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Abstract:
Conducting stochastic-time-cost-tradeoff-problem (STCTP) analysis beneficially extends
the scope of discrete project duration-cost analysis for oil and gas field development
projects. STCTP can be particularly insightful when using a dual-objective optimization
approach to locate minimum-total-project-cost solutions, and to additionally derive a Pareto
frontier of non-dominated-total-project-cost solutions across a wide range of potential
project durations. For STCTP project-work-item durations and costs are expressed as
probability distributions and sampled with random numbers (0, 1). By controlling the
fractional numbers used to sample the work-item cost distributions by formulas linked to
the random numbers used to sample the work-item duration distribution, a wide range
of complex time-cost relationships are readily applied. The memetic algorithm developed
for constrained STCTP involves ten metaheuristics configured to focus partly on local
exploitation and partly on exploration of the feasible solution space. This dual focus
effectively delivers the dual objective of: 1) locating the global minimum total-project-
cost solution, if it exists, or the region in the vicinity of where that solution exists; and,
2) developing a Pareto frontier. Analysis of an example project, applying eight distinct
work-item time-cost relationships, demonstrates with the aid of metaheuristic profiling,
that the memetic STCTP algorithm coded in Visual Basic for Applications and operated in
Microsoft Excel effectively delivers on both objectives. Dynamic adjustment factors applied
by some metaheuristics, derived from fat-tailed distributions adjusted by chaotic sequences,
aid the efficient sampling of the feasible solution space. The metaheuristic profiles also
help to fine tune the configuration of the algorithm to further enhance performance for
specific work-item time-cost relationships.

1. Introduction
Providing efficient solutions to time-cost tradeoff problems

is an important consideration in the planning of many oil
and gas field development, facilities and improved recovery
projects, while satisfying several constraints (e.g., critical path
logic, activity precedence, resource availability, budget limits,
quality standards etc.). The key objective is to identify an
attractive/optimum time schedule that can also deliver such
projects at the lowest cost while satisfying all constraints and
deliverable quality standards. Zhou et al. (2013) review tech-
niques used to optimize scheduling in construction projects.

Many studies propose algorithms to solve the discrete time
cost tradeoff problem (DTCTP) faced by construction projects
under development (e.g., Bettemir and Birgonul, 2016). The
scenarios considered typically assume very specific relation-
ships between cost and time of project activities, viz., as
activity time is reduced by expenditure on crashing actions,
the direct project cost an activity (material, labour) increases,

whereas the indirect cost (overheads) of the activity decreases.
Typically, the problems evaluated are multi-modal in nature,
i.e., deterministic time and cost for several alternative con-
struction techniques for each activity are available for selec-
tion, based upon quotes provided by different sub-contractors.

Although the multi-modal DTCTP is a common scenario
and precursor to the award of engineering, procurement and
construction (EPC) contracts, it is not the only scenario that
needs to be considered in project planning. The uncertain-
ties that exist for most work-item cost and durations at the
early project planning stages justify the application of more
expansive evaluations of stochastic time cost tradeoff problems
(STCTP). This involves estimating the time (duration) and cost
for each activity (work item) with continuous distributions
rather than deterministic values. In such circumstances the
uncertainties associated with duration and cost for each activity
are better expressed as probability distributions. Such situa-
tions typically prevail during the front-end engineering and
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design (FEED) stages and earlier pre-FEED stages of project
planning. Indeed, multiple cost-time quotes from contractors
for each activity, enabling a multi-modal discrete analysis, are
typically not available until after a FEED study is completed.
Yet, preliminary TCTP analysis can be beneficial in the FEED
and pre-FEED stages of complex projects. In addition, sig-
nificant uncertainty remains concerning the durations of con-
tracted activities during project implementation, due to factors
such as contractor performance, inflation of materials costs,
weather, unplanned interruptions and change orders. A case
can therefore be made for stochastic analysis during project
implementation, albeit with narrower distribution ranges.

Such uncertainties expose the limitations of discrete op-
timization models and justifies the use of stochastic project
evaluation and review techniques (PERT) to incorporate
such uncertainty in the CPM analysis. Therefore, this study
proposes a stochastic STCTP approach for early-stage and
implementation-stage project planning that minimizes project
costs across a range of possible project durations (makespans)
for different probabilistic activity time-cost relationships. It
applies a newly developed memetic, nondominated, sorting
optimization algorithm and monitors performance of the com-
ponent metaheuristics of that algorithm with the recently-
developed technique of metaheuristic profiling (Wood, 2016a;
2016b).

2. Literature review
Early work by Fulkerson (1961) and Kelley (1961) identi-

fied the benefits of the critical path method (CPM) of analysis
to adjust project schedules such that total project costs could be
minimized. Complex relationships were recognized between
project activity durations and their costs (Siemens, 1971;
Reda and Carr, 1989) and the risks associated with them
(Wollmer, 1985; Moselhi and Deb, 1993). In some cases, this
enabled a projects schedule to be accelerated by allocating
more resources (e.g., work force, equipment, materials) to
certain critical activities at additional direct costs, eventually
termed crash actions, constrained by available resources (Ahn
and Erenguc, 1998; Gutjahr et al., 2000). The DTCTP was
first formally addressed by Harvey and Patterson (1979) and
Hindelang and Muth (1979), and is now generally expressed
in cases where the duration of each activity in each of several
modes is a discrete non-increasing function of the amount
of non-renewable resource dedicated to it (Wu and Chen,
2009). DCTCP continue to be the focus of many construction-
related optimization studies (e.g., De et al., 1995; Zheng,
2015; Aminbaksh and Sonmez, 2016). It is known to be a
strongly NP-hard optimization problem and to become more
so as additional optimization objectives are factored in (Van
Peterghem and Vanhoucke, 2010; Singh and Ernst, 2011;
Zhang et al., 2015), with the feasible solution space increasing
exponentially as the number of project activities increases
(Tavana et al., 2014). In cases where multiple objectives are
sought (e.g., cost, time, quality etc.) the Pareto front approach
has provided nondominated time-cost solutions over a range of
feasible project schedules (Chau et al., 1997; Feng et al., 1997;
Zheng et al., 2005; Vanhoucke and Debels, 2007; Iranmanesh

et al., 2008; Gomes et al., 2014; Koo et al., 2015).
Babu and Suresh (1996) recognized that project quality

was also likely to be impacted by time-cost tradeoff and con-
sidered time-cost-quality tradeoff as a complex continuum to
be optimized. Many subsequent studies have treated time-cost-
quality optimization as a discrete problem with each activity
potentially executed in several modes (Kang and Myint, 1999;
El-Rayes and Kandil, 2005; Tareghian and Taheri, 2006; Kim
et al., 2012). Some models incorporate fuzzy logic to address
the difficult-to-quantify uncertainties associated with project
quality and resource utilization (Zheng and Ng, 2005; Zahraie
and Tavakolan, 2009; Zang and Xing, 2010; Shahsavari Pour
et al., 2012; Ahari and Niaki., 2013; Mungle et al., 2013), or
apply multi-criteria decision-making techniques, such as Anal-
ysis Hierarchy Method (AHP) (Pollack-Johnson and Libera-
tore, 2006) or evidential reasoning (Monghaesemi et al., 2015)
to assess project quality. Ke (2014) applies uncertainty theory
to address non-random and non-fuzzy uncertainties in TCTP.
It has been argued that the DCTCP is too narrowly specified to
cover many of the real project problems encountered (Vahidi,
2013); a view shared by this author (see introduction). Also, in
some projects a case can be made for focusing on profitability
and optimizing project net present value (NPV) rather than
costs (Zareei et al., 2014).

Methodologies applied to optimize TCTP can be broadly
classified (Zhang and Xing, 2010) into heuristic methods
(Fondahl, 1961; Siemens, 1971; Molehsi, 1993; Elazouni,
2009), mathematical methods (Robinson, 1975; De et al.,
1995; Elmaghraby, 1995; Burns et al., 1996) including branch-
and-bound methods (Rostami et al., 2014), and metaheuristic
models (Feng et al., 1997; Li and Love, 1997; Zheng et al.,
2004, Elbeltagi et al., 2005; Hegazy, 2011), with further exam-
ples of each listed by Zhou et al. (2013). In contrast to heuris-
tics, which are approximate rules-of-thumb developed using
problem-specific information and tend to easily get trapped at
local optima, metaheuristics are computational methods that
optimize a problem by iteratively trying to improve a candidate
solution with regard to a given measure of quality (Suh et
al., 2011). The metaheuristic models applied to TCTP are for
the most part evolutionary in nature, dominated by genetic
algorithms (Chau et al., 1997; Sonmez and Bettemir, 2012),
but also including ant colony (Ng and Zhang, 2008), particle
swarm (Rahimi and Iranmanesh, 2008), differential evolution,
simulated annealing (Rasmy et al., 2008; Anagnostopoulos
and Kotsikas, 2010), harmony search (Geem, 2010), frog
leaping (Eusuff et al., 2006; Elbeltagi et al., 2007; Rashtchi
et al., 2012), intelligent water drops (Saif et al., 2015), etc.
Some evolutionary and other algorithms are configured to
also evaluate DTCTP, taking into account fuzzy quality inputs
(Wood, 2017), limited resource availability (Ghoddousi et al.,
2013; Afruzi et al., 2014; Rostami et al., 2014; Cheng and
Tran, 2016), including renewable, nonrenewable and doubly
constrained resources.

The term memetic algorithm does not have a standard
definition (e.g., Moscato, 1989; Garg, 2009; Chen et al., 2011;
Wood, 2016c). The definition applied here is that memetic
algorithms are extensions or hybrids of metaheuristic evolu-
tionary algorithms, combining multiple local and global search
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components, which may not all be evolutionary in design,
thereby increasing their learning capability, flexibility and
efficiency in searching feasible solutions spaces in comparison
to metaheuristics.

All of these optimization methods are obliged to obey
a projects work-item precedencies and critical path (CPM)
constraints, such that an activity is unable to start until its
precedence activities are completed and, on the critical path,
an activity cannot start later than its latest start time without
lengthening the duration of the project overall. TCTP models
have applied a range of time-cost functions and relationships
(Azaron, 2005; Blaszczyk and Nowak, 2009), including linear
(Fulkerson, 1961; Kelley, 1961), discrete (Demeulemeester
et al., 1993), non-linear, including convex (Berman, 1964;
Lamberson and Hocking, 1970), concave (Falk and Horowitz,
1972), and in some cases arbitrary, stochastic (Hagstrom,
1988; Ke and Liu, 2005; Cohen et al., 2007; Ke et al.,
2009) or hybrid. Linear continuous TCTP, where activity costs
decrease linearly with duration, have been solved with linear
programming (Baker, 1997) and by stochastic mathematical
methods (Cohen et al., 2007). Some non-linear continuous
TCTP, where activity costs decrease in a convex relationship
with duration, have been solved with quadratic programming
(Deckro et al., 1995).

Chaos is a deterministic, non-linear, bounded, unstable,
dynamic behavior resembling stochastic sampling, but with
infinite unstable periodic motions dependent upon defined
starting positions, Chaotic sampling may be applied in either
deterministic or stochastic conditions. Chaotic sampling can
assist search functions in optimization algorithms (Li and
Jiang, 1999; Wang et al., 2001), and has been recently applied
to bat-flight, (Lin et al., 2012), frog-leaping (Rashtchi et
al., 2012) and cuckoo search (Huang et al., 2016; Wood,
2016b) algorithms. Searching solution spaces with Levy flights
enhances the efficiency of cuckoo search algorithms (Yang
and Deb, 2009). Choatic sampling combined with Levy flight
(Huang et al., 2016) or with generic fat-tailed distributions
(Wood, 2016b) further enhances the efficiency of solution-
space searches, and is an approach used in some of meta-
heuristic components of the memetic algorithm developed for
in this study.

This study evaluates a range of stochastic time-cost re-
lationships for STCTP evaluations, of a scale typical for
oil and gas field developments. It does so with a memetic
(evolutionary) algorithm, recognizing that due to the durations
of each activity (work item) being uncertain, the costs of each
activity, total project duration and costs are also uncertain,
limiting the scope of deterministic models. Its dual cost and
time focus requires that it seeks efficient (non-dominated)
time-cost solutions over a range of feasible project durations
(Pareto frontier), applying budget and schedule constraints as
required. In the following sections the details of the memetic
algorithm are described, it is applied to an example oil and
gas facilities project using eight distinct and continuous work-
item time-cost relationships, and its performance is evaluated
in locating optimum solutions and in defining Pareto frontiers.

3. Memetic nondominated sorting optimization
algorithm incorporating chaotic and fat-tailed
search metaheuristics

A flowchart describing the memetic algorithm applied
to continuous and stochastic project time-cost optimization
problems (STCTP) is included as Appendix S Fig-S1. It
consists of ten integrated metaheuristics (Mh1 to Mh10),
which operate collectively across multiple iterations of the
algorithm to influence an evolving population of solutions
in its quest for solutions better satisfying the optimization
objectives.

(1) Algorithms Control Metrics
Prior to running the algorithm, it is necessary to specify

the following control metrics:
• Number of iterations (M ) to run in each execution of the

algorithm.
• Number of solutions (N ) to generate/modify in each

iteration.
• Fraction of N to consider as high-ranking sub-population

for modification.
• Work item constraints: P0, P100 values for each work

item time and cost distributions.
• Full project time constraints (e.g. maximum allowable

values to consider), if required.
• Which metaheuristics to run/not run.
• Set tuning values for certain metaheuristics.
• Set number of total project time intervals (Q) to use to

generate the Pareto Front for total project cost.
The algorithm is configured to minimize total project

costs taking into account the specified constraints. Therefore,
metaheuristic 1 (Mh1) operates in the first iteration, to gen-
erate a randomly selected population of N solutions. Each
solution evaluated by a PERT/critical path method (CPM)
logic function in order to determine total project duration
taking into account parallel sequences and precedence of work
items. This generates three total project value outputs for each
solution evaluated: 1. Total project cost (objective function);
2. Total project duration (taking into account parallel working
and work-item precedence); and, 3. Sum of the durations
of all work items (ignoring parallel working and work-item
precedence). The values for output 3 will be greater than
the values for output 2 in projects where parallel work item
sequences are involved. The N solutions are then ranked in
ascending order of the total project costs for each solution in
the population, assigning each a ranking from rank #1 to rank
#N.

(2) Description of Ten Integrated Metaheuristics (Mh1 to
Mh10)

The following metaheuristics operate from iterations 2 to
M , and the solutions modified, retained or generated are
ranked in ascending order of total project cost at the end
of each iteration in preparation for the actions of the next
iteration. In addition to recording the lowest total project cost
solution associated with each iteration, the non-dominated por-
tion of the algorithm records details of the lowest total-project-
cost solutions achieved by all iterations concluded so far, in
each of the Q total-project-duration intervals. This enables
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progress of the Pareto frontier to be monitored iteration by
iteration.

Mh1 generates random population of feasible solutions
(coded 1), ranks the solutions in ascending order of objective
function and sets up the intervals for the project time-cost
Pareto frontier recording non-dominated solutions (i.e., lowest
total project costs for all solutions with total project time
within a specified interval) for each Pareto-frontier interval.

Mh2 generates a subset of modified solutions (coded 2) to
replace some solutions in the N −Q lower ranking solutions
of the previous iteration. It uses the cumulative frequency of
high-ranking solutions and roulette wheel selection to pref-
erentially select some of the high-performing (Q) solutions.
It then modifies some of the randomly-selected work item
durations and moves them closer towards the values recorded
for some of the highest-ranking solutions (e.g. rank #1 to rank
#10). The adjustment factors to make these modifications are
determined by selected from fat-tailed distributions adjusted
by chaotic sequences (see Wood, 2016b, and Appendix S for
equations). This approach enables the adjustment factors to
get progressively smaller as the number of iterations increases,
thereby progressively narrowing the search area of the feasible
solution space.

Mh3 generates a subset of modified solutions (coded 3)
derived by making minor adjustments to the twenty-best non-
dominated solutions, plus one randomly-selected from the
highest-ranking solutions, recorded from the previous iteration.
Either one work-item duration, or several, are modified in
the solutions selected. How many work-item durations are
changed depends upon the number of iterations completed so
far; in early iterations, up to 30% of the work-item durations
are changed, whereas in later iterations, this is progressively
reduced to 10% in some iterations, and just one work-item
duration in others. The adjustment factors applied also vary
systematically as iterations progress, with higher adjustments
made in earlier iterations. The modified solutions generated
replace some solutions in the N −Q lower ranking solutions
of the previous iteration that have not been replaced in the
current iteration.

Mh4 generates a subset of modified solutions (coded 4)
derived by shifting one, randomly selected work-item duration
of ranks #1 to ranks #10 solutions close to one of their
constraint boundaries (also selected randomly). If the work
item duration selected is already very close to its constraint
boundary, then another work item is selected. The modified
solutions generated replace some solutions in the N−Q lower
ranking solutions of the previous iteration that have not been
replaced in the current iteration.

Mh5 generates a subset of modified solutions (coded 5)
derived by adjusting multiple (e.g., 30%), randomly- selected
work-item durations of high-ranking solutions (e.g. beginning
at ranks #12) from the previous iteration. The adjustments are
made by small increments, using dynamic random sampling
of adjustment factors extracted from a fat-tailed distribution
adjusted by a chaotic sequence. Once half of the iterations
are completed a random change to one work-item iteration
is also introduced for a few of the solutions generated to
widen the search. The modified solutions generated replace

some solutions in the N − Q lower ranking solutions of the
previous iteration that have not been replaced in the current
iteration.

Mh6 generates a subset of modified solutions (coded 6)
derived by introducing small modifications to one randomly
selected work-item durations of high-ranking solutions (e.g.,
ranks #1 to #20) from the previous iteration. The adjust-
ments are made by small increments, using dynamic random
sampling of adjustment factors extracted from a fat-tailed
distribution adjusted by a chaotic sequence. If the global
best solution found by recent iterations shows only a small
improvement, then a second randomly-selected work-item
duration is also modified by similarly-generated adjustment
factors. The modified solutions generated replace the existing
rank #1 to rank #20 solutions of the previous iteration, with
the existing rank #1 solution preserved by replacing one of
the N − Q lower ranking solutions of the previous iteration
that has not been replaced in the current iteration.

Mh7 generates a subset of modified solutions (coded 7)
derived by replacing one randomly selected work-item dura-
tions with a random viable value for selected high-ranking
solutions (e.g., selected from ranks #1 to #75) from the
previous iteration. The modified solutions generated replace
some solutions in the N − Q lower ranking solutions of the
previous iteration that have not been replaced in the current
iteration.

Mh8 generates a subset of modified solutions (coded 8)
derived by crossing over selected work-item duration values
in solutions rank #21 to #50 of the previous iteration with
lower ranking solutions from that iteration. The number of
work item durations modified in this way is high (e.g. ∼60%)
in the early iterations, reducing (e.g., ∼30%) in later iterations.
The modified solutions generated replace the existing rank #21
to rank #50 solutions of the previous iteration.

Mh9 Substitutes previous best solutions into the top ten
rankings for consideration for some adjustments by the next
iteration, if the objective function value for rank #1 only differs
from rank #10 by a very small specified amount. This is
controlled to begin operating only after a certain number of
iterations are completed and/or to operate only at intermittent
iterations. It can help the algorithm to escape from local
optima.

Mh10 Substitutes a few low to mid-ranking solutions from
the previous iteration into the top ten rankings for consider-
ation for some adjustments by the current iteration. This is
controlled to begin operating only after a certain number of
iterations are completed and/or to operate only at intermittent
iterations. It can also help the algorithm to escape from local
optima in later iterations.

Following the execution of Mh2 to Mh8 in iterations from
2 to M there are N−1 new modified solutions plus the rank #1
of the previous iteration. These solutions are each evaluated
by the PERT/critical path method (CPM) logic function in
order to determine total project duration taking into account
parallel sequences and their precedence of work items. This
generates total project output values 1 to 3 for each solution.
The N solutions are then ranked in ascending order of the total
project costs for each solution in the population, assigning
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each a ranking from rank #1 to rank #N. Mh9 and Mh10
are then applied to in some cases modify that ranking for
consideration by the next iteration.

Metaheuristics Mh1, Mh5, Mh7, Mh8, Mh10 are more
directed towards global exploration of the feasible solution
space. In contrast, metaheuristics Mh2, Mh3, Mh4, Mh6 and
Mh9 are more directed towards exploitation (local search)
around promising feasible solutions already found, increas-
ingly focusing that search as iterations progress towards the
final specified number of iterations (M ). Mh2 incorporates
both local and global search capabilities, being more glob-
ally focused in earlier iterations and becoming more locally
focused as solutions converge. It is the ability to balance
exploration and exploitation of continuous feasible solution
spaces, and to tune various metaheuristics to achieve both,
that makes memetic algorithms attractive for this purpose.
For specific projects, it is likely that certain metaheuristics
are more effective than others in finding the best solutions.
It is possible to tune the algorithm such that ineffective
metaheuristics are switched off and the number of solutions
produced by effective metaheuristics expanded, if necessary.

The memetic algorithm as described and configured is
highly versatile and transferrable to other problems, with the
chaotic sampling techniques associated with some metaheuris-
tics relevant to the sampling of various reservoir and other
sub-surface uncertainties.

4. Critical path description of example project
with continuous time-cost uncertainty ranges

A project network for an example oil and gas field facilities
construction project, with several parallel paths of work items
with high duration and cost uncertainties, is evaluated here
using the STCTP algorithm described. The high-level-work-
item breakdown of the project (20 work items) would be
underpinned in practice by a more-detailed network analysis
broken down further into probably many hundreds of individ-
ual activities, which would be required to plan and implement
the project in detail. Optimizing at the higher level of a project
in its the early planning stages is the focus of this example.

Details of the project work items uncertain durations and
costs are provided in Table 1 as five distinct deterministic
cases that also used to construct probability distributions for
stochastic evaluations. These distributions are symmetrical
about the best guess (P50-median/best guess values), but could
be asymmetrical without compromising the functioning of the
optimization algorithm. Assuming triangular relationships, the
P0 (probability 0%/minimum) values are derived by extrap-
olating the P50 and P10 (tenth percentile/ fast deterministic
case) values, whereas the P100 (probability 100%/maximum)
values are derived by extrapolating the P50 and P90 (ninetieth
percentile/slow deterministic case) values (Table 1).

In the construction industry, it is common to distinguish
two distinct cost components: direct and indirect. The direct
costs associated with completing the work item (including day-
rate labour and equipment costs, and are typically assumed to
increase in some ways, due to greater resource deployments, as
work item duration is reduced. The indirect costs are various

overhead costs incurred on a day-rate basis that increase in
proportion to the time taken to complete the work item. This
type of cost distinction is used for projects across all industries.
A more generic approach to project time-cost relationships
is to consider two alternative cost components for stochastic
project work-item cost analysis, each of which can be related
to work item duration in various ways. Hence, the use here
of the components semi-fixed costs and variable costs (Table
1). The semi-fixed costs are those quoted costs for plant,
equipment and resources that may depend or not on the
time taken to complete the work item according to various
relationships, but are still uncertain with the ability to vary
across the P0 to P100 range. The variable costs are those that
vary on a day-rate basis (including some labour and overhead
costs) and increase in proportion to the time taken to complete
the work item. The day rates of the variable costs are also
uncertain with the ability to vary across the P0 to P100 range,
but are calculated by multiplying day rates by the number of
days taken to complete the work item. It is the semi-fixed and
variable cost distributions of Table 1 that are related to the
work item durations using various relationships that are used
here to evaluate STCTP.

For work item time-cost distribution interactions in the
stochastic model it is possible, and sometimes appropriate, to
consider various relationships (positive, negative, non-linear
and complex, e.g. segmental) between the duration and either
of the two cost components for each work item, or between
the two cost components. Table 2 lists the total work item cost
(semifixed plus variable multiplied by duration) relationships
for the five deterministic cases assuming positive and negative
linear correlations between work-item durations and the two
components of costs. In the positive linear correlation case P0,
P10, P50, P90 and P100 duration cases are matched with the
P0, P10, P50, P90 and P100 cases of each cost component.
In the negative linear correlation case P0, P10, P50, P90 and
P100 duration cases are matched with the P100, P90, P50,
P10 and P0 cases of each cost component. Comparing the two
sets of total work-item and full project cost values generated,
highlights the significance of the time to cost distribution re-
lationships in projects. Total project costs could vary between
US$1376 million and US$6280 million depending upon the
cases and time-cost relationships considered. It is also clear
that the relationship between the total project costs of five
cases for the negative linear work-item time-cost relationships
(Table 5) are far from linear.

The work items of the example project are executed across
five parallel pathways (see: P50 deterministic case precedence
diagram Fig. 1) following a defined project network logic of
work-item precedencies (Table 3).

Each of the parallel pathways, depending upon work-item
duration assumptions, may represent the projects critical path.
There is potential for the critical path to switch from one
pathway of work items to another, depending on the duration
values applied for each work item. The network logic for the
example project identifies that nine of the twenty work items
represent convergent points, with at least two other preceding
work items leading into them (i.e., work items 5, 8, 10, 11, 14,
15, 16, 17 and 20). The relative performance of work items
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Table 1. Example oil and gas field development facilities construction project with twenty individual work-item cost and duration input assumptions for
three deterministic cases: fast, best estimate and slow cases for duration and low, best estimate and high cases for costs. Links between each time and cost
case with depend upon the cost-time relationship used, e.g., for positive time-cost correlation slow time case could be linked with high cost cases, whereas

for negative time-cost correlation slow time case could be linked with high cost cases.

Project Breakdown into 20 High-level Work
Items Implemented Across 5 Parallel Paths

Estimated Time to
(Complete (Days)

Estimated Semi-fixed Cost to
Complete Work Item ($ millions)

Estimated Variable Cost to Com-
plete Work Item ($ millions / day)

Work
Item
Number

Work Item Description Fast
(P10)

Best
Estimate
(P50)

Slow
(P90)

Low
(P10)

Best
Estimate
(P50)

High
(P90)

Low
(P10)

Best
Estimate
(P50)

High
(P90)

1 Select Site/Market Survey 50 75 100 20.0 30.0 40.0 0.300 0.500 0.750

2 Process design / engineering 60 80 100 20.0 30.0 40.0 1.250 1.500 1.750

3 Project planning & consents 60 90 120 20.0 30.0 40.0 0.300 0.500 0.800

4 Tender & select contractors 70 80 90 10.0 15.0 20.0 0.200 0.250 0.300

5 Build Process A building 120 150 180 30.0 50.0 70.0 2.500 3.000 3.500

6 Install Process A Plant 40 60 80 100.0 130.0 160.0 1.750 2.000 2.250

7 Select/train Process A Staff 30 40 50 5.0 10.0 15.0 0.750 1.000 1.250

8 Build Process B building 120 180 220 125.0 150.0 175.0 3.000 3.500 4.000

9 Install Process B Plant 50 75 100 120.0 150.0 180.0 2.000 2.500 3.000

10 Select/train Process B Staff 40 50 60 10.0 15.0 20.0 1.000 1.250 1.500

11 Build Process C building 100 125 150 25.0 40.0 55.0 2.250 2.500 2.750

12 Install Process C Plant 30 50 70 50.0 75.0 100.0 1.250 1.500 1.750

13 Select/train Process C Staff 20 30 40 5.0 10.0 15.0 0.500 0.750 1.000

14 Install Plant Control System 80 90 100 120.0 150.0 180.0 0.750 1.000 1.250

15 Test Systems/Procedures 20 30 40 15.0 20.0 25.0 0.750 1.000 1.250

16 Plant HAZOP 15 20 25 5.0 10.0 15.0 0.500 1.000 1.500

17 Build StorageFacilities 60 90 120 20.0 30.0 40.0 0.500 0.750 1.000

18 Build Loading Facilities 40 60 80 15.0 20.0 25.0 0.250 0.500 0.750

19 Contract Transportation 50 60 70 5.0 10.0 15.0 0.250 0.500 0.750

20 Commission Plant 30 40 50 15.0 20.0 25.0 1.500 2.000 2.500

Totals Duration totals ignore parallel paths: 1085 1475 1845 735.0 995.0 1255.0

Parallel Path

Identifier
245 150 395 395 60 455 455 40 495

5 6 7 B

290 45 440 440 45 500 550 95 590

75 80 155 155 80 235 245 180 425 425 75 500 500 50 550 590 30 620
2 4 8 9 10 15 C

75 0 155 165 10 245 245 0 425 425 0 500 540 40 590 590 0 620

0 75 75 245 125 370 370 50 420 420 30 450 620 20 640 640 40 680
1 11 12 13 16 20 A

0 0 75 325 80 450 450 80 500 560 140 590 620 0 640 640 0 680

155 90 245 500 90 590
3 14 D

155 0 245 500 0 590

ESt D EF Critical path identified as thick red line 245 90 335 335 60 395 395 60 455

 Work Item # ESt = Earliest start; D = Work item duration 17 18 19 E

EF = Earliest finish
LSt F LF LSt = Latest start; F = Float;  LF = Latest finish 350 105 440 440 105 500 560 165 620

Critical Path Analysis for Project to Build a Example Plant Using a Precedence Network Diagram

Contract
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System
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Engineering
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Contractors

Building Process

B Process B Plant

Train Process B

Staff

Fig. 1. High-level breakdown of twenty work items for the example oil and gas field development facilities construction project expressed as a precedence
network with critical path items identified (i.e., thick arrows connecting work items with zero float) for the best estimate (P50) deterministic work-item
assumptions (Table 1).
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Table 2. Deterministic work-item time cost outcomes for five deterministic cases of the example project with positive linear or negative linear cost-time
relationships.

Project Breakdown into 20 High-level Work
Items Implemented Across 5 Parallel Paths

Assuming Positive Linear Correlation between
Work Item Durations and Semi-fixed and Variable
Cost Components

Assuming Negative Linear Correlation between
Work Item Durations and Semi-fixed and Variable
Cost Components

Total Work Item Costs ($ millions) at Specified
Project Duration Percentiles

Total Work Item Costs ($ millions) at Specified
Project Duration Percentiles

Work
Item
Number

Work Item Description Min
(P0)

Fast
(P10)

Best
Estimate
(P50)

Slow
(P90)

Max
(P100)

Min
(P0)

Low
(P10)

Best
Estimate
(P50)

High
(P90)

Max
(P100)

1 Select Site/Market Survey 15.6 35.0 67.5 115.0 161.0 76.0 77.5 67.5 50.0 27.0

2 Process design / engineering 57.8 95 150 215 274.9 133.6 145.0 150.0 145.0 133.6

3 Project planning & consents 16.0 38 75 136 194.6 84.4 88.0 75.0 56.0 28.2

4 Tender & select contractors 15.8 24 35 47 57.4 45.1 41.0 35.0 28.0 21.6

5 Build Process A building 214.4 330 500 700 883.8 460.0 490.0 500.0 480.0 441.9

6 Install Process A Plant 112.6 170 250 340 420.1 242.7 250.0 250.0 240.0 224.6

7 Select/train Process A Staff 13.0 28 50 78 103.4 50.9 52.5 50.0 42.5 32.8

8 Build Process B building 304.2 485 780 1055 1328.8 533.7 655.0 780.0 785.0 772.8

9 Install Process B Plant 143.2 220 338 480 613.6 305.6 330.0 337.5 320.0 287.5

10 Select/train Process B Staff 31.4 50 78 110 140.0 78.4 80.0 77.5 70.0 60.3

11 Build Process C building 176.2 250 353 468 569.7 302.7 330.0 352.5 362.5 361.4

12 Install Process C Plant 44.3 88 150 223 288.5 147.2 152.5 150.0 137.5 120.1

13 Select/train Process C Staff 4.5 15 33 55 76.9 33.4 35.0 32.5 25.0 15.3

14 Install Plant Control System 135.1 180 240 305 361.2 308.7 280.0 240.0 195.0 154.9

15 Test Systems/Procedures 17.5 30 50 75 98.9 46.3 50.0 50.0 45.0 37.3

16 Plant HAZOP 2.0 13 30 53 74.4 39.9 37.5 30.0 17.5 3.7

17 Build StorageFacilities 22.5 50 98 160 221.5 91.0 100.0 97.5 80.0 54.9

18 Build Loading Facilities 12.1 25 50 85 120.6 51.7 55.0 50.0 35.0 15.5

19 Contract Transportation 3.0 18 40 68 93.4 59.0 52.5 40.0 22.5 4.7

20 Commission Plant 35.0 60 100 150 197.8 92.7 100.0 100.0 90.0 74.6

Totals ($ millions) 1376 2202 3465 4916 6280 3183 3401.5 3465.0 3226.5 2872.7

leading into convergent points determines the critical path, and
as performances vary during stochastic sampling and solution
modifications, the exact route of the critical path can also vary.

The network calculation function forms an essential part of
the STCTP memetic algorithm, because it performs forward
and backward passes sequentially in the correct-work-item or-
der across the network. For this study the STCTP memetic and
all related analysis are coded in Visual Basic for Applications
(VBA), with input and output located in a Microsoft Excel
workbook. Applying the network logic defined in Table 3 to
each set of work-item duration assumptions it provides key
output metrics 1 (total project duration) and 2 (sum of all the
work item durations ignoring parallel working). Key output
metric 3 (total project costs) can also then be calculated, but
will depend, independently of work-item precedencies, upon
the duration-cost relationships applied to each work item es-
tablishes values for five variables related to input assumptions
for each work item (i.e., earliest start, earliest finish, latest
start, float and latest finish; Fig. 1). The main challenges in
solving practical project cost-time tradeoff problems with the
memetic algorithm are the uncertainties in the input cost-

time assumptions for each work item and the relationships
(e.g. correlations/dependencies) between the cost and time
variables, which often differ from one work item to another.

5. Eight alternative work-item time-cost rela-
tionships ptimized

There is a myriad of possible time-cost relationships that
could be applied to the work items of the example project.
Also, different time-cost relationships could be applied to
different work items and/or different relationships could be
applied to time-semi-fixed cost and time-variable cost for each
work item. To illustrate the impact of different work item time
cost relationships, in the analysis present here, eight distinct
work-item time-cost relationships are considered. To facilitate
a comparison of the work-item time-cost relationship, for each
case considered, one or other of the relationships is applied to
all the work items, and to both cost distributions. Selecting
the appropriate cost-time relationship for a specific project
influences the efficiency and accuracy of the STCP solutions
generated.
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Table 3. PERT precedence network logic for the twenty work items of example project used to derive the full project duration (makespan) and cost for
deterministic cases and all stochastic cases evaluated by the STCTP memetic algorithm.

Project work breakdown into 20 work items
implemented across 5 parallel paths

Work item precedences of a specified parallel path that must be
complete before a subsequent work item in column 1 can begin

Work Item Number Work Item Description Parallel Work-item Path
Identifier (A to E)

A B C D E

1 Select Site/Market Survey A

2 Process design / engineering B 1

3 Project planning & consents D 2

4 Tender & select contractors B 2

5 Build Process A building A 4 3

6 Install Process A Plant A 5

7 Select/train Process A Staff A 6

8 Build Process B building B 4 3

9 Install Process B Plant B 8

10 Select/train Process B Staff B 6 9 12

11 Build Process C building C 4 3

12 Install Process C Plant C 11

13 Select/train Process C Staff C 12

14 Install Plant Control System D 6 9 12 18

15 Test Systems/Procedures A 7 10 13 14

16 Plant HAZOP A 15 19

17 Build StorageFacilities E 4 3

18 Build Loading Facilities E 17

19 Contract Transportation E 18

20 Commission Plant A 16 19

Work items #5, 8, 10, 11, 14, 15, 16, 17 and 20 are convergent points in the network with two or more other work items feeding directly into them

Note to typesetters: please keep the grey background shading to highlighted cells in the first column of this table.

The eight relationships between work item time and cost
are determined by formulas applied to the random number
used to sample the work item duration probability distribu-
tions, such that an appropriate fractional number (0, 1) can
be derived for sampling the work item cost distributions. This
can be achieved very easily in the stochastic sampling of the
three distributions (duration, semi-fixed costs, variable cost)
for each work item. The relationships evaluated are:

1. Negative Linear. If the random number (0, 1), Rd, is used
to sample the duration probability distribution (expressed as
a uniform distribution between P0 and P100 values Table 1),
then the dependent fractional number Rc = 1 − Rd is used
to sample the two cost distributions also expressed as uniform
distributions.

2. Negative Sigmoidal. Same as relationship 1 except that
the two cost distributions to sample are expressed as lognormal

distributions.
3. U-shaped. The relationship between Rd and Rc is

expressed by equation 1 with a uniform duration distribution
and lognormal cost distributions being sampled.

Rc =

 Rd ≤ a 1 −Rd

Rd > a min(0.999, (1 −Rd) + (Rd − a) × b))
(1)

where: a = change threshold, 0 < a < 1, a = 0.5 in the
example presented; b = adjustment coefficient, b = 1.5 in the
example presented; Rc is constrained by limits 0 < Rc < 1.

4. Segmental. The relationship between Rd and Rc is
expressed by equation 2 with a uniform duration distribution
and lognormal cost distributions being sampled.

Rc =


Rd ≤ a min(c, 1 − (Rd × b))

Rd > a

 Rd ≤ h max (g, (1 −Rd) × f × (1 −Rd))

Rd < h (1 −Rd) × e× (1 −Rd)))

(2)
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where: a = change threshold, 0 < a < 1, a = 0.3 in the
example presented; b = adjustment coefficient, b = 2.0 in the
example presented; Rc is constrained by limits 0 < Rc < 1;
c = maximum limit, 0 < c < 1, c = 0.975 in the example
presented; e = adjustment coefficient, e = 0.8 for RcS, e =
0.3 for RcV in example presented; f = adjustment coefficient,
0 < f < 1, f = 0.01 in example presented; g = maximum limit,
0 < g < 1, g = 0.05 in example presented; h = adjustment
coefficient, a < h < 1, h = 0.75 in example presented; RcS
is the random number used to sample the semi-fixed cost
distribution; RcV is the random number used to sample the
variable cost distribution.

5. V-shaped. The relationship between Rd and Rc is
expressed by equation 3 with a uniform duration distribution
and lognormal cost distributions being sampled.

Rc =

 Rd ≤ a min(c, 1 − (Rd × b))

Rd > a min(c, (Rd − a) × e)
(3)

where: a = change threshold, 0 < a < 1, a = 0.5 in the
example presented; b = adjustment coefficient, b = 2.0 in the
example presented; Rc is constrained by limits 0 < Rc < 1;
c = maximum limit, 0 < c < 1, c = 0.975 in the example
presented, 0.0001 < 1 − (Rd × b) < c; e = adjustment
coefficient, e = 1.0 in the example presented for both RcS
and RcV .

6. Positive Linear. Same as relationship 1, except Rc =
Rd.

7. Positive Sigmoidal. Same as relationship 2, except
Rc = Rd.

8. Uncorrelated (independent). Time and cost distributions
are all sampled as triangular distributions with independent
random numbers. This case differs from the others in that
a specific work item duration sampled in separate iterations
could be associated with distinct costs, which is not the case
for relationships 1 to 7. Hence, there is a greater range of
uncertainty in the total project durations and costs generated
with the uncorrelated relationship and no single reproducible
optimum value.

It is relatively easy using random number relationships that
sample the work-item duration and cost probability distribu-
tions to generate a wide range of continuous, stochastic, non-
linear, time-cost relationships. Figs 2 to 5 illustrate the time-
cost outcomes for relationships 1, 2, 3 and 8 for just work
items #1 and #8 (Table 1), indicating the non-linear nature
of the total work item time-cost outcomes. Work item #1 is
selected because it is representative of the lower end of the
range of cost and durations for all the work items. Work item
#8 is selected because it is representative of the high end of
the range of cost and durations for all the work items. Similar
graphics for relationships 4, 5, 6 and 7 are included in the
Appendix S.

Whereas the negative linear relationship (1) generates con-
vex downwards total work item time-cost trends (Fig. 2), the
positive linear relationship (6) generates convex upwards total
work item time-cost trends. Whereas the negative sigmoidal
relationship (2) generates convex downwards total work item
time-cost trends (declining more rapidly towards the right, Fig.

3), the positive sigmoidal relationship (7) generates convex
upwards total work item time-cost trends (rising more rapidly
towards the right). The segmental relationship (4) generates
convex downwards total work item time-cost trends with
three distinct segments resulting in the central segment being
significantly lower in cost than the left end of the trend and
slightly lower than the right end of the trend. The V-shaped
relationship (4) generates two convex downwards total work
item time-cost trends that intersect at distinct minima in the
central area of the duration range for each work item with
three distinct segments resulting in the central segment being
significantly lower in cost than the left end of the trend and
slightly lower than the right end of the trend.

The STCTP to locate the lowest total project cost was eval-
uated with the memetic algorithm for each of the eight time-
cost relationships described applied to the example project.
The algorithm was executed using the following control
values: M = 250, N = 200, Q = 50. Twenty distinct
executions of the algorithm were performed for each time-cost
relationship and the results analyzed statistically to provide
means and standard deviations of the optima found. The
minimum total project cost solutions (i.e., the optimum work
item durations, total project duration and total project cost) for
each time-cost relationship case are listed in Table 4.

Standard deviations of the optimum total-project-cost so-
lutions found for twenty executions of the memetic algorithm
are very low for work-item time-cost relationships 1, 2, 3, 4,
6 and 7 (Table 4), suggesting that the algorithm is consistent
in its performance. For these six relationships, the algorithm
is finding solutions within $1 million of the optimum value
after 40 to 100 iterations (i.e., well within the 250 iterations
performed in each execution). For work-item time-cost rela-
tionship 5 the algorithm typically takes 230 or so iterations
to find solutions within $1 million of the optimum, resulting
in a slightly higher standard deviation of $9.7 million (Table
4). Performing more iterations for relationship 5 reduces the
standard deviation of the optimum values found in multiple
run.

For work-item time-cost relationship 8 the standard de-
viation of the optimum total-project-cost solutions found is
much higher ($70 million), because of the stochastic nature
of that relationship (Fig. 5). There is a very low chance of
stochastically sampling close to the P0 values of each work
item duration and cost distribution with three independently
selected random numbers. Hence, the optimum values found
in each run of the memetic algorithm are not near the global
optimum that could possibly exist, which would be very close
to the P0 values of all distributions (i.e., $1376 million total
project costs). Therefore, if there is no defined relationship
between work item durations and costs the memetic algorithm
is not likely to find possible global optimums that exist
with very low probabilities of occurrence. Nevertheless, some
useful information can be derived from such runs in terms
of the Pareto frontiers they reveal. The optimum solution
for relationship 8 is typically found in iteration #2. This is
because the random solutions of iteration 1 (Mh1) are ranked
and the high-ranking population Q consists of the work-
item durations that are associated with lowest total project
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Example Project Work Item Time - Cost Relationship 1: Negative Linear
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Fig. 2. Time-cost trends for work items 1 and 8 of example project for time-cost relationship 1. Negative Linear.

Example Project Work Item Time - Cost Relationship 2: Negative Sigmoidal
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Fig. 3. Time-cost trends for work items 1 and 8 of example project for time-cost relationship 2. Negative Sigmoidal.
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Example Project Work Item Time - Cost Relationship 3: U-shaped
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Fig. 4. Time-cost trends for work items 1 and 8 of example project for time-cost relationship 3. U-shaped.

Example Project Work Item Time - Cost Relationship 8: Uncorrelated
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Fig. 5. Time-cost trends for work items 1 and 8 of example project for time-cost relationship 8. Uncorrelated (independent).
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Table 4. Example project’s optimum solutions found by STCTP memetic algorithm for work item durations, total project durations and total project costs
applying eight distinct work-item time-cost relationships applied.

Work Item Durations
Uncertainty Limits Applied

Minimum Duration Solutions ( Days) Found for Work Item Time-Cost
Relationships Evaluated (Example results from single runs of memetic algorithm)

Work
Item #

P(0)
Days

P(100)
Days

Negative
Linear

Negative
Sigmoidal

U-shaped Segmental V-shaped Positive
Linear

Positive
Sigmoidal

Uncorrelated

1 29.8 120.2 120.2 120.2 74.9 96.3 75.0 29.8 29.8 29.8

2 43.8 116.2 116.2 51.3 51.2 65.5 80.0 43.8 43.8 43.9

3 35.7 144.3 144.3 144.3 90.0 116.6 90.0 35.7 35.7 35.8

4 61.9 98.1 98.1 98.1 80.0 89.0 80.0 61.9 61.9 62.0

5 95.7 204.3 204.3 204.3 108.0 128.4 150.0 95.7 95.7 95.8

6 23.8 96.2 96.2 96.0 33.9 45.6 60.0 23.8 23.8 23.9

7 21.9 58.1 58.1 58.1 29.7 33.0 40.0 21.9 21.9 22.0

8 76.8 257.4 76.8 83.8 83.8 85.7 85.6 76.8 76.8 76.9

9 29.8 120.2 120.2 119.9 38.7 56.9 75.0 29.8 29.8 29.8

10 31.9 68.1 68.1 68.1 38.5 43.0 50.0 31.9 31.9 32.0

11 79.8 170.2 79.8 87.1 86.9 106.9 125.0 79.8 79.8 79.8

12 13.8 86.2 86.2 86.1 25.8 35.6 50.0 13.8 13.8 13.9

13 11.9 48.1 48.1 48.1 20.8 23.1 30.0 11.9 11.9 12.0

14 71.9 108.1 108.1 108.0 90.0 99.0 90.1 71.9 71.9 72.0

15 11.9 48.1 48.1 48.0 16.3 23.1 30.0 11.9 11.9 12.0

16 11.0 29.0 29.0 29.0 20.0 24.4 20.0 11.0 11.0 11.0

17 35.7 144.3 144.3 144.3 51.4 69.2 90.0 35.7 35.7 35.8

18 23.8 96.2 96.2 96.2 60.0 77.7 60.0 23.8 23.8 23.9

19 41.9 78.1 78.1 78.1 60.0 69.0 60.0 41.9 41.9 42.0

20 21.9 58.1 58.1 58.0 26.3 32.9 40.0 21.9 21.9 22.0

Total Project Duration (Days): 924.4 859.1 510.6 633.2 634.8 371.7 371.7 372.2

Total Project Cost ($ millions): 2574.9 2575.5 2949.2 2475.1 2104.3 1376.2 1376.2 2294.9

Standard Deviation ( $ millions) of
Miminum Project Cost from 20 execu-
tions of the Memetic Algorithm (each
with 250 iterations) for each time-cost
relationship evaluated:

0.0003 0.726 1.899 1.325 9.711 0.0005 0.493 70.035

Distribution type used for work dura-
tions:

uniform uniform uniform uniform uniform uniform uniform triangular

Distribution type used for both semi-
fixed and variable work item costs:

uniform lognormal lognormal lognormal lognormal uniform lognormal triangular

Relationship of random number (0,1)
for each work item cost sampling (RcS
for semi-fixed; RcV for variable) with
random number (0,1) for each work
item duration sampling (Rd):

RcS = 1-Rd
RcV = 1-Rd

RcS = 1-Rd
RcV = 1-Rd

Equation 1 Equation 2 Equation 3 RcS = Rd
RcV = Rd

RcS = Rd
RcV = Rd

RcS, RcV,
and Rd
independent
of each
other

Memetic algorithm iterations typically
required to get within $1million of the
optimum solution of the last iteration of
a run:

40 80 60 150 230 50 80 2

Note: equations 1, 2 and 3, depending on the coefficient values input, may sample just portions of the full cost distributions, not the full range between P0
and P100.
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costs in that population. Metaheuristics Mh2 to Mh8 produce
modifications of those Q solutions from iteration 2 onwards,
but the independent nature of work-item duration and costs,
means that many of the modifications will lead to-higher-
project-cost outcomes. Hence, the quality of sub-population
Q in terms of total project cost for this relationship is less
likely to improve as iterations progress, as it does for the other
defined work-item duration to cost relationships.

Table 5 lists key statistics for the optimum results of total
example project costs along the Pareto frontier with the eight-
distinct work-item time-cost relationships applied. The lower
portion of Table 5 reveals the minimum values associated
with each of the twenty project duration intervals evaluated
to form the Pareto frontier, highlighting the overall optimum
value found. As expected, work-item time-cost relationships
3, 4 and 5 have their overall optimum values some distance
from the ends of their Pareto frontiers, whereas for the other
relationships the optimum values found are located at one end
of their Pareto frontier.

The upper portion of Table 5 reveals that the further from
the overall minimum value found a segment is located on the
Pareto frontier the higher the standard deviation associated
with the optimum value is likely to be for multiple executions
of the algorithm. The explanation for this is that the memetic-
optimization algorithm is focused on locating the overall
optimum and will progressively locate more and more of
its trial solutions in the vicinity of that optimum, but fewer
and fewer trial solutions will test durations further from the
overall optimum. Hence, in the duration intervals along the
Pareto frontier where more trials have searched the standard
deviations of the minimum values found is likely to be lower.
The drop in standard deviations at the opposite end of the
Pareto frontier to the overall optimum in the cases of work-
item cost-time relationships 1 and 2 reflects very low numbers
of trials actually testing those distal duration intervals.

In order to evaluate certain intervals of the Pareto frontier
in more detail, to obtain more accurate local optima within
them, it is necessary to rerun the algorithm placing upper and
lower constraints on total project costs at the boundaries of
the intervals of interests (i.e., narrowing the feasible solution
space to be searched). This would force the algorithm to locate
all of its trials within those boundaries and thereby reduce the
standard deviation on the local minimum values found.

Figs 6 to 9 each provide four images that illustrate the
progress the memetic algorithm makes in locating the overall
optimum and the Pareto frontier found for different work-item
cost-time relationships. The upper-left image illustrates the
results of the random population generated by the first iteration
of the algorithm in terms of total project duration and costs of
each solution with the Pareto frontier highlighted. The upper-
right image shows the solutions produced by the last iteration
of the algorithm compared with the random population of
the first iteration. Note that many of the solutions in the last
iteration are located close to the overall optimum with others
scattered along the Pareto frontier (due to the functioning
of Mh3). The lower-right image shows how the optimum
values along the Pareto frontier have evolved comparing the
results of iterations 1, 50 and 250. The lower-left image

provides a metaheuristic profile, which is analyzed below. Fig.
6 (Negative-linear relationship) reveals that by iteration 50 the
end of the Pareto frontier closest to the overall optimum is well
established after 50 iterations, with minor improvements made
(by Mh3 mainly) to the distal portion of the Pareto frontier in
later iterations.

Figs 7 and 8 (segmental and V-shaped relationships re-
spectively) also show that the algorithm has located the
vicinity of the overall optimum by iteration 50 and achieves
minor improvements mainly in the segments of the Pareto
frontier distal from the overall optimum in later iterations.
Fig. 9 (Uncorrelated/independent relationship) reveals that the
solutions of the final iteration are more widely spread than
for the other relationships, but are concentrated in distinctly
lower project duration and cost regions than the solutions of
the first iteration. This suggest that even with no correlations
between work-item duration and cost the memetic algorithm
can identify meaningful portions of a Pareto frontier. Very few
improvements are made to the distal end of the Pareto frontier
from iteration 1 to 250 in this case, indicating that very few
solutions search this area, which is also supported by the high
standard deviations (Table 5).

6. Performance profiles of metaheuristics in the
optimization process

The metaheuristic profile (MHP), a recently proposed
technique (Wood, 2016a,b), depicted in the lower-left image of
Figs 6 to 9 provides a useful performance record of the various
metaheuristics involved in the memetic algorithm in generating
top-ten ranking solutions in each iteration performed. Meta-
heuristics Mh2, Mh4 and Mh8 provide most top-ten solutions
for the negative-linear relationship (Fig. 6), with the Mh3
and Mh5 making significant supporting contributions. The
negative-sigmoidal relationship (not shown) displays a similar
metaheuristic profile. Note Mh10, by nature of its defined
function, is not going to make any top-ten contributions for any
of the time-cost relationships, but is nonetheless likely to aid
exploration of the wide feasible solution space. This profile is
expressed for just the first 100 iterations as the optimum value
is well established by that point.

Metaheuristics Mh2, Mh6 and Mh8 provide most top-ten
solutions for the segmental relationship (Fig. 7), with Mh3
and Mh5 making supporting contributions. This profile is
expressed for all 250 iterations as the optimum value is found
in later iterations. The U-shaped relationship (not shown)
displays a similar metaheuristic profile. Metaheuristics Mh2,
Mh6 and Mh8 provide most top-ten solutions for the V-shaped
relationship (Fig. 8), with Mh5 making a significant supporting
contribution, but Mh3 much less so. Note Mh4 makes almost
no contribution to the top-ten solutions in these two cases.
Metaheuristics Mh2, Mh3, Mh4, Mh6 and Mh7 provide most
top-ten solutions for the uncorrelated relationship (Fig. 9), with
Mh8 making a minor supporting contribution. It is Mh3, in
this case, that finds the rank #1 solution in iteration 2 that
is not improved upon subsequently. Mh2 and Mh4 make the
dominant contributions for the positive linear and positive
sigmoidal cases (not shown). Metaheuristic profiles for the
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Table 5. Example project’s key statistics of optimum results for total project costs along the Pareto frontier with eight distinct work-item time-cost
relationships applied.

Pareto Frontier
Segment Number
(Lowest total project
cost in segment #1)

Standard deviations of optimal project costs ($millions) for each pareto frontier segment over 20 runs
of memetic algorithm

Note:Segment containing
optimum is highlighted

Negative
Linear

Negative
Sigmoidal

U-shaped Segmental V-shaped Positive
Linear

Positive
Sigmoidal

Uncorrelated

1 9.7615 52.9777 35.6483 64.0856 55.7915 0.0005 0.4932 70.0352

2 20.9699 43.9715 22.5679 49.6759 69.7117 59.3268 112.0840 95.3295

3 73.0913 21.6618 10.7538 41.4333 83.0435 60.4432 110.2851 97.2074

4 56.1628 16.5327 1.9794 41.2179 69.4229 62.0041 91.3056 88.7826

5 64.3747 45.2600 1.8992 35.5127 56.0594 60.7568 71.7023 95.1608

6 37.9422 40.4042 9.1009 33.5740 78.8482 57.9742 58.9393 100.6429

7 35.3045 30.9720 14.1143 31.6530 120.4700 59.4819 63.4978 93.2529

8 46.7178 28.7896 14.8141 19.2538 77.8613 62.6506 78.9463 105.7921

9 52.8532 32.3840 12.3145 5.6486 25.2533 62.6903 96.2652 100.1972

10 43.1210 34.4250 13.7630 2.8546 11.3500 62.2710 109.6193 94.4289

11 52.0113 37.6070 17.7256 1.3254 9.7107 74.5291 117.4855 109.5261

12 48.3396 54.2563 11.9089 4.7947 10.8913 87.3898 110.2037 106.9933

13 50.9452 43.3982 18.8662 15.3180 50.5473 88.6253 112.3807 98.7877

14 31.0406 42.2171 19.4411 24.7970 103.5996 124.2057 115.2383 118.1332

15 19.2776 23.3200 25.3200 26.0955 108.3966 120.7744 134.0874 103.1187

16 17.0040 15.8169 126.3386 20.2388 116.4501 125.3063 143.6374 83.4639

17 7.0455 10.1371 199.5099 21.7003 120.7164 310.9532 145.6331 98.8168

18 7.8608 5.0754 109.3162 33.3232 113.7557 560.2437 208.8739 153.4471

19 5.8824 2.8343 133.3890 45.4922 112.8614 513.6837 460.6024 149.6874

20 0.0003 0.7257 84.1222 55.8010 104.6387 515.5589 523.1668 200.7385
Pareto Frontier
Segment Number
(Lowest total project
cost in segment #1)

Minimum project costs ($millions) found within each pareto frontier segment over 20 runs of memetic
algorithm

1 3008 2900 2957 2681 2706 1376 1376 2110

2 2981 2872 2951 2672 2518 1689 1608 2181

3 2983 2861 2949 2600 2509 1727 1666 2204

4 2901 2856 2949 2556 2486 1793 1794 2266

5 2870 2829 2949 2545 2432 1835 1869 2300

6 2847 2793 2949 2516 2285 1889 1971 2331

7 2819 2790 2950 2484 2176 1937 2005 2368

8 2762 2786 2967 2479 2129 1978 2034 2426

9 2758 2745 2986 2477 2116 2045 2063 2486

10 2699 2746 3005 2475 2104 2113 2105 2528

11 2661 2716 3028 2475 2104 2154 2141 2608

12 2659 2628 3055 2475 2104 2259 2175 2620

13 2650 2618 3080 2476 2123 2350 2282 2682

14 2629 2603 3106 2478 2124 2397 2319 2710

15 2607 2586 3120 2492 2173 2520 2352 2833

16 2600 2583 3146 2535 2264 2559 2379 2908

17 2593 2575 3210 2562 2328 2657 2509 2936

18 2584 2575 3524 2585 2535 2719 2565 3089

19 2575 2574 3518 2602 2645 2876 2893 3146

20 2575 2574 3669 2612 2819 2965 2981 3193
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Example Project Optimization Progress & Pareto Frontiers

Time - Cost Relationship 1: Negative Linear
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Fig. 6. Example project optimization progress including Pareto frontiers for first and last iteration and metaheuristic profiles for the first 100 iterations of the
memetic algorithm applying time - cost relationship 1. Negative Linear.

Example Project Optimization Progress & Pareto Frontiers

Time - Cost Relationship 4: Segmental
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Fig. 7. Example project optimization progress including Pareto frontiers for first and last iteration and metaheuristic profiles for the full 250 iterations of the
memetic algorithm applying time - cost relationship 4. Segmental.
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Example Project Optimization Progress & Pareto Frontiers

Time - Cost Relationship 5: V-shaped
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Fig. 8. Example project optimization progress including Pareto frontiers for first and last iteration and metaheuristic profiles for the full 250 iterations of the
memetic algorithm applying time-cost relationship 5. V-shaped.

Example Project Optimization Progress & Pareto Frontiers

Time - Cost Relationship 8. Uncorrelated (Independent)
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Fig. 9. Example project optimization progress including Pareto frontiers for first and last iteration and metaheuristic profiles for the first 100 iterations of the
memetic algorithm applying time - cost relationship 8. uncorrelated (independent).



30 Wood, D.A. Advances in Geo-Energy Research 2018, 2(1): 14-33

relationships not shown in Figs 6 to 9 are included in Appendix
S.

The metaheuristic profiles indicate that MH2 makes the
most contributions to the top-ranking solutions found across all
cases, but that metaheuristics Mh2 to Mh8 all make significant
contributions to the performance of the memetic algorithm. For
certain relationships Mh3 and Mh4 make important contribu-
tions to finding high-ranking solutions; in other cases, they
make no contribution. This suggests that the algorithm has
scope to be further tuned by expanding or contracting the roles
of Mh3 and Mh4 for certain relationships.

7. Performance profiles of metaheuristics in the
optimization process

The promising performance of the memetic optimization
algorithm in providing useful solutions for STCTP justifies
future work to extend its applications to more complex cases.
One consideration is introducing resource constraints limiting
the times available to perform various activities and/or allow-
ing interruptions (pre-emptions) to certain work items. Another
consideration is to introduce further objectives, such as quality,
to deliver multi-objective optimization. One problem with
quality is that it is difficult to quantify in relation to cost
and time, making it suitable to evaluate with fuzzy sets rather
than with probability distributions. This suggests that there
is scope to develop an integrated fuzzy and stochastic model
for a multi-objective (cost-time-quality) optimization model
(Wood, 2017). Another area for consideration, in lengthy
projects, is the time value of money, requiring that instead of
optimizing project cost the objective function of the STCTP
be net present value (NPV), or another discounted profitability
measure. Although aspects of NPV optimization have been
considered for DTCTP (e.g., Ammar, 2011; Zareei et al.,
2014) the memetic algorithm developed here could be readily
modified to achieve NPV optimization for STCTP.

8. Conclusions
STCTP analysis provides useful insight to oil and gas field

development and facilities project performance, particularly
those projects for which cost-time uncertainties are significant,
extending DTCTP analysis to more realistic scenarios. A wide
range of complex, linear and non-linear work-item (activity)
time-cost relationships can be readily applied to STCTP by
defining formulaic relationships between the random numbers
used to sample work-item duration probability distributions
and the dependent fractional numbers (0, 1) used to sample the
associated cost distributions. Selecting the appropriate cost-
time relationship for a specific project influences the efficiency
and accuracy of the STCP solutions generated. Separating
costs into semi-fixed and variable distributions provides a clear
distinction of their contributions to total facilities and field
development project cost.

A memetic algorithm comprised of ten metaheuristics,
partly focused on local exploitation and partly focused on
exploration of the feasible solution space of a constrained
STCTP, successfully finds minimum project cost solutions for

complex work-item duration-cost relationships. It also devel-
ops meaningful Pareto frontiers of non-dominated optimum-
project cost solutions across a wide range of possible project
durations. Metaheuristic profiling, made possible by coding
each solution to identify the metaheuristic that generated it,
provides performance monitoring of the component meta-
heuristics that facilitates fine tuning of the memetic algorithm.
The algorithm is developed in VBA/Excel and requires no
proprietary project-analysis software to conduct the project-
network and work-item-precedence analysis required to cal-
culate and validate each solution it generates.

The STCTP analysis, involving the dual-optimization
methodology presented, is of particular value for FEED and
pre-FEED facilities/oil and gas field development and im-
proved oil recovery project planning evaluations, when discrete
work-item time-cost relationships are typically not available.
It can also provide meaningful insight during project imple-
mentation, in cases where significant uncertainty remains in
work-item time-cost outcomes.

9. Appendix S
The attached Appendix S includes a flow diagram for the

algorithm applied, the equations involved and their explana-
tions for deriving adjustment factors from fat-tailed distribu-
tions adjusted by chaotic sequences. It also includes graphics
in the formats displayed as Figs 2 to 5 and Figs 6 to 9
for the work-item time-cost relationships discussed here, but
not included in the main-manuscript figures. This material is
available free of charge via the Internet at http://www.astp-
agr.com.
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