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ABSTRACT 
 
 

AUTOMATIC DETECTION AND QUANTIFICATION OF 
 

BLUFF EROSION EVENTS IN SINGLE IMAGE SERIES 
 
 
 
 

December 2015 
 
 

Martin D. Hellwig, Dipl. Kfm., Luneburg University 
 MBA, University of North Dakota 
 M.Sc. University of North Dakota 

M.Sc. University of Massachusetts Boston 
 
 

Directed by Professor Marc Pomplun 
 
 

Many communities along coastlines and riverbanks are threatened by water 

erosion and hence an accurate model to predict erosion events is needed in order to 

plan mitigation strategies. Such models need to rely on readily available 

meteorological data that may or may not be correlated with the occurrence of erosion 

events. In order to accurately study these potential correlations, researchers need a 

quantified time series index indicating the occurrence and magnitude of erosion in the 

studied area. We show that such an index can be obtained by creating and analyzing a 

single image series using relatively cheap consumer grade digital cameras. These 

image series are naturally of lower quality and subject to a large amount of variability 
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as environmental conditions change over time. We initially analyze each image as a 

whole and subsequently demonstrate the great advantages of segmenting each image. 

This allows for independent parallel processing of segments while preventing cross-

contamination between them. Finally, we are able to automatically detect 67% of all 

erosion events while accepting only a small number of false positives. 
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CHAPTER I 

INTRODUCTION 

 

 

 

Life as we know it relies on a number of fundamental resources: clean air, water 

and food. The production of ample food is itself most reliant on the availability of air and 

water which allows us to consider these two to be sufficient essential requirements for 

any successful settlement. It is, then, not surprising that historically most villages, towns 

and cities developed along natural water sources such as lakes, rivers and, of course, the 

oceans’ shorelines (Lucero, Fedick, Dunning, Lentz, & Scarborough, 2014). Clean air 

was typically not in short supply so bodies of water attracted human settlement not only 

due to their inherent life sustaining properties but also the ability to serve as trade and 

transport routes. However, as much as water has helped to attract and sustain human 

settlements, it has also always posed a certain threat to them (C. C. Huang et al., 2010). 

Flooding may be the most obvious of these threats and researchers have been trying to 

accurately calculate flood risk and forecast specific events for a long time, often using 

indirectly related data (Caradot, Granger, Chapgier, Cherqui, & Chocat, 2011) . Many 

communities, such as those in the Rhine delta, have accrued significant expertise 

mitigating flood risk using large scale dams and flood gates (Protection & Brown, 2008). 
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However, some of these installations may not suffice to combat the increased flood risk 

created by climate change patterns. Similarly, new mitigation efforts will have to take 

these new requirements into account to assure reliability of the management and 

mitigation efforts (Karamouz & Nazif, 2013).  

Aside from major flooding events, erosion is a more subtle yet equally important 

threat (Spaan, Winteraeken, & Riksen, 2006).  Constant water erosion can weaken or 

eliminate natural flood protection zones and often threaten human settlements directly 

(Islam, Sallu, Hubacek, & Paavola, 2014). This is particularly common in bluff erosion 

cases that quite literally wash out the ground from under existing coastal communities 

(Buckler & Winters, 1983). A wide range of engineering solutions offer protection from 

water impact and the resulting erosive effects (Beilicci, Beilicci, & Ştefanescu, 2014). On 

coast lines, these can include basic wave breakers as well as sea wall reinforcements 

using materials such as concrete or granite blocks. Particularly threatened communities 

may resort to more sophisticated mitigation strategies such as artificial dune construction 

(Matias, Ferreira, Mendes, Dias, & Vila-Concejo, 2005). In some cases previously 

reclaimed land is purposely designated as flood land to reduce the effects on point further 

inland (van Staveren, Warner, van Tatenhove, & Wester, 2014). Natural flood protection 

zones have also proven to be effective in many cases (Schmitt, Albers, Pham, & Dinh, 

2013).   

Even when human dwellings are not directly impacted, excessive erosion can 

affect existing infrastructure and threaten local economies, notably those relying on 
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tourism (A. Smith, 1995). From a conservational perspective, many bluff areas are also 

prime habitats for many endangered species (Carpenter, Jung, & Sites Jr, 2001).   

Erosion management is typically quite expensive and many methods might not be 

effective when applied in the wrong location or at the wrong time (Paterson et al., 1993). 

Therefore, an accurate erosion forecast would be extremely helpful in assuring an 

efficient and effective erosion prevention effort. In addition to prevention, affected 

communities would also be able to prepare needed resources to respond to unavoidable 

erosion events if they could reasonably anticipate the timing and scope of erosion events 

(National Oceanic and Atmospheric Administration, 1998).  

Water erosion is highly dependent on environmental and meteorological 

conditions as well as the geomorphic composition of the existing soil (Castedo, 

Fernández, Trenhaile, & Paredes, 2013). In addition, the local geography and 

oceanography (Jorgenson & Brown, 2005) play a major role in erosion patterns and 

introduces a large enough variability to make a general forecast model impossible 

(Dawson & Evans, 2001). Instead, any good erosion forecast has to rely on a substantial 

amount of past observation from the specific area for which a forecast is sought. 

Similarly, only local present observations can assure the accuracy of any forecast based 

on such a model (Barsanti et al., 2011).  

Creating the actual forecast model will be an interesting Machine Learning topic. 

We may address this in a future study. Within the scope of this work, we will aim to 

analyze automated observations in a fashion that allows us to detect and quantify erosion 
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events. We will establish an erosion index that can later be correlated with meteorological 

data to detect patterns and automatically generate a forecast model for the observed area.  

Bluff erosion can be measured using a wide variety of advanced tools including 

aerial photography (Day, Gran, Belmont, & Wawrzyniec, 2013b) or satellite based 

Geographic Information System (GIS) data (Dabojani, Mithun, & Kanti, 2014). The 

accuracy of either approach may be significantly improved using additional remote 

sensing technologies including terrestrial laser scanning (Day, Gran, Belmont, & 

Wawrzyniec, 2013a).  This method has also been successfully applied to avalanche 

modeling (Prokop et al., 2015). Wave load analysis tends to be quite reliable as basis for 

erosion forecasts as well (Soomere, Viška, Lapinskis, & Räämet, 2011), but it only 

allows for short term predictions.  

Within this study we will concentrate on single stationary cameras which present 

a much more readily available source of observations. Many of the more advanced 

monitoring tools can be financially demanding while simple cameras are comparably 

affordable and relatively easy to install. In addition, many existing webcams provide 

freely available image series that may be used for analyses although typically the quality 

of dedicated devices is much superior and hence preferable.  

Our analysis will focus on a series of images obtained from one single camera and 

attempt to extract a time series of erosion indices. This analysis is particularly 

challenging as it has to automatically account for the at times extreme variability that is 

inherently present in such image series of natural features (Lalonde, Efros, & 

Narasimhan, 2012). Examples of interferences include changing positions of the sun, 
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varying lengths of the days throughout the observation period, irregular weather patterns, 

etc.  

After accounting for these natural contaminations, we will develop a method to 

detect soil erosion by adapting classic motion detection algorithms (Dupret, Verdant, 

Villard, & Mathias, 2011) to detect medium term changes in image series. We need to 

pay particular attention to gradual changes that happen over time and are not recurring 

events (Li, Han, Lin, & Wei, 2012) as the latter are highly unlikely to be signs of erosion. 

Erosion is – by definition – irreversible and should hence not be recurring.  

Finally we develop an adapted quantifying mechanism (Paganelli, Peroni, Baroni, 

& Riboldi, 2013) that will allow us to generate the aforementioned erosion index. 
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CHAPTER II 

METHODOLOGY 

 

 

 

Data 

Data acquisition for this study was conducted in cooperation with the Coastal 

Environmental Sensor Network (CESN), the National Park Service (NPS) and the 

Thompson Island Outward Bound Education Center (TIOBEC). CESN operates a wide 

variety of environmental sensors and cameras on several of the Boston Harbor Islands 

(BHI). We are focusing on data from Thompson Island, specifically a bluff camera 

positioned at the northern tip of the island. This camera provides still images in five 

minute intervals during one hour before and one hour after each high tide. In this fashion, 

twenty four images are collected per tide cycle. Images from nighttime high tides are 

discarded as they would not provide any reasonable amount of information.  

In addition to the mentioned series of still images monitoring the northern bluff, 

we also have the coinciding environmental data collected by TIOBEC’s weather station 

on Thompson Island available. This data will become more important as future studies 

will aim to create an actual forecast model.  
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Whole Image Approach 

During the course of evolution, humans have developed the ability to focus on 

important pieces of information in images while paying less attention to or entirely 

ignoring areas that are of no concern (Kastner & Ungerleider, 2000). Through the process 

of natural selection the species has also become quite good at detecting motion (An, 

Gong, McLoughlin, Yang, & Wang, 2014). As a result, human subjects are able to 

compare two images showing the same scenery and quite easily point out small areas of 

change (Párraga, Troscianko, & Tolhurst, 2005) - even when a lot of unrelated change 

occurs in the remaining image (Kinsey, Anderson, Hadjipapas, & Holliday, 2011). This 

allows them to quickly observe and report erosion events in an image series. 

In Computer Vision, researchers do not have the luxury of working with hardware 

that has developed any such survival skills. In order to automatically detect occurring 

erosion in the given image series, we must develop a method to filter out noise before our 

algorithm can successfully find  and quantify erosion events. 

To solve this problem, we can either consider each image in its entirety or instead 

decide to split each image into smaller pieces and analyze them individually (Zhongli, 

Xiumei, & Jie, 2014). The whole image approach will require substantially more 

preprocessing but may provide the best results for erosion detection as it allows us to 

consider each change in a broader context (Aleksandrowicz, Turlej, Lewiński, & 

Bochenek, 2014). Let us therefore begin by analyzing each image in the series in its 

entirety.  
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Recurring Changes 

Our images series contains excellent examples of frequently recurring motion that 

would be detected by any motion or change detection algorithm the same way that actual 

erosion would be detected. Wave motion, shown in Figure 1, is an important example of 

such repetitive motion.  

  

Figure 1: Recurring Changes Caused By Wave Motion  

 

In order to limit these false positives, one needs to determine areas of particular 

volatility in the images (Cheng & Buckles, 2014) so that they may be excluded from any 

further analysis. We achieve this by first parsing every image and extracting the red, 

green and blue channels. This allows us to create average values for each pixel and each 

channel over the entire set of images. In effect, this creates an average image (Bisquert et 

al., 2015). 

As a second step we compare each individual image against the average and 

calculate the distance of each pixel and channel between the average image and the 

inspected one. This gives us a difference matrix which will also be averaged out over the 

entire series of images (Eivazi, Kolesnikov, Junttila, & Kauranne, 2015). We can use this 
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average variability matrix as a mask to ignore overly dynamic areas in the images. In our 

example we used a threshold value of 200. This means that if the combined average 

variability of a given pixel amounts to more than 200 across the three color channels, it is 

considered unreliable for our purposes and hence becomes a black pixel (0) in the black 

and white mask illustrated in figure 2. This arbitrary threshold may later need to be 

replaced by a dynamic value created by a machine learning algorithm.  

Figure 2: Image Mask 

  

Finally, we use this mask image and multiply it with each original image to obtain 

a series of masked images in which only reasonably constant pixels remain while those 

with high variability are replaced with black pixels (Fisher, 2013). As this operation is 

performed on every image, our subsequent change detection will not be affected by them. 

Figure 3 shows that most of the wave motion has been removed. We will deal with the 

relatively small remaining areas in a later step.  
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Figure 3: Mask Applied to Frequently Changing Areas 

  

  As this example illustrates, likely areas filtered out by this method include tidal 

waters as well as the sky – neither of which are of interest for the erosion analysis. In this 

fashion we not only decontaminate the images, but also reduce the amount of 

unnecessary information which can likely provide performance gains in real life 

applications relying on larger sample sets (Kastens et al., 2005). 

 

Short Term Averages 

Erosion is a relatively slow process and we are most interested in the occurrence 

of major events. Such major changes in soil configuration may well be the sum of 

multiple smaller erosions that happen during the same individual observation frame 

(Moura et al., 2012), yet for the further studies the exact time of each event will not be 

relevant. We therefore need not compare each of the 24 images during any given 

observation frame. Reducing the number of comparisons is not only computationally 

beneficial, but it also greatly assists with a significant problem posed by changing 

lighting and weather conditions.  
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As the sun’s position in the sky changes throughout each two hour observation 

frame, the lighting conditions will vary independently of any other noise in the images. 

As solar positions are perfectly predictable (Lai et al., 2015), one could consider 

calculating and adjusting for the different illuminations. This, however would be 

somewhat expensive and also would only solve one part of the lighting problem. As the 

sample data was obtained using nonscientific equipment, changing solar angles create 

secondary noise such as glare and reflections which are much harder to correct for 

(Ashique & Kaliyadan, 2011). This problem is exacerbated when one takes the reflective 

properties of moving water surfaces into account.  

But, as previously stated, this granularity is not actually needed. It will be 

sufficient to report change between observation frames or partial frames. We achieve this 

by simply merging a given number of sequential images from the same observation frame 

into one image that can be used for further analysis.  

When merging images, one typically needs to account for minor camera 

movements (Yue, Cai, Luo, Jin, & Zeng, 2015). The example in figure 4 contains 

considerable camera motion that is represented by a slight blur. This, however, will not 

significantly affect the further analysis as our focus is on larger change events meaning 

that we can safely sacrifice smaller feature detail in order to optimize the procedure. 

 

 

 

  

Figure 4: Short Term Average 
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  In this fashion we drastically reduce the number of images in the data set which 

will also save computing time later on. The exact aggregation ratio might be 

automatically optimized at a later stage while for our initial analysis a maximum of two 

images per observation frame will be used. In either case, ratios may vary as data sources 

will typically be incomplete. In order to deal with missing images, we simply select all 

images from any given frame and merge up to twelve of them into a new sample. 

Whenever more than twelve are available, they will be evenly split between merged 

samples.  

By creating such aggregates, short term changes in the image become less 

prominent (Benabbas, Ihaddadene, & Djeraba, 2011). Disturbances such as glare will be 

visible, but unless they happen to occur in the same location in each source image, they 

will be less dominant and hence less problematic during our further analysis. In this 

situation solar motion actually works to our advantage as it virtually guarantees that glare 

and undesirable reflections will not be in the same area of multiple images. 

 

Color Channel Omissions 

The CESN camera provides RGB images, meaning that it provides a full byte of 

brightness data for each color channel and for each pixel. In order to simplify the further 

processing, this breadth of information needs to be reduced to a narrower, more 

applicable scope. To achieve this, three are essentially three options: 

a) Convert the image to grey scale, effectively averaging the three color channels 

and producing a single intensity value for each pixel. This option would cut 

the amount of information to 1/3 and most features in the image will still be 
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detectable as figure 5 illustrates. However, color changes will be less 

prominent or may be entirely obscured if the overall intensity remains 

unchanged (Yoonessi & Zaidi, 2010). 

b) Convert images to HIS color space. In this case we could specifically analyze 

color changes while ignoring lighting induced changes in intensity. HIS is 

known to better represent many natural features (Ondimu & Murase, 2008). 

However, converting images takes considerable time (Nnolim, 2015).  

c) Split the color channels and potentially omit one or two of them. This might 

be particularly useful in bluff erosion situations as soils tend to be quite rich in 

red and green tones while blue may not be as important in determining 

changing ground configurations (García-Mateos, Hernández-Hernández, 

Escarabajal-Henarejos, Jaén-Terrones, & Molina-Martínez, 2015).  

Figure 5 shows a comparison between the an original sample image and its 

preprocessed counterparts. It is fairly evident that the approach using an HSI 

decomposition with subsequent intensity masking and recomposition is not as usable as 

hoped. Due to the high compression ratio in our original images, we generate a large 

number of unwanted edges and obtain an image of unacceptably low quality for further 

processing. At the same time it appears that in many cases hue and saturation do not vary 

across the source image as much as anticipated which means that we must maintain 

intensity values as well. This, unfortunately, eliminates the HSI approach. 

There is a noticeable difference in clarity between the two grey scale versions of 

the image. As expected, omitting the blue channel did provide better contrast. In this 
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example the last option even appears better suited for further analysis than the original 

image. While this cannot be assumed to be the case for all instances, we are confident 

that in no case should it generate notably inferior results. Considering the much lower 

processing time for a grey scale image versus an RGB image, we should therefore 

proceed with this grey scale image that was generated by averaging the original image's 

red and green channels. 

 

 

Original Image 

 

 

Greyscale 

 

Recomposition from HSI with constant I = 128 

 

Greyscale with Blue Channel Omitted 

Figure 5: Preprocessing Options 
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   Edge Detection 

Erosion is – by definition – characterized by a shift in soil contours (Steudel et al., 

2015). To find such shifts, we must first find said contours in our images. This can be 

accomplished using a wide variety of edge detection algorithms (Y. Wang, Wang, & 

LIU, 2003). This study uses a modified Sobel filter that allows us to detect horizontal and 

vertical edges separately (Singh et al., 2014). In the case of bluffs, virtually all erosion 

will be expressed by slumping soil that will result in changes of horizontal boundaries. 

Vertical edges may also change as slump scars occur (D. P. Smith, Ruiz, Kvitek, & 

Lampietro, 2005), but they can be ignored as they are not dominant indicators (Boak & 

Turner, 2005). In fact, they will almost always be accompanied by horizontal motion (da 

Silva, Huang, Francesconi, Saintil, & Villegas, 2015).  

Consequently we are most interested in horizontal edges which may be detected 

using just a part of the Sobel algorithm. The regular Sobel filters detect vertical and 

horizontal edges separately and then calculate the overall edge intensity as the square root 

of the sum of the squared individual filters (Singh et al., 2014). Our much simpler 

strategy employs only the horizontal filter. However, edges in images of natural soil will 

always be relatively smooth and edge strength has been further deteriorated by image 

averaging during the antecedent preprocessing steps.  

Rather than relying on the six neighboring pixels above and below (pixels to the 

left and right are obviously ignored in a horizontal edge detection), we will use six 

additional pixels – three from two rows above and three from two rows below. The 

resulting matrix will help us better assess horizontal edge strength in a smoothed image. 
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Using such a large filter has the negative effect of reducing the usable image size. 

We lose two rows on the top margin, two rows on the bottom margin and two columns 

each on the left and right image margins. In a 480*360px image, 3344 pixels or about 

1.9% of the overall image are hence sacrificed. We can reasonably accept this loss of 

information as it is very likely that the most interesting features will be found closer to 

the images center. This assumption is based on the fact that cameras will typically be 

aimed at whatever feature is of most interest to the individual operator. 

A larger convolution matrix also has the added disadvantage of significantly 

increasing computational requirements. The Sobel filter only requires six multiplications 

per pixel while our modified matrix requires twice as many.   

Figure 6: Edge Matrix 

  Figure 6 shows the masked edge matrix for the image introduced in figure 5. 

One can clearly see a large number of well defined horizontal edges. Compared to an 

edge matrix computed from the original image using a traditional Sobel filter (Figure 7), 

this is a considerable improvement. However, the nature of the image results in an 

undesirably high number of edges that are quite close to each other. This will negatively 

influence our motion detection as moving edges will overlap and hence be undetectable 

to any algorithm that relies on change matrices. 
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Figure 7: Original Sobel 

 
Changes 

We are interested in erosion events that will be expressed as changes between two 

observation periods. Each of these periods is now expressed by an edge image that we 

can use to detect any changes that may have occurred between two periods. Only 

comparing neighboring observations allows us to simply subtract one edge image from its 

successor. Working with grey scale, this will yield a matrix with pixel values ranging 

from -255 to +255. The sign of the values is dependent on the order in which the images 

are processed, but has no significant impact on our further analysis. We can therefore 

simply replace any negative value with its positive counterpart. This has the added 

benefit of strengthening change areas as both the previous and the new edge will be 

highlighted in the change matrix. Figure 8 show the strongest image over image change 

that this method detected.  

 

Results 

As figure 8 illustrates, even the strongest change detected still appears quite weak. 

This is a result of the substantial information loss caused by the intensive preprocessing 

required by the heterogeneity of the sample image series. Deteriorated images yielded 
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edge matrices of limited utility which ultimately resulted in an almost entirely black 

average change matrix shown in figure 9.  

Figure 8: Best Change Matrix 

    It appears evident that these results are not usable. In fact, none of our attempts 

to  quantify occurred changes yielded much better results than a random generated 

control. Consequently we must abandon the whole image approach and seek a better 

method of erosion detection and quantification.       

Figure 9: Average Change Matrix 

 

Image Segmentation 

Robustness 

As previously demonstrated, detecting erosion in series of natural images can be 

challenging. The constantly changing environmental conditions induce a large variability 

into image quality and the amount of information available in each image. We have 
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introduced a number of different strategies to counteract this variability but have also 

determined that in many cases certain areas of the image show very different changes 

than others. Consequently our response to a bright streak of sunlight in one half of an 

image may destroy perfectly usable information in other areas. Masking particularly 

volatile pixels or areas has reduced but not eliminated this issue.  

Since different areas of the image appear to change independently of each other, 

one needs to consider an alternate approach under which each independent area is 

analyzed separately. In this fashion corrective actions on one particular part of an image 

can safely be performed without negatively affecting any other area (Liau, 2014).  

In order to separately analyze particular regions within a given image, we must 

first determine a method to define such regions and separate the entire image into 

corresponding segments. As this study observes change over time, the segmentation will 

be identical for all images throughout the entire series.  

One possible approach would involve manual segmentation based on areas of 

interest. This is undoubtedly the most effective method as we could intelligently create 

heteromorphic regions based on preexisting observations. This manual preprocessing 

does, however, introduce complexity into the procedure of performing erosion detection 

in the field. It would require calibration each time a new observation is started and 

prevent easy adaptation to new cameras or locations. Therefore, the employed 

segmentation method must handle any image automatically and determine the areas of 

interest by itself.  
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However, automatic dynamic segmentation using any of the numerous common 

algorithms (S. Zhu, Zhao, Guo, & Zhang, 2013) proves mostly impossible as our images 

are naturally rich in non-gaussian noise which these algorithms are generally incapable of 

handling (Tenbrinck & Jiang, 2015). Principal component analysis is bound to fail due to 

the fact that there are no sufficiently significant objects. Virtually all erosion events 

happen in the image's background (Dronova, Gong, Wang, & Zhong, 2015).   

Finally let us consider the option of segmenting the image using a static 

segmentation grid.  As we will compare each pair of subsequent images in the series and 

attempt to detect erosion that occurred in the time span that passed between the moments 

the images were captured, this is a viable solution. It will automatically detect areas of 

interest, even if segments are defined somewhat arbitrarily (Z. Zhu & Wang, 2012). In 

order to facilitate further processing we avoid complex shapes and instead split the 

original image into a set of equally sized squares that can easily be processed separately. 

 

Recursive Segmentation 

Images can easily be broken into a given number of squares or into the most 

appropriate number of squares of a given size. Alternatively, we can recursively break 

down the image into smaller and smaller subsegments (Tang, Mu, Zhao, & Zhao, 2014) 

until a segment size of one pixel is reached. Each segment would subsequently be 

analyzed independently and then aggregated back into an analysis of each pair of whole 

images (Teng & Chang, 2012). 

 This would, of course, minimize the theoretical runtime using a parallel 

computing approach. However, while segmentation helps us to reduce the adverse effects 
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of erratic changes in one segment on others, erosion cannot be detected at the pixel level. 

By definition erosion occurs in areas as soil moves and changes in individual pixels are 

not suitable for motion detection in a given neighborhood. Therefore, a certain minimum 

segment size must be maintained in order to detect any change that might represent soil 

motion and hence indicate an erosion event. It can be expected that the optimal segment 

size will vary between different image series and observed land features. However, as 

previously eluded to, we do not aim to achieve the optimal solution for any one given 

case, but rather a usable solution that will apply to a larger number of general cases. We 

will therefore begin with a segment size of 120*120 pixels, breaking down our sample set 

into the twelve segments shown in figure 10.  

 

 

The differences between the quadrants are immediately apparent. Some have 

large proportions of sky. some are likely to see tidal fluctuations and others represent 

various segments of soil. It is important to note that this distribution is not the result of 

experiment design but rather an inherent feature of the segmented image set. The same 

 

Figure 10: Segmentation into 120px squares 
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approach will therefore work for a wide range of image series although the individual 

segments will obviously play very different roles when derived from other data sources.   

As previously discussed, we could employ a finer grid and split each image up 

into more individual segments. Consider the example of 48 segments in figure 11, each 

60*60 pixels in size. Obviously the segmentation and separation of different image 

contexts improves.   

 

Figure 11: Segmentation into 60px quares 

 

        However, this step necessarily also narrows the observational focus to a 

much smaller area within which motion of individual leaves might be detected more 

accurately than soil slumping that may occur throughout a number of neighboring 

squares. In our further analysis we will therefore mainly use 120*120px.  

 

Parallelizability 

By breaking down each image in the original series into multiple segments, we 

are creating a separate image series for each one of those segments. As a result our final 
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solution produces 12 separate series of evenly sized images and each one of these series 

must be prepared and processed separately. As the overall number of pixels across all 

segments does not increase in the segmentation procedure, the overall computational 

requirements are only increased by the overhead needed for segmentation and final 

reassembly of the data. However, these two steps are relatively cheap by comparison and 

hence do not significantly increase the procedure’s final runtime (Bejinariu, Costin, 

Rotaru, Luca, & Nit, 2014).  

While runtime will marginally increase, memory requirements decrease 

drastically as we can process smaller chunks of images sequentially rather than having to 

keep multiple sets of large images in memory to allow for the comparison based motion 

detection. This will allow this approach to run on smaller and less powerful hardware 

platforms.  

The same effect also makes the entire procedure highly parallelizable (L. Wang, 

Ma, Zomaya, Ranjan, & Chen, 2015). As each segmented image series can be processed 

independently of all others, we can easily process multiple series on any available 

processors or cores. It is, of course, likely that researcher implementing the work laid out 

in this thesis would not have sufficient cores available to assign each segment to its own 

core - particularly when working with larger images and/or very small segments. Hence a 

series parallel processing approach will yield the best performance and lowest overall 

runtime.  

Said runtime is, of course, heavily dependent on the original image series as the 

number of necessary comparisons will vary among different image qualities. It is 
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therefore not trivial to estimate the exact time the procedure will need for a given input 

size. It is, however, quite evident that segmenting the image creates immense 

parallelization opportunities which will reduce the time needed to detect motion and 

compute the overall erosion index. 

Segment Procedure 

Even using our small sample sizes, available computing resources are already a 

limiting factor. It is therefore imperative that image segmentation and segment analysis 

are performed in an efficient manner (L. Wang et al., 2015). We cannot afford to simply 

load the entire sample series into memory and selectively read and analyze each 

individual segment. Instead, each thread will be designed to only handle a very limited 

number of small image segments at any given time. To accomplish this, we sequentially 

load each sample image, create the appropriate number of segments and store them on the 

file system. In our initial case of 120*120px segments, this creates twelve separate series 

of segments.  

 

Segment Preparation 

Our primary goal in the image segmentation approach is the isolation of 

disruptive change that occurs in individual areas of the image. Such change might be 

caused by sunlight, changing tides or particularly unstable landscape features such as 

moving tree branches.  

Our previous whole-image-approach used a two pronged approach to this 

problem. We chose to ignore any image that deviated too far from the average and further 
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introduced the concept of masking. The latter process specifically addresses areas of 

excessive change throughout the entire observation period.  

The segmented approach still needs to filter out outliers in the original series, but 

the individual segments also allow us to implement a more robust volatility handling than 

the aforementioned masking. By considering only a small part of the image, we can 

simply ignore any instance that shows excessive change from its predecessor in the 

series. This was impossible using the whole image as a large number of images show 

excessive change in one small area while other areas are perfectly usable and might well 

contain important information. Ignoring just an individual segment that seems to be 

changing too fast will maintain that useful information while eliminating the harmful 

influence caused by an individual feature. 

 

Temporary Disturbances 

In some cases indicators of actual change may be hidden under a stronger signal 

caused by a temporary disturbance. For example, a particularly high tide might inundate 

parts of the bluff and then retreat to expose significant erosion. Simply ignoring the 

obviously excessive change from brown soil to white water presents the risk of missing 

the erosion effect altogether (Jia et al., 2011). In order to avoid this dilemma, a cascading 

comparison will be invoked whenever excessive change is detected. If a particular 

segment instance is deemed unusable, we will compare its predecessor to its successor 

instead and continue this procedure until the next sufficiently similar image is found or 

until a predefined threshold is reached. In this fashion we effectively interpolate missing 

data (Ayana, Worqlul, & Steenhuis, 2015) and greatly increase our chances of comparing 
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a segment photographed before a temporary disturbance to one that was taken afterwards. 

This procedure can thus detect change that occurs during such a disturbance. The 

accuracy of the event's timing naturally decreases, but this is clearly preferable over 

losing the event information altogether. 

Changing Lighting Conditions 

Even rather stable landscape features will be subject to varying lighting 

conditions that can introduce false positives into our motion detection attempts. While we 

have had limited success addressing this issue in the whole-image scope, working with 

individual segments allows us to adjust each individual area much more appropriately. 

The approach, however, remains largely unchanged. We generate an average image over 

the entire segment series, compute each individual segment's average deviation from that 

whole series average and stretch or compress each color channel individually in order to 

counteract lighting change that may have occurred throughout the entire segment (Dutta, 

Leahy, & Li, 2013). As neighboring instances within the segment series will all be 

subjected to the same treatment with respect to the same series average, all significant 

features will be maintained, allowing for higher sensitivity motion detection without 

losing pertaining information about items that may have shifted (Guo, Rage, & 

Ninomiya, 2013).  

After adjusting for changing light conditions, we must also create a new average 

image. This will naturally be much smoother than the original average image and provide 

a substantially more reliable basis for detection and handling of outliers in the subsequent 

difference analysis.  
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Image Comparison 

As previously eluded to, each image is compared to its predecessor or - in certain 

cases - with an image farther back in the timeline. In order to detect change between the 

two samples, we simply compute the absolute difference between each of the three color 

channels and average the resulting change to create an overall change matrix. Each 

processed image will result in a separate change matrix of identical size that represents 

lack of change by black pixels and increasing levels of change by lighter shades of grey. 

A white pixel in the change matrix hence implies that in one of the two sample images 

the corresponding pixel must have been white while in the other image that same pixel 

must have been black as this is the largest theoretically possible change between the two 

(Portillo-Portillo, Sánchez-Pérez, Olivares-Mercado, & Pérez-Meana, 2014).  

During the actual comparison we will reject any successor that represents an 

excessive change and proceed to the nearest subsequent image that can be used for a 

more reliable comparison. In most cases we consider the top 25% strongest sample over 

sample changes within each segment to be excessive. This step implements the 

elimination of temporary disturbances discussed in an earlier chapter. Figure 12 shows an 

array of resulting change matrices. Two segments at the bottom left corner were ignored 

as the change occurring there was considered excessive. The source images in figure 13 

reveal that this change was caused by moving water which indeed should be ignored for 

our purposes. 
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Figure 12: Assembled Change Matrix 

The same images also show a very distinct erosion event in the bottom right 

corner which is well represented in our change matrices. We still have an undesirably 

strong signal in the upper left corner, where changing lighting conditions result in a false 

positive that will negatively influence the accuracy of our desired erosion index. 
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Figure 13: Source Images Used 

Index Generation 

After creating a series of change matrices, we can compute a change index for 

each of the underlying observation frames. Any such index has to be designed to detect 

particular types of changes. In our case we aim to detect erosion events which tend to be 

localized within the image. They are also expected to have a certain continuity as erosive 

slumps typically affect a significant area and do not leave interspersed features 

unchanged.  

Consequently this erosion index has to amplify smaller regions of connected 

change activity while squelching random changes observed throughout the entire image. 

Such indices are widely used for purposes such as building change detection (X. Huang, 

Zhu, Zhang, & Tang, 2014) or vegetation change monitoring (Vicente-Serrano et al., 

2015). Some algorithms make use of different refractive properties of moving objects 

(Rozanov, 2004). This, however, will not be useful in our case as we are monitoring soil 

with rather homogeneous refractive values (Peltoniemi, Hakala, Suomalainen, & 

Puttonen, 2009). 

It would be possible to parse each change matrix for bright pixels and 

subsequently analyze the size of each connected area of interest. This would undoubtedly 

yield the best results, but it would at the same time be very expensive in computational 

terms. In order to reduce infrastructure requirements, we will instead rely on the fact that 

change areas tend to be brighter - or more intense - at their centers while the outer 

perimeters are often weaker. Excessive change events were already filtered out in a prior 

step which assures that at the index generation step, the brightest spots will represent the 
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most significant change events in the image. We can hence simplify our index generation 

and simply assign a higher weight to particularly bright spots. This is achieved by 

computing the root mean cubed intensity using the following simple formula: 

𝐼𝐼 =  
1
𝑋𝑋𝑋𝑋

 ∗  ��  
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    where Px,y is the intensity of the pixel at coordinates x,y 

 

We use a cubed intensity value as the change matrices obtained during the change 

detection phase are generally relatively dark and the few bright spots scattered throughout 

them are most likely to indicate localized change. Large scale minor changes may be 

represented by larger numbers of low intensity grey pixels throughout the entire matrix 

which receive a much lower weight using this method. 

 

Reassembling the Image 

The described method yields a set of up to twelve change indices per image. Our 

previous example from figure 13 shows moderate washout in the bottom right corner. At 

the same time the observer will notice the much more noticeable - although irrelevant - 

recession of the tidal water on the lower left side.  

Our change indices in figure 14 clearly indicate the areas of relevant change while 

ignoring the water's motion on the left. In this visualization indices over 65 are colored 

red while missing figures indicate ignored change indices.  
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Figure 14: Change Indices 

While this example highlights the capabilities of our approach, it also includes a 

counterexample in which a very high index was computed for the top left segment due to 

the changing lighting conditions in this area. These changes were not excessive enough to 

be filtered out during the generation of the change matrices, but clearly overpower the 

remaining individual segment indices. We must expect such residual disturbances to 

occur intermittently and hence deploy a robust method that will create a reliable overall 

change index for to the sample image.   

It is apparent that a mere arithmetic average will be unduly skewed by these 

undesirably high values. Simply using the median would eliminate the disturbance 

altogether but at the same time remove an unacceptable number of higher indices that 

indicate actual erosion in their corresponding segment.  

Our algorithm hence uses a count based index generation (Yang et al., 2013). We 

consider each available segment change index and count only those that exceed a certain 
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threshold. This threshold can be adjusted for different assignments as needed, but in our 

tests we consistently found 50 to be a practical value. The resulting occurrence count is 

reported as the overall change index for the corresponding image in the overall sample 

series.   

This final step results in a time series data point that can easily be plotted over the 

entire observation period or any desired smaller timeframe. As our original image series 

only contains pictures from the two hour periods around each high tide, the resulting 

graph shows relatively few data points. This is further exacerbated by the fact that certain 

high tides occur at night and the images from others may be unusable due to lighting 

conditions, obscurations, camera defects or other adverse external effects. The resulting 

plot would hence be a very sparsely populated scatter plot that would not be of great use 

for the intended audience as the erosion data will be compared with other more frequently 

observed and reported data streams. To maintain compatibility with these streams we 

interpolate the erosion index into a continuous graph as illustrated in figure 15.  

 

Figure 15: Interpolated Erosion Index Graph 
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CHAPTER III 

RESULTS 

 

 

 

Plottable Index 

As we have stated before, the final goal of this study is to derive and generate an 

index that can be used to analyze the occurrence and intensity of erosion events in respect 

to other environmental influences. Future studies may well rely on this index in their 

correlation or regression analyses and while these are not part of our work, we can 

certainly show that our index can now be plotted against other existing data for the same 

time period. Consider, for example, the wind gust readings from the weather station 

located atop the main campus building on Thompson Island. Figure 16 not only shows 

the two graphs plotted alongside each other, but immediately appears to suggest a certain 

correlation. The latter will, of course, need to be proven in a separate study. It should be 

noted that when no erosion data is available, the index defaults to zero. This explains the 

unexpectedly flat line in the morning of November 21st. 
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Figure 16: Erosion Index and Wind Gusts 

 

Accuracy 

Erosion events can be defined and classified in a multitude of ways which makes 

an entirely objective test of accuracy impossible. We can, however, compare our reported 

index to the subjective observations reported by individuals assisting in the visual 

inspection of all images in the series. To facilitate this measurement, we define two lists 

of events - Table 1 contains those that were observed by the human audience and table 2 

lists those only indicated by our erosion index.  

  Table 1 shows that out of the fifteen actual erosion events that occurred during 

the observation period, our automated analysis correctly identified ten. This represents a 

rather impressive true positive rate of 67%. In addition to the fifteen actual events, the 

index also erroneously indicates the existence of four additional events shown in table 2. 
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Table 1: Actual Erosion Events 

Event Start Event End   Detected ? 
  

  
  

11/20/14 7:20 PM 11/23/14 8:25 PM 
 

No 
11/23/14 9:45 PM 11/24/14 9:10 PM 

 
Yes 

11/24/14 10:00 PM 11/25/14 9:47 PM 
 

Yes 
11/25/14 11:07 PM 11/27/14 11:40 PM 

 
Yes 

11/28/14 12:50 AM 11/30/14 1:39 AM 
 

Yes 
12/1/14 4:39 PM 12/2/14 4:18 PM 

 
No 

12/2/14 4:58 PM 12/3/14 5:15 PM 
 

Yes 
12/3/14 5:25 PM 12/4/14 7:18 PM 

 
Yes 

12/5/14 8:18 PM 12/6/14 7:45 PM 
 

Yes 
12/6/14 9:05 PM 12/7/14 8:30 PM 

 
Yes 

12/7/14 9:50 PM 12/8/14 9:07 PM 
 

No 
12/8/14 9:37 PM 12/13/14 12:11 AM 

 
Yes 

12/16/14 4:36 PM 12/19/14 5:52 PM 
 

No 
12/19/14 6:22 PM 12/25/14 11:14 PM 

 
Yes 

12/31/14 4:18 PM 1/27/15 2:44 AM   No 
 

          

                Table 2: False Positives 

Event Start Event End 
    

11/18/14 5:23 PM 11/18/14 6:33 PM 
12/7/14 9:00 PM 12/7/14 9:20 PM 

12/27/14 12:54 AM 12/28/14 12:15 AM 
12/28/14 1:52 AM 12/29/14 1:32 AM 

 

 

False positives can be caused by a wide variety of disturbances. Figure 17 

compares the images before and after the first false positive. It is evident that no erosion 

has occurred, but a large number of leaves have been deposited - presumably by a mild 

wind gust. The red ellipse marks a particularly noticeable deposit. This change is subtle 
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enough to pass through our preprocessing steps and yet strong enough to register as a 

significant event.  

 

  

Figure 17: Example of a False Positive  

 

Using a basic single camera it is not possible to distinguish leaves from small 

rocks that could have been exposed by soil erosion. Therefore, such false positives cannot 

fully be avoided. However, the number of these cases is not particularly concerning when 

one  considers the length of the observational period and the much larger number of 

actual events in that timeframe. 

 

Statistical Significance 

In addition to testing the index against human observations, we can also analyze 

potential correlations with a set of environmental data streams that were by the weather 

station located atop Thompson Island's main campus building. Some of these 

measurements are known to be indicative of erosion inducing microclimates. This, for 
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example, holds true for wind speeds and particularly wind gusts (Arnalds, Gisladottir, & 

Orradottir, 2012) as well as precipitation rates (Blodgett & Isacks, 2007). Unfortunately 

the deployed hardware does not reliable record the latter. We do, however, have a breadth 

of other measurement available. Table 3 illustrates that at least five of these observations 

are significantly correlated with the computed erosion index. This includes both wind 

speed and wind gusts which strongly suggests that the index is indeed a valid measure of 

erosion events. 

  

         Table 3: Statistical Significance  

 P-Value Coefficient 

Rel. Humidity 0.007064 -0.1106 

Wind Speed 0.004931 0.2580 

Wind Gusts 0.001963 0.1961 

Temperaure 0.001247 -0.2159 

Dew Point 0.000062 -0.2644 
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CHAPTER IV 

DISCUSSION 

 

 

 

Results 

We have demonstrated that an image series obtained using a single stationary low 

cost consumer grade digital camera can be used to detect bluff erosion using only the 

visible light spectrum. It has become apparent that in order to quantify the intensity of 

observed erosions, one must isolate them from a large number of extrinsic disturbances 

such as changing tidal phases, wave motions, dominant sunlight and camera 

malfunctions.  

We have been able to achieve better than anticipated results using an image 

segmentation technique that divides each image into square chunks. Erosion events were 

detected with a true positive rate of 67% while a relatively small number of false 

positives occurred. This excellent result can be explained by the fact that each 

subsegment of the original image is immune against disturbances such as sun rays or 

wave motion that may occur in other parts of the image. In addition to the improved 
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results, segmentation also allows for significant performance gains as the resulting 

segment series can be processed in parallel. 

Finally we have stored and plotted the resulting erosion index alongside existing 

environmental data which suggests certain correlations between erosion events and 

meteorological influences such as wind gusts. We are confident that this method will 

form a solid basis for further research into coastal or bank erosion and that it will reduce 

the cost of data acquisition for researchers in various related fields.  

 

Application 

Most immediately, we suggest that interested parties employ our method to 

discover potential correlations between meteorological data and erosion event within the 

observed area. In this context it is particularly interesting whether such correlations exist 

between geographically disconnected data sources and - most importantly - whether one 

can show such correlations between past meteorological data and present erosion events. 

Such a correlation could be used to derive an erosion forecast based on current weather 

data and hence help coastal communities better assess the risk of impeding erosions. 

Knowing which stretches of coastline or river banks may be at risk will allow for better 

disaster preparedness and facilitate the proper response to significant erosion events.    

  

Further Research 

As our method uses simple visual spectrum image series obtained with regular 

consumer grade digital cameras, it might also be adapted for entirely different purposes. 
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In our analysis, we break down an image into smaller segments, analyze each segment 

with the goal of detecting motion and then finally quantify the overall motion within the 

image in order to report a change index. This works quite well for erosion, but could 

certainly be equally useful to detect other small scale changes that occur over longer 

periods of time. Researchers might, for example, be interested in monitoring algae 

growth in lakes using a camera mounted at a certain elevation - possibly on a pole, an 

existing structure or, where permissible, on natural features such as trees.  

Our method might also be useful for more complicated analyses such as the long 

term development of plant health. The different reflectivities of healthy and unhealthy 

vegetation is well documented and understood (Nijland et al., 2014), hence interested 

parties could use visual spectrum cameras or - where available - infrared spectrum 

cameras to create panoramic image series and monitor long term change that can, for 

example, be used to find correlations with climate change data. Aside from plant health, 

the spread of invasive species can be monitored in the same way (Müllerová, Pergl, & 

Pyšek, 2013).  

The concept of tracing and quantifying small scale changes is highly transferrable 

and hence makes our method an extremely useful tool for a wide variety of scientific 

applications. However, our most immediate focus is on the monitoring and forecasting of 

erosion threats along the world's rivers banks, lake shores and coastlines. This, we hope, 

will result in reduced cost for communities and maybe even help to save human lives.  
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