would help the tomato plant’s resistance to fungal phytopathogens 

and insect pests. On the contrary, conventional farming techniques supply excess inorganic 

nitrogen through fertilizer, and still the tomatine levels in such fertilized fields were not higher. 

However, in organic-style farming, soil microbes release nitrogen gradually, which provides the 

tomato plants with a more stabilized C/N ratio in the soil and “can result in a more balanced 

production of primary and secondary plant metabolites.”14 The organic farming – of course 
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necessitating rich soil with healthy microbes – actually promoted the tomato plants to produce 

tomatine and protect themselves. This brought the question to my mind: are we just not allowing 

plants to create their own armor? Are we usurping nature’s regulations?  

I think about pesticides – our attempt to garden better than nature – and how quickly, 

after a spraying, the herbivore population can bloom without a predator population to control it. 

Suddenly more spray is “needed,” as all we see is the army of animals eating our crops and not 

the absence of those we have killed that could have restored balance. I consider the sheer amount 

of deer I have seen in my front yard on a city street. I am not advocating for us to quit killing 

mosquitoes or let wolves loose in playgrounds, I do not know the first thing about growing a 

successful crop and I definitely think we should do what it takes to feed as many humans as we 

can. But I do think that we should at least consider how our best intentions might be 

inadvertently contrarian to nature’s controls.  

An extension of that thought is that maybe tomatoes would be alright if we didn’t 

intercede with pesticides. Tomato plants do produce more tomatine in adverse conditions.14 

Maybe the organically-grown tomatoes produced more tomatine not only due to the nitrogen 

ratio in the soil, but because they were being nipped every once in a while. Maybe the 

conventionally-grown tomatoes (ironic when you think of Mother Nature being the original 

farmer) were not producing so much tomatine simply because their leaves were already too 

chemicalized for any bug to want to nibble. When we do not let the tomato plants stretch their 

defensive muscles, the crops will need our replacements. I genuinely wonder what would happen 

if we tried to let tomatine take care of defense. 
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 As Christians, something else worth pondering – although we will not know before death 

– is whether or not these toxins existed before the fall of man. Tomatine and furocoumarins are 

engineering with the specific purpose of harming another organism. How could these effects 

exist before the fall? Did the very chemical makeup of creation shift after sin?  

One explanation could be theistic evolution. In this case, death – at least death in non-

human organisms – was shaping life for the better. God’s hand and will would have allowed 

fungi to be a little too exposed and animals to consume a little too much of the toxins in order to 

teach and shape creation into what He desired.  

Another explanation could stem from the fact that these toxins decrease when the fruit 

ripen or when the growing conditions become more advantageous. It could be that in paradise, 

perfect growing conditions led to a very, very low toxin concentration. It also could be that the 

pre-fall animals and fungi only feasted on perfectly ripe fruits, having some sense of the right 

time for anything. In this way, even though the defense chemicals still existed, they would be 

latent. There would be no need for their use.  

Another consideration brought to my attention is that even in a very literal interpretation 

of Genesis, death may have existed before the Fall. Of course, even herbivores had to eat 

something before sin, not to mention carnivores. Maybe the punishment of physical death was 

only new to humans. Possibly physical death for human beings was already part of the plan and 

the death of punishment was a spiritual death. A very good point by the BioLogos group from 

Grand Rapids is that death is, at least on the Earth as we know it, necessary for a healthy 

ecosystem.53 So, maybe even before human sin tainted the world, tomatine and furocoumarins 

were actively protecting plants. 
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6. Conclusion 

 Whether we know when these chemicals first were synthesized or not, it is clear from the 

study of tomatine and furocoumarins that God has made a brilliantly complex and intelligent 

creation. Strategically synthesized and distributed, these secondary metabolites portray very 

disparate mechanisms of protection and toxicity. While tomatine primarily targets cells’ 

outermost membranes, furocoumarins depend on reaching the heart of the cell and disrupting the 

genetic code itself.6,21 These compounds are not just frivolously synthesized by the plants that 

produce them, but serve an important role as defense chemicals. As humans, we are large enough 

and have a varied enough diet that these toxins are not a concern for us in daily ingestion. But for 

smaller organisms this is not the case; these toxins contribute to curbing the population of fungal 

phytopathogens and they regulate predators to consuming and dispersing plants’ seeds at 

maturity.11,13 Their beautiful and targeted toxicity mean that tomatine and furocoumarins may 

someday play a role in defeating cancer. 36,43 

These components of the plants around us – not even necessary for plants’ most basic 

needs yet still intricately formed – are evidence of the life, and life abundantly that Jesus sought 

to bring us. So, let’s celebrate the defense chemicals, let’s revel in the toxins.  
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