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ABSTRACT 

GEOMETRY IN ACTION 
A curriculum unit utilizing dynamic geometry software to enhance students' 

comprehension 

May 2001 

Cynthia A. Mignini, B.A., Hofstra University 
M.A. , University of Massachusetts Boston 

Directed by Patricia S. Davidson, Ed.D. 

The paper identifies two critical obstacles to student success in a traditional 

geometry classroom and examines the role dynamic geometry software can play in 

overcoming these obstacles. The two concerns are that students complete geometry 

classes with minimal understanding due to low teacher and parental expectations and that 

students lack visualization skills. Student investigations in a dynamic geometry 

environment address both of these issues in that they raise expectations and provide a 

visualization aide. Additionally, dynamic geometry software produces precise, 

manipulable sketches that represent a continuum of related geometric figures on which 

students can base conjectures. 

The focus of the project is a curriculum unit that was implemented in a high 

school geometry elective entitled Geometry in Action. A total of seven students were 

enrolled in the semester long elective that focused on student investigations in a dynamic 

geometry environment. The curriculum unit investigated the medians, altitudes, 

perpendicular bisectors, and angle bisectors of a triangle and the points of concurrency. 

The unit also emphasized critical thinking skills to maximize student comprehension. 
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The integrated thinking skills included predicting results of manipulations, identifying 

characteristics, making decisions, forming and justifying conjectures, and seeing 

relationships. 

The discussion of each of the nine lessons in the unit contains the conceptual 

emphasis of the lesson, the key thinking processes incorporated in the lesson, a detailed 

description of the lesson, and a wrap-up activity. Actual student work and feedback are 

included within the paper. Also included are the author' s reflections on the execution of 

the lessons and suggestions for improvement and adaptations in future implementations. 
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"So, what do you teach?" 

''High school geometry." 

CHAPTER ONE 

INTRODUCTION 

"Oh, I hated geometry when I was in school. I never could understand it." 

Like many geometry teachers, I have experienced this scenario all too often 

throughout my teaching career. The person with whom I am conversing typically 

delivers the last statement with a look of sheer terror. Unfortunately, many students, both 

past and present, merely "survive" geometry in contrast to actually understanding the 

concepts. 

An educator's role is to strive for comprehension on the part of his/her students. 

If a particular approach or activity does not result in a student's understanding of a 

particular concept, an effective teacher will alter the instruction. In my experience, the 

traditional approaches utilized in the geometry classroom are frequently unsuccessful in 

promoting student understanding of geometric concepts. For this reason, I feel there is a 

strong need to investigate alternative approaches to geometry education. Such an 

alternative, the development of a curriculum unit on the points of concurrency, is the 

focus of this synthesis project. The curriculum unit was designed to be incorporated in a 

geometry elective, Geometry in Action, offered at a local suburban high school. 
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Obstacles to Students' Understanding of Geometry 

To ensure an improvement in instruction as opposed to a change for the sake of 

change, it is necessary to understand why the current approach is failing. There are two 

main reasons for the previously described attitude towards geometry and the lack of 

geometric learning. 

The first obstacle involves expectations of students. Geometry students are often 

not required, or even encouraged, to fully comprehend the material being presented. It is 

more time-efficient to suffice with a class' shallow understanding and rote memorization 

of teacher-presented concepts. "Instead of understanding what they are doing, students 

parrot what they have seen and heard" (Battista 1999, 427). Students are also told by 

parents and friends, "I never understood geometry. Just get through the course and you 

won't have to deal with it anymore." 

The second hindrance involves student limitations. It is common for students to 

lack the visualization skills necessary to grasp the abstract topics central to the field of 

geometry. Without the ability to visualize an abstract concept, understanding of the 

concept is not possible. 

How, then, do we improve the state of geometry education? If the first social 

constraint were removed and the second mental obstacle were circumvented, students 

would have a greater chance for success in geometry. Student-based investigations 

involving the use of computers are the tools with which we can achieve this goal. 

Student-based investigations remove the socially imposed barrier, making students 

responsible for their own understanding of the concepts. Computers equipped with 
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dynamic geometry software can provide the visualization skills necessary to transcend 

the levels of geometric thought. 

Background Information 

Newly implemented this year, the high school at which I teach is offering an 

alternative geometry elective. As the developer of the course, I have focused the course 

around computer-based constructions utilizing the Geometer's Sketchpad (Jackiw, 1995) 

and student explorations that require students to form conjectures and investigate their 

hypotheses. 

The goal of the course is to promote comprehension of geometric concepts 

through the development of thinking skills and habits of mind that are important in the 

study of geometry: accurate conjecture forming, a questioning attitude, and the ability to 

provide support for ideas. To fulfill these goals, students are encouraged to develop their 

own individual understanding of geometric concepts through the manipulation and 

investigation of computer constructions. By observing the manner in which the computer 

constructions behave when manipulated, students form conjectures regarding the 

properties and characteristics of the computer constructions, which are generalized to 

apply to all related geometric shapes. Students are repeatedly asked to defend their 

conjectures and to explain why. For example, it is not sufficient to state that the centroid 

of a triangular region is the center of gravity. Students must also discuss the validity of 

the statement. Ultimately, students should provide justification for their conclusions. 
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The Role of Computers in Teaching Understanding 

The rationale behind the intensive use of computers in Geometry in Action is 

discussed in chapter two. The subject is approached from two perspectives: pedagogical 

research and first hand experience. 

This chapter references the works of Judah L. Schwartz (1992, 1997[?]), co­

creator of the Geometric Supposer, Paul Goldenberg, Al Cuoco, and Orit Hazzan 

(Goldenberg and Cuoco 1996, Hazzan and Goldenberg 1996), researchers and curriculum 

developers for Education Development Center, and Colette Laborde (1993), a well­

published mathematics professor. Seven themes of dynamic geometry software which 

are found woven through the articles authored by these researchers are discussed within 

the chapter: precision, manipulability, explicitness, visualization, an improved learning 

process, directed attention, and motivation. 

Although most of the research in the field of dynamic geometry software is 

favorable, two drawbacks to the use of computers can be found in the writing of Laborde 

(1993) and Enrique Galindo (1997). Laborde focuses on the difficulty students have in 

learning how to use the programs. Recent versions of dynamic geometry software, 

however, have become more user-friendly and minimize the complexity of interacting 

with the computer. Galindo is uncomfortable with students' eagerness to accept 

computer-generated sketches and their manipulations as proof This shortcoming can be 

overcome by a classroom and a teacher that use the sketches as a springboard for further 

discussion instead of an end product. 

The chapter also cites the experience of Judah Schwartz and mathematics 

professor Claudi Giamati (1995). Each of these individuals describes how dynamic 
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of traditional programs. Geometry in Action is one possible alternative gateway. 

Computer-based student investigations are the keys that unlock the gate. 
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CHAPTER TWO 

THE BENEFITS OF COMPUTER USAGE IN THE GEOMETRY CLASSROOM 

Computer software designed for the geometry classroom has been improving and 

gathering support at a tremendous rate over the past ten to fifteen years. The advent of 

dynamic geometry software in the eighties revolutionized the manner in which students 

could learn geometric concepts. "Learning geometry could . . . become an open-ended 

exploration of relationships in geometric figures rather than a rerun of proofs of 

theorems" (Twomey n.d. ). Computers now provide the opportunity for students to 

produce accurate, manipulable geometric constructions. Like a snowball in rapid 

descent, dynamic geometry software has continued to expand with each passing year, in 

terms of both volume (the multitude of software programs available) and covered ground 

(the growing number of wired classrooms that offer computer use). 

This chapter provides support from research and classroom experience for the 

inclusion of computer activities in a geometry classroom. Judah L. Schwartz (1992, 

1997[?]), co-creator of the Geometric Supposer, provides insights into the strengths of 

computer programs in the geometry classroom. Paul Goldenberg, Al Cuoco, and Orit 

Hazzan (Goldenberg and Cuoco 1996, Hazzan and Goldenberg 1996), researchers and 

curriculum developers for Education Development Center, distinguish between Euclidean 

geometry and Dynamic geometry, clarifying the differences and strengths of each version 

of geometry. This chapter includes a look at the work of Colette Laborde (1993), a 

French mathematics professor and researcher in the field of dynamic geometry software, 

who discusses the visualization obstacle in geometry and the ability of computers to 
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surmount that obstacle. Support is also found in the writings of Douglas Clements and 

Michael T. Battista ( 1994, 1995), researchers and advocates in the field of mathematics 

education reform who itemize the numerous benefits and educational implications of 

dynamic geometry software. Finally, experiential support is found in the classroom of 

Claudia Giamati (1995), a mathematics professor at Northern Arizona University. 

What is Dynamic Geometry Software? 

In 1983, Judah Schwartz and Michal Yerushalmy started a revolution in geometry 

education. Geometry's version of the shot heard around the "classroom" was a computer 

program they created called the Geometric Supposer that was to become the precursor to 

today's dynamic geometry programs. In reflecting on their work, Schwartz (1992), 

whose thinking can be extended to apply to all subsequent dynamic geometry programs, 

describes the program as follows: 

The Geometric Supposer is what I call an intellectual mirror 
environment. It is a series of computer programs that deal with 
geometry and that allow - indeed invite - the user to explore and 
experiment. Just as the child's blocks do not by themselves pose 
problems, neither does the Supposer. Just as the blocks, in 
conjunction with interesting challenges, provide an opportunity for 
invention, exploration, and problem posing and solving, so does the 
Supposer. 

Dynamic geometry software is comprised of computer programs that allow the 

user to construct and manipulate geometric drawings. As implied by the adjective 

"dynamic" the software does not produce static diagrams but rather generates diagrams 

that can be altered to represent a continuum of related examples. With the aid of a 

mouse, the software user can alter the size and the shape of a sketch by "dragging" a 

point, a line, or a set of points. The manipulation of the computer sketch allows for some 
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explicitly defined properties of the diagram to remain unchanged. For example, the user 

may define point M to be the midpoint of segment AB . Although the length and location 

of segment AB may be altered, point M will continue to be located at the midpoint of the 

segment. In this manner, dynamic geometry software allows the user to form conjectures 

and conclusions by observing what is or is not altered by the manipulation of the sketch. 

It is important to note that although dynamic geometry software appears to depict 

a continuum of Euclidean geometry, it is in actuality a closely related branch of geometry 

(Goldenberg and Cuoco 1996). The dynamic characteristic of the computer program 

introduces objects that do not exist in Euclidean geometry and requires additional 

postulates and definitions. 

There's plenty of evidence that Euclid and others have thought in terms of 
dynamic images . . . but things like line segments, or triangles, though they 
could be various (lengths, shapes), weren't really treated as being 
variable, and therefore the consequences of varying them- the effect that 
would have on other features of a figure - were not considered. 
(Goldenberg, e-mail message to author, Dec. 27, 2000) 

Goldenberg illustrates this distinction with two examples - a monster-producing 

quadrilateral (Goldenberg and Cuoco, 1996) and the center of a circle through three 

points (Goldenberg, e-mail message to author, Dec. 27, 2000). If an arbitrary 

quadrilateral ABCD is constructed and one or more of the vertices dragged, the 

quadrilateral produces some "monsters" (Goldenberg and Cuoco 1996), cases which 

occur in the dynamic geometry environment that do not adhere to Euclidean definitions. 

These monsters include the case where three of the points are collinear, producing a 

triangle, the case where all points are collinear, producing a line segment, and the case 

where the quadrilateral crosses over itself (figure 1 ). These monster cases force an 

examination and a clarification of the definition of a quadrilateral. 
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Goldenberg's second example constructs a circle through three points, A, B, and 

C and locates the center of the circle. What happens to the center when the three points 

are collinear and no triangle can be constructed? "[T]he answer cannot be given at all 

without introducing a new postulate - a postulate of dynamic (not Euclidean) 

geometry .... What does happen is a decision not of geometry but of some new systems, 

and so it is a new postulate" (Goldenberg, e-mail message to author, Dec. 27, 2000). 

Dynamic geometry software is available in many different looks and formats. 

Although there are many programs currently marketed, two programs - Geometer's 

Sketchpad (Jackiw, 1991; 1995) and Cabri (Baulac, Bellemain, and J.M. Laborde, 1994) 

- are the most commonly used for geometry education. Geometer's Sketchpad is the 

program that was utilized in the development and implementation of this synthesis 

project. 

Quad. ABCD Monster #1: points Monster #2: 
A, D, and Care All four 

collinear vertices are 
collinear 

Monster #3: 
The quadrilateral 
crosses over itself 

Figure 1. Dynamic geometry programs can produce 
"monster" cases of a quadrilateral 
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Students' Conceptual and Visualization Difficulties 

The amazing visual possibilities afforded by computers could lead to 
a belief that students could easily understand and conceptualize 
complex objects, in particular the notion of geometrical figure. 
(Laborde 1993, 60) 

Colette Laborde, a respected French professor of mathematics, has been vocal in 

the area of dynamic geometry software, presenting lectures and writing several articles. 

Laborde believes that computers can enhance student conceptualization of geometric 

objects. In "The computer as part of the learning environment: the case of geometry," 

Laborde (1993) clearly articulates a central conceptual difficulty in geometry and the 

manner in which dynamic geometry software can aid in conceptual understanding by 

distinguishing between.figures and drawings. 

Geometry is a study of abstract concepts. These concepts are understood to have 

characteristics that are not representable in concrete models - planes continue without 

end, lines have no thickness, circles are perfectly round, etc. Laborde refers to these 

idealized concepts as "figures" . The physical representations of these concepts do not 

possess the aforementioned qualities. For example, planes must be drawn with edges, 

lines are seen with thickness, and circles are sketched in a skewed manner. Laborde 

labels these representations, which are typically paper sketches or compass and 

straightedge constructions, as "material drawings" (1993 , 52). Laborde notes that 

"several difficulties arise because students actually work on material drawings while they 

are expected to work on.figures or on descriptions of figures" (1993, 52). Students are 

often unable to see the plane through the points, so to speak; they have difficulty 

separating the limitations of the drawing from the ideal characteristics of the figure. 
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A second drawback to the use of material 

drawings is illustrated in the following example. A 

student is asked to investigate a point, labeled point C, 

which lies on a circle as is illustrated in figure 2. It is to 

be noted that in terms of the figure, point C may lie 

anywhere on the circle. However, in the material 

drawing above, point C is confined to one and only one 

0 
\ 

0 

Figure 2. An arbitrary point 
C is identified on the 
representation of the circle. 

location. The student, therefore, may easily be misled by details pertaining to this 

particular location ( e.g., point C lies on minor arc AB) whereas the assignment requires 

that generalizations independent of the exact location of point C be formed. As Laborde 

states: 

The ambiguity of the drawing comes here from the impossibility of 
accounting through graphical means for the fact that C is anywhere on the 
circle. Usual geometric drawings do not express the variability of the 
elements of the figure and even less the range of the values of variable 
elements: there is only one position for C in the drawing, C must belong 
on the drawing to one of the circle segments. (1993, 51) 

Once again, the physical limitations of the material drawing are creating a barrier to 

conceptual understanding ofthefigure. 

Computer generated constructions, while still prone to some of the setbacks of 

material drawings, significantly close the gap between material drawings and.figures. 

Dynamic geometry programs are able to minimize both of the previously mentioned 

drawbacks. First, computer generated constructions are able to depict many of the 

idealized qualities of a.figure, although some qualities still cannot be represented. For 

example, although the circle is still represented on the computer screen as having width, 

the points on a computer-generated circle are all equidistant from a fixed center point. 
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Second, the dynamic nature of the computer program eliminates the erroneous fixation of 

points. Locations can be generalized. Laborde acknowledges that the precision and 

manipulability of computer sketches minimizes the shortcomings of material drawings, 

giving them a more figure-like quality. Dynamic geometry software, according to 

Laborde, creates an environment in which students are "often enabl[ ed] to visualize 

geometric properties" (1993, 48), and encouraged to "conceive theoretical objects or 

relations" (1993, 60). "The amazing visual possibilities afforded by computers could lead 

to a belief that students could easily understand and conceptualize complex objects, in 

particular the notion of geometrical figure" (1993, 60). 

Benefits and Implications of Computer Programs 

A substantial amount of research has been completed in the area of dynamic 

geometry. In particular, Douglas Clements and Michael Battista (1994) have outlined 

several key benefits and educational implications of the use of dynamic geometry 

programs in the classroom. It is important to point out that these themes are not unique to 

Clements and Battista, but are echoed throughout the publications of the other cited 

authors. Each of these themes - precision, manipulability of sketches, explicitness in 

student thinking, visualization aid, an improved learning process, and motivation - is 

discussed below. 

Precision: Computers generate accurate sketches. A computer creates straight 

lines, perfect circles, and exact midpoints. This is a major improvement over 

constructions done by hand. For example, the three angle bisectors of a triangle always 

meet in exactly one point. This is obvious in a sketch constructed with Geometer's 
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Figure 3. A computer-generated 
sketch clearly shows the one point o.f 
intersection of the angle bisectors o.f 
a triangle. 

Figure 4. A pencil-and-paper 
construction does not accurately 
depict a single point of intersection. 

Sketchpad (figure 3). However, due to inaccuracies, a student' s pencil and paper sketch 

often shows three points of intersection as illustrated in figure 4. As Douglas Clements 

and Michael Battista state, "Computer environments demand and thus facilitate precision 

and exactness in geometric thinking. In contrast, when working with paper and pencil, 

there is imprecision and students are distracted by the actual effort of the drawing" 

(Clements and Battista 1994, 189). 

Manipulability: Computer programs allow students to drag elements of the 

sketches. In this manner, students can investigate multiple examples in order to establish 

generalities applicable to a figure as opposed to characteristics specific to one drawing 

(Clements and Battista 1994, Hazzan and Goldenberg 1996, Laborde 1993, Schwartz 

1997[?]). Dynamic geometry programs "allow the manipulations of specific screen 

objects in ways that assist students in viewing them as geometric (rather than visual) 

objects and as representatives of a class of geometric objects. Such activities develop 

students' ability to reflect on the properties of the class of objects and to think in a more 

general and abstract manner" (Clements and Battista 1994, 188). For example, a student 
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could alter the shape of the triangle in figure 3, forming an acute triangle or a right 

triangle, and observe the effects of the manipulation on the point of intersection. Judah 

Schwartz (1997[?]) feels strongly that the manipulation of geometric sketches increases 

students' comprehension of geometric figures and concepts: 

By virtue of the fact that software environments can make the intangible 
interactively manipulable, and do so in several different representations 
simultaneously, the depth and breadth of understanding that can be 
reached by students ( and teachers) is substantially enlarged. This 
expanded understanding comes about by virtue of the ability of the user of 
the technology to manipulate an abstraction in one representation and see 
the consequences of his or her actions simultaneously in several different 
representations. ( online) 

Students are provided the opportunity to form and test conjectures and to experiment with 

geometric concepts by manipulating the computer construction. 

Explicitness: In order to construct a sketch with the aid of a computer program, 

students must provide an explicit description of the sketch. As Laborde observes, "A 

drawing on the screen is the result of a process performed by the user in which s/he 

makes explicit the definition of the figure" (Laborde 1993, 54). The computer cannot 

interpret vague descriptions or assume what the student is intending. Thus, students must 

be clear in their interaction with the computer. For this to be possible, students must also 

be clear in their personal understanding. Douglas Clements and Michael Battista view 

dynamic geometry environments as reflections of students' understanding. "The 

computer environments mirror students' geometric thinking. Researchers and teachers 

consistently report that in such context students cannot 'hide' what they do not 

understand" (Clements and Battista 1994, 189). By making descriptions explicit, 

students' interactions with the computer can help the student and the teacher identify 

areas of confusion or lack of understanding. For example, in order to construct an 
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altitude of a triangle, a student must first know the definition of the term and then be able 

to apply that definition. An altitude is a segment from a vertex of a triangle that is 

perpendicular to the line containing the opposite side of the triangle. In order to apply 

this definition, it is important that the student recognize that the altitude intersects the line 

containing the opposite side of the triangle, and not necessarily the side itself. If a 

student cannot construct an altitude, it is most likely due to the fact that the student does 

not fully comprehend the definition. It is commonly believed that if a person explains a 

concept to another individual, then that person will better understand and internalize the 

material himself. The computer plays the role of a second person by responding directly 

to the student's instructions. 

Visualization: As discussed earlier in this chapter, dynamic geometry software 

allows students to see objects on the screen that they may not be able to visualize in their 

minds. If a student cannot visualize a figure, then it is extremely difficult, if not 

impossible, for that student to pose questions relating to the figure and to search for 

answers. Computers produce precise sketches of two- or three-dimensional objects with 

which the user can interact and which the user can investigate. 

Learning process: Dynamic geometry software changes the manner in which 

geometry concepts are presented, shifting emphasis from the memorization of facts to the 

understanding of underlying ideas (Clements and Battista 1994, Schwartz 1997[?]). 

Dynamic geometry involves the student as an active, critical thinker, replacing the 

passive student that is often present in the traditional classroom. "Students can make 

conjectures, evaluate visual manifestations of those conjectures, and reformulate their 

thought. This seems to be essential for developing reasoning skills in geometry" 
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(Clements and Battista 1994, 187 - 188). The dynamic geometry classroom is an 

educational setting that is unfamiliar to most students who are more familiar with the 

traditional lecture and practice classroom. In a class that utilizes dynamic geometry 

software, students are expected to ask questions and search for answers. By providing 

opportunities for investigation and exploration, computer programs hold students 

accountable for their own learning and understanding, and thus encourage students to 

become life-long learners. 

Hazzan and Goldenberg (1996) have also been vocal in their support of the use of 

dynamic geometry software in the classroom. " ... [G]eometry software with or without 

the dynamic feature (used prudently) can help students focus their mathematical thinking 

on bigger and often more abstract mathematical ideas than is common in paper-and-

pencil work" (Hazzan and Goldenberg 1996, 2) Two additional benefits, not discussed 

by Clements and Battista, are found in the works ofHazzan and Goldenberg (1996). 

These benefits - directed attention and motivation - are as important as the previously 

mentioned strengths. 

Directed attention: When presented with a diagram, a student must decide which 

properties to explicitly recognize and which properties to ignore or overlook. This 

decision may be either a conscious or an unconscious one. The selection of properties 

affects which conclusions are drawn and the degree to which the conclusion can be 

generalized. Hazzan and Goldenberg state: 

... [C]onstruction on paper virtually forces one's attentions (at least 
initially) on the actual lengths and positions of objects. Geometry 
software designed for experimentation renders these features changeable, 
and leaves one to focus on more abstract relationships, and invariant ( often 
qualitative) properties of geometric entities - properties that are 
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independent of the ( often quantitative) particularities that one cannot 
easily avoid in a paper work. (1996, 2 - 3) 

Geometry software, therefore, emphasizes qualities that can be applied to a general case 

while de-emphasizing characteristics specific to a given object. For this reason, 

conjectures are more easily formed, investigated, and supported by the student while 

working in a dynamic geometry environment. 

Motivation: The use of computer programs and the opportunity to investigate 

geometric figures motivate students. "DGEs [Dynamic Geometry Environments] evoke 

some of the curiosity people have about how things 'work"' (Hazzan and Goldenberg 

1996, 2-3). For many students, dynamic geometry is a motivation tool that inspires them 

to want to learn and to understand. 

Drawbacks to Dynamic Geometry 

Throughout the articles and books published in the field of dynamic geometry 

research, seldom does one find a drawback to the use of dynamic geometry software in 

the classroom. It is important to identify the specific context referenced, as there are 

many works published that discuss the negative aspects of general computer use in the 

classroom. Typically, these shortcomings refer to Internet use or education programs 

that drill students in a worksheet-like format. These comments are not relevant to 

dynamic geometry software which focuses on investigation. 

Laborde does hesitate in her complete support of the use of computers in the 

geometry classroom by commenting that such programs are difficult to use (1993, 59). 

The complex syntax required to communicate with the computer frustrates many 

students. As a result, these students are not motivated to investigate and do not benefit 
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from the computer experience. This disadvantage, however, has been greatly reduced in 

the eight years that have passed between the publication of the article and the present. By 

adding toolbars and straightforward commands to the computer programs, software 

programs have become increasingly easy to use to the point that this remark is no longer 

relevant. 

A second drawback to the use of dynamic geometry is the students' tendencies to 

accept their work in the computer environment as sufficient proof. Enrique Galindo, a 

mathematics professor at Indiana University Bloomington, found that "students often 

view as proof the multiple examples that are generated easily and quickly in an 

interactive geometry environment and do not see a need to rely on formal reasoning in 

constructing proofs" (Galindo 1997, 228). In the absence of a computer-generated 

counterexample, students will often assume that a conjecture must be true and therefore 

does not necessitate any further justification. This, however, is not a shortcoming of the 

software programs but of the classes in which the programs are utilized. The teacher in a 

dynamic geometry classroom must recognize that the computer is a means to inspire, not 

replace, students' thinking. If the teacher insists on using the computer-generated 

examples as merely a foundation for further reasoning, the students will learn to seek 

additional justification for their conjectures. 

Dynamic Geometry Software in Practice 

Claudia Giamati is a mathematics professor at Northern Arizona University, 

where she utilizes the Geometer' s Sketchpad in her classroom. Giamati believes that 

dynamic geometry software is a crucial element in the learning process. She describes a 

19 



lesson in which students were asked to determine a method for locating the center and the 

angle of a rotation and concludes: 

The use of the Geometer's Sketchpad in this type of exploration was 
invaluable. The students gained a deeper understanding of the problem by 
using their scripts to explore it and make conjectures than they would have 
if the results had merely been explained to them. (Giamati 1995, 457 -
458) 

The computer program aided the students in comprehending the material as opposed to 

simply memorizing the information. 

In addition to strengthening understanding, dynamic geometry programs provide 

students with the experience of seeing mathematics as a vibrant field to be created and 

expanded, not a static field to be merely studied and applied. "Explorations that give 

students the opportunity to make reasonable conjectures deepen the students' 

understanding of what it is to do mathematics" (Giamati 1995, 458). By "doing 

mathematics", Giamati is emphasizing a distinction between learning mathematics and 

exploring mathematics. A typical learning experience involves studying mathematical 

concepts that have previously been discovered, invented, or proven. While "doing" 

mathematics, students are invited to discover, invent, or prove original mathematical 

ideas. Judah Schwartz echoes this view: 

It has been found over and over again, and 
in many parts of the world, that if students 
are given tools that make it easy for them 
to explore conjectures, they will both 
make and explore conjectures. This 
means that they will have, in some 
measure, something of the experience of 
making mathematics. (Schwartz 1997[?]) 

This is exactly what happened when some high 

school sophomores made an original contribution 
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to geometry with the aid of dynamic geometry software. "[S]ome 10th-grade students 

working with the Supposer discovered something that had not hitherto appeared in any 

geometry book .... Allowed to wander intellectually with the Supposer, our sophomore 

students devised a new piece of mathematics" (Schwartz 1992). The students began 

with a theorem that is proved in many geometry classrooms. This theorem states that if 

the sides of a square are divided in a 2: 1 ratio as shown in figure 5, these four points can 

be joined to form a square with an area that is,% the area of the original square. The 

students used the Geometric Supposer to explore non-square quadrilaterals with sides 

divided in a 2:1 ratio. It was discovered that any quadrilateral with sides divided in a 2:1 

ratio would produce a region with an area that is ,% the area of the original quadrilateral. 

Although their work in the dynamic geometry environment did not constitute a proof, it 

did provide the students with an idea that they could then attempt to prove in a more 

deductive manner (Schwartz 1992). Dynamic geometry programs provide students with 

the opportunity to explore the role of mathematicians in addition to the opportunity to 

explore and deepen geometric knowledge. 

NCTM Principles 

The use of dynamic geometry software in the classroom is in accordance with two 

of the overarching principles of mathematics education recently published by the 

National Council of Teachers of Mathematics (NCTM). These principles are: 

The learning principle: Students must learn mathematics with understanding, 

actively building new knowledge from experience and prior knowledge. (NCTM 

2000, 20) 
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The technology principle: Technology is essential in teaching and learning 

mathematics; it influences the mathematics that is taught and enhances students' 

learning. (NCTM 2000, 24) 

As was discussed in the preceding section, dynamic computer programs allow 

students to experience both the creation and the application of geometric concepts. 

Through investigation and exploration, students can more fully comprehend concepts. 

Dynamic geometry programs have the potential to enhance students' learning. 

The use of such programs is an appropriate use as outlined by NCTM: "Students can 

learn more mathematics more deeply with the appropriate use of technology. 

Technology should not be used as a replacement for basic understandings and intuitions; 

rather, it can and should be used to foster those understandings and intuitions" (NCTM 

2000, 25). Dynamic geometry programs do not explicitly provide knowledge, but allows 

students to explore and to investigate their own conjectures. 

Applications of Research to Concurrency Project 

The precision, explicitness, manipulability, and directed attention features of 

dynamic software have the potential to enhance students' understanding of the points of 

concurrency, whereas the visualization, motivation, and learning process benefits provide 

students with tools to investigate the lessons. Precision is crucial in determining that the 

special segments of a triangle do in fact intersect in exactly one point (refer to the earlier 

example involving angle bisectors, figures 3 and 4 on page 14). Precision is also 

necessary to establish the unique quality that each point of intersection possesses ( for 

example, the intersection point of the angle bisectors is the center of a circle inscribed in 
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the triangle). Manipulability allows students to generalize information pertaining to the 

intersection points by investigating all classifications of triangles - acute, obtuse, right, 

scalene, isosceles, and equilateral. Explicit descriptions require that students comprehend 

the definitions of the special segments and, in tum, the definitions of the intersection 

points. Directed attention de-emphasizes the consideration of specific lengths and types 

of triangles when the student forms generalized conjectures. Attention is instead focused 

on characteristics that remain constant when the sketch is altered, such as the ratio 

between the lengths of the segments formed on the median by the centroid. As a result of 

these features, students can potentially achieve a more complete understanding of the 

points of concurrency. 

Conclusion 

Dynamic geometry programs provide students with an opportunity for a deeper 

understanding of geometric concepts. Through their design, the programs offer precise 

representations of geometric concepts to aid in students' visualization. By allowing the 

manipulation of the computer-generated sketches, dynamic geometry programs permit 

the investigation of countless related examples and thereby encourage the formation of 

conjectures. 

Computer programs enhance students' understanding by creating an environment 

that encourages learning. This is a motivating environment where the student is an active 

participant in his or her own education. It is also an environment that requires 

explicitness on the part of a student's commands, which in turn can clarify a student's 

understanding or expose a student's misunderstanding of a concept. As a result of their 
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design and the learning environment they generate, dynamic geometry programs are 

invaluable tools that can potentially augment students' understanding. 
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CHAPTER THREE 

THE POINTS OF CONCURRENCY CURRICULUM UNIT 

A lesson that exploits the use of technology enables students to 
participate in constructing their own knowledge. Students might be 
involved in running experiments, testing conjectures, solving and 
posing problems, and exchanging ideas .... During the activity, 
questions should direct students to analyze and synthesize their 
observations. The atmosphere should encourage communication 
between students - questioning, suggesting, challenging, listening, 
and striving to develop convincing arguments for beliefs and 
conjectures. (Schoaff 1993, 21) 

As the focal point of my synthesis project, I have designed and taught a 

curriculum unit on the points of concurrency of a triangle. The lessons are structured 

around the use of dynamic geometry software, specifically the Geometer's Sketchpad 

(Jackiw 1995) This chapter provides an outline of the lessons that comprise the unit. 

The curriculum unit covers the special segments of a triangle and their points of 

concurrency. Every triangle has four types of special segments: medians, altitudes, 

perpendicular bisectors, and angle bisectors. Each type of segment has three 

representations in any given triangle. In each case these three representations, or in the 

case of the altitudes, the lines containing the three representations, are concurrent. For 

example, any triangle will have three medians and these three medians will intersect in 

exactly one point. Each of these four intersection points, known as the points of 

concurrency, has unique characteristics that distinguish it from the other three points of 

concurrency. 

The unit has been designed for implementation in a geometry elective at a 

suburban high school. The elective, Geometry in Action, is structured around active 
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student learning through computer exploration of geometric concepts. Critical and 

creative thinking skills are emphasized throughout the course, as students are encouraged 

to explore, form conjectures, and support their conjectures using the computer program 

and their peers for assistance. 

Geometry in Action is designed to be an informal look at geometric concepts. It 

is intended to supplement the standard geometry course that is taught at the sophomore 

level in the mathematics curriculum. The elective does not provide the geometry credit 

required of students. Consequently, although students are expected to provide 

justifications of their conjectures, Geometry in Action is primarily an intuitive course. 

The rigor of formal proof is reserved for the standard geometry class. 

Geometry in Action is a newly introduced course that was offered to students for 

the first time in the fall 2000 semester. The elective is open to all students enrolled at the 

high school, regardless of previous mathematics experience. As a result, this first class is 

a cross section of the school student body. The class is composed of seven students: 

three freshmen, two sophomores, one junior, and one senior. One of the seven students is 

also enrolled in accelerated math courses and two others are honor level mathematics 

students. Five of the seven students have not previously studied geometry at the high 

school level, while the remaining two students are currently enrolled in geometry classes. 

When asked what their primary motivation was for selecting the class, five students 

voiced an interest in mathematics and a desire to study geometry. The remaining two 

students admitted that they needed a credit and enrolled in the class by default. 
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An overview of the unit 

By focusing on student investigations, the unit increases the potential for student 

understanding of the segments, the points of concurrency, and their properties as opposed 

to rote memorization. It is the role of the computer software to provide the tools 

necessary for students to form accurate conjectures in the course of their investigations. 

All lessons in the unit require the use of dynamic geometry software, such as Geometer's 

Sketchpad. Additional materials needed are listed under the appropriate lesson. Built 

into this curriculum are the following aspects: 

Conceptual Emphases: 

a> Students will be able to define and construct the four types of special 

segments of a triangle. 

a> Students will recognize that the three representations of the median, the angle 

bisector, and the perpendicular bisector of a triangle are concurrent, and that 

the lines containing the three altitudes of a triangle are concurrent. 

a> Students will be able to define and construct the four points of concurrency. 

-> Students will apply the unique characteristics of the points of concurrency. 

NCTM Standards: This unit is also aligned with the following National Council of 

Teachers of Mathematics (NCTM) standards: 

Geometry Standard 

Instructional programs should enable students to: 

a> Analyze properties and determine attributes of two-dimensional objects 
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a> Explore relationships among classes of two-dimensional objects, make and 

test conjectures about them, and solve problems involving them 

a> Establish the validity of geometric conjectures using deduction, prove 

theorems, and critique arguments made by others 

a> Draw and construct representations of two-dimensional geometric objects 

using a variety of tools (NCTM 2000, 308) 

Reasoning and Proof Standard 

Instructional programs should enable students to: 

a> Make and investigate mathematical conjectures 

a> Develop and evaluate mathematical arguments and proofs (NCTM 2000, 

342) 

Communication Standard 

Instructional programs should enable students to: 

-> Organize and consolidate their mathematical thinking through communication 

a> Communicate their mathematical thinking coherently and clearly to peers and 

teachers 

a> Analyze and evaluate the mathematical thinking and strategies of others 

-> Use the language of mathematics to express mathematical ideas precisely 

(NCTM 2000, 348) 

Connections Standard 

Instructional programs should enable students to: 

a> Recognize and use connections among mathematical ideas 
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a:. Understand how mathematical ideas interconnect and build on one another to 

produce a coherent whole 

a:. Recognize and apply mathematics in contexts outside of mathematics 

(NCTM 2000, 354) 

Lesson one: Defining "median" and "altitude" of triangles 

Conceptual Emphasis: Students will formulate definitions for "median" and "altitude" as 

the terms apply to triangles. 

Key Thinking Processes: Brainstorming, analogizing, identifying characteristics, 

decision-making 

Activity: 

1. Brainstorming & Analogizing: Working in small groups, the class brainstorms 

possible definitions for the terms "median of a triangle" and "altitude of a 

triangle". The teacher encourages students to draw upon prior knowledge of 

medians and altitudes in non-geometry settings and to make analogies between 

previous uses of the terms and the current applications. The teacher might ask, 

"Where, outside of this class, have you used the terms 'median' and 'altitude'? 

Which aspects of these non-geometry definitions could apply to the median or 

altitude of a triangle?" When presented with this activity, F.R. wrote the 

following response regarding medians: 

"l. Median of a triangle 

2. Median of a number line 
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3. Median of a road 

Each of these definitions describes something in the middle which evenly 

separates something else." 

After several minutes, groups ' jigsaw". Using this cooperative learning strategy, 

one or two members of each group stays at their assigned table while the 

remaining students in the group move to other tables, forming new groups. Each 

newly formed group compares and builds upon brainstorm lists. 

2. Identify Characteristics: Once groups have completed brainstorming, students 

move to the computers, where the teacher has constructed and saved two sketches. 

The first sketch contains a triangle and one median (figure 6). The second sketch 

contains a triangle and one altitude (figure 7). Students use these sketches as 

tools in the formation of the definitions of each term. Students investigate the 

Segment AD is a median 
of triangle ABC. 
Determine the definition of 
the term "median of a 
triangle". 

Segment LO is an 
altitude of triangle 
LMN. Determine the 
definition of the term 
"altitude of a 
triangle". 

D C 

Figure 6 

L 

0 

Figure 7 
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segments by dragging the vertices of each triangle and observing the results on 

the sketches. These manipulations allow students to identify the defining 

characteristics of the median and altitude. For example, although J.Z. initially 

believed that the altitude was a segment "from the vertex to the other side of the 

triangle", as she altered the sketch represented by figure 7 she soon observed that 

LO does not necessarily intersect MN. However, J.Z. did soon recognize that 

the segment LO continually intersected the line containing MN . She then 

identified "The altitude intersects the line containing the opposite side" as a key 

characteristic of the altitude of a triangle. 

3. Define and Decide: Based on their observations, groups refine their brainstorming 

and articulate a clear definition for each of the terms. Groups decide which of 

their previous ideas are best supported by the characteristics identified in working 

with the sketchpad and how these ideas can be enhanced in response to their 

observations. 

4. Share & Refine: Each group shares its definition with the class. Students then 

engage in a discussion focused on synthesizing the various definitions and 

refining the language of the definitions. The teacher plays a minor role at this 

point, allowing the discussion and the ideas to be student-generated. Once the 

class as a whole agrees on a definition for each term, the definitions are to be 

included in each student's notebook. 

Wrap-up activity: Students write a letter to Noah Webster in an attempt to convince him 

to accept their definitions for altitude and median of a triangle. The letters must be 
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persuasive, explaining why the student believes Webster should include his/her definition 

in Webster' s dictionary. 

Reflections on the implementation of the lesson: 

Students seemed to have a clearer understanding of the terms "median" and 

"altitude" after this lesson, compared to students in a traditional class who are given the 

definitions by the teacher or the textbook. I base that observation on my experiences over 

the last nine years using traditional methods of teaching these concepts. On average, the 

students in Geometry in Action could more readily apply the definitions of median and 

altitude and correctly use the vocabulary in their classroom conversations. In the past, 

many students have needed time to stop and refer to definitions in their notes before 

applying definitions for median and altitude. Former students also have had difficulty 

understanding that an altitude intersects the line containing the opposite side, and not 

necessarily the side itself This misunderstanding causes problems when trying to 

construct the altitudes of an obtuse triangle, as is seen in figure 8. All seven of the 

Geometry in Action students recognized this concept. Particularly significant was that 

the class quickly refined its first definition, "The altitude of a triangle is a segment from a 

vertex of a triangle, perpendicular 

to the opposite side" to include the 

phrase "perpendicular to the line 

containing the opposite side" 

without any prompting from the 

teacher. Figure 8. Two of the altitudes in an obtuse triangle fall 
outside of the triangle, intersecting the line but not the 
side itself. 
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The Geometry in Action students were able to accurately define the median of a 

triangle without much difficulty. The class did, however, struggle with the definition of 

an altitude of a triangle. The obstacle was caused by the formation of an inappropriate 

analogy with a previous definition. The students recognized altitude as the height of an 

object. The students then found it difficult to define the altitude in terms of a segment 

and not in terms of a distance. This was apparent both in the many wordings and 

rewordings of their definition and in a later activity that asked the students to construct 

the altitudes of a triangle. Students did not know where to begin the construction since 

they believed they were constructing a distance as opposed to a segment. After 

constructing the altitudes, students were able to recognize their misunderstanding and 

understand that the altitude referred to a segment. 

Lesson two: An investigation of medians 

Conceptual Emphases: Students will determine the following properties of medians: 

Iii> Every triangle has three medians. 

Iii> The medians of a triangle are concurrent. 

a> The point of concurrency lies in the interior of the triangle. 

a> The distance between the vertex and the point of concurrency is twice the 

distance between the point of concurrency and the opposite midpoint. 

Key Thinking Processes: Making observations, identifying characteristics, forming of 

conjectures 
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Activity: Either by sharing a computer or using neighboring 

computers, students work in pairs to investigate medians of 

triangles. 

1. Construct, Observe & Identify: Each pair of students 

constructs an arbitrary triangle on the computer and 

determines the number of medians belonging to the 

triangle. Each group constructs all possible median(s) 

R 

s 

T 

Figure 9. A triangle and 
its three medians 

of their triangle (figure 9) and explores their sketch, making observations 

regarding the medians of the triangle. The teacher encourages students to change 

the size and shape of the triangle by dragging one or more vertices, and to 

measure any segments the pair feels is appropriate. Students observe the effect of 

each change on their sketch. Through these observations, they identify the 

important characteristics of the medians of a triangle 

2. Forming Conjectures: Students use the characteristics identified in the previous 

step to formulate conjectures regarding the median(s) of a triangle. Conjectures 

are expressed in general terms, referring to all triangles or to specific types of 

triangles. For example, within his sketch (figure 10), O.F. stated that "the 

segment from the vertex to the intersection of the medians is always twice the 

length of the segment on that line from the intersection to the opposite line." 

This is an acceptable conjecture, whereas "AG = 2 GD" would not have been 

acceptable since it refers to the labels given in one particular diagram and it does 

not articulate the underlying concept. Some students have difficulty with the 

proper wording of a conjecture. The teacher needs to observe each group closely 
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Figure 10. O.F.'s investigation of medians assignment 

and offer assistance where necessary. The teacher may ask questions such as 

"What is the underlying concept you are trying to convey?" or "In general terms, 

what does this mean?" to encourage students to articulate conjectures as opposed 

to reporting observations. The teacher may also move groups to new computers 

where they must align their conjecture with another group' s sketch. This will 

encourage students to write conjectures in more general terms. 

3. Share & Compare: Each pair in turn records one of their conjectures on the board 

and elicits feedback from the class by asking if other groups observed anything 

similar or anything contradictory. The pair leads a discussion in which the 

conjecture is discussed, refined, and ultimately approved or rejected by the class. 

If the conjecture is approved, the statement is added to students' notebooks. The 

remaining pairs continue in this manner until all conjectures have been presented. 
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Once again, the teacher' s role in this activity should be minimal. The 

discussion, the ideas, and the questions are to be student-generated. The teacher 

acts more like a guide and a safety net than an active participant or a leader. The 

teacher joins the dialogue only to provide guiding questions or comments if the 

discussion begins to stall or wander or to encourage students to more fully address 

a topic or thought process. The teacher may, for example, ask how the group 

arrived at a particular conjecture or what motivated them to measure specific 

segments. Ultimately, however, it is the teacher's responsibility to ensure that 

information copied into notebooks is, in fact, correct and that students have 

effectively justified the approval or rejection of the conjecture. 

Wrap-up activity: Students are asked to answer the following questions: 

What strategies did you use to investigate the medians? 

What surprises did you encounter? 

Did anything not work out the way you expected? If so, explain what 

occurred and why. 

Responses can be written or discussed orally. If time permits, the latter forum would 

allow students the opportunity to listen to, learn from, and build upon each other's 

comments. 

Reflections on the implementation of the lesson: 

The lesson successfully provided the students with the intended concepts. The 

students easily identified the key properties of the median with little or no assistance. By 
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having the students construct the medians of a triangle, the activity also reinforced the 

definition of a median from the previous lesson. 

The students easily recognized the four properties that were identified as the 

conceptual emphases of the lesson. When J. Z. noted that the three medians "came 

together", the other students quickly echoed the concept, refining the language. Once the 

students had agreed that "the three medians of a triangle intersect in one point" I provided 

the term "concurrent" and illustrated how the term is applied to this statement. 0. A. 

elaborated on the preceding statement by observing that '"the point of intersection is 

always inside the triangle". The other students agreed that they had also observed the 

property. 0. F. remarked that each median was divided into two segments with lengths in 

a ratio of 1 :2. This surprised and intrigued the other students. F. R. became interested in 

the six non-overlapping triangles formed by the medians. He felt they were the same 

somehow, but was unable to be more specific. This discussion provided an introduction 

to the following day's lesson. 

One drawback of the lesson was the lack of computer time available after the 

students shared their observations and conjectures. Students were surprised by 0. F. 's 

conjecture relating the lengths of the segments on the medians. Follow-up computer time 

would allow each of the students to investigate this property. The time could also have 

been used to investigate F. R. ' s comments concerning the six triangles formed by the 

medians. This oversight will be corrected in subsequent classes. 
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Lesson three: Balancing on the centroid 

Conceptual Emphasis: Students will identify the point of concurrency of the medians as 

the centroid, the center of gravity on which the triangular region can be balanced. 

Key Thinking Processes: Making observations, brainstorming, justifying; seeing 

relationships 

Additional Materials: card stock or a similar heavy weight paper, scissors, compasses, 

straightedges 

Activity: 

1. Construct (paper) and Observe: With the aid of compasses and straightedges, 

students construct a triangle and its three medians on a piece of card stock. The 

triangles are then cut out of the paper. The teacher directs the students to place 

the tip of their pens or pencils directly under the point of concurrency and to 

balance the triangular region. If the medians were constructed accurately, the 

triangular regions will balance. 

2. Name & Brainstorm: The teacher names the point of intersection of the medians 

the "centroid", noting that the centroid is the center of gravity of the triangular 

region. The teacher asks why the point of concurrency is the center of gravity; 

what allows the triangular region to balance on this specific point? The class 

brainstorms ideas. 

3. Construct (computer), Observe, & Justify: Using a computer program, students 

construct an arbitrary triangle and its three medians. The teacher directs students' 

attention to the six smaller non-overlapping triangular regions formed by the 
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medians ( figure 11). They measure 

the area of each triangular region 

and make an observation(s) 

regarding the areas of the triangles. 

Students should notice that the areas 

of the regions are equal and provide 

a justification for this observation. 

Within a class discussion aimed at 

identifying why the areas are equal, 

Area I= 0.3 in2 

Area II = 0.3 in2 

Area III = 0.3 in2 

C 

Area IV = 0.3 in2 

Area V = 0.3 in2 

Area VI = 0.3 in2 

Figure 11. The areas of the six triangles 
formed by the medians are equal. 

the teacher elicits from the students the formula for the area of a triangle (Area= 

Yi base times height) and the definitions of the terms "base" and "height" as they 

are used in the formula. It may be beneficial for the students to construct the 

altitude from the centroid in each of the six triangles and to calculate the area of 

each triangle using the length of the altitude and the length of the side to which it 

is perpendicular. Students at this point should be able to show that LiABD and 

LiADC have the same area since their bases are equal and they share an altitude. 

For the same reason, the areas of Lilli and Li!V are equal, as are the areas of Li V 

and Li VI and the areas of Lil and Lill. By way of substitution and subtraction, the 

class can justify the equality of the six areas. 

4. Relating Area to Balance: The teacher asks students to explain the relationship 

between the equal areas and the point of concurrency being the centroid. 

Wrap-up activity: Students apply the concepts from this lesson to quadrilaterals by 

developing a method for locating the center of gravity of a convex quadrilateral region. 
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The activity can be completed by compass and straight edge on card stock or on the 

computer depending upon students' preferences and/or materials available. Through 

investigations, students should recognize that the center of gravity of a convex 

quadrilateral region is found by dividing the region into triangular regions. One of the 

diagonals of the quadrilateral divides the quadrilateral region into two triangular regions. 

The centroid of each triangular region is located and the two centroids are joined by a 

segment (figure 12a). The process is repeated with the second diagonal (figure 12b). 

The intersection of the two segments is the center of the quadrilateral region (figure 12c) 

(Shilgalis and Benson 2001 , 303-304). 

Reflections on the implementation of the lesson: 

The lesson satisfied the learning styles of both the visual learners and the 

kinesthetic learners in the class. The lesson allowed the students to see the equal areas on 

the Sketchpad and to experience the center of gravity while physically balancing the 

triangle. The balancing activity by itself is effective in conveying to students the defining 

characteristic of the centroid. The sketchpad project, however, supplements this activity 

B 
B B 

A centroido BC A centroid of ABD A 
"'-

!center of gravity - ( 
centroid of BCD 'l 

centroid of ACD 

C C 
D 

(a) (b) (c) 

Figure 12. The center of gravity of a convex quadrilateral region is found by dividing the region 
into triangular regions. One of the diagonals of the quadrilateral divides the quadrilateral region into 
two triangular regions. The centroid of each triangular region is located and the two centroids are 
joined by a segment (a). The process is repeated with the second diagonal (b). The intersection of 
the two segments is the center of the quadrilateral region (c). 
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by providing the foundations of a justification for the property. The computer can more 

accurately calculate the area of the triangles than the student working with a ruler, 

emphasizing the fact that the areas are equal. 

It is important for students to recognize that the triangles formed by the medians 

are not necessarily congruent. I did not explicitly discuss this with the class, believing 

that the observation was obvious. However, 0. F. did not initially recognize this and, 

believing the triangles were congruent, he spent a considerable amount of time trying to 

prove the triangles congruent in order to demonstrate that the areas are equal. I would 

amend this lesson by asking students to determine which case( s) produce congruent 

triangles. 

Lesson four: An investigation of altitudes 

Conceptual Emphases: Students will determine the following properties of altitudes: 

a> Every triangle has three altitudes. In an acute triangle, the three altitudes lie in 

the interior of the triangle. In a right triangle, two of the altitudes lie on the 

triangle. In an obtuse triangle, two of the altitudes lie in the exterior of the 

triangle. 

a> The lines containing the three altitudes are concurrent. 

a> The point of concurrency lies in the interior of the triangle if the triangle is 

acute, on the triangle if the triangle right, or in the exterior of the triangle if 

the triangle is obtuse. 

Key Thinking Skills: Making observations, identifying characteristics, forming 

conjectures 
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Activity: In a manner similar to that outlined in activity two, students work in pairs to 

observe altitudes of triangles and to form conjectures relating to altitudes. Conjectures 

are presented to the class and discussed. The teacher refers to the point of concurrency of 

the lines containing the altitudes as the "orthocenter." Students also answer the following 

questions: 

1. When, if ever, is the median of a triangle also the altitude? 

2. Is it possible to have exactly three medians also be altitudes? Exactly 

two? Exactly one? 

Students should recognize and be able to prove that the median will also be the altitude if 

it is drawn from the vertex angle to the base of an isosceles triangle. They should also be 

able to prove that exactly one median coincides with an altitude if the triangle is 

isosceles, but not equilateral, whereas all three medians coincide with altitudes if the 

triangle is equilateral. It is not possible to have exactly two medians in a triangle that are 

also altitudes. 

Wrap-up activity: Students are asked to answer the following question ( adapted from 

Serra 1997, 164): 

A large triangular plot ofland was left to a brother and sister by their father. His 

will states that the property is to be divided in two plots of land by the altitude from the 

northernmost point of the property for the heirs. However, that end of the property is 

covered with quicksand at the northern vertex. The will stipulates that the heir who 

figures out how to draw the altitude without using the northern vertex gets to choose his 

or her parcel first. Can you determine a method for locating the altitude? Do you think 
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this is a fair way to divide the land? Why or why not? (The answer to the question is 

provided at the end of the chapter.) 

Reflections on the implementation of the lesson: 

The activity supplied a needed reinforcement of the definition of altitudes. The 

sketchpad project made apparent students' misconceptions concerning altitudes. As 

previously stated in the reflections to activity one, the majority of the students mistakenly 

identified the height of a triangle as the altitude. The influence of this inappropriate 

definition, illustrated in F.R. ' s comments on his assignment (figure 13), resulted in two 

obstacles. First, the students found the sketch difficult to construct since they were 

attempting to construct a distance instead of a segment. Second, it was believed that only 

one altitude existed in a triangle. Students were surprised to learn that three altitudes 

F.R. 's observations: 
The altitude of a triangle can be either inside or 
in the outer region of the triangle. It will show 
the shortest distance from the segment to the 
opposite angle. All three of the altitudes will 
intersect at the same point which wouldn't 
nessasarily be inside the triangle. 

Figure 13. F. R ' s comments on his altitude sketch reflect the 
student's previous definition of the altitude as a distance. 
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exist in any triangle. By resolving the difference in definitions, students were able to 

surmount each of the obstacles. Similar difficulties did not arise in subsequent activities. 

Students were then able to recognize the altitude as a segment. 

When sharing conjectures with the class, J. Z. observed that one altitude always 

remained in the interior of the triangle, regardless of the shape of the triangle (figure 14). 

J.Z 's observations: 

1 . All the altitudes intersect at one point, and 
they will always intersect because of the way they 
are constructed. 
2 . There is always one altitude left inside the 
triangle . 

Figure 14. J.Z.'s altitude sketch and comments 

A ,. 

.... 
C 

O.F. 's observations: 
If an angle is obtuse, then the altitudes 
not connected to it will be outside the 
triangle. However, because there can 
only be 1 obtuse angle, 1 must always be 
inside at least. 
They will not always connect within the 
triangle . Opposite triangles not 
necessarily be congruent. 

If any, only 2 altitudes can be 
outside the triangle . 

Figure 15. 0. F. 's alitude sketch and comments 
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She continued by erroneously stating that the altitudes always intersected in exactly one 

point, but that point was not necessarily inside the triangle. 0. F. elaborated upon this by 

outlining the locations of the altitudes in acute, right, and obtuse triangles (figure 15). 

He, too, agreed that the altitudes were concurrent and that the point of 

concurrency was sometimes in the interior of the triangle, sometimes on the triangle, and 

sometimes outside the triangle. None of the students questioned the concurrency of the 

altitudes. By asking students to sketch an obtuse triangle and its three altitudes, I was 

able to elicit from the students the observation that the altitudes themselves did not 

necessarily intersect. The previous comments were then clarified, stating that the lines 

containing the altitudes were concurrent. 

Lesson five: Anticipating properties of the perpendicular bisectors and the angle 

bisectors 

Conceptal Emphases: Students will determine the following properties of the 

perpendicular bisectors of the sides of a triangle and the bisectors of the angles of a 

triangle: 

ii> Every triangle has three perpendicular bisectors. 

a> The perpendicular bisectors are concurrent. The point of concurrency lies in 

the interior of an acute triangle, on the triangle itself if the triangle is right, 

and in the exterior of an obtuse triangle. 

a> Every triangle has three angle bisectors. 

a> The angle bisectors are concurrent. The point of concurrency lies in the 

interior of the triangle. 
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Key Thinking Processes: Predicting; identifying characteristics 

Prerequisite knowledge: A perpendicular bisector of a side of a segment is a line that is 

perpendicular to the segment at its midpoint. Although the perpendicular bisector is a 

line, it is grouped under the heading "special segments of a triangle" for convenience of 

terminology. An angle bisector of a triangle is a segment contained within the ray that 

divides the angle into two congruent halves. The segment has one endpoint at the vertex 

of the angle being bisected and the second endpoint on the opposite side of the triangle. 

Activity: 

1. Predicting: The teacher organizes the class into groups of 3 or 4 students. Half of 

the groups in the class are directed to discuss angle bisectors; the remaining 

groups are assigned perpendicular bisectors. Each group forms a preliminary list 

of conjectures they predict will be observed when they construct their sketches of 

either the bisectors of the angles of a triangle or the perpendicular bisectors of the 

sides of a triangle. Groups should consider earlier investigations of medians and 

altitudes and prior studies of angle bisectors and perpendicular bisectors when 

forming these conjectures. 

2. Share: Each group lists their conjectures on the board. Students are required to 

justify why they expect to observe the predicted results. 

3. Identify characteristics: With the aid of a computer, each student, working 

individually or in pairs, constructs a triangle and its angle bisectors and a second 

triangle and its perpendicular bisectors. Students use the sketches to identify the 
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characteristics of the bisectors. In doing so, students verify or refute the predicted 

conjectures. 

Wrap-up Activity: Students report individual findings back to the class. The teacher asks 

students to explain which conjectures did or did not work. The teacher should also ask 

groups to discuss the thought process that lead to the conjectures and to describe their 

investigations. It must be made clear to the students that the process is as important as the 

product. If any conjectures are disproved, the class explains why the rejected 

conjecture(s) is/are not valid and investigate where an error in reasoning was made. 

Reflections on the implementation of the lesson: 

The class had previously studied angle bisectors and perpendicular bisectors 

independently of triangles. Since the concepts are familiar to the students, the angle 

bisector and perpendicular bisectors were combined into one lesson. Students appeared 

to be comfortable discussing both concepts in relation to triangles within the same lesson. 

Students have become accustomed to the structure of the course. When divided 

into groups to predict the characteristics of the bisectors, members of both groups 

searched for construction aides without hesitation. J. Z. and 0. A. logged onto a 

computer accessing the Geometer' s Sketchpad. 0. F. found a compass and straightedge 

and began sketching on paper. The students appear to recognize a need for accurate 

sketches in the conjecture-forming process. 

The free-hand sketches of perpendicular bisectors produced by K. N. during the 

first part of this lesson showed an understanding that is often lacking in geometry 

students. Geometry students frequently assume that the perpendicular bisector of a side 
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of a triangle must contain the opposite vertex. Although this situation does occur in an 

isosceles triangle, this is a special case and should not be generalized to all triangles. As 

a result, their sketches of perpendicular bisectors mistakenly represent a segment that is 

not perpendicular to a side of the triangle or a segment that does not bisect the side 

(figure 16). On a consistent basis, however, K.N. accurately depicted a perpendicular 

bisector that did not contain a vertex reflecting a comprehension of the definition of the 

segment. The remaining class members followed K.N. 's lead, also exhibiting an 

understanding that the perpendicular bisector does not necessarily contain a vertex. This 

understanding was also displayed in the class discussion: 

Mrs. Mignini: "What do you have to say about perpendicular bisectors?" 

0. F.: "They all intersect at one point. And, it's kinda like the altitudes. " 

Mrs. Mignini: "What do you mean by that? " 

B G C s 

' Figure 16. Students frequently assume that the perpendicular bisector of a triangle must 
contain a vertex of the triangle. As a result, student sketches mistakenly represent a 
median (left) or an altitude (right) as the perpendicular bisector. 
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0. F. : "In the sense that they 're basically ... basically the altitudes are from a 

vertex and they must be perpendicular to a line except these have to be 

perpendicular to a line and it doesn 't matter where they go. " 

Mrs. Mignini: "What do you mean? " 

0. F. : "It doesn 't matter where their endpoint is. They 're kinda the same in that 

they 're perpendicular to a side. " 

I concluded the discussion with a question: Is it possible for the perpendicular bisector to 

contain a vertex? The students quickly recognized that a vertex would lie on the 

perpendicular bisector if the triangle were isosceles. 

Lesson six: Naming the circumcenter 

Conceptual Emphasis: Students will identify the point of concurrency of the 

perpendicular bisectors of a triangle as the circumcenter, the center of the circumscribed 

triangle. 

Key Thinking Processes: Seeing relationships 

Prerequisite Knowledge: Perpendicular Bisector Theorem (Any point on the 

perpendicular bisector of a segment is equidistant from the endpoints of the segment.) 

Activity: 

1. Seeing relationships in definitions: The instructor names the point of intersection 

of the perpendicular bisectors of a triangle the "circumcenter." Small groups of 

students determine the defining property of the circumcenter by relating the term 
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to the meaning and usage of the prefix and the root of the word. To aid in their 

definition, students should answer the following questions: 

What does the prefix "circum-" mean? 

When is the term "center" used in geometry? 

2. Verify: Students use the computer software to verify their proposed definition. 

Completed sketches contain an arbitrary triangle, its three perpendicular bisectors, 

and the circumscribed circle (figure 17). 

3. Seeing relationships in properties: Once groups recognize that the circumcenter is 

the center of the circumscribed circle (also referred to as a circumcircle), the 

students determine why the point of concurrency of the perpendicular bisectors 

and the circumcenter are in fact the same point. They are expected to refer back 

to previous work completed with the perpendicular bisectors, specifically the 

Perpendicular Bisector Theorem that states any point on the perpendicular 

bisector of a segment is equidistant from the endpoints of the segment, and relate 

the theorem to the current situation. 

' ,, 

4 
' 

, ___ 

C -----. 

~ ,. 
' 

Figure 17. Three possible sketches illustrating a triangle, its 
circumcenter and the circumcircle. 
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Wrap-up activity: Students submit a written explanation of why the point of concurrency 

of the perpendicular bisectors and the circumcenter are the same point. Students describe 

how such a property can be useful by citing examples where the circumcenter would be 

necessary. Examples are to be both construction-related and "real-world" applications. 

Reflections on the implementation of the lesson: 

The use of the computer program in this lesson allows students to visualize the 

defining property of the circumcenter. The dynamic geometry program provides the 

student with an accurate representation of the circumcircle of the triangle. It has been my 

experience that students who construct the circumcircle using a compass, straightedge, 

and/or other construction tools do not take the care and effort to produce an accurate 

construction. As a result, the constructed circumcircle does not contain the three vertices 

of the triangle, although it may be close. Such an experience is not as convincing and 

reinforcing as the computer experience. 

The last activity in the lesson was difficult for the students. They did not recall 

the Perpendicular Bisector Theorem. 

Consequently, considerable class time was 

needed to review the theorem. Immediately 

following the review, without any prompting, 0. 

F. recognized the relationship between the 

Perpendicular Bisector Theorem and the defining 

property of the circumcenter. He expressed this 

relationship by saying, "so, [ RO] is equidistant 
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from [N] to [M]. So that means ... this point, [R] is too. [R] is equidistant from [M] and 

[L], and [R] is equidistant from [L] and [N]. Which would be equidistant from all 

three"(figure 18). The remaining students needed some time to process this explanation, 

but soon they also understood the relationship. 

The class period concluded with an "ah-ha" experience as 0. F. continued his 

train of thought. 

0. F: Wait a sec. That means, if this works, that if you change it around a bit, 

the point of concurrency of the angle bisectors will be equidistant from the 

sides ... The point of concurrency of the angle bisectors will be equidistant. " 

Mrs. Mignini: Why? 

0. F: Because each one of those points is equidistant from two sides. The circle 

we make [with that point as a center J will touch the nearest point on the triangle. 

0. F. understood the relationship between the theorem and the circumcenter well enough 

to form a conjecture regarding the point of concurrency of the angle bisectors. This 

provided an excellent preview of the next lesson. 

Lesson seven: Identifying the incenter and applying the points of concurrency 

Conceptual Emphasis: Students will identify the point of concurrency of the angle 

bisectors of a triangle as the incenter, the center of the inscribed triangle. 

Key Thinking Skills: Formulating conjectures, comparing and contrasting, seeing 

relationships, thinking flexibly 
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Prerequisite Knowledge: Angle Bisector Theorem (Any point on the bisector of an angle 

is equidistant from the sides of the angle.) and the distance between a line and a point not 

on the line is the length of the perpendicular segment 

Additional Materials: compasses, straightedges, local maps ( optional) 

Activity: 

1. Formulate conjectures through comparison and contrast: Working in small 

groups, students formulate conjectures regarding the point of concurrency of the 

angle bisectors of a triangle and suggest possible names for the point. The teacher 

encourages students to refer back to the previous lesson and to make a 

comparison between the point of concurrency of the perpendicular bisectors of a 

triangle and the point of concurrency of the angle bisectors of a triangle. If 

necessary, the teacher also directs students' attention to the Angle Bisector 

Theorem. The teacher may ask "In what ways is the Angle Bisector Theorem and 

the Perpendicular Bisector Theorem similar? In what ways are they different? 

How would their differences affect the point of concurrency?" 

2. Share: The teacher leads a class discussion focusing on groups' conjectures. 

Students present both their conjectures and their reasoning. All conjectures 

discussed must be justified by the group. The teacher concludes the discussion by 

naming the point of concurrency of the angle bisectors of the triangle the 

"incenter." 
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3. Construct: Using the computer software, 

students construct an arbitrary triangle, its three 

angle bisectors, and the incenter using the 

computer program. In order to construct the 

inscribed circle ( also referred to as the incircle ), 

students must locate a point on the circle. The 

teacher asks students how to determine the 

location of a point of the circle. Students must 

---~ 

C 

' 
Figure 19. The in center is the 
center of the circle inscribed in 
the triangle. 

recognize that the circle will intersect each side of the triangle at the point closest 

to the incenter. The closest point is found by constructing a segment from the 

incenter perpendicular to one of the sides of the triangle. The distance from the 

incenter to this point is the length of the radius of the incircle. Using this method, 

students complete the sketch of the inscribed circle (figure 19). 

4. Seeing relationships in properties: Once groups recognize that the incenter is the 

center of the inscribed circle ( also referred to as a incircle ), the students determine 

why the point of concurrency of the angle bisectors and the incenter are in fact the 

same point. Students are expected to refer back to previous work completed with 

the angle bisectors, specifically the Angle Bisector Theorem that states any point 

on the angle bisector of an angle is equidistant from the sides of the angle, and 

relate the theorem to the current situation. If the class is struggling with the 

connection, the teacher may need to direct them by asking, "How does the Angle 

Bisector Theorem apply to the bisector of LA? How does the theorem apply to 

the bisector of LB or LC? What can be said about the point of intersection 
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between the angle bisectors?" The teacher then guides the class to recognize that 

the point of intersection is the center of the incircle (figure 19). 

4. Seeing relationships in applications: The teacher will present the following two 

problems to the class (Answers are provided at the end of the chapter.): 

Example 1: The town of Westborough is considering constructing a new 

playground. The town feels that the children of Westborough would be 

best served by a playground that is equidistant from the Fales School, 

Hastings School, and Armstrong School. Where should the town look for 

available land? 

Example 2: A large corporation is considering opening an office complex 

in central Massachusetts. Since it expects that employees will commute 

from various parts of the state, the corporation believes that the ideal 

location for the complex would be equidistant from 1-495, 1-290, and the 

Mass Pike. Where should the complex be built? (Hint: Approximate the 

routes with straight segments.) 

The class discusses strategies for solving each problem. The teacher directs the 

students to apply the points of concurrency if the class does not recognize the 

connection. If maps are available, groups will determine the requested locations 

with the use of compasses and straightedges. Alternatively, maps can be scanned 

and inserted into Geometer' s Sketchpad files. 

5. Flexibility: Each group writes two original word problems involving the points of 

concurrency, similar to the problems stated in part 5. The group is responsible for 

both the word problem and the solution. The problems are shared with the class. 
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This can be accomplished in two ways: 1) the problems can be written on 

transparencies and displayed with the use of an overhead projector, or 2) the 

problems can be written on a piece of paper and taped to the desk, forming a 

"station"; groups of students circulate from one station to the next answering the 

questions they find at each desk. 

Wrap-up activity: Students are asked to explain the strategies they invoked both in the 

creating of the problems and in the solution process. 

Reflections on the implementation of the lesson: 

As stated with the circumcenter, the use of the computer software provides 

students with an accurate visual experience involving the incircle. Constructions of the 

incircle completed with the aid of a compass, straightedge, and/or other construction tools 

are typically inaccurate, producing a circle that does not intersect each side of the triangle 

or intersects the sides in two points instead of the appropriate one point. Students appear 

to be more accepting of the concept of an incircle after experiencing the accurate 

representation provided by the computer. 

To encourage students to explore the relationship between the Angle Bisector 

Theorem and the incenter, I asked the class to explain why the point of concurrency of 

the angle bisectors and the incenter were the same point. With the exception of 0. F., 

who had recognized the relationship during the previous class, students struggled with the 

connection. The students could not break out of circular reasoning: 

0. A.: "The intersection is equidistant because the inner circle that touches all 3 

sides uses the intersection point as the center of the circle. " 
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Mrs. Mignini: "The circle is tangent to the triangle because the point is 

equidistant, not the other way around. Why is the point equidistant from 

the sides? " 

0. A. : "The point is equidistant because of the angle bisectors and because the 

point they intersect in is equidistant. " 

It was only through very leading questions were the students able to recognize the 

relationship between the Angle Bisector Theorem and the incenter. 

Some of the constructed word problems illustrated the group' s creativity and 

comprehension of the points of concurrency. For example, J.Z. , O.A., and C.N. 

presented a problem involving three computers in a room. The three computers are to be 

connected to a network server. The group asked where in the room should the server be 

placed if it is to be equidistant from all three computers. The group also wrote a problem 

that asked how a triangular platform could be balanced in a sculpture. The remaining two 

groups, however, produced problems with contexts and wordings that very closely 

mirrored the original problems. Unfortunately, a lack of time due to snow days prevented 

a further development of word problems. lfthere had been time, it would have been 

interesting to push the groups to fully explore where they could use the points of 

concurrency in the world around them. 

Lesson eight: The nine-point circle, and the Euler line 

Conceptual Emphasis: Students will reinforce their understanding of the special 

segments of a triangle and the points of concurrency. 

Key thinking skills: Making observations 
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Activity: 

Students work individually on the following computer projects applying knowledge 

of the points of concurrency to nine-point circles and to Euler lines (All answers are 

included at the end of the chapter; activities 2 and 3 are adapted from O'Daffer and 

Clemens 1976, 66.) 

1. The teacher defines a nine point circle of a triangle as a circle containing the 

midpoint of each of the three sides of the triangle, the midpoint of each segment 

between the orthocenter and each vertex, and the feet of the three altitudes (figure 

20). A foot of an altitude is the point of intersection of the altitude and the side of 

the triangle to which it is perpendicular or the line containing the side if the 

triangle is obtuse. The center of the nine-point of the circle is located by finding 

the midpoint between the orthocenter and the circumcenter of the triangle. 

Students construct a triangle and its nine-point circle using the dynamic geometry 

software and answer the following questions: 

s 

R 

orth?x:enter 

0 
circumcenter 

M1 

T 

Figure 20. The diagram shows the nine point circle of ~RST. The nine point circle of a triangle 
contains the midpoints of the three sides of the triangle (Ml, M2, and M3), the intersection between 
each altitude and the line containing the side to which it is perpendicular (Al, A2, and A3), and the 
midpoints of the segments between the orthocenter and each vertex (01 , 02, and 03). 
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B 

a. What is the relationship between the nine-point circle of a triangle and the 

incircle? 

b. Can you determine a second method oflocating the center of the nine­

point circle? (Hint: choose any three of the nine points and use the three 

points as vertices of a triangle.) 

c. Based on your answer to part b, what can you conclude regarding the 

circumcircle of each of the triangles formed with vertices at three of the 

nine points? 

2. If given a non-right triangle ABC, three triangles can be determined by the 

orthocenter of ~ABC and two of the vertices of ~ABC (see figure 21). Students 

investigate the relationship between the nine-point circle of an arbitrary non-right 

triangle and the three triangles with vertex at the orthocenter. This can be done in 

the following manner: 

a. Students construct a non-right triangle, ~ABC, its orthocenter, H, and its 

ortno~erJter, H - ' 

C 

' 

' ' ' 
' 
' ' 
' ' 

' ' 

:13 

0 
orthocenter, H 

- C 

Figure 21 . If AABC is not a right triangle, then three triangles can be determined by the orthocenter of 
AABC and two of the vertices of AABC. The three triangles are AABH, AACH, and LiBCH. 
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nine-point circle. Students "hide" the nine-point circle so that it is not 

displayed on the monitor. 

b. Students construct ~ABH and its nine-point circle. They display the nine­

point circle of ~ABC and determine the relationship between the two 

circles. This works particularly well if the nine-point circles are two 

different colors. 

c. Students repeat the previous step for ~ACH and ~BCH. 

d. Students write a conjecture regarding the relationship between the 

investigated nine-point circles. 

3. In any given triangle, three of the four points are collinear. The line determined 

by the three points is called the Euler Line. Students construct a triangle and its 

orthocenter, circumcenter, incenter, and centroid and answer the following 

questions: 

a. Which of the three points are collinear? 

b. What happens to the Euler Line when the triangle is isosceles? 

c. What happens to the Euler Line when the triangle is equilateral? 

d. The Euler Segment refers to the segment that contains all three points such 

that two points are endpoints and the third point is between the other two. 

Determine which point of concurrency is between the other and the ratio 

of the lengths of the segments formed on the Euler Segment by that point. 

Reflections on the implementation of the lesson: 

This is an activity that I do not include in a non-computer classroom. The 

constructions, if completed by hand, are time consuming and require a tremendous 
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amount of effort and attention to detail. The paper constructions also cannot be 

manipulated. Therefore, students can make observations regarding a specific triangle, but 

they cannot easily generalize their observations to apply to all triangles. With the aid of a 

computer program, however, constructions are simplified and are manipulable. 

The students were motivated by the lesson. They eagerly worked on the 

computers, beginning before I arrived to class and staying through lunch. At the 

completion of the concurrency unit, the students almost unanimously voted this activity 

as their favorite. "It helps to mess around, to see when things don't work," stated 0. F. , 

"It' s a challenge." 

As students worked through the sketches, it became apparent that students 

understood the definitions of the four special segments and their points of concurrency. 

With relative ease, the students were able to construct the required points, including the 

orthocenter that had been a source of misunderstanding in earlier lessons. Student 

comments, both oral and written, were well thought out. For example, in response to the 

F.R. 's observations: 

Both of the circles from triangle ABC and 
triangle EAC are the same circle . Even though 
the nine points of the two circles are different, 
the circle is the same size and in the exact 

same spot. 

All three of the nine point circles are the same size 
and in the same place. The points of all the circles are 
different, but the nine point circles stay the same 

size . 

C 

Figure 20. F.R. ' s observations regarding nine-point circles 
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KN 's observations: 

The circles of any 

triangle are the same no 
matter what. The nine 
point circle of ABH and 
ABC are congNent and 
form to look like one. 

The same applies for 
ABC and BCH. The 
orthocenter for ACH will 
lie on point C. If we 

look at BHC, the 
orthocenter will be on H. 
The nine point circle will 

stay in the same place. 
The nine points will also 

stay in the same place. 

?­
B 

--

AV\ 
\ \ 

~ 
ortho 

C 

Figure 21. K. N. discusses the location of the orthocenters in his nine-point circle observations. 

second activity, F. R. noted that although the nine-point circles coincided, the nine points 

themselves differed (figure 20). K. N. discussed the location of the orthocenters in 

relation to the original triangle (figure 21), echoing comments made orally by J. Z. and 0. 

A. The students were motivated to push beyond the questions being asked. 

Lesson nine: Applying concurrency points to miniature golf 

Conceptual Emphasis: Students will reinforce their understanding of the properties of the 

points of concurrency. 

Key thinking skills: Originality, imagery 

Materials: foam board, cutting utensils, glue, string 
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Activity: Students enrolled in Geometry in Action have been designing a miniature golf 

course throughout the semester. At the completion of each unit, the design is amended to 

include concepts from the unit. 

1. Design: Individually, students design an original obstacle for a hole in a 

miniature golf course. The obstacle has two criteria: it must include the use of at 

least one of the following points of concurrency: incenter, circumcenter, or 

centroid, and it must be buildable using available materials. Students must be 

able to visualize a three-dimensional obstacle in order to incorporate the point(s) 

of concurrency. 

2. Construct: Students construct a scale model of their obstacles out of foam board 

and other needed materials. 

3. Present: Students present their models to the class, explaining how the point(s) of 

concurrency were utilized. Students must provide the scale factor and the 

anticipated measurements of the actual obstacle 

if the golf course were completed. 

Reflections on the implementation of the lesson: 

Once again, students were motivated by the 

lesson. This was especially apparent when L. J., a 

student who has consistently shown little interest in the 

class in general, exhibiting only the bare minimum 

effort level, began working through lunch and after the 

bell each day. As a result, the activity motivated L. J. 
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miniature golf course. The 
triangular doors are fastened at 
their centroids in order to hang in 
the desired fashion. 



to learn the special segments and their points of concurrency. Although his project did 

not maximize the potential of the centroid (figure 22), L. J. did learn from the activity. 

The students took differing approaches to the project. This is apparent in the 

design of the final project (figures 22 through 27) and in the design process. Several of 

the students utilized the centroid (figures 22, 23, 24, 25 and 27). The incenter was also 

Figure 23. K. N. ' s miniature golf 
obstacle. The symmetric pendulum 
is hung from the centroid of the 
triangle. As a result, the obstacle 
hangs almost perfectly 
horizontally. 

Figure 25 . 0 . F.'s miniature golfobstacle. The 
bases of the pendulum are triangles. The 
pendulum hangs from the centroid of the top 
base. Also, the golf hole found beneath the 
pendulum is congruent to the incircle of the 
bottom base. 
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Figure 24. C. N. ' s miniature golf 
obstacle. The circle is congruent to the 
in circle of the triangle hanging below it. 
The triangle was designed to be hung 
from its centroid so that it hung 
horizontally. Unfortunately, the project 
was damaged before the picture could be 
taken. 

Figure 26. 0. A. ' s miniature golf obstacle. 
The golf hole is the incircle to the triangular 
obstacle. 



Figure 27. F. R. (left) and J. Z. 's (right) miniature golf 
obstacles. F. R. constructed a tunnel through the incenter of the 
triangular front. J.Z. balanced a triangular platform on its 
centroid. 

incorporated in several projects (figures 24, 25 20, and 27). Within each of the designs, 

comprehension of the point(s) of concurrency is exhibited. This comprehension was 

reinforced and strengthened throughout the course of this project. The method students 

employed varied greatly as well. It was interesting to see individual learning styles and 

personalities displayed through the design process. Some students, such as L. J. (figure 

22), K. N. (figure 23) and F. R. (figure 27), could visualize the obstacle. These students 

made few, if any, rough sketches, working instead from a mental image. The sketches 

that were drawn were typically two-dimensional sketches of specific faces of the project. 

These students appeared to work part-to-whole, obtaining a product through a focus on 

the individual faces of the obstacle. Other students, such as 0. F. (figure 25) 0. A. 

(figure 26), and J. Z. (figure 27), relied on the Geometer' s Sketchpad to provide them 

with accurate representations of the obstacles. These sketches tended to be three­

dimensional representations. The students appeared to work whole-to-part, focusing on 

the overall project and then paying attention to details as needed. The remaining student, 

C. N., chose to sketch free hand like the former group. Her sketches, however, were 

more detailed and were three-dimensional, similar to the latter group. She appeared to 
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have the most difficulty with the visualization process. She did not exhibit a clear-cut 

part-to-whole or whole-to-part preference. Instead, she appeared to latch on to any 

technique that seemed promising at the time. Of the seven students in the class, C. N. 

struggled most with the project. The project provided an opportunity for application 

which benefited students of various learning modalities. 

Summary 

The points of concurrency curriculum unit represents a typical unit in the 

Geometry in Action elective. Each unit presented in the course is designed around 

student-based investigations that are completed within the dynamic geometry 

environment. It is important to note that the computer programs themselves do not 

produce understanding of geometric concepts, but rather they facilitate the learning of 

those topics. The software can only react to a student' s commands, and thus it can 

provide answers to questions only after those questions are asked. The student must 

know which questions to ask and how to synthesize the information received from the 

software ifhe is to use the software to its fullest potential. Therefore, it is crucial that 

students understand how to investigate geometric conjectures in a critical and creative 

manner. This is accomplished through frequent questioning by a student's teacher and 

classmates. 

Each student responded to Geometry in Action and to the concurrency unit in his 

or her own way. O.F. , a freshmen enrolled in accelerated mathematics courses, used the 

sketchpad to compensate for his poor visualization skills. With the use of his sketches, 

O.F. successfully reached for concepts beyond the class expectations. J.Z. , a sophomore 
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who is also studying geometry on an honors level, used the sketchpad investigations to 

complement the foundation of geometric understanding that she is attaining in her honors 

class. J.Z. stated that she liked working through the computer projects since it made her 

think and it motivated her. Motivation was also a key factor for O.A., a sophomore 

geometry student, F.R. , a :freshman, and K.N, an honors level freshman. I believe O.A. 

also benefited greatly from the visualization aide that the computer provided. With the 

assistance of the sketchpad, O.A. appeared to understand material with which she 

otherwise struggled. For example, the concept of the incenter as the center of an inscribed 

circle had eluded O.A. until she was able to construct the sketch on the Geometer's 

Sketchpad. C.N., a junior who transferred into the class late in the term, had difficulty 

with the structure of the course due to a language barrier. English is not her first 

language. As a result, C.N. struggled with the discussions that are central to many of the 

lessons in the unit. The Geometer' s Sketchpad was useful for C.N. to identify areas of 

misunderstanding. For example, when attempting to construct a circumcircle, it quickly 

became apparent that C.N. could not distinguish between an altitude and a perpendicular 

bisector. Once this was discovered, I took the time to sit with her and communicate the 

concepts to her through constructions of altitudes and constructions of perpendicular 

bisectors. The use of the computer neither helped nor hurt L.J. , a senior with a history of 

low achievement and effort in mathematics classes. He enrolled in Geometry in Action 

as a result of having no other scheduling options. L.J. quickly learned the computer 

program, but was reluctant to explore and form conjectures. 

For the students in Geometry in Action, the dynamic geometry projects were 

necessary components of the class but not sufficient. To varying degrees, the students 
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were motivated by the projects and benefited from the visualization aide. However, each 

of the students needed the guidance of myself and their fellow students to maximize their 

thinking and their understanding. 

Answers 

Lesson four, wrap-up activity: The altitude can be located by first constructing the 

altitudes from the two known vertices. The lines containing the two altitudes will 

intersect at the orthocenter. Since the lines containing all three altitudes intersect at the 

orthocenter, this point is contained in the third altitude. Constructing a line through the 

orthocenter that is perpendicular to the line containing the third side of the triangle will 

result in a line that contains the third altitude. 

Lesson seven, example 1: The town should look for land at the circumcenter of the 

triangle formed between the three schools. The circumcenter is located by constructing 

the perpendicular bisector of each side of the triangle. 

Lesson seven, example 2: The complex should be built at the incenter of the triangle 

determined by the three roads. The incenter is located by constructing the angle bisectors 

of the triangle. 

Lesson eight, computer activity 1: 

a. The incircle and the nine-po_int circle are internally tangent circles. 

b. The circumcenter of any of the triangles determined by three of the nine­

points will coincide with the center of the nine-point circle. 
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c. The circumcircle of each triangle determined by three of the nine-points will 

coincide with the nine-point circle. 

Lesson eight, computer activity 2: The circles coincide. 

Lesson eight, computer activity 3: 

a. The othocenter, circumcenter, and the centroid are collinear. 

b. The Euler Line also contains the incenter in an isosceles triangle. 

c. The four points coincide in an equilateral triangle. Therefore, there are 

infinitely many lines that contain the four points. 

d. The centroid is between the orthocenter and the circumcenter. The centroid 

divides the Euler Segment in a 2: 1 ratio. 
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CHAPTER FOUR 

CONCLUDING REMARKS 

As evidenced by students' attitudes and performance, the needs of many geometry 

students are not currently being met by the traditional geometry classroom. The 

utilization of available resources and the implementation of new classroom structures 

may strengthen the potential and the achievement of these students. It is my belief that 

structuring activities around student investigations that are conducted in a dynamic 

geometry environment can attain this goal. These investigations assign to the students a 

more active role in the learning process, making them more responsible for their own 

education. 

As mentioned in the previous chapter, the role played by the computer software 

varies from student to student. Some students benefit primarily from the computer as a 

visualization aide, whereas other students rely on the program to clarify their 

understanding and to identify areas of misunderstanding. Still other students use the 

computer as a motivator. All students, however, benefit from the precision and the 

manipulability of the computer-generated sketches. The dynamic geometry software 

allows the user to investigate a continuum of related examples as opposed to one static 

drawing. In this manner, the dynamic geometry software provides an environment 

conducive to the formation of conjectures. 

It is important to note that the software provides only the environment and the 

potential for student learning. Dynamic geometry software provides a tool with which 

students can visualize and explore geometric concepts. The programs augment, but do 
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not replace, effective teaching in the geometry classroom. Effective teaching in a 

dynamic classroom should focus on relevant thinking skills - predicting results of 

manipulations, identifying characteristics, making decisions, forming and justifying 

conjectures, and seeing relationships. The software only reacts to commands made by the 

students. In order for a student to be successful in a dynamic geometry environment, he 

must recognize what to look for, how to search for the information, and how to 

synthesize the results. 

The topics of dynamic geometry and the points of concurrency, specifically the 

centroid, are timely issues. Shortly before the completion of this paper, three relevant 

articles were published in issues of Mathematics Teacher and Scientific American 

Explorations. In "Making Better Use of Computer Tools in Geometry", Brad Glass and 

Walter Deckert ask the question, "Are [students'] interactions [with the computing tool] 

helping them learn geometrical concepts?" (2001, 224) Their answer is yes. Their 

research is consistent with the main premise of this paper: 

A major goal in the geometry classroom is having students develop 
and validate conjectures. High school students are able to develop 
conjectures by generalizing the patterns that unfold during 
explorations in interactive geometry environments. Although 
interactive geometry, static construction, and Logo-based 
environments do not directly help students generalize the patterns, 
they offer mathematically accurate environments in which patterns 
can be observed. Pattern recognition is stimulated by the ability to 
manipulate diagrams and to observe the resulting changes. (Glass 
and Deckert 2001, 227) 

The authors also emphasize the role of dynamic geometry software as a "springboard" 

(228) to further investigation and justification. Likewise, Thomas W. Shilgalis and Carol 

T. Benson found it beneficial to use the Geometer's Sketchpad "for exploration and 

clarification" (2001, 307) in their search for the center of gravity of a polygonal region. 
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The authors build upon the methods oflocating the centroid of a triangle and the center of 

gravity of a quadrilateral region in order to locate the center of gravity of any polygonal 

region. Lastly, Krista West (2001) outlined physical experiments that investigate an 

individual's center of gravity. The experiments, which involve bending over or shifting 

one's weight while standing against a wall, provide practical activities with which to 

convey to students a clearer understanding of what is meant by the phrase "center of 

gravity". These articles give support to the importance of these topics in the current 

geometry classroom. 

A Vision of the Future of Geometry in Action 

As the end of the school year approaches, the future of Geometry in Action is 

being discussed. My principal, my advisor and my colleagues have asked several 

questions concerning the curriculum unit, the course in general and what I envision the 

future of the course to be. Some of these questions and my responses are outlined in the 

following pages. 

1. Would the class be successful with a larger student enrollment? Although the small 

class size had both its advantages and disadvantages, I believe the size of seven 

students was more of a shortcoming than a strength. The greatest advantage of the 

size was the individual attention I could provide to each student. The minimal 

number of viewpoints that could be offered, however, outweighed this attention. 

Within the scope of average class sizes (typically 20 - 30 students per class), the 

potential of a course that is structured around student investigations and the 
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discussion of observations and conjectures is increased as the number of voices in the 

class increases. One student may recognize a pattern that the other students do not 

see and share such insights with the class, leading to further channels for 

investigation.. A larger class would be conducted on two levels - group discussions 

of individual student observations and class discussions outlining the groups' 

conclusions. 

2. Should the class remain heterogeneous or should the enrollment become more 

focused? ·Students of all ability levels and math backgrounds can benefit from 

working in a dynamic geometry environment. A heterogeneous group, however, 

produces less focused objectives within the class and the investigations. I believe that 

classes consisting of students with similar backgrounds would increase the potential 

benefit for all students. Ideally, I would like to see Geometry in Action divided into 

two courses, an introductory course for students who have not yet formally studied 

geometry and an elaboration course for those who have completed a year of 

geometry. This would allow the sketchpad investigations of each course to 

concentrate on more clearly defined goals. The introductory course would create a 

foundation of geometric understanding upon which a subsequent geometry course 

could build. Such a foundation would improve the chances for success in the 

required geometry class, especially for students who are identified as "at-risk" due to 

poor spatial abilities. The elaboration course, on the other hand, would provide an 

elective for those students who enjoy geometry. Only algebraic math electives are 
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currently offered. A dynamic geometry elective would allow these students to deepen 

their understanding of geometry and to explore topics that interest them. 

3. How could the unit be integrated into a standard geometry class? Although the 

geometry concepts involved are appropriate for any geometry class, the class 

structure and the learning process detailed in this curriculum unit may need to be 

modified when integrated into a standard geometry class. The points of concurrency 

unit was implemented approximately halfway through the Geometry in Action 

course. Throughout the first few months of the course, the students received 

instruction on strategies for successfully experimenting in the sketchpad environment. 

They learned what is expected of them and what to expect from the teacher and the 

class in a course structured around student investigations. Although the students in 

my standard geometry classes, as well as the students in the classes of my colleagues, 

utilize the Geometer's Sketchpad throughout the year to introduce or reinforce topics, 

the students do not receive this extensive instruction. As a result, a teacher in a 

standard geometry class may need to provide more structure and guidance in the 

sketchpad activities. It may become necessary to focus students' attention. The 

teacher may need to incorporate the teaching of critical thinking skills listed 

previously in this chapter. I believe that if given a supportive classroom and the 

guidance of a teacher interested in a critical thinking process, a standard geometry 

class can successfully complete the points of concurrency curriculum unit. 
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Summary 

There are too many students who complete a geometry course with a minimal 

level of geometric knowledge and comprehension. Since there are a variety of reasons 

why students do poorly in geometry classes, there cannot be one blanket "cure" . 

Dynamic geometry software, however, can overcome many of the obstacles that hinder 

student success when augmented by instruction in the areas of thinking skills. Although I 

had become an advocate of dynamic geometry software after observing the results in my 

standard geometry classes, I didn't fully recognize the potential benefits until I taught 

Geometry in Action. The structure of the elective values and emphasizes these thinking 

skills, resulting in more successful investigations. When used as an aide to learning, 

dynamic geometry software can raise expectations of student learning and provide a tool 

for visualization. As a result, students can potentially deepen their understanding of 

geometric concepts. 

75 



BIBLIOGRAPHY 

Battista, Michael T. "The Mathematical Miseducation of America's Youth: Ignoring 
Research and Scientific Study in Education." Phi Delta Kappan 80, no. 80 
(Feb. 1999): 425 - 433. 

Battista, Michael T. and Douglas H. Clements. "Geometry and Proof." Mathematics 
Teacher 88, no. 1 (Jan. 1995): 48 - 53. 

Baulac, Y., Bellemain, F. , and J.M. Laborde, designers. Cabri. Dallas, TX: Texas 
Instruments, 1994. Software. 

Clements, Douglas and Michael T. Battista. "Computer Environments for Learning 
Geometry." Journal of Educational Computing Research 10, no. 2 (1994): 
173-197. 

Edwards, Laurie D. "Children's Learning in a Computer Microworld for Transformation 
Geometry." (Ph.D. dissertation, University of California at Berkeley, 1989) 
Dissertation Abstracts International 51 (1990): 1943. As quoted in Glass and 
Deckert. "Making Better Use of Computer Tools in Geometry." Mathematics 
Teacher 94, no. 3 (March 2001): 224 - 229. 

Galindo, Enrique. "The Development of Students' Notions of Proof in High School 
Classes Using Dynamic Geometry Software." Proceedings of the Nineteenth 
Annual Meeting of the North American Chapter of the International Group for 
the Psychology of Mathematics Education (1997). Quoted in Glass and Deckert. 
"Making Better Use of Computer Tools in Geometry." Mathematics Teacher 94, 
no. 3 (March 2001): 224-229. 

Giamati, Claudia. "Conjectures in Geometry and the Geometer's Sketchpad." 
Mathematics Teacher 88, no. 6 (Sept. 1995): 456-458. 

Glass, Brad and Walter Deckert. "Making Better Use of Computer Tools in Geometry." 
Mathematics Teacher 94, no. 3 (March 2001): 224-229. 

Goldenberg, Paul and Al Cuoco. "Some ideas in (and behind) dynamic geometry." (draft) 
Newton, MA: Education Development Center, Inc. , 1996. 

Goldenberg, Paul, personal e-mail 12/27/00. 

Hazzan, Orit, E. and Paul Goldenberg. "Students Understanding of the Notion of 
Function in Dynamic Geometry Environments." (copy) Newton, MA: Education 
Development Center, Inc, 1996. 

Page 76 



Hirschhorn, Daniel B. and Denisse R. Thompson. "Technology and Reasoning in 
Algebra and Geometry." Mathematics Teacher 89 (Feb. 1996): 138 - 142. As 
quoted in Glass and Deckert. "Making Better Use of Computer Tools in 
Geometry." Mathematics Teacher 94, no. 3 (March 2001): 224 - 229. 

Jackiw, Nicholas. The Geometer's Sketchpad. Berkeley, CA: Key Curriculum Press, 
1995. Software. 

Laborde, Colette. "The computer as part of the learning environment: the case of 
geometry," in Learning from Computers: Mathematics Education and 
Technology, eds. Christine Keitel and Kenneth Ruthven. New York: Springer­
V erlag, 1993. 

National Council of Teachers of Mathematics (NCTM). Principles and Standards for 
School Mathematics. Reston, VA: NCTM, 2000. 

O'Daffer, Phares G. and Stanley R. Clemens. Geometry: An Investigative Approach. 
Menlo Park, CA: AW Publishing Co, 1976. 

Schoaff, Eileen Klimick. "How to Develop a Mathematics Lesson Using Technology." 
Journal of Computers in Mathematics and Science Teaching 12, no. 1 (1993): 
19 - 21. 

Schwartz, Judah L. "OfTinkertoys, Technology, and the Educational Encounter." 
TECHNOS Quarterly for Education and Technology l, no. 2 (Summer 1992): 
online. Available from http://www.technos.net/joumal/volumel/2schwartz.htm 
(accessed 10/1 1/00). 

Schwartz, Judah L. 1997 [?] "Intellectually stimulating and socially responsible school 
curricula: Can technology help get use there?" online. Available from 
http://hugsel.harvard.edu/-faculty/schwartz/techcurr.html ( accessed 10/1 1/00). 

Serra, Michael. Discovering Geometry: An Inductive Approach. Emeryville, CA: Key 
Curriculum Press, 1997. 

Stone, Michael E. "Teaching Relationships between Area and Perimeter with the 
Geometer's Sketchpad." Mathematics Teacher 87 (Nov. 1994): 590 - 594. As 
quoted in Glass and Deckert. "Making Better Use of Computer Tools in 
Geometry." Mathematics Teacher 94, no. 3 (March 2001): 224 - 229. 

Twomey, Sean. "Dynamic Geometry." (n.d.) online. Available from 
http://www.acts.tinet.ie/gsp/gl2.html (accessed 9/17/00). 

West, Krista. "Balancing Acts: Tricks that will topple your friends." Scientific American 
Explorations (winter 2001): 10-11. 

Page 77 


	University of Massachusetts Boston
	ScholarWorks at UMass Boston
	5-2001

	Geometry in Action: A Curriculum Unit Utilizing Dynamic Geometry Software to Enhance Students’ Comprehension
	Cynthia A. Mignini
	Recommended Citation


	tmp.1472660416.pdf.CRLyP

