
Capillarity Vol. 2, No. 3, p. 33-52, 2019

Invited review

A brief review of the phase-field-based lattice Boltzmann
method for multiphase flows

Huili Wang1, Xiaolei Yuan2, Hong Liang3, Zhenhua Chai2 *, Baochang Shi2

1School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, P. R. China
2School of Mathematics and Statics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
3Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

Keywords:
Lattice Boltzmann method
phase-field model
multiphase flows

Cited as:
Wang, H., Yuan, X., Liang, H., Chai, Z.,
Shi, B. A brief review of the
phase-field-based lattice Boltzmann
method for multiphase flows. Capillarity,
2019, 2(3): 33-52, doi:
10.26804/capi.2019.03.01.

Abstract:
In this paper, we present a brief overview of the phase-field-based lattice Boltzmann method
(LBM) that is a distinct and efficient numerical algorithm for multiphase flow problems. We
first give an introduction to the mathematical theory of phase-field models for multiphase
flows, and then present some recent progress on the LBM for the phase-field models which
are composed of the classic Navier-Stokes equations and the Cahn-Hilliard or Allen-Cahn
equation. Finally, some applications of the phase-field-based LBM are also discussed.

1. Introduction
The multiphase flows are universal and are of great impor-

tance in both nature and industrial processes, for instance, the
fall of droplet (Gan et al., 2009), the recovery of crude oil (Li
et al., 2005) and the design of microfluidic chip (Teh et al.,
2008; Chen and Hu, 2015), which are also the key problems in
the fields of the energy, environment and chemical engineer-
ing. The transport processes of the multiphase flows are very
complicated due to the topological changes of the interface
among different phases, including the migration, deformation,
breakup and merging of the phase interface (Anna, 2016). The
multiphase flow is a multi-field coupling problem (Brennen,
2005), and usually it is hard to obtain its exact solution with
the analytical method (Cristini and Tan, 2004; Leshansky et al.,
2012). In the past decades, the experimental method has been
widely used to study the multiphase flow problems, and can
also capture the macroscopic dynamic behavior of interface
(Link et al., 2004; Jullien et al., 2009; Kintses et al., 2010),
while it is difficult to accurately describe the details of the
fluid flows (Wörner, 2012).

With the rapid development of computer technology, nu-

merical simulation has become an effective technique in the
study of multiphase flows (Yue et al., 2004; Li et al., 2012).
The current numerical methods for multiphase flow problems
can be divided into two categories: the sharp-interface (
Sun and Beckermann, 2007; Sussman et al., 2007) and the
diffuse-interface approaches (Anderson et al., 1998; Jacqmin,
1999). The sharp-interface approach usually includes volume-
of-fluid (VOF) (Hirt and Nichols, 1981; Bonhomme et al.,
2012), level-set method (LSM) (Sussman et al., 1994; Smith
et al., 2002) and front-tracking method (FTM) (Unverdi and
Tryggvason, 1992; Muradoglu and Tasolglu, 2010). This type
of approach requires solving the Navier-Stokes and interface
tracking equations. The VOF method (Hirt and Nichols, 1981)
does not directly track the motion of the interface particles,
and the free surface depends on the volume fraction of the fluid
in the grid unit. The VOF method can depict the topological
change of complex interfaces, but most of the interface re-
construction formats have only first-order approximation, and
the volume fraction function is discontinuous at the phase
interface, which is easy to cause numerical oscillation. In
addition, the VOF method is difficult to simply generalize to
the three-dimensional case where a curved surface is usually
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involved. Unlike the VOF method, in the LSM (Sussman et
al., 1994), the motion of the phase interface is characterized by
a continuous function (distance function), which is obtained
through solving the transport equation. The zero level-set of
the continuous function is the phase interface of different flu-
ids. The advantage of LSM is that the the interface curvature,
normal vector and surface tension can be easily calculated.
However, for the multiphase flow problems which involve the
large topological interface changes, the characteristics of the
distance function would be not preserved in the computation
of the continuous function, and for this reason, a re-distancing
process is needed. However, the re-distancing process would
lead to the fact that the mass conservation can not be satisfied.
In the FTM (Unverdi and Tryggvason, 1992), the Lagrangian
method is adopted to track the motion of each point on the
fluid interface. Compared to the VOF and LSM, the FTM has a
clear interface with high-order accuracy, and what is more, the
surface tension and surface energy can be calculated directly
and efficiently. However, the FTM would become difficult for
multiphase flow problems with complex topological interface
changes.

In the sharp-interface approach, the different fluids are
separated by the sharp interface, thus the fluid properties
(e.g., density, velocity and viscosity) at the interface are
discontinuous. Different from the sharp-interface approach, the
basic idea of the diffuse-interface approach is to replace the
sharp interface with a thin but nonzero-thickness transitional
region, where the physical quantities vary smoothly across the
interface. In the diffuse-interface approach, it is also not neces-
sary to explicitly track the fluid interface. These features of the
diffusion-interface approach enable it to have more potential in
the study of multiphase flows where the topological change of
the interfaces is complicated. The numerical methods based
on diffusion-interface approach can be classified into two
kinds: the traditional numerical method based on the phase-
field theory (Lowengrub and Truskinovsky, 1978; Hohenberg
et al., 1997; Shen, 2012; Kim et al., 2017) and the lattice
Boltzmann method (LBM) based on kinetic theory (Aidun
and Clausen, 2010; Guo and Shu, 2013; Huang et al., 2015).
In the phase-field theory, an order parameter governed by
the convection-diffusion type equation [Cahn-Hilliard equation
(CHE) (Cahn and Hilliard, 1958; Cahn and Hilliard, 1959) or
Allen-Cahn equation (ACE) (Allen and Cahn, 1976)] is used
to track the interface. The macroscopic quantities of the fluids
(e.g., density and viscosity) are expressed as a function of
the order parameter. Up to now, some traditional numerical
methods based on phase-field theory, including the finite-
difference method (Jacqmin, 1999; Kim et al.,2014; Zhai et
al., 2015; Lee and Kim, 2016; Kim et al., 2017), the finite-
element method (Zhang and Wang, 2010; Hua et al., 2011),
the spectral method (Liu and Shen, 2003; Shen, 2012), and
to name but a few, have been successfully adopted to study
the multiphase fluid flows (Ding et al., 2007; Yang et al.,
2013). However, for some complex multiphase flow, these
traditional numerical methods may suffer from the difficulty in
treating complex boundaries, the inconvenience in describing
the interaction between different phases, the low performance
in parallel computing. These shortcomings also limit the

application of these methods in reality (Scarbolo et al., 2013).
As an alternative to these traditional numerical methods, the
LBM (Guo and Shu, 2013; Krüger et al., 2017) can also be
considered as an effective method for complex multiphase
flows (Inamuro et al., 2000; Lallemand and Luo, 2000; Liang
et al., 2014; Zheng et al., 2015) and nonlinear physical systems
(Shi and Guo, 2009; Chai et al., 2016; Chai et al., 2018a).

The LBM for multiphase flows can be commonly classified
into four categories: the color-gradient model (Gunstensen
et al., 1991), the pseudopotential model (Shan and Chen,
1993; Shan and Chen, 1994), the free-energy model (Swift
et al., 1995) and the phase-field-based model (He et al.,
1999a). Although these different models have obtain great
success in the study of different physical problems (Chen et
al., 2014; Liu et al., 2016, Li et al., 2016), here we only
focus on the phase-field-based model for its advantages in
numerical stability and accuracy for multiphase flow problems
with large density and viscosity ratios (Liang et al., 2018).
In the phase-field-based model, two lattice Boltzmann (LB)
equations are considered, one is used for flow field, and the
other is adopted for the phase field. He et al. (1999a) first
proposed a phase-field-based LB model (HCZ model) for
incompressible multiphase flows. Based on this model, they
also investigated two and three-dimensional Rayleigh-Taylor
instability problems (He et al., 1999b). Then Lee and Lin
(2005) presented a similar LB model where the mixed finite-
difference scheme is adopted to improve the stability of HCZ
model. However, as point out by Zheng et al. (2005), these
two LB models (He et al., 1999a; Lee and Lin, 2005) cannot
correctly recover the interface governing equation (CHE) and
also contain some assumptions. To give correct macroscopic
CHE, they developed a new LB model (Zheng et al., 2005;
Zheng et al., 2006) though introducing a spatial difference
term of the distribution function. Although the model can
recover the CHE, and is also extended to simulate the three-
dimensional multiphase flows (Zheng et al., 2008), but the
model is limited to the gas-liquid two-phase flow established
by Boussinesq approximation (Fakhari et al., 2010). Following
a similar idea, Zu and He (2013) adopted a spatial difference
term of the equilibrium distribution function such that the
CHE can also be recovered correctly. Additionally, based on
the LB model for incompressible fluid flows (Guo et al.,
2000), they also presented another LB equation for fluid
field. In this model, however, the calculations of pressure
and velocity are implicit. Different from the previous work
(Zheng et al., 2005; Zu and He, 2013), Liang et al. proposed
an LB model for CHE in which a time-derivative term is
introduced into the evolution function (Liang et al., 2014),
and the additional terms appeared in the recovered equations
(He et al., 1999a; Lee and Lin, 2005) can be removed. In
addition, the calculations of macroscopic pressure and velocity
are much easier. Recently, this model is also extended to the
three-dimensional case (Liang et al., 2017).

It is known that the CHE can conserve the mass of
multiphase system, while the ACE cannot, most of the work
based on LB method mainly focused on the CHE (Zheng et
al., 2005; Fakhari et al., 2010; Zu and He, 2013; Liang et al.,
2014; Yang et al., 2016). However, from the theoretical point
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of view, the CHE is a fourth-order partial differential equation,
and cannot be recovered from LB model through the second-
order Chapman-Enskog expansion (Geier et al., 2015; Wang
et al., 2016). On the other hand, from the numerical point of
view, the collision process in the LB models for CHE cannot
be implemented locally since the nonlocal finite-difference
schemes are needed to calculate the spatial derivative of order
parameter (Zheng et al., 2005; Fakhari et al., 2010; Zu and He,
2013; Liang et al., 2014). To solve above problems inherent
in the LB models for CHE, Geier et al. developed a central-
moment LB model for the local ACE (a local gradient term is
added to the non-conservative ACE) with mass conservation
(Sun and Beckermann, 2007; Chiu et al., 2011), and found
the convergence rate of LB model for ACE is higher than
that for CHE. Subsequently, Fakhari et al. (2016b) presented
a finite-difference LB model for ACE where the Lax-Wendroff
scheme is adopted. However, these available LB models cannot
recover the ACE correctly. To overcome the drawback, Ren et
al. (2016a) and Wang et al. (2016) independently proposed
two LB models for ACE, and performed a comparative study
of the LB models for ACE and CHE. The results show that the
LB model for ACE is more stable. Liang et al. (2018) further
presented a simple and accurate LB model for two-phase flows
based on the Allen-Cahn phase-field theory, and found that the
model is more accurate than the previous LB model (Ren et al.,
2016a), especially for the problem with a large density ratio.
Recently, Liu et al. (2019) proposed an Allen-Cahn phase-field
based LB model for two-phase electro-hydrodynamic flows,
and found that the numerical results are in good agreement
with some available work. However, we would like to point
out that in the aforementioned LB models for local ACE, a
term related to the spatial derivative of order parameter is
included in the source term (Ren et al., 2016a; Wang et al.,
2016; Chai et al., 2018b; Liang et al., 2018) or the equilibrium
distribution function (Geier et al, 2015; Fakhari et al., 2016b),
and the computation of the term may decrease the accuracy
(Wang et al., 2016; Liang et al., 2018) or give rise to some
difficulties in implementing the collision process locally (Ren
et al., 2016a). On the other hand, another type of conservative
ACE named nonlocal ACE is also used to describe phase
field, in which a nonlocal integral term is included (Rubinstein
and Sternberg, 1992; Brassel and Bretin, 2011; Kim et al.,
2014, Lee and Kim, 2016). In the framework of LBM, Chai
et al. (2018b) first presented a simple multiple-relaxation-
time (MRT) LB model for the nonlocal ACE, and found that
through the Chapman-Enskog expansion, the nonlocal ACE
can be recovered correctly from the developed LB model.
Then they also conducted a comparison between local and
nonlocal ACEs, and the numerical results show that both local
and nonlocal ACEs can preserve mass conservation of system
and each phase, the local ACE is more accurate than nonlocal
ACE in capturing the interface profile, but the latter is more
stable than the former. Based on these previous results, Hu et
al. (2019a) developed an MRT model for a hybrid ACE which
is a linear combination of the local and nonlocal ACEs. The
results in this work indicate that compared to the loacl ACE,
the hybrid ACE can reduce the numerical dispersion.

The rest of present paper is organized as follows. In Sec.

2, the phase-field models for incompressible multiphase flows
are first introduced, then in Sec. 3, some recent progress on the
phase-field-based LB models are presented. In addition, some
application are discussed in Sec. 4, and finally, we make a
summary in Sec. 5.

2. Phase-field models for two-phase flows
We consider a mixture of two immiscible, incompressible

Newtonian fluids with densities ρA, ρB and viscosities µA, µB.
In order to identify the regions occupied by the two fluids, we
introduce an order parameter φ such that

φ =
ρ−ρB

ρA−ρB
φA +

ρ−ρA

ρB−ρA
φB (1)

where φA and φB are two constants corresponding to ρA and ρB.
For simplicity but without losing generality, the assumption
φA > φB is used in the following analysis. The interface of
the mixture can be depicted by the set of the order parameter:
Γ = {x : φ(x, t) = φA+φB

2 }. In the phase-field theory, the free
energy density of a system can be simply written as (Jacqmin,
1999; Lee and Kim, 2012; Shen, 2012)

f (φ , ∇φ) =
k
2
|∇φ |2 +ψ(φ) (2)

where k is a positive constant, and is also related to the
interfacial thickness D and the surface tension σ (see the
following discussion). It is clear that the free energy density
defined by Eq. (2) includes two parts: the first term is gradient
energy, and the second term ψ(φ) is bulk energy with two
minima for a two-phase system. Usually, the bulk energy can
be approximated by (Lee and Kim, 2012; Shen, 2012)

ψ(φ) = β (φ −φA)
2(φ −φB)

2 (3)

where β is also a constant relating to the interfacial thickness
and the surface tension (see the following discussion). Based
on the free energy density mentioned above, one can also
define the mixing energy F and chemical potential µ ,

F(φ , ∇φ) =
∫

Ω

f (φ , ∇φ)dΩ

=
∫

Ω

[
ψ(φ)+

k
2
|∇φ |2

]
dΩ

(4)

µ =
δF
δφ

=−∇ ·
(

∂F
∂∇φ

)
+

∂F
∂φ

=−k∇
2
φ +ψ

′(φ)

(5)

where Ω is the physical domain occupied by the system, ψ ′

is the derivative of function ψ with respect to φ ,

ψ
′(φ) = 4β (φ −φA)(φ −φB)

(
φ − φA +φB

2

)
(6)

When the diffusive interface is at equilibrium, the chemical
potential is zero,
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µ =
δF
δφ

=−k∇
2
φ +ψ

′(φ) = 0 (7)

For one-dimensional problem, one can obtain the interface
profile at the equilibrium state by solving Eq. (7) with the
relation of dφ

dx

∣∣
x→±∞

= 0,

φ(x) =
φA +φB

2
+

φA−φB

2
tanh

(√
2β

k
φA−φB

2

)
x (8)

If we introduce the parameter D to denote the interfacial
thickness, Eq. (8) can be rewritten as

φ(x) =
φA +φB

2
+

φA−φB

2
tanh

(
2x
D

)
(9)

where D is defined by

D =
1

φA−φB

√
8k
β

(10)

Assume that the diffusive mixing energy in the region
equals to the traditional surface energy, then the surface
tension σ can be written as follows,

σ = k
∫ +∞

−∞

(
dφ

dx

)2

dx (11)

After some manipulations, one can obtain

σ =

(
φA−φB

)3

6

√
2kβ (12)

In the phase-field model for multiphase flows, in addition
to CHE or ACE for the order parameter, the Navier-Stokes
equations for the velocity and pressure are also needed. In
the following, we will give a brief introduction to these
mathematical equations.

2.1 Cahn-Hilliard equation

If we consider a two phase system advected by the fluid
velocity u and the diffusion is driven by the chemical potential
gradient, then the order parameter φ can be described by the
following CHE,

∂tφ +∇ · (φu) = ∇ · (Mφ ∇µ) (13)

where Mφ is the mobility coefficient. Note that the CHE
can conserve the mass locally, but it is a fourth-order partial
differential equation. Therefore, essentially we need a high-
order numerical scheme to solve this equation.

2.2 Local Allen-Cahn equation with mass conserva-
tion

Based on the previous work (Sun and Beckermann, 2007),
the interface advection equation can be written as

φt +(unn+u) ·∇φ = 0 (14)

where u is an external advection velocity, n and un are the unit
normal vector and normal interface speed, and can be given
by

n =
∇φ

|∇φ |
, un =−Mφ κ (15)

Mφ is a positive constant, and is also named mobility. κ is the
interface curvature, and can be expressed as

κ = ∇ ·n = ∇ ·
(

∇φ

|∇φ |

)
=

1
|∇φ |

[
∇

2
φ − (∇φ ·∇)|∇φ |

|∇φ |

]
(16)

With the equilibrium distribution defined by Eq.(8), the
gradient of φ and its normal can be determined by

|∇φ |= dφ

dx
=

√
2β

k
(φA−φ)(φ −φB) =

−4(φ −φA)(φ −φB)

D(φA−φB)
(17)

(∇φ ·∇)|∇φ |
|∇φ |

=
4β

k
(φ −φA)(φ −φB)

(
φ − φA +φB

2

)
(18)

Substituting Eq. (18) into Eq. (16), we can derive the
expression of curvature,

κ =
1
|∇φ |

[
∇

2
φ− 4β

k
(φ−φA)(φ−φB)

(
φ − φA +φB

2

)]
(19)

With the help of Eqs. (15) and (19), one can rewrite Eq.
(14) as

φt +u ·∇φ =Mφ

[
∇

2
φ− 4β

k
(φ−φA)(φ−φB)

(
φ − φA +φB

2

)]
(20)

To describe the case of no curvature-driven interface mo-
tion (Sun and Beckermann, 2007; Chiu and Lin, 2011), the
counter term approach introduced by Folch et al. (1999) is
adopted, and consequently, Eq. (20) can be modified by

φt +u ·∇φ = Mφ

[
∇

2
φ − 4β

k
(φ −φA)(φ −φB)

(
φ − φA +φB

2

)]
−Mφ

[
|∇φ |∇ ·

(
∇φ

|∇φ |

)]
(21)

Then following the procedure in Ref. (Chiu and Lin, 2011)
and under the incompressible condition (∇ ·u = 0), Eq. (20)
can also be reformulated in a conservative form,

φt +∇ · (φu)

= Mφ

[
∇

2
φ −∇ ·

(√
2β

k
(φA−φ)(φ −φB)

∇φ

|∇φ |

)]

= Mφ ∇ ·
[(

1−
√

2β

k
(φA−φ)(φ −φB)

1
|∇φ |

)
∇φ

] (22)

which is considered as the local ACE, and can also be obtained
with the approach shown in Ref. (Geier et al., 2015).
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2.2 Nonlocal Allen-Cahn equation with mass conser-
vation

In the phase-field theory, the dynamics of the order pa-
rameter φ can also be determined by the gradient flow (Shen,
2012),

φt +u ·∇φ =−Mφ

δF
δφ

(23)

If we take the variational derivative δF/δφ in L2 space,
the following ACE can be obtained,

φt +u ·∇φ = Mφ (∇
2
φ −ψ

′) (24)

Here it should be noted that this classical ACE (Eq. (24))
cannot conserve the mass of system under the appropriate
boundary conditions (n · u|∂Ω = 0 and n ·∇φ = 0) (Yue et
al., 2007), which can be seen clearly through the following
equation,

d
dt

∫
Ω

φdx+
∫

Ω

u ·∇φdx =
∫

Ω

φtdx+
∫

∂Ω

n ·φuds

=
∫

Ω

φtdx = Mφ

∫
Ω

(∇2
φ −ψ

′)dx

= Mφ

∫
∂Ω

n ·∇φds−Mφ

∫
Ω

ψ
′dx

=−Mφ

∫
Ω

ψ
′dx

(25)

From the Eq. (25), we can find that the term
∫

Ω
ψ ′dx

is not always zero, and the ACE cannot conserve the mass.
To overcome this problem, Rubinstein and Sternberg (1992)
introduce a nonlocal Lagrange multiplier β (t) into the ACE,

φt +u ·∇φ = Mφ

[
∇

2
φ −ψ

′+β (t)
√

2ψ
]

(26)

and β (t) is defined as

β (t) =
∫

Ω
ψ ′dx∫

Ω
dx

(27)

Based on above definition of β (t), Eq. (26) can satisfy the
condition of mass conservation, i.e.,

d
dt

∫
Ω

φdx = 0 (28)

We noted that Eq. (26) is also called the nonlocal ACE
(Chai et al., 2018b).

2.4 Navier-Stokes equations

For two-phase flows, the Navier-Stokes equations (NSEs)
are used to describe the flow field. For simplicity, here we
only focus on the following NSEs for incompressible fluid
flows (Jacqmin, 1999; Kendon et al., 2001; Bandalassi et al.,
2003)

∇ ·u = 0 (29)

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+∇ ·

[
ρν(∇u+∇uT )

]
+Fs +G

(30)
where u denotes the fluid velocity, p is the hydrodynamic
pressure, ν represents the kinematic viscosity. G is the body
force, Fs is the interfacial force, and is given by (Liu, et al.,
2014)

Fs = (−σκn+∇sσ)δ (31)

where σ denotes surface tension, ∇s = (I− nn) ·∇ is the
surface gradient operator, and δ accounts for the Dirac delta
function, which can be expressed as δ = α|∇φ |2 and satisfy∫ +∞

−∞

δdx = 1

After some algebraic manipulations, one can obtain

α

∫ +∞

−∞

2β

k
(φ −φA)

2(φ −φB)
2dx = 1 (32)

α =
6
√

k√
2β (φA−φB)3

(33)

With the aid of Eq. (33), Eq. (31) can be rewritten as

Fs =
6
√

k√
2β (φA−φB)3

∇ · [σ |∇φ |2I−σ∇φ∇φ ] (34)

Actually, the interfacial force [Eq. (34)] can be transformed
into a equivalent potential form (Liu, et al., 2014),

Fs =
6
√

k√
2β (φA−φB)3

[
|∇φ |2∇σ −∇σ · (∇φ∇φ)+

σ

k
µ∇φ ]

(35)
In particular, if the interfacial tension is a constant, the

interfacial force term would reduce to the following form,

Fs =
ασ

k
µ∇φ = µ∇φ (36)

3. Phase-field-based LB models for incompress-
ible multiphase flows

In the past decades, the LBM, as a mesoscopic numerical
approach, has gained a great success in the study of complex
fluid flows and physical systems governed by some particular
partial differential equations (Succi, 2001; Guo and Shu, 2013;
Chai et al., 2016; Kürger, 2017; Chai et al., 2019). The general
evolution equation of the LBM can be written as

hi(x+ ci∆t, t +∆t)−hi(x, t)

=−Λ
h
i j

[
h j(x, t)−heq

j (x, t)
]
+∆tRi(x, t)

(37)

where hi(x, t) (h = f for phase field and h = g for flow field)
is the distribution function with velocity ci at position x and
time t, Λh

i j is an element of the generalized collision matrix
Λh, and Ri(x, t) is the source or force term. heq

i (x, t) is the
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local equilibrium distribution function, which is related to the
macroscopic quantities, discrete velocity ci, the speed of sound
cs, and the weight coefficient wi. In the commonly used D2Q9
(nine velocities in two-dimensional space) lattice model, the
discrete velocity ci, the speed of sound cs, and the weight
coefficient wi can be defined by

ci = c
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]

wi =


4
9 , i = 0
1
9 , i = 1, ...,4
1
36 , i = 5, ...,8

, c2
s = c2/3

(38)

For the collision matrix Λh, there are two basic kinds,
i.e., the single-relaxation-time (SRT) and the MRT models
(d’Humerie, 1992; Qian et al., 1992). In the SRT model, the
collision matrix is given by Λh = I/τh with I representing
the unit matrix, while in the MRT model, Λh be written as
(Lallemand et al., 2000),

Λ
h = M−1ShM (39)

where M is the transformation matrix, and in the D2Q9 lattice
model, M is given as

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


which can be used to project hi and heq

i onto the moment space
with mh = Mh and meq

h = Mheq, where h = (h0, ...,h8)
T and

heq = (heq
0 , ...,heq

8 )T. Sh is a diagonal relaxation matrix,

Sh = diag(sh
0,s

h
1,s

h
2,s

h
3,s

h
4,s

h
5,s

h
6,s

h
7,s

h
8) (40)

where 0 < sh
i < 2.

3.1 The LB model for Cahn-Hilliard equation

For the phase-field-based LB model, He et al. (1999a) first
adopted the index function to track the interface. Nevertheless,
Zheng et al. (2005, 2006) point out that the model (He et
al., 1999a) cannot be completely recovered to CHE, then they
(Zheng et al., 2005) presented a new LB model for interface
capturing in which a spatial difference term of the distribution
function was introduced. In the model of Zheng et al., the
source term in the Eq. (37) can be expressed as

Ri =
(1−q)[ fi(x+ ci∆t, t)− fi(x, t)]

∆t
(41)

where the parameter q is a constant, and is given by

q =
1

τ f +0.5
(42)

where τ f = 1/s f
3 = 1/s f

5 . The local equilibrium distribution
function is defined as

f eq
i (x, t) =

 φ −2ηµ, i = 0

1
2 ηµ + 1

2q ci ·φu, i 6= 0

where η is an adjustable parameter that controls the mobility
Mφ ,

Mφ = ηq(τ f q−0.5)∆t (43)

The order parameter is calculated by

φ = ∑
i

fi (44)

Following the similar idea, Zu and He (2013) developed
another LB model where a spatial difference term of the
equilibrium distribution function instead of the distribution
function is adopted. In the model of Zu and He (2013), the
source term and local equilibrium distribution function are
given by

Ri =
(2τ f −1)[ f eq

i (x+ ci∆t, t)− fi
eq(x, t)]

∆t
(45)

f eq
i (x, t) =


φ − (1−w0)ηµ

2(1−τ f )c2
s
, i = 0

wi
ηµ+ci·φu
2(1−τ f )c2

s
, i 6= 0

In addition, the mobility Mφ is related to the relaxation
time τ f ,

Mφ = η(τ f −0.5)∆t (46)

The macroscopic order parameter is still evaluated by Eq.
(44). Here it should be noted that in the model of Zu and
He (2013), the term of 1/(τ f −1) included in the equilibrium
distribution would cause instability problem as the relaxation
time approaches 1.

Recently, Liang et al. (2014) presented an MRT model for
CHE in which a time-derivative term is introduced into the
evolution function (Chopard et al., 2009), and the macroscopic
CHE can be recovered correctly from the LB model. In the
model of Liang et al. (2014), the source term Ri in Eq. (37)
is expressed as (Guo et al., 2008; Chai and Zhao, 2012)

R = M−1
(

I− S f

2

)
MR̄ (47)

where R = (R0, ...,R8), R̄ = (R̄0, ..., R̄8) with

R̄i =
wici ·∂t(φu)

c2
s

(48)
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Here we need to use the finite-difference method to com-
pute the time derivative term ∂tφu, for simplicity, the following
explicit finite-difference scheme is adopted (Shi et al., 2008),

∂t(φu)(x, t) = [(φu)(x, t)− (φu)(x, t−∆t)]/∆t (49)

The local equilibrium distribution in the model of Liang et
al. (2014) is given by

f eq
i (x, t) =


φ +(wi−1)ηµ, i = 0

wiηµ +wi
ci·(φu)

c2
s

, i 6= 0

where the parameter η can be used to adjust the mobility Mφ ,

Mφ = ηc2
s (τ f −0.5)∆t (50)

Here the order parameter can be still calculated by Eq.
(44). We would like to point out that the chemical potential
appeared in the equilibrium distribution function includes a
second-order spatial derivative of order parameter, and the
second-order isotropic central schemes are adopted to preserve
the global mass conservation (Guo et al., 2011; Lou et al.,
2012),

∇χ(x, t) = ∑
i 6=0

wiciχ(x+ ci∆t, t)
c2

s ∆t
(51a)

∇
2
χ(x, t) = ∑

i6=0

2wici[χ(x+ ci∆t, t)−χ(x, t)]
c2

s ∆t2 (51b)

where χ is an arbitrary function.

3.2 The LB model for the local Allen-Cahn equation

However, from the theoretical point of view, the CHE is
a fourth-order partial differential equation, and through the
Chapman-Enskog analysis, it cannot be directly recovered
from the LB models (Wang et al., 2016). On the other hand,
from the numerical point of view, the most appealing property,
i.e., locality of collision process, cannot be preserved in the LB
models for CHE since the nonlocal finite-difference schemes
are needed to calculate space derivatives of order parameter
(Zheng et al, 2005, 2006; Zu and He, 2013; Liang et al., 2014,
2016b). To solve above problems, the LB models for second-
order ACE are desirable.

Geier et al. (2015) first developed a central-moment LB
model for local ACE. In the model of Geier et al. (2015), the
source term in the Eq. (37) is set to be zero, and the local
equilibrium distribution function is defined as

f eq
i (x, t) =φwi

(
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− ui ·u

2c2
s

)
+

Mφ θ

c2
s

wici ·n
(52)

where θ =
√

2β

k (φA−φ)(φ −φB), n = ∇φ

|∇φ | , and the mobility
Mφ is given by

Mφ = c2
s (τ f −0.5)∆t (53)

The order parameter is computed by

φ = ∑
i

fi (54)

However, as pointed out by Ren et al. (2016a), the LB
model of Geier et al. (2015) cannot give the correct local ACE.
To overcome the problem, they proposed an improved MRT
model for the same ACE. In their model, the source term in
Eq. (37) can be given by

R = M−1(I− S f

2
)M R̄ (55)

where R = (R0, ...,R8), R̄ = (R̄0, ..., R̄8) with

R̄i =
wici · (∂t(φu)+θn)

c2
s

(56)

It should be noted that the time and space derivative terms
in above equation are computed through Eqs. (49) and (51a).
In the model of Ren et al (2016a), the local equilibrium
distribution is defined as

f eq
i (x, t) = φwi

(
1+

ci ·u
c2

s

)
(57)

In addition, the mobility Mφ is given by Eq. (53), and
the order parameter can also be calculated by Eq. (54). We
noted that almost at the same time, Wang et al. (2016) also
independently developed a new LB model for local ACE,
which can be viewed as a SRT version of the model of Ren et
al. (2016a). In their model, however, the gradient of the order
parameter is computed locally through first-order moments of
the non-equilibrium distribution function.

3.3 The LB model for the nonlocal Allen-Cahn equa-
tion

In the framework of LBM, Chai et al. (2018b) first devel-
oped an MRT model for the nonlocal ACE where the advection
is neglected. Actually, for nonlocal ACE (Eq. (26)), the source
term R reads

R = M−1(I− S f

2
)MR̄ (58)

where R = (R1, ...,R4), R̄ = (R̄1, ..., R̄4) with

R̄i = wi

{
Mφ

[
−ψ

′+β (t)
√

2ψ

]
+

ci ·∂t(φu)
c2

s

}
(59)

The local equilibrium distribution is defined as

f eq
i (x, t) = wiφ

[
1+

ci · (φu)
c2

s

]
(60)

and the mobility Mφ given by

Mφ = c2
s
(
τ f −0.5

)
∆t (61)

where τ f = 1/s f
1 . Unlike the aforementioned models, the order

parameter in this model is calculated as

φ = ∑
i

fi +
∆t
2 ∑

i
R̄i (62)
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3.4 The LB model for the incompressible Navier-
Stokes equations

In addition to the phase field, we need another LB equation
for flow field. He et al. (1999a) first proposed an LB scheme
for the incompressible multiphase flows. In this LB model, the
equilibrium distribution function geq

i and the force term Ri for
the flow field can be written as

geq
i = wi

[
p+ρ

(
ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

)]
(63)

Ri =

(
1− 1

2τg

)
(ci−u) · [Γi(u)(Fs +G)

−(Γi(u)−Γi(0))∇Ψ(ρ)]

(64)

where

Γi(u) = wi

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
(65)

and Ψ(ρ) = p−ρc2
s The macroscopic variables can be calcu-

lated by

p = ∑gi +
∆t
2

c2
s u ·∇ρ (66)

c2
s ρu = ∑cigi +

c2
s ∆t
2

(Fs +G) (67)

In this model, the kinetic viscosity is related to the relax-
ation parameter by ν = c2

s (τg− 1
2 )∆t with τg = 1/sg

7 = 1/sg
8

denoting the dimensional relaxation time for the flow field.
Lee and Lin (2005) proposed a stable discretization scheme

to calculate the force terms so that a large density ratio can be
reached, and considered the following surface tension in the
NSEs,

Fs = k∇ · [(∇ρ) · (∇ρ)I− (∇ρ)⊗ (∇ρ)] (68)

The equilibrium distribution function, the force term Ri,
and the computation of the macroscopic variables are the
same as those in the LB model of He et al. (1999a). Base
on the models of He et al. (1999a) and Lee and Lin (2005),
some improved LB models for the multiphase flows are also
developed (Li et al., 2012; Fakhari and Rahimian, 2016a; Yang
et al., 2016; Zheng et al., 2019).

Different from the models mentioned above, Zheng et al.
(2006) developed a new LB model for multiphase flows, and
claimed that his model could deal with two-phase flows with
large density ratios. While Fakhari et al. (2016a) found that the
model can only be used to deal with density-matched binary
fluids where the Boussinesq approximation holds. In the model
of Zheng et al. (2006) the compressible NSEs are adopted to
replace incompressible NSEs where the density ρ is defined
as ρ = ρA+ρB

2 with ρA and ρB being the densities of fluid A
and fluid B. The equilibrium distribution function in their is
defined as

geq
i = wi

[
Ai +ρ

(
ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

)]
(69)

where the coefficients are taken as A1 =
9
4 ρ− 15

4

(
φ µ + 1

3 ρ
)
,

Ai|i=2,··· ,9 = 3
(
φ µ + 1

3 ρ
)
.

In addition, the force distribution function is given by

Ri =

(
1− 1

2τg

)
wi

c2
S

[
(ci−u)+

ci ·u
c2

s
ci

]
· (µ∇φ +G) (70)

and the macroscopic variables are calculated by

ρ = ∑gi (71)

ρu = ∑cigi +
1
2
(µ∇φ +G) (72)

Based on the phase-field theory, Zu and He (2013) pro-
posed an LB model which is capable of dealing with binary
fluids with moderate density ratios. However, in their model,
a prediction-correction step is needed to calculate the velocity
and pressure since they satisfy two implicit equations. Besides,
the equilibrium distribution function of the LB model for the
NSEs reads

geq
i (x, t) =


p
c2

s
(w0−1)−w0ρ

u·u
c2

s
, i = 0,

wi

[
p
c2

s
+ ci·u

c2
s
+ (ci·u)2

2c4
s
− u·u

2c2
s

]
, i = 1, ...,q−1

(73)
To recover the macroscopic momentum equation correctly,

the distribution function for total force should be given by

Ri = wi(ci/c2
s ) ·F/ρ (74)

where F = Fs +Fp +Fµ +G with Fs = −φ∇µ , Fp = −p∇ρ

and Fµ = [(τg−1/2)c2
s ∆t](∇u+u∇) ·∇ρ .

The macroscopic variables can be evaluated as

u = ∑cigi +
F

2ρ
∆t (75)

p =

(
∑
i6=0

c2
s gi−w0|u|2/2

)
/(1−w0) (76)

To obtain the coupled velocity and pressure, the following
prediction-correction technology is adopted,

p̂ =

(
∑
i 6=0

c2
s gi−w0|ut−∆t |2/2

)
/(1−w0) (77a)

û = ∑cigi +
∆t
2
[Fs +Fp(p̂)+Fµ(ut−∆t)+G]/ρ (77b)

p =

(
∑
i 6=0

c2
s gi−w0|û|2/2

)
/(1−w0) (78a)

u = ∑cigi +
∆t
2
[Fs +Fp(p)+Fµ(û)+G]/ρ (78b)

Liang et al. (2014) proposed a phase-field-based MRT
model for incompressible multiphase flow systems. In their
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Fig. 1. The comparisons of several phase-field LB models for simulating the Zalesak’s disk problem at one period, (a) the phase-field LB model of Liang et
al. (2014), (b) the mode of Zheng et al. (2005), (c) the model of Fakhari and Rahimian (2010), (d) the model of Zu and He (2013).

model, the equilibrium distribution function is carefully de-
signed to recover the correct macroscopic NSEs, and is given
by

geq
i (x, t) =


p
c2

s
(w0−1)−wiρ

u2

c2
s
, i = 0,

p
c2

s
wi +wiρ

[
ci·u
c2

s
+ (ci·u)2

2c4
s
− u·u

2c2
s

]
, i 6= 0

(79)

The force term Ri is defined as

Ri =
wi(ci−u)

2c2
s

·
[
(Γi(u)−1)(∇(ρc2

s )+Γi(u)(Fs +Fa +G)
]

(80)
where Fa = ρA−ρB

φA−φB
∇ · (Mφ ∇µ)u is an interfacial force in-

troduced by Li et al. (2012). In addition, the macroscopic
variables are calculated explicitly as

u =
∑cigi +0.5∆t(Fs +G)

ρ−0.5∆t ρA−ρB
φA−φB

∇ · (Mφ ∇µ)
(81a)

p =
c2

s

1−w0

[
∑
i6=0

gi +0.5∆tu ·∇ρ−ρ
u ·u
c2

s

]
(81b)

In a recent work, Liang et al. (2016a) further presented
some modifications on the force distribution function and the
computation of the macroscopic variables,

Ri = wi
ci ·Fa

c2
s

+wi

(
1− 1

2τg

)[
u ·∇ρ +

ci · (Fs +G)

c2
s

]

+wi

(
1− 1

2τg

)[
(uF+Fu+u∇c2

s ρ +∇c2
s ρu) : Qi

2c4
s

] (82)

u =
1
ρ

[
∑cigi +0.5∆t(Fs +G)

]
(83a)

p =
c2

s

1−w0

[
∑
i6=0

gi +0.5∆tu ·∇ρ−ρ
u ·u
c2

s

]
(83b)

where Qi = cici− c2
s I, Fa = u(∂tρ +∇ · (ρu)).

4. Applications
In this section, we will present some applications of the

phase-field-based LBM for multiphase flow problems, which
include the interface-tracking problem, the bubble rising prob-
lem, the classic Rayleigh-Taylor instability, and the droplet
impact dynamics.

4.1 The interface-tracking problems

Zalesak’s disk is a classic benchmark problem to test the
capacity of a numerical method in interface capturing. The
description of this problem can be given as follows. The disk
with a slot is initially placed at the center of a square domain,
and a vortex flow with a linear distribution of the velocity field
is imposed, which drives the rotation of the disk,

u =−w(y−0.5d), v = w(x−0.5d) (84)

where d is the width of the domain, w =U0π/d is a constant
angular velocity, and the disk will complete one full rotation
at the period of T = 2d/U0. We have used an improve Cahn-
Hilliard phase-field-based LB model (Liang et al., 2014) to
simulate the rotation of the Zalesak’s disk, and compared the
model with the previous phase-field-basd LB models (Zheng
et al., 2005; Fakhari and Rahimian, 2010; Zu and He, 2013).
The interface patterns of the slotted disk after one period
are plotted in Fig. 1. From this figure, it can be seen that
the improved model is able to capture an accurate and stable
interface of the disk, and some undesirable diffusions around
the interface edge or quantities of jetsam can produced by
the previous models. In additions, the model is also used
to simulate the challenging interface-capturing problems of
time-reversed single vortex and deformation field, in which a
large interfacial topological change is induced. In the former
example, a circular disk is initially placed in the upper portion
of the domain and a strongly nonlinear velocity field is
applied,

u =U0sin2 πx
d

sin
2πy

d
cos

πt
T

v =−U0 sin
2πx

d
sin2 πy

d
cos

πt
T

(85)
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Fig. 2. Simulation of the single vortex by the phase-field LB model of Liang et al. (2014).
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Fig. 3. Simulation of the deformation field by the phase-field LB model of Liang et al. (2014).

where t is dimensionless time scaled by d/U0. Theoretically,
the disk’s interface will be stretched into a thin filament
progressively that spirals towards the vortex center until un-
dergoing the largest deformation at time T/2. Then, if the
velocity field is reversed in time, the disk will return to its
initial position at time T . The computational result presented in
Fig. 2 shows a good agreement with the theoretical prediction.
In the latter test of deformation field, a circular body is initially
located in the middle of the domain and a complex velocity
distribution is given by

u =−U0 sin(nπ(
x
d
+0.5))sin(nπ(

y
d
+0.5))cos

πt
T

v =−U0 cos(nπ(
x
d
+0.5))cos(nπ(

y
d
+0.5))cos

πt
T

Fig. 3 shows the evolution of the phase interface in one
period T . It is shown that the circular body is continuously
entrained by the vortices and a very thin filamentary structure
is generated at half period, and then it moves back and
returns to the initial configuration at one period. Recently,
several types of the LB models (Geier et al., 2015, Ren et
al., 2016a, Wang et al., 2016) based on the Allen-Cahn phase

field theory have also been proposed and used to simulate these
interface-tracking problems. In general, these LB models can
also achieve the satisfactory results in interface capturing.

4.2 The bubble rising problem

The buoyancy-driven motion of bubble is a fundamental
two-phase flow problem. The study of such flow dynamics is
still important not only in its own unique fluid mechanics, but
also in many applications, such as petroleum refining, gas-
liquid column reactors and heterogeneous catalysis. Due to its
importance, it attracts the attentions of many scientists and also
several researchers have used the phase-field-based LB models
to investigate the bubble dynamics. For instance, Kurtoglu and
Lin (2006) used a modified phase-field-based LB model to
simulate two-dimensional single bubble dynamics with a small
density ratio of 2.54. Starting from the Cahn-Hilliard theory,
Amaya-Bower and Lee (2010) adopted an improved phase-
field-based LB model to study the dynamic behavior of single
bubble rising with a high density ratio of 1000. Huang et al.
(2014) proposed a mass-conserving Cahn-Hilliard-based LB
model in the axisymmetric coordinate system and applied it
to simulate single bubble rising with a density ratio of 15.5.
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Fig. 4. Two-dimensional bubble dynamics with Eo = 50 and Re = 35, (a) the improved LB flux solver (Wang et al., 2015) and (b) the phase-field LBM (Su
et al., 2018).
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Fig. 5. Time evolution of position of the bubble mass center during the ascent
with the density ratio ρl/ρg = 1000 (Su et al., 2018).

Using another improved phase-field-based LB model, Ren et
al. (2016b) numerically studied a three-dimensional buoyancy-
driven bubble rising with a small density ratio. Recently, based
on the Allen-Cahn phase-field-based theory, Su et al. (2018)

proposed an advanced LB multiphase model for simulating
multiphase flows with high density ratios and adopted it to
investigate the single bubble rising dynamics at a large density
ratio of 1000. The results of a two-dimensional bubble dy-
namics with Eo = 50 and Re = 35 are plotted in Fig. 4, where
the numerical results of an improved LB flux solver is also
presented (Wang et al., 2015). As seen from Fig. 4, the results
of the phase-field based LB model qualitatively agree with
those of LB flux solver. Further, the time evolution of position
of the bubble mass center during the ascent is measured in
Fig. 5, and we can observe that the numerical results are
quantitatively consistent with the solutions of the improved LB
flux solver (Wang et al., 2015) and the advanced LSM (Yuan
et al., 2017). Liang et al. (2019a) also used a robust phase-
field-based axisymmetric LB model to simulate the three-
dimensional bubble rising dynamics with high density ratio.
The simulation results with a wide range of the dimensionless
Eötvös number and Morton number are shown in Table 1
(Liang et al., 2019a). For comparisons, the previous results
including the experimental data (Bhaga and Weber, 1981), the
front tracking simulation results of Hua and Lou (2007), and
the numerical results of the axisymmetric LB model by Huang
et al. (2014) are also presented. It is found that the results of
phase-field-based LB model are qualitatively consistent with
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Table 1. Comparison of terminal bubble shapes observed in experiments and predicted by the front tracking method, the previous phase-field LB simulation
and an improved phase-field LBM (Liang et al., 2019a).

Case experiments Bhaga et al., 1981 Hua et al., 2007 Huang et al., 2014 Liang et al., 2019a

A1

A2

A3

A4

A5

A6

the former two available data in general, and slightly deviate
from the previous LB simulations.

4.3 The Rayleigh-Taylor instability

The Rayleigh-Taylor instability occurs whenever a heavier
fluid is accelerated against a lighter one in the presence of
a slight perturbation at the interface. It plays a key role
in many different areas such as astrophysics, inertial con-
finement fusion, sprays, etc. Due to its wide applications,
the Rayleigh-Taylor instability has been extensively studied
using experimental, theoretical, and as well as numerical
approaches (Zhou, 2017a; Zhou, 2017b). Several researchers
have also used the phase-field-based LBM to study the
Raylegh-Taylor instability (He et al., 1999a; He et al., 1999b;
Zu and He, 2013; Liang et al., 2014; Shao et al., 2014; Ren et
al., 2016b), while the most of these work are only to validate
the codes of the developed LB models. Two important physical
quantities characterizing the Rayleigh-Taylor instability are
the dimensionless Reynolds number and the Atwood number,
which can be defined respectively as,

Re = λ
√

Atgλ/(1+At)/ν , At =
ρl−ρg

ρl +ρg
, (87)

where λ is the characteristic length, g is the gravitational ac-
celeration, and ρl , ρg represent the densities of the heavier and
lighter fluids. He et al. (1999a) performed the earliest study
of the Rayleigh-Taylor instability using the phase-field-based
LB model. They examined the effects of the Reynolds and
Atwood numbers, and reported that the model can successfully
reproduce the complex interfacial dynamic behaviour in the
evolution of the Rayleigh-Taylor instability. Later, He et al.

(1999b) also applied this LB scheme to investigate the three-
dimensional Rayleigh-Taylor instability, and mainly focused
on the evolution of the three-dimensional structure of the
interface. Liang et al. (2014) used a Cahn-Hilliard phase-field
based LB model to simulate the two-dimensional Rayleigh-
Taylor instability, and analyzed the effect of the Reynolds
number. Fig. 6 depicts the evolution of the Rayleigh-Taylor
instability at four different Reynolds numbers. For a high
Re, the roll-up behavior of the interface can be observed at
the early time. The interface at the late time undergoes a
chaotic breakup which induces the formation of an abundant
of small dissociative droplets in the system. While for a low
Re, the phase interface become stable and no vortices are
observed in the whole process as the shear layer between
the bubble and spike is stabilized due to the larger viscosity
effect. Liang et al. (2016b) also adopted the phase-field-based
LB model to investigate the three-dimensional Rayleigh-Taylor
instability in a long square duct, and considered the effect of
Reynolds number on the late-time interfacial dynamics and
bubble amplitude. Fig. 7 shows the time evolution of the
density contour in the immiscible Raleigh-Taylor instability
with four typical Reynolds numbers. The two-phase system
at a high Reynolds number is unstable, and the phase inter-
face undergoes a dramatic deformation at the multiple layers
and some of them even have a chaotic breakup, leading to
the formation of numerous small dissociative drops. As the
Reynolds number is reduced, the structure of the interface
becomes relatively smoothed and no breakup situations appear
in the evolutional process. Fig. 8 depicts the normalized bubble
amplitudes and velocities at several Reynolds numbers. From
this figure, Liang et al. (2016b) recognized that the devel-
opment of high-Reynolds-number Rayleigh-Taylor instability
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Fig. 6. Evolution of the density contours in immiscible Rayleigh-Taylor instability at various Reynolds numbers, (a) Re = 30, (b) Re = 150, (c) Re = 3000,
(d) Re = 30000 (Liang et al., 2014).
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(c) (d)

Fig. 7. Evolution of the density contours in the three-dimensional immiscible Rayleigh-Taylor instability at various Reynolds numbers, (a) Re = 5000, (b)
Re = 1000, (c) Re = 500, and (d) Re = 10 (Liang et al., 2016b).
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Fig. 8. Effect of Reynolds number on (a) normalized bubble amplitude and (b) normalized bubble velocity. The dashed line represents the analytical solution
of the classic potential flow model (Goncharov et al., 2002).

with a low Atwood number experiences a sequence of stages,
which includes the linear growth, terminal velocity growth,
reacceleration and chaotic development stages. The bubble
Froude number at the second stage shows a good agreement
with the solution of the potential flow theory (Goncharov,
2002). The late-time bubble Froude number becomes unstable
and fluctuates with the time, which suggests that the evolution
of the instability has transformed to the chaotic stage. We also
measured the bubble acceleration and present the results in Fig.
9. The normalized acceleration at late time fluctuates around a
constant value of 0.16, indicating that the instability undergoes
a mean quadric growth.

4.4 The droplet impact dynamics

Droplet impact on liquid or dry surfaces is a familiar
spectacle in natural event of falling raindrop on the wet
ground or puddle, and it also has great relevance to many
technical applications, such as ink jet printing, spray cooling
and coating. In spite of its ubiquity and extensive researches,
numerical simulation of such flows still poses some challenges
due to complex interfacial changes in topology, and yet there
exists a large density difference for a water-air system. Further,
a numerical singularity may be produced at the impact point.
Lee and Lin (2005) proposed a large-density-ratio LB model
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Fig. 9. Normalized bubble acceleration at a high Reynolds number. The solid line represents a constant value of 0.16 (Liang et al., 2016b).
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Fig. 10. Snapshots of droplet impact on a thin liquid film with (a) Re = 500 and (b) Re = 20, We = 8000, ρl/ρg = 1000 (Liang et al., 2018).
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Fig. 11. Snapshots of micro-scale droplet impact on solid surface obtained by the LBM coupled with the geometrical wetting scheme, θ = 107◦, ρl/ρg = 844
and µl/µg = 48.5 (Liang et al., 2019b).

Fig. 12. The time evolutions of the spreading ratio D∗ and dimensionless droplet height H∗ obtained by the phase field lattice Boltzmann method coupled
with surface-energy and geometrical wetting schemes from the left to the right, θ = 107◦ and θ = 31◦ (Liang et al., 2019b).

for two-phase flows from the phase-field viewpoint, and ap-
plied the model to simulate the droplet impact on the liquid and
dry surfaces. The contribution to achieving a large density ratio
is the use of a stable mixed difference scheme for computing
gradient terms, while it leads to the slight violation of mass
conservation. Fakhari et al. (2010) used a phase-field-based
LB model to study the droplet impact on a liquid film with
a small density ratio. Shao et al. (2014) adopted a modified
phase-field-based LB model to simulate the droplet impact on
a liquid film with a density ratio of 5. Liang et al. (2018) used
another phase-field-based LB model to simulate the impact of
a two-dimensional droplet on a liquid film with a high density
ratio of 1000. Fig. 10 shows typical scenic representations of
droplet impact processes at two different Reynolds numbers of
500 and 20. The fascinating phenomena of droplet splashing
is successfully reproduced at a high Reynolds number, while
the initial droplet only merges with the thin liquid film without
the appearance of the splashing behavior at a low Reynolds
number. They also reported that the measured spreading radius

in the simulation exhibits to obey the power-law relation.
Liang et al. (2019b) further incorporated two popular contact
angle models of the cubic surface-energy and geometrical
schemes into the phase-field LBM and then applied it to
study a three-dimensional micron-scale droplet impact on
solid surface with a high density ratio. They found that the
LBM can obtain the accurate results in predicting droplet
patterns. Fig. 11 presents several typical snapshots of the
micron-scale droplet impact processes at the contact angles
of 107◦. The micron-scale droplet instantly impacts on the
substrate surface and then takes place of the rebounding.
Finally, it undergoes a slight oscillation until reaching the
equilibrium shape. The numerically predicted droplet impact
dynamics are consistent with the experimental results (Dong
et al., 2007). The droplet spreading radius and height in the
impact processes are measured, and the time variations of these
physical quantities with the contact angles of 107◦ and 31◦ are
plotted in Fig. 12. For comparisons, the experimental results of
Dong et al. (2007) are also presented. As shown in this figure,
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the surface-energy and geometrical wetting schemes (Ding and
Spelt, 2007) can obtain the comparative results, both of which
are in good agreements with the experimental data in general.

5. Summary
In this paper, we present a brief review on the phase-

field-based LBM for multiphase flows. Although the phase-
field-based LBM has gained great success in the study of
the complex multiphase flows, there are still some problems
needed to be considered in the future. First of all, most of the
work on the phase-field LBM are limited to two-phase flows,
and the phase-field-based LB models for multiphase (more
than three phases) flows are still in progress (Liang et al., 2016;
Abadi et al., 2018; Zheng et al., 2019). Secondly, almost all of
phase-field-based LB models are only suitable for isothermal
multiphase flows, and it is desirable to develop the phase-
field-based LB models for the non-isothermal multiphase flows
(Liu et al., 2013; Zheng et al., 2016; Wang, 2018; Hu et
al., 2019b), and finally, more advanced phase-field-based LB
models for multiphase flows with surfactants and multiphase
electrohydrodynamic flows are also needed (Liu and Zhang,
2010; Liu et al., 2019).
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