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Abstract:
Due to the rapid development of Micro-Electro-Mechanical System (MEMS), more and
more attention has been paid to the fluid properties of porous media, which is significant
for petroleum engineering. However, most of surfaces of pores and capillaries in porous
media are rough. On the approximation that porous medium consists of a bundle of
tortuous and rough capillaries, a Buckley-Leverett conceptual model with considering
flow resistance is developed based on the fractal geometry theory, which is beneficial to
predict water saturation profile in porous medium. The proposed Buckley-Leverett solution
is a function of fractal structural parameters (such as pore fractal dimension, tortuosity
fractal dimension, maximum and minimum diameters of capillaries), fluid properties (such
as viscosity, contact angle and interfacial tension) and pore structure parameter (relative
roughness) in fractal porous medium. Besides, the relationship between water saturation
and distance is presented according to Buckley-Leverett solution. The impaction of flow
resistance on water saturation profile is discussed.

1. Introduction
In petroleum industry, water displacement has been used

as an effective enhanced oil recovery (EOR) process for a
long time. Nonlinearity of two-phase flow makes solving
multiphase flow equations very complex until Buckley and
Leverett (Buckley, 1942) established the fundamental principle
for displacement of two-phase immiscible fluids in homo-
geneous system without considering capillary pressure based
on fractional flow. Then more parameters including capillary
effects (Yortsos et al., 1983; Spanos et al., 1986; Chen, 1988;
Chang et al., 1992) were added in Buckley-Leverett solution
in petroleum reservoirs engineering (Welge, 1952; Snyder et
al., 1967; Larsen, et al., 1990). And Buckley-Leverett model
has been applied in heterogeneous porous media (Langtangen
et al., 1992; Wu et al., 1993; Wu et al., 2010).

It has been shown that the fractal geometry theory (Man-
delbrot et al., 1984) can be used as a tool to characterize rough-
ness of surfaces (Majumdar et al., 1990; Warren et al., 1996)
and sandstone pores (Katz et al., 1985; Krohn et al., 1986).
Thus, reservoirs heterogeneity can be described by fractal

geometry very well. The pore spaces of sandstones are fractal
geometries by using the scanning electron microscopy and
optical data (Katz et al., 1985). The work of some researchers
(Chang and Yortsos, 1990; Acuna and Yortsos, 1995; Xu,
2015; Xu et al., 2017) contains the basic theoretical formalism
as it pertains to porous media and oil reservoirs. Tree-shaped
fractal structures (Lorente et al., 2006; Xu and Sasmito, 2016)
and spontaneous imbibition with variably shaped apertures
(Cai et al., 2014) help to model fluid flowing in multi-scale
configurations porous medium.

From above brief introduction, the importance of predicting
water saturation profile and the wide applications of the fractal
geometry theory in heterogeneous reservoir with various seep-
age problem including flow resistance can be clearly seen.
So, it may be possible to develop an analytical model for
water saturation profile with considering flow resistance in
fractal porous media. This paper presents a Buckley-Leverett
analytical solution of water and oil two-phase immiscible
fluids with flow resistance through porous media based on
fractal geometry theory in section 2 and section 3. In section 4,
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a procedure is provided for calculation water saturation profile
for immiscible displacement in the fractal porous media with
flow resistance. Moreover, a curve is drawn to show the impact
of flow resistance on water saturation profile.

2. Mathematical model
It has been shown that rough unit on rough surface is a

fractal system with statistic self-similarity (Li et al., 2001;
Poljacek et al., 2008). In this literature, we assume that rough
unit on the rough surface is cone as shown in Fig. 1.

According Fig. 1, volume of single cone can be calculated
as follows

Vi =
πd2

ihi
12

=
πd3

i

12
β (1)

where β is the ratio of height to diameter of a cone.
In this article, cones are assumed as to be not overlapping

and cones distribution follows statistic self-similarity fractal
theory. So the distribution of cones basal diameter agrees with
fractal scale law which can be expressed as follows (Yu et al.,
2001).

N(l ≥ d) =

(
dmax

d

)Df
(2)

where dmax is the maximum diameter of cone, and Df is
pore fractal dimension. Generally, 0 < Df < 2 denotes
two dimensional space, and 0 < Df < 3 refers to three
dimensional space.

Eq. (2) can be approximately considered to be a continuous
and differentiable equation because there are numerous pores
in a porous medium. Then, taking a derivative with respect
to diameter in Eq. (2) yields the number of pores within the
infinitesimal rang from d to d + dd.

−dN = Dfdmax
Df d−(Df+1)dd (3)

Combining Eqs. (1) and (3), the total volume for all cones
in a fractal unit can be calculated by integrating from minimum
to maximum diameter:

Vt = −
dmax∫
dmin

VidN =
πβ

12

Df

3 −Df
d3

max

[
1 −

(
dmin

dmax

)3−Df
]
(4)

The total bottom area for all cones in a fractal unit can be
expressed as follows:

St = −
dmax∫
dmin

π

4
d2
i dN =

π

4

Df

2 −Df
d2

max

[
1 −

(
dmin

dmax

)2−Df
]

(5)
So the total area for a fractal unit is as follows:

S0 =
St
φ

=
π

4φ

Df

2 −Df
d2

max

[
1 −

(
dmin

dmax

)2−Df
]

(6)

Fig. 1. Schematic diagram for tapered rough unit.

Effective height of roughness can be expressed as follows:

heff =
Vt
S0

=
βφdmax

3

2 −Df

3 −Df

1 − (dmin/dmax)
3−Df

1 − (dmin/dmax)
2−Df (7)

Here we assume that β = 1, so Eq. (7) can be rewritten
as:

heff =
φdmax

3

2 −Df

3 −Df

1 − (dmin/dmax)
3−Df

1 − (dmin/dmax)
2−Df (8)

This article emphasically apply Tans physical model to an-
alyze water saturation profile which can enhance oil recovery.
Whats more, roughness on the surface of porous media is
also a big issue for two-phase flow. Based on Tans two-phase
flow model in a fractal porous medium (Tan et al., 2014),
we propose a hypothesis that porous media is comprised of a
bundle of tortuous capillaries with rough surfaces. According
to this assumption, a single fractal capillary with transient two-
phase flow is proposed as shown in Fig. 2. The fractal capillary
is only saturated with oil (red) initially, but later water (blue)
intrudes into the capillary and displaces oil with a constant
pressure difference, ∆p, between points a and b. Therefore,
the fractal capillary is separated by a two-phase flow interface
at point c. The fractal capillary diameter, the straight distance
of the capillary, and the straight distance between points a and
c are λ, L, and X respectively.

vw (λ) =
λ2 (pa − pw)

32µwXT
(9)

where pa is pressure for inlet side, pw is water pressure at
interface, µw is water viscosity, XT is the actual length of the
capillary between points a and b.

Effective diameter of capillary would decrease if the capil-
lary surface is rough (Wu et al., 2008; Yang, 2015), so we need
to modify the effective diameter which is equal to λ(1 − ε).

vw (λ) =
(λ− 2heff )

2
(pa − pw)

32µwXT
=
λ2(1 − ε)

2
(pa − pw)

32µwXT
(10)
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Fig. 2. Transient two-phase flow through a single fractal capillary with rough surfaces.

ε =
2heff
λ

=
2φs(hmax)λmin

3λmin

2 −Df

3 −Df

1 − (dmin/dmax)
3−Df

1 − (dmin/dmax)
2−Df

(11)
where ε is relative roughness with the definition of the ratio
of roughnesss effective height to the capillary diameter, which
can be understood as rough surfaces with some height can
reject fluid to flow. Similarly, we can get the velocity of oil
as follows:

vo (λ) =
λ2(1 − ε)

2
(po − pb)

32µo (LT −XT )
(12)

where po is oil pressure at interface, pb is pressure for outlet
side, µo is oil viscosity and LT is the actual length of the
capillary.

Capillary pressure can be expressed as:

pc =
4σ cos θ

λ
(13)

whereb σ is surface tension and θ is contact angle.
The pressure difference along a single capillary is ex-

pressed as follows:

∆p = pa − pb (14)

Due to flow continuity, water velocity and oil velocity are
the same.

vw = vo (15)

Substituting Eqs. (10)-(14) into Eq. (15), we can get the
analytical expression for two-phase flow velocity in a single
capillary:

v =
λ(1 − ε)

2
(λ∆p+ 4σ cos θ)

32 [(µw − µo)XT + µoLT ]
(16)

The fractal scaling law for tortuous capillaries in porous
medium is given by Yu et al., 2002.

LT = LDT λ1−DT (17)

and

XT = XDT λ1−DT (18)

where DT is the tortuosity fractal dimension.
Substituting Eqs. (17) and (18) into Eq. (16), the expression

for two-phase flow velocity can be obtained as:

v =

(
λ1+DT ∆p+ 4λDT σ cos θ

)
(1 − ε)

2

32 [(µw − µo)XDT + µoLDT ]
(19)

Also, effective seepage area will be equal to πλ2(1−ε)2/4
and the transient two-phase flow rate, qt, in a single rough
capillary can be obtained as follows:

qt =
λ3+DT π∆p+ 4λ2+DT πσ cos θ

128 [(µw − µo)XDT + µoLDT ]
(1 − ε)

4 (20)

In Eq. (20), when σ = 0 and X = L, the two-phase flow
rate can be regarded as single-phase flow rate, qs, which is
expressed as:

qs =
λ3+DT π∆p

128µwLDT
(1 − ε)

4 (21)

It is known that:

v =
dXT

dt
(22)

Combining Eq. (19) and Eq. (22), we get the expression
for the two-phase flow velocity in a single capillary.

dXT

dt
=

λ1+DT ∆p+ 4λDT σ cos θ

32 [(µw − µo)XDT + µoLDT ]
(1 − ε)

2 (23)

From Eq. (18):

dXT = d(XDT λ1−DT ) = DTX
DT−1λ1−DT dX (24)

Substituting Eq. (24) into Eq. (23), we can yield:

32DTX
DT−1λ1−DT

[
(µw − µo)X

DT + µoL
DT
]

dX

= (λ1+DT ∆p+ 4λDT σ cos θ)(1 − ε)
2
dt

(25)

Taking an integration of Eq. (25) with initial condition
t = 0 and X = 0, and after rearranging, we get the
relationship between the two-phase interface position, X , and
corresponding displace time, t.
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Fig. 3. Transient two-phase flow in a porous medium with tortuous and rough capillaries.

X2DT +
2µoL

DT

µw − µo
XDT −

(
λ2DT ∆P + 4λ2DT−1

σ cos θ
)

(1 − ε)
2
t

16 (µw − µo)
= 0 (26)

From Eq. (26), we can see that when X = 0 and t = 0,
the capillary is only saturated with oil. 0 < X < L represents
the flow regime in capillary is transient two-phase flow. When
X = L, oil is completely displaced by water. Substituting
X = L into Eq. (26), the expression for displace completion
time, td, can be written as:

td =
16(µw + µo)L

2DT

(λ2DT ∆p+ 4λ2DT−1σ cos θ) (1 − ε)
2 (27)

Eq. (27) indicates that the completely displacing time is
greatly affected by capillary diameter and relative roughness.
Assuming that relative roughness value in every capillary is
the same, a bigger capillary diameter corresponds to a smaller
displace completion time, i.e. it will take less time for water
to displace oil completely in a capillary with bigger diameter.

Here we define the critical capillary diameter, λcr, to be the
capillary diameter (Xu et al., 2013). Where oil is just displaced
by water completely at a given time, t. Substituting td = t into
Eq. (27), we obtain the following expression for the critical
diameter as:

λcr
2DT +

4σ cos θ

∆p
λcr

2DT−1− 16 (µw + µo)L
2DT

∆pt(1 − ε)
2 = 0 (28)

From Eq. (28), we can see that the critical capillary
diameter shows a decrease with the increase of displacement
time. If λ ≥ λcr, oil is displaced by water completely and
water flows out point b of the capillary. Otherwise, flow

regime remains two-phase flow and oil flows out point b of
the capillary.

Besides, we can build a model for transient two-phase
flow in a fractal porous medium as shown in Fig. 3, which is
based on the approximation that porous medium consist of a
bundle of tortuous fractal capillaries with variable diameters in
porous medium. The distribution of fractal capillaries follows
fractal scale law which can be expressed as Eq. (29). Similarly,
the number of capillaries in the fractal porous media can be
calculated by taking integration within the infinitesimal rang
from λ to λ + dλ as Eq. (30).

N(l ≥ λ) =

(
λmax

λ

)Df
(29)

−dN = Dfdmax
Dfλ−(Df+1)dλ (30)

As is shown in Fig. 3, water flows out of lateral section
B in fractal capillaries whose diameters are larger than the
critical capillary diameter and it is single-phase flow. On the
contrary, if capillary diameters are smaller than the critical
capillary diameter, oil flows out of lateral section B (or water
hasnt arrived at lateral section B) and it is transient two-phase
flow.

By summing up the flow rates through relevant flow regime
capillaries at lateral section B, we can get the total flow rate of
a certain phase, Qw or Qo. The total flow rate of water, Qw,
at lateral section B can be obtained by integrating Eq. (21)
from the critical capillary diameter to maximum diameter.

Qw = −
∫ λmax

λcr

qsdN =
πDf∆pλmax

Df (1 − ε)
4

128µwLDT (3 +DT −Df )

(
λmax

3+DT−Df − λcr
3+DT−Df

)
(31)
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Oil flows out of lateral section B in these capillaries whose
diameters are smaller than the critical capillary diameter and
flow pattern is still two-phase flow. The total flow rate of oil,
Qo, at lateral section B can be obtained by integrating Eq. (20)
from minimum diameter to the critical capillary diameter.

Qo = −
∫ λcr

λmin

qtdN

=
πDf∆pλmax

Df (1 − ε)4

128

∫ λcr

λmin

λ2+DT−Df

(µw − µo)XDT + µoLDT
dλ

+
πDfλmax

Df σ cos θ(1 − ε)4

32

∫ λcr

λmin

λ1+DT−Df

(µw − µo)XDT + µoLDT
dλ

(32)

Based on the fractal theory, the total pore volume in the
fractal porous medium can be expressed as:

Vp = −
∫ λmax

λmin

πλ2

4
(1 − ε)2LTdN

=
πDfL

DT λmax
Df (1 − ε)2

4 (3 −DT −Df )

(
λmin

3−DT−Df − λmax
3−DT−Df

)
(33)

As is seen from Fig. 3, the pore volume saturated with
water consists two portions: the whole capillary volume whose
flow regime is single-phase flow and the blue part of capillary
whose flow regime is transient two-phase flow.

Vw = −
∫ λcr
λmin

πλ2

4
(1 − ε)2XTdN −

∫ λmax

λcr

πλ2

4
(1 − ε)2LTdN

=
πDfλmax

Df

4
(1 − ε)2

∫ λcr
λmin

XDT λ2−DT−Df dλ

+
πDfL

DT λmax
Df

4(3−DT−Df )
(1 − ε)2

(
λcr

3−DT−Df − λmax
3−DT−Df

)
(34)

The pore volume saturated with oil is only the red part of
capillary whose flow regime is transient two-phase flow.

Vo = −
∫ λcr
λmin

πλ2

4
(1 − ε)2(LT −XT )dN

=
πDfL

DT λmax
Df

4(3−DT−Df )
(1 − ε)2

(
λcr

3−DT−Df − λmin
3−DT−Df

)
−πDfλmax

Df

4
(1 − ε)2

∫ λcr
λmin

XDT λ2−DT−Df dλ
(35)

Combining Eqs. (33)-(35), saturation of water, Sw, and
saturation of oil, So, can be expressed respectively:

Sw =
Vw
Vp

=
(3 −DT −Df )

∫ λcr
λmin

XDT λ2−DT−Dfdλ+ LDT
(
λmax

3−DT−Df − λcr
3−DT−Df

)
LDT

(
λmax

3−DT−Df − λmin
3−DT−Df

) (36)

So =
Vo
Vp

=
LDT

(
λcr

3−DT−Df − λmin
3−DT−Df

)
− (3 −DT −Df )

∫ λcr
λmin

XDT λ2−DT−Dfdλ

LDT
(
λmax

3−DT−Df − λmin
3−DT−Df

) (37)

In Eqs. (36) and (37), when X = L and λcr = λmax, oil is
completely displaced by water, so Sw = 1 and So = 0. While
X = 0 and λcr = λmin, the fractal porous medium is only
saturated with oil, thus Sw = 0 and So = 1.

Fractional flow of water, fw, can be defined as the propor-
tion of water flow rate in the total flow rate. So, fractional
flow of water can be expressed as:

fw =
Qw

Qw +Qo
(38)

Fractional flow of water, fw, can be defined as the propor-
tion of water flow rate in the total flow rate. Substituting Eqs.
(31) and (32) into Eq. (38), fractional flow of water can be
obtained:

From Eqs. (31) and (32), we can see that both water and
oil flow rate is proportional to (1 − ε)4, so fractional flow of
water has no relationship with relative roughness, ε.

3. Analytical solution for fractal porous media
with flow resistance

The extended Buckley-Leverett solution in this paper is
derived based on the following assuming conditions: 1) both
porous media and fluids are incompressible. 2) gravity seg-
regation effect is ignored which insures stable displacement
exists near the front.

The equation of water saturation profile for a one-
dimension flow and displacement with a constant cross-
sectional area, A, is expressed as follows:

fw(Sw) =

∆p

µwL
DT (3+DT−Df)

(λmax
3+DT−Df−λcr3+DT−Df )

∆p

µwL
DT (3+DT−Df)

(λmax
3+DT−Df−λcr3+DT−Df )+∆p

λcr∫
λmin

λ
2+DT−Df

(µw−µo)XDT +µoL
DT

dλ+4σ cos θ
λcr∫
λmin

λ
1+DT−Df

(µw−µo)XDT +µoL
DT

dλ

(39)
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dx

dt
=
q (t)

φA

dfw
dSw

(40)

Taking an integration of Eq. (40) and arranging:

x− x0 =
1

φA

dfw
dSw

t∫
0

q (t) dt (41)

where x0 is the beginning location of transient two-phase
flow, and x the location of equal saturation plane, A is cross-
sectional area.

Based on the fractal theory, cross-sectional area of the
fractal porous medium can be expressed with modifying
diameter:

A = −
λmax∫
λmin

πλ2(1 − ε)
2

4
dN

=
πDf (1 − ε)

2

4 (2 −Df )
λmax

2

[
1 −

(
λmin

λmax

)2−Df
] (42)

Porosity can be expressed as follows (Yu et al., 2001):

φ =

(
λmin

λmax

)2−Df
(43)

Substituting Eqs. (42) and (43) into Eq. (41), we get the
expression for location of waterflood front, xf :

dfw
dSw

4 (2 −Df )
t∫

0

q (t) dt

πDf (1 − ε)
2
λmax

2
(
λmin

λmax

)2−Df
[
1 −

(
λmin

λmax

)2−Df
]

= xf − x0

(44)

4. Results and discussions
Fig. 4 shows a typical plot of fractional flow based on the

calculation of Eq. (39). Fig. 4 shows an increase in fractional
flow of water, fw(Sw), with the increase of the saturation of
water, Sw.

The determination of front water saturation is shown graph-
ically in Fig. 4. By Eq. (44), water saturation vs. distance is
plotted as follows.

Clearly, the plot shows that there are two values of water
saturation at each x-position caused by multivalued solution of
dfw/dSw vs. Sw, which is an impossible physical situation. As
shown in Fig. 5, Buckley-Leverett solution is used to modify
the plot by getting the value of water saturation of front, Swf .
Fig. 6 reflects how to get the final water saturation profile.
Furthermore, comparison water saturation profiles between the
present model and standard Buckley-Leverett equation is made
in Fig. 6. The result shows that our models water saturation is
smaller at the same distance as flow resistance is considered
in the new model.

swfswr

Fig. 4. Fractional flow curve.

A1

A2Swf

Swr

Fig. 5. Balancing of areas in water saturation profile.

swr

swf

sor

Fig. 6. Final water saturation profile and comparison between present and
traditional BL solution.



Lu, T., et al. Advances in Geo-Energy Research 2018, 2(1): 63-71. 69

Fig. 7. Final water saturation profile affected by ε (µ1 = 1 × 10−3 Pa ·
s, µ2 = 0.2 × 10−3 Pa · s, σ = 0.06 N/m, θ = 0.5, L =
1 × 10−2 m, ∆p = 5 × 105 Pa, Df = 1.60, DT = 1.14, λmax =
1.5 × 10−4 m, λmin = 0.2 × 10−7 m).

Fig. 8. Final water saturation profile affected by Df (µ1 = 1 × 10−3 Pa ·
s, µ2 = 0.2 × 10−3 Pa · s, σ = 0.06 N/m, θ = 0.5, L =
1 × 10−2 m, ∆p = 5 × 105 Pa, ε = 0.1, DT = 1.14, λmax =
1.5 × 10−4 m, λmin = 0.2 × 10−7 m).

From Eq. (38), water saturation profile is affected by fractal
structural parameters (such as pore fractal dimension, tortu-
osity fractal dimension, maximum and minimum diameters
of capillaries) and fluid properties (such as viscosity, contact
angle and interfacial tension) in fractal porous medium. We
emphatically analysis the influence of relative roughness, pore
fractal dimension, tortuosity fractal dimension, maximum and
minimum diameters of capillaries on water saturation profile.

Combining Eqs. (36) and (39), relative roughness has no
effect on the value of Sw and fw(Sw), so the plots in Fig.
7 have the same front water saturation (Swf = 0.78 and
irreducible water saturation (Swr = 0.35). However, the water
saturation curves become lower and two-phase flow distance
is shorter with the increase of relative roughness. Thus, water
displaces oil more easily when relative roughness is smaller. Its
mainly because water saturation profile depends on the water

rate of injection and roughness is resistance for liquid to flow.
Fig. 8 shows how water saturation profile is affected by

pore fractal dimensions, Df . Df represents the sectional distri-
bution of pores in porous medium. As Df increases, reservoir
becomes more heterogeneous and the distributions of water
and oil in fractal porous medium are more complex. It can be
seen from Fig. 8 that the larger value of Df is, the smaller
values of front water saturation (Swf = 0.83 (Df = 1.55);
0.76 (Df = 1.60); 0.70 (Df = 1.65)) and irreducible water
saturation (Swr = 0.40 (Df = 1.55); 0.35 (Df = 1.60); 0.30
(Df = 1.65)) are. A bigger value of front water saturation
implies that water displaces oil more easily. And its also easy
to understand that the value of water saturation is bigger at the
same position implies that water can displace oil more easily.
Overall, its harder for water to displace oil with a bigger value
of Df .

5. Conclusions
An extended Buckley-Leverett solution with considering

roughness in fractal porous medium is established in this work.
We emphatically exhibit the process to predict final water
saturation profile by Buckley-Leveret solution, followed by
analyzing flow resistances impact on water saturation profile.
Finally, some conclusions can be summarized as follows:

(1) The proposed model connects the water saturation
profile of two-phase flow with the fractal structural param-
eters (e.g. relative roughness, tortuosity fractal dimension,
pore fractal dimension, and maximum and minimum capillary
diameters) and fluid properties (e.g. interfacial tension, contact
angle, viscosities and so on).

(2) Though relative roughness has no influence on the value
of Sw and fw(Sw), it acts as resistance for displacement. The
value of the flow distance at the same water saturation becomes
smaller with the increase of relative roughness, which means
its harder for water to displace oil.

(3) With the decrease of Df , the homogeneity of porous
media is better and the value of water saturation is bigger at
the same two-phase position. It will take a shorter time for
water to completely displace oil.

Nomenclature
Vi = volume of single cone, m3

Vt = total volume for all cones in a fractal unit, m3

St = total bottom area for all cones in a fractal unit, m2

So = total area for a fractal unit, m2

di = diameter of single cone, m
dmax = maximum diameter of single cone, m
dmin = minimum diameter of single cone, m
hi = height of single cone, m
heff = effective height of roughness, m
β = the ratio of height to diameter of a cone, decimal
ε = relative roughness, decimal
XT = actual length of the capillary, m
LT = actual length of the capillary, m
∆p = pressure difference, Pa
pc = capillary pressure, Pa
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pa = pressure for inlet side, Pa
pb = pressure for outlet side, Pa
pw = water pressure at interface, Pa
po = oil pressure at interface, Pa
µw = water viscosity, Pa · s
µo = oil viscosity, Pa · s
σ = surface tension, N/m
θ = contact angle, decimal
v = velocity of two-phase flow, m/s
vw = water velocity, m/s
vo = oil velocity, m/s
qt = two-phase flow rate, m3/s
qs = single-phase flow rate, m3/s
td = completely displacing time, s
Df = pore fractal dimension, decimal
DT = fractal dimension, decimal
λ = diameter of capillary, m
λcr = critical capillary diameter, m
λmax = maximum diameter of capillary, m
λmin = minimum diameter of capillary, m
Q = total flow rate, m3/s
Qw = total flow rate of water, m3/s
Qo = total flow rate of oil, m3/s
Sw = water saturation, decimal
So = oil saturation, decimal
Swr = irreducible saturation of water, decimal
VP = total pore volume, m3

Vw = pore volume of the fractal porous medium saturated
with water, m3

Vo = pore volume of the fractal porous medium saturated
with oil, m3

fw = fractional flow of water, decimal
A = cross-sectional area, m2

x = location of equivalent saturation plane, m
x0 = beginning location of transient two-phase flow, m
xf = location of waterflood front, m
φ = porosity of porous media, decimal
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