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ABSTRACT

EVOLUTIONARY DYNAMICS ON COMPLEX NETWORKS

June 2013

Swami Iyer
B.E., VESIT, Bombay, India

M.S., University of Massachusetts Boston, USA
Ph.D., University of Massachusetts Boston, USA

Directed by Associate Professor of Mathematics Timothy Killingback

Many complex systems such as the Internet can be represented as networks, with

vertices denoting the constituent components of the systems and edges denoting the

patterns of interactions among the components. In this thesis, we are interested in how the

structural properties of a network, such as its average degree, degree distribution,

clustering, and homophily affect the processes that take place on it. In the first part of the

thesis we focus on evolutionary game theory models for studying the evolution of

cooperation in a population of predominantly selfish individuals. In the second part we

turn our attention to an evolutionary model of disease dynamics and the impact of

vaccination on the spread of infection. Throughout the thesis we use a network as an

abstraction for a population, with vertices representing individuals in the population and

edges specifying who can interact with whom. We analyze our models for a well-mixed

population, i.e., an infinite population with random mixing, and compare the theoretical

results with those obtained from computer simulations on model and empirical networks.
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varying average degree d. . . . . . . . . . . . . . . . . . . . . . 299

82. Evolution of mean virulence c̄ on Barabási-Albert networks
with varying average degree d. . . . . . . . . . . . . . . . . . . 300

83. Long-term value c̄∞ of mean virulence versus average degree d,
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CHAPTER 1

INTRODUCTION

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is

the most adaptable to change.

- Charles Darwin

A network is a collection of vertices connected together in pairs by edges. There are

many real-world systems that are composed of individual components linked together in

some fashion and which can be thought of as networks. For example, we can consider the

Internet as a (technological) network [CCG02, FFF99], with the vertices denoting

computers and routers, and the edges denoting the physical connections between them; we

can consider the patterns of interactions among individuals in a population to form a

(social) network [Zac77], with the vertices denoting individuals in the population, and the

edges denoting who interacts with whom.

Real-world networks are called “complex” networks, and the systems they represent

are called “complex” systems. This is because: these systems/networks exhibit emergent

phenomena; their whole is larger than the sum of their constituent parts; they can adapt to,

evolve, and resist random removals of their components; and they exhibit complications

on all scales possible within the physical constraints of the system [BBV08].

Scientists study networks for various reasons, one of which is to understand how the

structure of a network affects its function [AB02, New03]. For example, the structure of

the Internet affects the efficiency with which it transports data; and the structure of a

social network affects how people learn, form opinions, and affect phenomena, such as the

spread of a disease. Our goal in this thesis is to study how the structural aspects of a
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network affect the long-term behavior of dynamical processes that take place on the

network, such as the evolution of cooperative behavior, and the spreading of a disease in a

population. We represent the population as a network, with vertices corresponding to the

individuals in the population, and the edges corresponding to the interaction patterns

among the individuals.

In Chapter 2 we provide a brief introduction to complex networks. We look at some

examples of real-world networks, which are typically divided into four broad categories:

technological networks, social networks, information networks, and biological networks.

We describe key concepts from network theory used in the description and analysis of

networks, restricting ourselves to those that are most pertinent to our work. Some of these

concepts include: degree of a vertex which is the number of neighbors that the vertex has;

average degree of a network which is the average value of the degree of all the vertices in

the network; degree distribution which is the frequency distribution of the degree of

vertices in the network; clustering coefficient of a network which measures the extent to

which vertices in the network tend to cluster together; and homophily coefficient of a

network which measures the tendency of the vertices in the network to associate with

others whom they perceive as being (dis)similar to themselves. We consider several

mathematical models for building networks that resemble the ones seen in the real world.

Such model networks are incredibly valuable in our study because they allow us to freely

change the network properties and learn about their effects on the processes taking place

on the networks. The model networks we consider are: complete networks in which every

vertex is connected to every other vertex; random regular networks [Wor99] in which

every vertex is connected to a fixed number of other vertices; Erdős-Rényi networks

[ER59, ER60, ER61] which have Poisson degree distributions; Barabási-Albert networks

[BA99] which have power-law degree distributions; power-law networks [HK02] with

clustering; and power-law networks [XS04] with homophily. Model networks do not
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entirely match the properties of real-world networks. We would like to know if the subtle

differences that exist between the model and real-world networks have an effect on the

outcome of dynamical processes that take place on the networks. We conclude the chapter

by listing the basic properties of select real-world networks that we will use—in addition

to the model networks—as substrates for the dynamical processes that we consider in this

thesis. The empirical networks we consider are: a symmetrized snapshot of the structure

of the Internet at the level of autonomous systems, reconstructed from BGP tables posted

by the University of Oregon Route Views Project; a network of coauthorships between

scientists posting preprints on the High-Energy Theory E-Print Archive [New01]; network

of coauthorships between scientists posting preprints on the Astrophysics E-Print Archive

[New01]; a portion of the New Orleans Facebook network of user-to-user links [VMC09];

a snapshot of the Gnutella peer-to-peer file sharing network [LKF07, RF02]; and a

network of protein-protein interactions in the yeast S. cerevisiae [JTA00, JMB01].

The interactions among individuals in the processes we consider are such that their

outcome to an individual depends not only on the state or action of that individual, but

also on the states or actions of that individual’s neighbors, i.e., the individuals with whom

the given individual interacts. For example, when an animal fights another animal over a

territory, whether or not it uses a passive or an aggressive fighting strategy depends on the

strategy used by its opponent [SP73, Smi74]; similarly, in an epidemic outbreak in a

population, whether or not an individual is infected, and the extent to which the individual

is infected, depends not only on the state (susceptible or immune) of the individual but

also on the state (infected or not) of the individual’s neighbors and extent to which they

are infected [AM92]. Such interdependent interactions are best understood in the

language of game theory.

Classical game theory [NMK07] provides a mathematical framework for describing

and analyzing strategic interactions between rational individuals. Ideas from classical
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game theory are applicable not only to contexts that are literally games, such as chess or

poker, but also in settings that are not manifestly games [EK10], such as the pricing of a

new product when other firms have similar new products, deciding how to bid in an

auction, choosing a route on the Internet or through a transportation network, or deciding

whether to adopt an aggressive or passive stance in international relations. The theory

assumes that the interacting decision makers (players) are rational, i.e., they act so as to

maximize their payoffs. It is also assumed that in reasoning about behavior in strategic

games, each player actually succeeds in selecting the optimal strategies. In simple games

played by experienced players, this is a reasonable assumption. But if the players are

inexperienced and the games complex, then this assumption is often violated. It is also

unreasonable to assume that the players will always behave rationally. Thus, individuals

cannot always be expected to play games the way classical game theory predicts they

should, and in fact they do not [GH01]. Furthermore, if we intend to apply the

game-theoretic ideas to non-human organisms—and our models are indeed applicable in

such settings—then the assumption about rational behavior must be relaxed.

A refinement of classical game theory, called evolutionary game theory

[SP73, Smi74], incorporates ideas from Darwinian evolution [Dar69], and does not

assume that the interacting individuals are rational. The theory has been enormously

successful in evolutionary biology, and more recently, has also been extended to social

settings [SN99]. In spite of the radical differences in how the two theories perceive

strategic interactions, there are some deep connections between the two. In addition to

providing a framework for describing situations in which individuals are not overtly

making decisions, evolutionary game theory allows us to model the process by which

frequencies of strategies change in a population. Once a model of the population

dynamics is specified [Zee80], all of the standard concepts from dynamical systems

[Str94, Ban05], such as attractors and stability, can be applied.
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The models we propose in this thesis do not lend themselves to easy experimentation.

We instead rely heavily on computer simulations to illustrate and verify our models. We

propose agent-based models [Bon02] for in-silico emulation of how individuals in a

population might behave if our models were implemented in reality. We use the

agent-based models not only to verify the predictions made by our models, but also to

simulate scenarios that are mathematically intractable.

We begin Chapter 3 with an introduction to classical game theory. We describe

concepts such as rational behavior, games and their types, representation of games,

strategies, payoffs, and ways (called solution concepts) to reason about optimal strategies

in a game, including the all important Nash equilibrium and the related Nash’s existence

theorem. We introduce the three canonical two-player, two-strategy games: prisoner’s

dilemma, chicken, and coordination games, and identify the Nash equilibria in each. We

conclude the discussion of classical game theory by highlighting some of its drawbacks.

The next topic we consider is that of evolutionary game theory. We revisit the concepts

from classical game theory and discuss them in the light of Darwinian evolution. We

describe the central concept of an evolutionarily stable strategy (ESS), and its relationship

to the idea of Nash equilibrium from classical game theory. We reconsider the three

canonical two-player, two-strategy games and identify the ESSs in each. We conclude the

section on evolutionary game theory by discussing some of its shortcomings.

We next look at games from a dynamical systems standpoint. We discuss replicator

dynamics [TJ78] and adaptive dynamics [GKM97, MB07] for analyzing discrete games

with two or more strategies and continuous-strategy games respectively. We conclude the

chapter by looking at agent-based models for simulating evolutionary dynamics on a

computer.
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In Chapter 4 we turn our attention to one of the two dynamical phenomena that this

thesis proposes to study, namely the evolution of cooperative behavior in a population of

selfish individuals. Cooperation—an act costly to individuals performing it, but beneficial

to others—is essential for the formation of systems at all levels of complexity, from

replicating molecules to multi-cellular organisms to human societies. Examples of

cooperative behavior abound in the life, social, and information sciences. We sample a

handful of them here.

Cooperation in the life sciences: assembly of earliest replicating molecules to form

larger replicating entities capable of encoding more information [SS97]; integration of

once free-living prokaryote ancestors of mitochondria and chloroplasts into eukaryotic

cells [SS97]; differential production of intracellular products needed for replication in an

RNA phage—a virus that reproduces inside a bacterium [TC99]; vampire bats sharing

blood with one another [Wil90]; lions hunting and defending their territories in packs;

predator inspection in guppies and sticklebacks [Mil87]; animals engaging in

allogrooming [MH97]; and alarm calls in animals in response to danger [SCM80].

Cooperation in the social sciences: coordinating on social norms such as greeting

customs, dress code, and driving regulations; political activism; consumption of

performance-enhancement drugs in competitive sports; nuclear arms race; blood donation;

evolution of nation states from hunter gatherer societies; evolution of language and

culture; and dependence on natural resources such as fossil fuels, the global atmosphere,

or the world’s fisheries, as well as man-made resources such as social welfare

[MSK06, Ost90].

Cooperation in the information sciences: correct implementation of the TCP protocol so

as to avoid congestion in Internet traffic [LS08]; contributions towards free and

open-source software development; working in groups on a software engineering project;
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sharing files over a peer-to-peer network [RF02, SR04]; sharing Internet bandwidth

[Ost90]; and adopting uniform technological standards such as encryption protocols.

In spite of its ubiquity, obtaining a satisfactory understanding of the origin and

stability of cooperation is fundamentally difficult [Dug97, Fra98, Kol98, SS97]. From a

purely sociological standpoint, the difficulty is obvious. An act of cooperation by an

individual benefits another individual, but is costly to the one cooperating. Why should

then individuals cooperate if they can reap the benefits of cooperation without bearing the

costs of cooperating themselves? Explaining the evolutionary origins of cooperation is

just as hard. Cooperation, from an evolutionary perspective, means that individuals forgo

some of their reproductive potential to help one another. Selfish individuals on the other

hand always have a higher fitness than cooperators, since they receive the benefits of

cooperation without bearing the costs. Therefore, in a world of non-cooperators, a

cooperative mutant would be eliminated by natural selection, and it is thus hard for

cooperation to evolve in the first place. Furthermore, even if cooperation is established by

some means, it cannot be stable, since selfish mutants can invade the population and

increase in frequency until the cooperators have been eliminated.

Social interactions among individuals in a population can be studied using classical

and evolutionary game theory, and various discrete and continuous games can be used to

model cooperative behavior. It is, however, often very difficult to determine the payoffs to

the interacting individuals and hence to determine with absolute certainty whether the

payoff structure meets the requirements of any particular model. There are some

exceptions. In the RNA phage described in [TC99], the payoff values can be measured

with some precision. In case of individuals sharing Internet bandwidth, it is in principle

possible to measure the payoffs to the individuals.
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We study discrete forms of cooperative behavior, in which individuals either cooperate

or defect, using the three canonical two-strategy games: prisoner’s dilemma, chicken, and

coordination games. We formulate the three games in terms of two strategies, namely

cooperation and defection. The chicken and coordination games formulated in this

manner are called the snowdrift and sculling games respectively. Analysis of the three

games using classical and evolutionary game theory suggests that in the prisoner’s

dilemma game, the best thing for an individual to do is to defect. Absent any external

mechanism, cooperation is thus not possible in the prisoner’s dilemma game. In the

snowdrift game, it is best to cooperate when the other individual defects, and vice versa.

Cooperators can thus coexist with defectors in the snowdrift game. Finally, in the sculling

game, the best thing for an individual to do is to imitate the opponent, i.e., cooperate

(defect) if the opponent cooperates (defects).

Prisoner’s dilemma has been extensively studied as a model for cooperative behavior

[Dug97, Now06b, SN99]. There are five mechanisms that have been proposed for the

evolution of cooperation: kin selection [Ham63], direct reciprocity

[Axe06, NS92, NS93, Tri71], indirect reciprocity [NS98, NS05], network reciprocity

[LHN05], and group selection [TN06]. Apart from [HD04], the snowdrift game has

received very little attention as a metaphor for cooperation, even though the chicken game

is quite extensively studied in the fields of political science, economics, and biology as

models of conflict between two players [Rus59, SP73, SF07]. The sculling game

formulation, to the best of our knowledge, is entirely new, although games in the

coordination class, such as the stag-hunt game, have been studied in social science, as

models for situations in which all parties can realize mutual gains, but only by making

mutually consistent decisions [Sky03, SF07].

We propose assortative interactions [Gra90] as a mechanism for promoting

cooperative behavior. Assortative interaction is closely related to the idea of kin selection

8



[Ham63], which was suggested by William Donald Hamilton, a British evolutionary

biologist widely recognized as one of the greatest evolutionary theorists of the 20th

century, as a possible mechanism for the evolution of altruistic behavior. In a well-mixed

population—an infinitely large population with random mixing, an assortative interaction

is an interaction among individuals of the same type, which in the context of games would

mean individuals playing the same strategy. We quantify the level of assortative

interactions among individuals using a single parameter r ∈ [0,1], called the degree of

assortativity, and which is interpreted as the probability with which an individual interacts

with another individual of its own type. In a population represented as a network, the

structure of the network dictates who can interact with whom, and thus induces a degree

of network assortativity in game interactions, which bears an inverse relationship to the

average degree of the network. We are interested in how assortativity affects the fraction

of cooperators in a population. As we shall see, assortativity is an essential ingredient for

cooperation in the prisoner’s dilemma game, and in the case of the snowdrift and sculling

games, it promotes higher fractions of cooperators.

Chapter 4 is organized as follows: we present a framework of replicator dynamics

[TJ78], modified to take into account assortative interactions; we propose agent-based

models for emulating the prisoner’s dilemma, snowdrift, and sculling games on a

computer; we formulate the games as models for cooperation; we analyze the games for a

well-mixed population using the modified framework of replicator dynamics; we present

results of simulating the games on model and empirical networks and provide a general

discussion of the results; and finally, we conclude the chapter with suggestions for future

inquiry.

Cooperative behavior is not always discrete in nature. For example, when vampire bats

share blood with one another [Wil90], or when individuals share files over a peer-to-peer

network [RF02, SR04], they exhibit varying levels of cooperative behavior. Besides not
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being able to take degrees of cooperative behavior into account, discrete game models

suffer from another problem in that they consider the invasiveness and stability of fully

developed, highly cooperative interactions, despite the fact that the gradual evolution of

cooperation from an initially selfish state represents a more plausible evolutionary

scenario. A framework which allows different degrees of cooperation is thus more natural.

Once variable levels of cooperation are considered it becomes possible to study the crucial

issue of how cooperation can evolve gradually from an initial state consisting of

non-cooperative entities.

Situations in which individuals exhibit varying degrees of cooperative behavior can be

described using continuous games, and this is the topic of Chapter 5. The level of

cooperation or investment of an individual is that individual’s strategy in the game. An

investment is represented as a continuous variable, and the cost and benefit associated

with an investment are represented as continuous functions of the investment. We consider

three continuous games: the continuous prisoner’s dilemma game (CPD) in which a

cooperative investment made by an individual (donor) towards another individual

(recipient) benefits the recipient but costs the donor; the continuous snowdrift game

(CSD) in which the cooperative investment benefits both the donor and recipient but costs

the donor; and the continuous tragedy of the commons (CTOC) game in which the

cooperative investment—in this context an investment means the level of consumption of

a limited common-pool resource, and cooperative investments mean modest levels of

consumption—benefits the donor but costs both the donor and recipient.

In the CPD game, just as in the case of the discrete prisoner’s dilemma game, absent

any external mechanism, the investments made by individuals will gradually evolve to

zero for any cost and benefit function. Various mechanisms have been proposed for the

promotion and maintenance of cooperative investments in the CPD game. In [KDK99] the

authors show that when the CPD game is played on two-dimensional spatial lattices,
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investments evolve readily from very low levels to significant levels corresponding to

cooperation. In [KD02] the authors consider the CPD game in a well-mixed population

and demonstrate both analytically and by simulation, that payoff-based strategies, which

is the idea that individuals invest more in cooperative interactions when they profit from

these interactions, provide a natural explanation for the gradual evolution of cooperation

from an initially noncooperative state and for the maintenance of cooperation thereafter.

In [IKD04] the authors examine the effect of increasing the neighborhood size when the

CPD game is played on a two-dimensional lattice, and one of their findings is that the

mean-field limit of no cooperation is reached for a critical neighborhood size of about five

neighbors.

In the CSD game, depending on the nature of the cost and benefit functions, different

evolutionary outcomes are possible. In [DHK04] the authors study the CSD game in the

context of a well-mixed population. They provide a complete classification of the adaptive

dynamics for quadratic cost and benefit functions. Depending on the coefficients of these

functions, the end state of the population can be: a state in which high and low investors

can coexist—termed “tragedy of the commune” by the authors; a state in which every

individual invests the same amount; or a state in which every individual makes either zero

investment or the maximum possible investment.

In the classic tragedy of the commons [Har68], each individual benefits from

consuming the common-pool resource, but the incurring costs are diluted and shared

among all interacting individuals. As a result, the common resource is prone to

exploitation and self-interest drives over-consumption of the resource to the detriment of

all. In [KDH10] the authors consider the CTOC game in a well-mixed setting and

demonstrate that the evolutionary outcomes based on a continuous range of consumption

levels of common-pool resources are often strikingly different from the the classic tragedy

of the commons. The authors reveal a second tragedy: not only is the common resource
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overexploited, but selection may result in states in which high and low consumers stably

coexist.

We propose, as we do for the discrete games, assortative interactions [Gra90] as a

mechanism for promoting and maintaining cooperative investments. In a population

represented as a network, the structure of the network induces a degree of network

assortativity in game interactions. We are interested in how assortativity affects the level

of investments made by individuals. As we shall see, assortative interactions provide a

mechanism for the promotion and maintenance of cooperative investments.

Chapter 5 is organized as follows: we present the framework of adaptive dynamics

[GKM97, MB07], modified to take into account assortative interactions; we propose

agent-based models for emulating on a computer how individuals in a population might

play the CPD, CSD, and CTOC games; we analyze the games for a well-mixed population

for general cost and benefit functions using the modified framework of adaptive dynamics,

and also consider a few specific cost and benefit functions for which the analysis is

tractable; we present results of simulating the three games on model and empirical

networks and provide a general discussion of the results; and finally, we conclude the

chapter with suggestions for future inquiry.

In Chapter 6 we turn our attention to the other dynamical process on complex

networks, namely the spreading of infectious diseases in a population. Humans, for a long

time, have been battling with deadly diseases such as small pox, malaria, tuberculosis,

cholera, and somewhat recently, with HIV/AIDS. Some of the most devastating

pandemics—diseases that affect people over an extensive geographical area—witnessed

by human history include: the Plague of Justinian (541-750) that killed between 50% and

60% of Europe’s population [Bec]; the Black Death (1347-1352) that killed about 25

million individuals in Europe [Bec]; the introduction of smallpox, measles, and typhus to
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the Americas by European explorers during the 15th and 16th centuries that caused

millions of deaths among the the natives [DC96]; the first European influenza epidemic

(1556-1560) that killed about 20% of the population [DC96]; smallpox that killed an

estimated 60 million Europeans during the 18th century [His]; tuberculosis that killed

about a quarter of the adult population of Europe in the 19th century [DP]; and the

influenza of 1918 (or the Spanish Flu) that killed 25-50 million people [Lib].

The World Health Organization (WHO) collects information on global deaths by

International Classification of Disease (ICD) code categories, a health care classification

system that provides codes to classify diseases [Org]. Table 1 lists the top infectious

disease killers which caused more than 100,000 deaths in 2002, with the 1993 data

included for comparison [Org95, Org04]. The top three killers are HIV/AIDS,

tuberculosis, and malaria. While the number of deaths due to nearly every disease have

decreased, deaths due to HIV/AIDS have increased fourfold.

Modern technological societies have witnessed a new kind of virus, namely the

computer virus—a computer program that can replicate itself and spread from one

computer to another—which has disrupted productivity and caused billions of dollars in

damage [KSC97, Kle07, LM01]. Some of the worst viruses that have wreaked havoc in

the computer world include: Melissa, which attacked computers in 1999. The first fifty

individuals in a user’s Micosoft Outlook contact list were sent an infected Microsoft Word

document. The virus ran wild on corporate networks causing approximately $1 billion in

damages; MSBlast, which was launched in 2003 to exploit a vulnerability in the Microsoft

operating system. The virus infected hundreds of thousands of computers and caused over

$2 billion in damages; and LoveLetter, which was introduced in 2010, targeted users

through email, chat clients, and peer-to-peer networks. The virus attacked addresses in

Microsoft Outlook and sent a malicious executable file attached to an email titled “I Love

You”. The virus caused over $5.5 billion in damages to computer users [Cro10].
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Cause of Death % of

All

Deaths

2002

Deaths

(×106)

1993

Deaths

(×106)

2002

Rank

1993

Rank

All infectious diseases 25.9% 14.7 16.4 - -

Lower respiratory in-

fections

6.9% 3.9 41 1 1

HIV/AIDS 4.9% 2.8 0.7 2 7

Diarrheal diseases 3.2% 1.8 3.0 3 2

Tuberculosis 2.7% 1.6 2.7 4 3

Malaria 2.2% 1.3 2.0 5 4

Measles 1.1% 0.6 1.1 6 5

Pertussis 0.5% 0.29 0.36 7 7

Tetanus 0.4% 0.21 0.15 8 12

Meningitis 0.3% 0.17 0.25 9 8

Syphilis 0.3% 0.16 0.19 10 11

Hepatitis B 0.2% 0.1 0.93 11 6

Tropical diseases 0.2% 0.13 0.53 12-17 9, 10, 16-18

Table 1: Worldwide mortality due to infectious diseases. Note: other causes of death

include maternal and perinatal conditions (5.2%), nutritional deficiencies (0.9%), noncom-

municable conditions (58.8%), and injuries (9.1%).
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The epidemiological models that are used in the study of infectious diseases in

humans also apply to computer viruses. In fact they go even further. They also apply to

the study of information diffusion [KSC97, Kle07, LM01]. For example, the models could

be used to understand why certain innovations end up being widely adopted, while others

fizzle out; or how certain videos, such as “Gangnam Style”1 managed to go viral on

YouTube. Mathematical modeling of epidemics is thus an active area of research spanning

multiple disciplines. Epidemiologists, computer scientists, and social scientists share a

common interest in studying spreading phenomena and use similar models to describe the

diffusion of viruses, knowledge, and innovation.

When a host individual contracts an infection, the pathogen responsible for the

infection typically multiplies within the host while the immune system tries to combat it.

The details of the interactions between the host and the pathogen is rather complicated. If

we want to understand fully how diseases spread through populations we need to take all

of these details into consideration, which is close to impossible. Fortunately, we can resort

to simplified models that often provide good insight on the disease dynamics.

We first look at compartmental models from epidemiology, in which the within-host

dynamics of a disease is represented as changes between a few disease states or

compartments, such as susceptible (S), infected (I), recovered (R), and so forth

[AM92, Bai75, DH00]. These models assume a fully-mixed population in which every

individual has an equal chance of coming into contact with every other individual. The

models are deterministic and one can write down a set of differential equations to describe

the disease dynamics. The individual-level disease parameters such as the transmission

rate of a disease are fixed in such models, and one is primarily interested in the change of

the number of infected individuals in the population as a function of time. The main aim
1As of January 6, 2013, the “Gangnam Style” music video (http://www.youtube.com/watch?v=

9bZkp7q19f0) by Park Jae-sang (PSY) has been viewed over 1.13 billion times on YouTube. [Source:
Wikipedia]
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in these models is therefore to understand the properties of epidemics at equilibrium, the

existence of a non-zero density of infected individuals, the presence or absence of a global

outbreak, etc. We consider three different compartmental models: the susceptible-infected

(SI) model, the susceptible-infected-recovered (SIR) model, and a variant of the SIR

model which incorporates births and deaths. For each of the models we derive the

expression for the basic reproductive number R0, which is the mean number of secondary

cases a single infected case will cause in a population with no immunity to the disease.

The basic reproductive number is an important metric that is used in the study of

epidemics.

In reality, most diseases spread over networks of contacts between individuals. For

example, contagious diseases and parasites are communicated when people come into

close contact, and HIV and other sexually transmitted diseases (STDs) are communicated

when people have sex. Such diseases are better understood using epidemiological models

that take into account the connection patterns among the individuals in a population. The

introduction of network structure into the models leads to important new results

concerning the basic properties of disease spreading processes

[AM92, BPV03, MA84, ML01, PV01b].

We propose a stochastic, discrete-time, evolutionary variant of the

susceptible-infected-recovered (SIR) compartmental model to study disease dynamics on

complex networks. The model is based on ideas from evolutionary game theory, and

focuses on the evolutionary dynamics of disease-causing parasites—anything that lives

and multiplies inside another organism called the “host” and usually causes harm. We

assume that the host does not evolve on the time scale under consideration, which is a

reasonable assumption, since parasites generally evolve much faster than their hosts.

Unlike the equation-based epidemiological models, our model is individual based and

focuses on how the disease-causing pathogen evolves in virulence [Ewa93, Now06a] in
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response to the selection pressures acting on it. As a result, the individual-level disease

parameters, such as the transmission probability and the virulence level of a pathogen

within a host, vary with time. We derive the expression for R0 for our model for a

complete network. When the transmission probability is a saturating function of the

virulence, the latter evolves so as to maximize the value of R0.

In addition to studying the evolution of virulence, we use our model to evaluate the

effectiveness of different vaccination strategies in combating a disease

[AM85, DB02, PV02b] spreading over model and empirical networks with power-law

degree distribution. We consider three different strategies: vaccinating individuals in

reverse order of their degrees; vaccinating random neighbors of randomly picked

individuals; and vaccinating individuals completely at random.

We describe how our model can be implemented on a computer. We present results

from agent-based simulations on model and empirical networks, and provide a general

discussion of the results. We conclude the chapter with suggestions for future inquiry.

In addition to the six chapters, this thesis also includes two appendices. In Appendix A

we provide a brief introduction to dynamical systems, a subject that deals with systems

that evolve with time. Some of the concepts introduced in this appendix will be used in

the analysis of the dynamical systems we study in this thesis. The appendix starts by

looking at one-dimensional dynamical systems, which are relatively easy to understand,

and then proceeds to look at dynamical systems in two or more dimensions.

In Appendix B we describe the software we have implemented for the in-silico

exploration of the agent-based models we propose in Chapters 4, 5, and 6. We provide two

different implementations of the models: one in Python and the other in Java2. The

appendix provides information on where to obtain the software from, what is contained in

2The simulation results presented in this thesis are from running the Java-based implementations of our
models.
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the distribution, and how to configure and run the software. The code is made available

under the GNU General Public License.
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CHAPTER 2

COMPLEX NETWORKS

The world of the quark has everything to do with a jaguar circling in the night.

- Murray Gell-Mann

2.1 Introduction

A network—also called a graph in mathematical literature—is a collection of vertices

connected together in pairs by edges1. There are many real-world systems of interest that

are composed of individual components linked together in some manner and which can be

thought of as networks. The patterns of connections in each such system can be

represented as a network, with the components of the system forming the network’s

vertices and the connections forming its edges. A network is thus an abstraction that

captures the essentials of a system’s connection patterns.

Over the years, scientists have developed an extensive set of mathematical,

computational, and statistical tools [New10] for analyzing, modeling, and understanding

networks. Since these tools work with networks in their abstract form, they can in

principle be applied to almost any system that can be represented as a network. Networks

are therefore a general but powerful means of representing patterns of connections

between the components of a system.

One of the reasons why scientists are interested in networks is because they would like

to know the effects of the networks’ structure on their function. The structural properties

1Computer scientists refer to vertices and edges as nodes and links, physicists call them sites and bonds,
and sociologists use the terms actors and ties. We employ the terms network(s), vertex (vertices), and edge(s).
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of a network can have huge effects on the dynamical processes that take place on the

system that the network represents [AB02, New03]. For example, the patterns of

connections between computers on the Internet affect the efficiency with which the

network transports data; the connections in a social network affect how people learn, form

opinions, and affect phenomena, such as the spread of a disease. Our goal in this thesis is

to study how the structure of networks affects the long-term behavior of dynamical

processes such as the evolution of cooperative behavior, and the spreading of infectious

diseases in a population. We use a network to represent the population, with the vertices

of the network corresponding to the individuals in the population, and the connection

patterns in the network specifying who can interact with whom.

In this chapter we first look at some examples of real-world networks, and describe the

key concepts from network theory used in the description and analysis of networks. We

then explore a few mathematical models for building networks that resemble the ones seen

in the real world. We conclude the chapter by listing the basic properties of select

real-world networks that will play the role as substrates for the dynamical processes that

we consider in Chapters 4, 5, and 6.

2.2 Examples of Complex Networks

Many real-world systems are referred to as “complex systems”, and by extension, their

network representations, where possible, are referred to as “complex networks”. In order

to understand why this is, we must clarify what we mean by “complex” and how it differs

from something that is merely “complicated”. A complex system, such as the Internet or

the World Wide Web, differs from a complicated system, such as a computer or an

airplane in the following fundamental aspects [BBV08]:
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1. Complex systems exhibit emergent phenomena in the sense that they are the

spontaneous outcome of the interactions among the many constituent parts. In other

words, complex systems are not engineered systems put in place according to a

definite blueprint.

2. In a complex system, the whole is larger than the sum of its constituent parts. Thus

decomposing the system and studying each subpart in isolation will not suffice for

understanding the whole system and its dynamics.

3. Many complex systems can adapt to, evolve, and resist random removals of their

components. Random removal of components of a complicated system, such as a

computer, however, will rapidly lead to the malfunction or even complete failure of

the system.

4. Finally, complex systems exhibit complications on all scales possible within the

physical constraints of the system. In the networks representing such systems, these

complications are statistically encoded in the heavy-tail distributions characterizing

the network’s structural properties. It is then impossible to define a typical scale in

which an average description would be reliable. Heterogeneity, heavy-tail

properties, and complex topological features, such as clustering, homophily,

hierarchies, and communities are characteristic of a large number of real-world

networks.

Complex networks occurring in the real world are divided [New10] into four broad

categories: technological networks, social networks, information networks, and biological

networks. This categorization is by no means rigorous and there is some overlap between

them, i.e., some networks belong to more than one category. Nevertheless, the

categorization is useful since networks belonging to the same category can often be

analyzed using similar techniques. We list a few important examples from each category.
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Technological Networks

Technological networks are the physical networks forming the backbone of modern

technological societies. The most commonly cited example of a technological network is

the Internet [CCG02, FFF99], the worldwide network of physical data connections

between computers and related devices. The vertices in the Internet represent computers

and routers, and the edges represent physical connections between them, such as optical

fiber lines. The internet is an undirected network since the edges run in both directions.

The telephone network is an undirected network consisting of land lines and wireless

lines that transmit telephone calls. The vertices in a telephone network represent

individual subscribers, local telephone exchanges and long-distance offices, and the edges

represent the local and trunk lines.

The power grid network [ASB00, WS98] is an undirected network of high-voltage

transmission lines that transport electric power within and across countries. The vertices

in a power grid network represent generating stations and switching substations, and the

edges represent the high-voltage lines.

Other examples of technological networks include transportation networks

[ASB00, SDC03], such as airline routes, road networks, and railway networks. In these

typically undirected networks, the vertices represent the geographic locations and the

edges represent the routes between them. For example, in road networks the vertices

correspond to road intersections and the edges correspond to the roads.

Finally, we have distribution networks, such as oil and gas pipelines, water and sewage

lines, and the routes used by post office, package delivery and cargo companies. What we

call vertices and edges in these networks depends on the actual network. For example, in a

network of gas pipelines [CBB09], the vertices are their intersections including pumping,
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switching, and storage facilities, and the edges are the pipelines. Distribution networks are

typically directed, i.e., the edges run in one direction only.

Social Networks

Social networks are networks in which the vertices represent people or groups of people,

and the edges represent some form of social interaction between them. For example, the

edges might represent friendship between individuals, exchange of goods or money,

communication patterns, or sexual relationships.

One way of building social networks is by surveying individuals in a population. An

example of such a network is the sexual contact network [LEA03], an undirected network

in which the vertices represent individuals and the edges indicate that the individuals

corresponding to the vertices they connect had sex with each other.

Social networks are also built from direct observations of interactions between

individuals over a period of time. Examples of such networks include: the famous

Zachary Karate Club network [Zac77], an undirected network in which the vertices

represent the members of a karate club in a north American university and the edges

represent the friendship patterns among them; and behavioral networks of animals, such

as monkeys [FGD06, Sad72, SG84], kangaroos [Gra73], and dolphins [Lus03], which are

directed networks with vertices representing animals and the edges indicating that the

animals corresponding to the vertices they connect engage in social behaviors, such as

mutual grooming or courting.

Yet another way of building social networks is from archival records. A well-known

example is the undirected network of the ruling families of Florence in the fifteenth

century [PA93]. In recent years, with the widespread availability of computer and online

services, many networks have been constructed from electronic records of various types.
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These include: email networks [EMB02, TWH05], which are directed networks with

vertices corresponding to people and the edges between them corresponding to email

messages from one person to another; and telephone call networks [OSH07], which are

directed networks with vertices representing telephone numbers and the edges between

them representing calls from one number to another. Recent years have also seen the rapid

emergence of online social networks [BE12] such as Facebook and Twitter. Weblogs

[AG05] are another source of online social networks which are directed networks with

vertices representing the blogs and the edges representing links from one blog to another.

An important kind of network built from archived data is the affiliation network, an

undirected network in which the individuals are connected via comembership of groups of

some kind. The best known example of such a network is the network of collaboration of

film actors [ASB00, BA99, WS98] in which the vertices are actors and the groups to

which they belong are the casts of films. This network is the basis for a well-known parlor

game called “six degrees of Kevin Bacon” in which one attempts to connect an actor via a

chain of intermediate actors to Kevin Bacon. This is similar to the small-world

experiments [Mil67, TM69] conducted by Stanley Milgram in which he concluded that

the “geodesic distance” between vertices in a network is quite small2 for most pair of

vertices. A network similar in spirit is the affiliation network of mathematicians [Gro02]

in which the vertices represent individuals who have directly or indirectly coauthored a

paper with the famous Hungarian mathematician Paul Erdős, and the edges denote that the

individuals corresponding to the vertices they connect have coauthored at least one paper.

The length of the shortest path from any vertex to the vertex representing Paul Erdős

denotes the “Erdős number” of the individual corresponding to that vertex; Albert

2This is the origin of the idea of “six degrees of separation”, the notion that there are only about six steps
between any two people in the world.
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Einstein, for example, has an Erdős number of two, and the author of this thesis has an

Erdős number of four.

Information Networks

Information networks are man-made networks consisting of data items linked together in

some fashion. The best known example of an information network is the World Wide Web

[BAJ99, BAJ00, BKM00], a directed network in which the vertices are web pages and the

edges are the hyperlinks that allow users to navigate from one page to another.

Another example of an information network is a citation network [Pri65], a directed

network in which the vertices are papers and there is an edge from paper i to j if i cites j

in its bibliography. There are citations besides those among academic papers. Two of

particular importance are citations between patents and legal opinions. In patent (legal

opinion) networks [CD06, FJS07, FJ08, LCS07], the vertices are patents (legal opinions)

and the edges are citations of one patent (legal opinion) by another. Citation networks are

in general acyclic, i.e., the networks do not contain closed-loop paths.

A peer-to-peer network [RF02, SR04] is an undirected information network in which

the vertices are computers containing information in the form of files and the edges

between them are virtual links—they exist only in software—established for the purposes

of sharing the contents of those files.

A recommender network [CCK06, Gru08] is a type of information network

extensively used in commerce. Such a network is undirected and is typically represented

as a bipartite network, a network with two types of vertices, one representing the products

and the other representing the individuals, with edges connecting individuals to the

products they buy or like.
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Another type of information network, also bipartite in form, is the undirected keyword

index network, used for searching large bodies of data. In such a network, there are two

types of vertices representing words and documents, and there is an edge from a vertex

denoting a word to a vertex denoting a document if the word appears in that document.

Biological Networks

Networks are widely used in biology as a convenient representation of interaction patterns

between biological elements. Biochemical networks [JTA00, JMB01] represent

interaction patterns and control mechanisms within the cell. Examples of biochemical

networks include: the metabolic network, a directed bipartite network in which the

vertices represent the chemicals (metabolites) produced or consumed in a metabolic

reaction and the edges indicate which metabolites are substrates (inputs) and which are

products (outputs); the protein-protein interaction network, an undirected network in

which the vertices represent proteins and the edges denote that the proteins they connect

interact with each other; and the directed gene regulatory network in which the vertices

are proteins or equivalently the genes that code for them and an edge from one gene to

another indicates that the former regulates the expression of the latter.

Networks are also used in the study of the brain and the central nervous system in

animals [WS98, WST86]. Such networks are called neural networks. The vertices in these

directed networks represent neurons, and an edge between two vertices indicates that the

output of one neuron is an input to the other.

Ecological networks [HBR96, Mar91] are networks of ecological interactions between

species. An example of such a network is a food web, a directed network that represents

which species prey on which other species in a given ecosystem. The vertices in the

network correspond to species and the edges to predator-prey interactions. Food webs are
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typically acyclic. Host-parasite networks [New03] are networks of parasitic relationships

between organisms, such as the relationship between a large-bodied animals and the

insects and micro organisms that live on or within them. The other class of ecological

networks is that of mutualistic networks, meaning networks of mutually beneficial

interactions between species. Examples of such networks include networks of plants and

animals that pollinate them or disperse their seeds, and networks of ant species and the

plants that they protect and eat. These networks are undirected, and typically bipartite.

2.3 Network Concepts

Once we have a representation of a system as a network, we want to analyze it and

measure some of its key properties. In this thesis, we are interested in how the structural

properties of networks shape the long-term behavior of dynamical processes that take

place on the networks, such as the evolution of cooperative behavior, and the spreading of

infectious diseases in a population.

Since the human eye is extraordinarily adept at figuring out patterns, the simplest way

to analyze the structure of a network is to draw a picture of it3. Direct visualization of

networks, however, is only useful for small networks, i.e., networks with a small number

of vertices. Many of the networks of interest have hundreds of thousands or even millions

of vertices, which means that visualization is not of much help in their analysis and we

need to employ other techniques to determine their structural features. Fortunately,

network theory has developed a plethora of concepts that we can use to deduce the

structural properties4 of networks, even in cases where useful visualization is impossible.

3Gephi (https://gephi.org) is one of many free software tools that makes visualization of complex
networks possible.

4Free software programs such as NetworkX (http://networkx.lanl.gov/) and iGraph (http://
igraph.sourceforge.net/) implement algorithms to evaluate these properties for arbitrary networks.
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In this section we describe the concepts that are most pertinent to the study of real-world

networks, and to our thesis.

Networks and Their Representation

A network is a collection of vertices joined by edges. We denote a network by Γ, at times

with a suitable suffix to indicate the type of the network. We denote the set of vertices by

V and the set of edges by E. The number of vertices is denoted by n and the number of

edges by m, i.e., n = |V | and m = |E|. For example, the neural network Γneural of the worm

C. elegans [WS98, WST86] has n = 297 vertices and m = 2148 edges; this network is

small enough that it can be visualized (see Figure 1).

Figure 1: The neural network of the worm C. elegans. The network has 297 vertices and

2148 edges. The color of a vertex provides a visual indication of its degree, with blue (red)

representing vertices with low (high) degrees. The visualization was produced using Gephi

(https://gephi.org/).

An undirected network, such as Γneural5, is one in which the edges are symmetric, i.e.,

if there is an edge from i to j then there is also an edge from j to i. On the other hand, a
5The neural network of the worm C. elegans, like all neural networks, is directed, but for our purposes in

this section we ignore the directions of the edges and treat the network as undirected.
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directed network is one in which each edge has a direction, pointing from one vertex to

another.

The networks we consider in this thesis are unweighted, i.e., networks in which there

are no weights associated with the edges; and simple, i.e., networks that have at most an

edge between any pair of vertices, and no edges that connect the vertices to themselves.

Γneural, for example, is a simple, unweighted network.

A planar network is a network in which the vertices can be arranged on a plane in

such a manner that the edges do not cross.

There are various ways of representing networks. Consider a simple undirected

network with n vertices labeled 1, . . . ,n. An example is shown in Figure 2. If we denote

4

6

2

1
3

5

Edge

Vertex

Figure 2: A simple undirected network.

the edge between vertices i and j by (i, j) then the entire network can be specified by

giving the value of n and a list of all the edges. For example, the network in Figure 2 has

n = 6 and edges (1,2), (1,3), (1,5), (1,6), (2,6), and (3,4). Though such a representation

is commonly used to store networks on computers, it is cumbersome for mathematical

analysis.
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A better representation of a network is the adjacency matrix. The adjacency matrix A

of a simple network is the matrix with elements Ai j such that

Ai j =


1 if there is an edge between vertices i and j,

0 otherwise.
(2.1)

For example, the adjacency matrix of the network in Figure 2 is

A =



0 1 0 1 1 1

1 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 0


. (2.2)

There are two points to notice about the adjacency matrix for a simple undirected network

such as this one. First, the diagonal matrix elements are all zero, and second, the matrix is

symmetric. The adjacency matrix of a directed network, on the other hand, has the

element Ai j = 1 if there is an edge from j to i, and is asymmetric.

Degree

The degree of a vertex in an undirected network is the number of vertices connected to it.

We denote the degree of vertex i by ki. The set of vertices connected to i is denoted by

N(i). Thus, ki = |N(i)|. For an undirected network with n vertices the degree can be

written in terms of the adjacency matrix as

ki =
n

∑
j=1

Ai j. (2.3)

Every edge in an undirected network has two ends and if there are m edges in total

then there are 2m ends of edges. But the number of ends of edges is also equal to the sum
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of the degrees of all the vertices, so

2m =
n

∑
i=1

ki, (2.4)

or

m =
1
2

n

∑
i=1

ki =
1
2

n

∑
j=1

Ai j. (2.5)

The average degree d of a vertex in an undirected network is

d =
1
n

n

∑
i=1

ki, (2.6)

and combining this with Equation 2.4 we get

d =
2m
n
. (2.7)

For example, the average degree of Γneural is d = 14.465.

In a directed network, the in-degree is the number of incoming edges on a vertex and

the out-degree is the number of out-going edges. Therefore, the in- and out-degrees of the

vertex i can be written as

kin
i =

n

∑
j=1

Ai j, kout
i =

n

∑
i=1

Ai j. (2.8)

The number of edges m in a directed network is equal to the total number of in-coming

ends of edges at all vertices, or equivalently to the total number of out-going ends of

edges, so

m =
n

∑
i=1

kin
i =

n

∑
j=1

kout
j = ∑

i j
Ai j. (2.9)

Thus the average in-degree din and the average out-degree dout of every directed network

are equal:

din =
1
n

n

∑
i=1

kin
i =

1
n

n

∑
j=1

kout
j = dout = d. (2.10)
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Networks in which all vertices have the same degree are called regular networks. A

regular network in which all vertices have degree d are called d-regular. An example of a

regular network is a periodic lattice, such as a square lattice in which every vertex has

degree four.

An important concept in network analysis is that of centrality, which tells us

something about the most important or central vertices in a network. There are many

possible definitions of importance, and correspondingly many centrality measures

[WF94]. We will, for the purposes of this thesis, only need degree centrality, which is

simply the degree of a vertex. Although a simple measure, it can be very illuminating. In a

social network, for example, individuals who have connections to many others might have

more influence [Zac77]. A non-social network example is the use of citation counts in the

evaluation of scientific papers [Pri65].

The maximum possible number of edges in a simple undirected network is(n
2

)
= n(n−1)

2 . The connectance or edge density ρ of a network is the fraction of these

edges that are actually present in the network:

ρ =
m(n
2

) = 2m
n(n−1)

=
d

n−1
, (2.11)

where we have made use of Equation 2.7. The density lies strictly in the range 0≤ ρ ≤ 1.

Most of the networks one is interested in are sufficiently large that Equation 2.11 can

safely be approximated as ρ = d
n . A network for which the density ρ tends to a constant as

n→ ∞ is said to be dense. On the other hand, a network in which ρ → 0 as n→ ∞ is said

to be sparse. Γneural is a sparse network with ρ = 0.049. The Internet, the World Wide

Web, and most friendship networks, are also sparse [New10].
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Paths and Components

A path in a network is any sequence of vertices such that every consecutive pair of

vertices in the sequence is connected by an edge in the network. In other words, a path is a

route across the network that runs from vertex to vertex along the edges of the network.

The length of a path in a network is the number of edges traversed along the path. A

geodesic path, also called the shortest path, is a path between two vertices such that no

shorter path exists. The length of a geodesic path is often called the geodesic distance or

the shortest distance. In mathematical terms, the geodesic distance between vertices i and

j is the smallest value of l such that [Al]i j > 0. It must be noted that there may be several

shortest paths between a pair of vertices, so geodesic paths are not unique. The diameter

of a network is the length of the longest geodesic path between any pair of vertices in the

network for which a path actually exists. The diameter of a network is denoted by `. Most

real-world networks have a very small diameter [WS98] and are called “small-world”

networks, by analogy with the small-world phenomenon popularly known as six degrees

of separation [Mil67, TM69]. For Γneural the diameter is `= 2.455.

It is possible to have no path at all between a given pair of vertices in a network. The

network in this case is divided into subgroups of vertices, with no edges between any two

subgroups. A network of this kind is said to be disconnected. Conversely, if there is a path

from every vertex in a network to every other vertex then the network is said to be

connected. The subgroups of vertices in a disconnected network are called the

components of the network. Note that a disconnected network has an infinite diameter.

The number of components in a network is denoted by κ . A network is connected if and

only if κ = 1. We denote the fractional size of the largest component (also known as the

giant component) relative to the total number of vertices in a network by σ . Thus, σ has
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the maximum value of one when κ = 1 and the least value when κ = n. For Γneural, we

have κ = 1 and therefore σ = 1.

A tree is a connected, undirected network that contains no closed loops, and is thus

acyclic. If a network consists of several components that are all trees, then the entire

network is called a forest. The most important property of trees is that there is exactly one

path between any pair of vertices. Another useful property of trees is that a tree of n

vertices always has exactly n−1 edges, and the converse is also true.

Clustering

Transitivity or clustering is a very important property of networks. Social networks, for

example, exhibit high clustering [HK02]. In mathematics, a relation “•” is said to be

transitive if a•b and b• c together imply a• c. An example of such a relation is the

equality relation; if a = b and b = c then a = c, so “=” is transitive. In a network, the

simple relation “pairs of vertices connected by an edge” is transitive, meaning if vertex u

is connected to vertex v and v is connected to vertex w, then u is also connected to w. In

common parlance such a relation is described as “the friend of a friend is also a friend”.

We can quantify the level of transitivity in a network as follows: if u knows v and v

knows w, then we have a path uvw of two edges in the network. If u also knows w, we say

that the path is closed—it forms a loop of length three, or a triangle in the network. We

define the clustering coefficient C(1) as the fraction of paths of length two in the network

that are closed.

C(1) =
number of closed paths of length two

number of paths of length two
. (2.12)
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There is an alternative way to calculate the clustering coefficient of a network. We can

define the local clustering coefficient for a single vertex i as

Ci =
number of pairs of neighbors of i that are linked to each other

number of pairs of neighbors of i
. (2.13)

That is, to calculate Ci we go through all distinct pairs of vertices that are neighbors of i in

the network, count the number of such pairs that are connected to each other, and divide

by the total number of pairs, which is ki(ki−1)
2 . The value Ci represents the average

probability that a pair of i’s friends are friends of one another. These local clustering

coefficients can be used to calculate the global clustering coefficient C(2) as

C(2) =
1
n

n

∑
i=1

Ci. (2.14)

It must be noted that while C(1) and C(2) both quantify how clustered a network is, they do

not define the same quantity, but are two different forms of clustering coefficients. Also,

0≤C(1),C(2) ≤ 1 and C(1) =C(2) = 1 implies perfect transitivity while C(1) =C(2) = 0

implies no closed triads, which happens for various network topologies, such as trees. A

network is said to be highly clustered if its clustering coefficient has a much higher value

relative to its edge density, i.e., C(1),C(2)� ρ . For Γneural the clustering coefficient is

C(2) = 0.292.

Homophily

Vertices in a network sometimes exhibit a strong tendency to associate with others whom

they perceive as being similar to themselves. This tendency is called homophily. The

corresponding networks are called homophilic networks. One also encounters, albeit

rarely, the tendency for vertices to associate with others that are unlike themselves. The

corresponding networks in this case are called heterophilic networks6.
6In network theory, the terms assortativity and disassortativity are used instead of homophily and het-

erophily, and the corresponding networks are referred to as assortative and disassortative networks. We
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We consider homophilic association in a network according to scalar characteristics,

such as age or income. These are characteristics whose values come in a particular order.

A special case of homophilic association according to a scalar quantity, and one of

particular interest for us, is that of association by degree. In a network that shows

homophilic association by degree, the high-degree vertices are preferentially connected to

other high-degree vertices, and low to low, creating a core/periphery structure in the

network. Conversely, we could have heterophilic association by degree meaning that the

high-degree vertices tend to be connected with low-degree vertices and vice versa,

creating a star-like structure in the network. Social networks generally tend to be

homophilic, while technological and biological networks tend to be heterophilic [New02].

The homophily coefficient h of a network can be defined as

h =
∑i j
(
Ai j−

kik j
2m

)
kik j

∑i j
(
kiδi j−

kik j
2m

)
kik j

, (2.15)

where ki is the degree of vertex i in the network and δi j is the Kronecker delta. The

homophily coefficient by degree is essentially the Pearson correlation coefficient of degree

between pairs of linked vertices. For a maximally homophilic network h = 1, for a

maximally heterophilic network h =−1, and for an uncorrelated network h = 0. For

Γneural the value of the coefficient is h =−0.163 meaning that the network is heterophilic.

Degree Distribution

One of the most fundamental and defining properties of a network is its degree

distribution, which is the frequency distribution of the degree of vertices in the network. If

pk is the fraction of vertices in the network that have degree k, the quantities pk represent

refrain from using the terms from network theory in order to avoid any confusion with the notion of assorta-
tive interactions that we introduce in Chapters 4 and 5, which is unrelated to network homophily that is being
introduced here.
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the degree distribution of the network. The value pk can also be thought of as the

probability that a randomly chosen vertex in the network has degree k. Another construct

containing the same information as the degree distribution is the degree sequence, which

is the set {k1,k2, . . . ,kn} of degrees of the n vertices in the network. It must be noted that a

knowledge of the degree distribution (or degree sequence) does not, in most cases, give

the complete picture of the network, since for most choices of vertex degrees, there is

more than one network with those degrees.

It is often illuminating to look at a plot of the degree distribution of a large network as

a function of k. It turns out that in many real-world networks, most of the vertices have
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Figure 3: Degree distribution of the neural network of the worm C. elegans. (a) Linear

scale. (b) Logarithmic scale.

low degree but there is a significant “tail” to the distribution corresponding to vertices

with substantially high degree [ASB00, New05]. In statistical parlance, we say that the

degree distribution is right-skewed. A well-connected vertex is called a hub. For example,

the degree distribution (see Figure 3(a)) of Γneural has a significant tail, with several hubs

with degrees ranging from 60 to 134, which are relatively large numbers given that the

37



network only has 297 vertices. Hubs in a network play a vital role in processes such as the

spreading of a disease [PV01b]. Such networks are also robust to uniformly random

removal of vertices, but susceptible to removal which targets the hubs [CNS00, CEB00].

In other words, the networks with right-skewed degree distributions are robust to “error”,

but vulnerable to “attack”.

When plotted on a logarithmic scale, a right-skewed degree distribution follows,

roughly speaking, a straight line. Figure 3(b) shows the degree distribution of Γneural on a

logarithmic scale. In mathematical terms

ln pk =−α lnk+ c, (2.16)

where α and c are constants and α > 0. Taking the exponential of both sides we have

pk =Ck−α , (2.17)

where C = ec is another constant. Distributions of this form, varying as a power of k, are

called power-laws. The degree distributions of many real-world networks, roughly

speaking, follow a power-law [BA99]. The constant α is known as the exponent of the

power-law. Values in the range 2≤ α ≤ 3 are typical, although values slightly outside this

range are possible and are observed occasionally [AB02, New03]. It must be noted that

degree distributions of real-world networks differ from those of true power-law

distributions in the small-k regime.

Networks with power-law distributions are sometimes called scale-free networks.

There are also many networks that are not scale-free and which have degree distributions

with non power-law forms [ASB00], but the scale-free ones are of particular interest

because of their intriguing properties. Telling scale-free networks from ones that are not is

not always easy. The simplest strategy is to look at a histogram of the degree distribution

on a log-log plot to see if we have a straight line. There are problems with this approach

and alternative methods have been proposed [CSN09].
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Power-laws show up in a wide variety of places, not just in networks. For example,

they arise in the frequency of use of words in human languages [Zip49]; and in the

distribution of biological taxa [WY22]. A review of some mathematical properties of

power-laws can be found in [New05]. One that is relevant to this thesis is the mth moment

of the degree distribution, which is given by

〈km〉=
∞

∑
k=0

km pk. (2.18)

Suppose we have a degree distribution pk that has a power-law tail for k ≥ kmin. Then

〈km〉=
kmin−1

∑
k=0

km pk +C
∞

∑
k=kmin

km−α . (2.19)

Since a power-law is a slowly varying function of k, for large k, we can approximate the

second term by an integral as follows:

〈km〉 ≈
kmin−1

∑
k=0

km pk +C
∫

∞

kmin

km−αdk

=
kmin−1

∑
k=0

km pk +
C

m−α +1

[
km−α+1

]∞

kmin
. (2.20)

For a given value of α all moments will diverge for which m≥ α−1. Of particular

interest is the second moment 〈k2〉, which is finite if and only if α > 3. However, most

real-world networks have values of α in the range 2≤ α ≤ 3, which means the second

moment should diverge. An important consequence of this is that power-law networks are

prone to spreading of infectious diseases [BPV03].

We can calculate the mth moment from the degree sequence as

〈km〉= 1
n

n

∑
i=0

km
i , (2.21)

and since all the ki are finite, so is the sum. The mth moment is infinite for an arbitrarily

large network. On finite, practical networks the divergence is replaced by large finite

values which can be treated as infinite for most practical purposes.
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2.4 Network Models

Although it is possible to obtain network representations of real-world systems, this is

often an arduous enterprise. Some of the procedures used to build the networks we

encountered in Section 2.2 are highlighted in [New10]. Even if we manage to obtain the

network representation of a real-world system, it is only a fixed snapshot of the system. Its

properties, such as the number of vertices, edges, average degree, degree distribution, etc.,

are fixed. The network is of little use if, for example, our goal is to study the effects of

these properties on the dynamical processes that take place on the network, in which case

we ought be able to change the network’s properties freely. We would like to be able build

model networks having properties desired by the modeler. In this section we consider a

few such model networks for in-silico construction of real-world-like networks.

2.4.1 Complete Network

A complete or well-mixed network, which we denote by ΓWM, is the simplest of all

network models. We start with n vertices and establish an edge between every distinct pair

(i, j) of vertices, where i 6= j. The network thus has m =
(n

2

)
= 1

2n(n−1) edges. A

complete network has maximum connectance, i.e., ρ = 1. Since every vertex is connected

to exactly n−1 other vertices, the average degree d of the network is n−1. The degree

distribution pk of a complete network with n vertices is given by

pk =


1 if k = n−1,

0 otherwise.
(2.22)

We are interested in complete networks because in the large-n limit they can be used to

model a well-mixed population of individuals—an infinitely large population in which

every individual can potentially interact with every other individual in the population. The
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dynamical processes we study in Chapters 4, 5, and 6 can be analyzed completely if they

are modeled for a well-mixed population, i.e., we can obtain analytical results that

accurately predict the long-term behavior of the processes. One can then verify these

predictions by simulating the model on a complete network. As we shall see in later

chapters, a complete network serves as a reasonable approximation even for a population

in which individuals interact not with every other individual, but with sufficiently large

number of individuals.

2.4.2 Erdős-Rényi Network

A random network is a model network in which some specific set of parameters take fixed

values, but are random in other aspects. One example, called the Erdős-Rényi model

[ER59, ER60, ER61], denoted by G(n, p), is one in which the number of vertices n and

the probability p of there being edges between them are fixed. We take n vertices and

place an edge between each distinct pair of vertices with independent probability p7. We

denote an Erdős-Rényi model network by ΓER.

G(n, p) is an ensemble of networks with n vertices in which each simple network G

having m edges appears with probability

P(G) = pm(1− p)(
n
2)−m. (2.23)

The probability of drawing a network with m edges from the ensemble is

P(m) =

((n
2

)
m

)
pm(1− p)(

n
2)−m. (2.24)

7To see the network formation process in action visit:

http://ccl.northwestern.edu/netlogo/models/GiantComponent
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The average value of m is

〈m〉=
(n

2)

∑
m=0

mP(m) =

(
n
2

)
p. (2.25)

We can use this result to calculate the average degree d of the network as

d =
(n

2)

∑
m=0

2m
n

P(m) =
2
n

(
n
2

)
p = (n−1)p. (2.26)

The probability that a vertex is connected to specific k other vertices and not to any of the

other vertices is pk(1− p)n−1−k. There are
(n−1

k

)
ways to choose those k vertices, and

hence the total probability of being connected to exactly k other vertices is

pk =

(
n−1

k

)
pk(1− p)n−1−k, (2.27)

which is a binomial distribution. Thus, G(n, p) has a binomial degree distribution.

In case of a large network n→ ∞, so p = d
n−1 will become vanishingly small.

Therefore

ln[(1− p)n−1−k] = (n−1− k) ln
(

1− d
n−1

)
≈−(n−1− k)

d
n−1

(using Taylor series expansion)

≈−d

=−d as n→ ∞. (2.28)

Taking exponentials of both sides, we find that (1− p)n−1−k = e−d in the large-n limit.

Also for large n we have(
n−1

k

)
=

(n−1)!
(n−1− k)!k!

≈ (n−1)k

k!
, (2.29)

and Equation 2.27 becomes

pk =
(n−1)k

k!
pke−d =

(n−1)k

k!

( d
n−1

)k
e−d = e−d dk

k!
, (2.30)
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which is a Poisson distribution. Thus, in the large-n limit, G(n, p) has a Poisson degree

distribution.

While the Erdős-Rényi model is able to emulate some of the aspects of real-world

networks, such as the small-world effect and the existence of a giant component, it falls

short in many ways. The most serious shortcoming of the model is that it is unable to

explain the heavy-tail degree distribution that is so pervasive among real-world networks.

Moreover, the network formation process is unrealistic and too random. It is hard to

imagine that the components of a system come into existence all at once, and then at

random establish connections with other components. The World Wide Web, for example,

is not formed in this manner.

2.4.3 Random Regular Network

There is a large class of situations where the interaction network is determined by the

geographical location of the participating individuals [SF07]. Biological games offer

excellent examples of such situations. The typical structure in such games is

two-dimensional, and can be modeled by a regular two-dimensional lattice. Here we

discuss a model [Wor99] that generates random d-regular networks, i.e., random regular

networks in which each vertex has degree d, using the following procedure:

1. Start with a set U of nd points (nd even) partitioned into n groups, each of size d.

2. A pair of vertices is a suitable pair if a connection between them neither creates a

self-edge nor a multi-edge. Repeat the following until no suitable pair can be found:

choose two random points i and j in U and if (i, j) is suitable, pair i and j and delete

them from U .
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3. Create a network G with an edge from r to s if and only if there is a pair containing

points in the rth and sth groups. If G is regular, output it. Otherwise, return to step 1.

We denote a random regular network by ΓRR. It must be noted that a random regular

network is in general not planar. Since every vertex in the random regular network is

connected to exactly d other vertices, the average degree of the network is d. The degree

distribution pk of a random regular network with n vertices is given by

pk =


1 if k = d,

0 otherwise.
(2.31)

2.4.4 Barabási-Albert Network

In the models we have seen so far the parameters of the network, such as the number of

vertices and edges or the degree sequence were fixed at the start, i.e., chosen by the

modeler to have some desired values. The models we will consider next belong to the

class of generative models, i.e., they model the mechanism by which networks are created.

The networks produced by these models turn out to be similar to the networks we observe

in the real world, suggesting that similar generative mechanisms are probably at work in

the formation of real-world networks. The best-known example of a generative network

model is the “preferential attachment” model [BA99] for the growth of networks with

power-law degree distributions.

As we have seen before, many networks observed in the real world have degree

distribution that approximately follow a power-law, at least in the tail of the distribution.

Examples include the Internet, the World Wide Web, citation networks, and some social

and biological networks [BA99]. A natural question to ask therefore is how might a

network come to have such a distribution? The question was first considered by Derek
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John de Solla Price [Pri76], who proposed a simple and elegant model of network

formation that gives rise to power-law degree distribution.

Price was interested in power-law degree distributions seen in citation networks of

scientific papers [Pri65]. He was inspired by the work of economist Herbert Simon, who

noted the occurrence of power-laws in a variety of (non-network) economic data, such as

people’s personal wealth distributions [Sim55]. Simon proposed the “rich-get-richer”

effect as an explanation for wealth distribution, and showed mathematically that it can

give rise to a power-law distribution. Price adapted Simon’s methods to the network

context. Price called his model the cumulative advantage model although it is more often

known today by the name “preferential attachment”8, which was coined by Barabási and

Albert [BA99].

In Price’s model of a citation network, we assume that papers are published

continually, and that newly appearing papers cite previously existing ones. Let the average

number of papers cited by a newly appearing paper be d, i.e., d is the average out-degree.

The crucial assumption in Price’s model is that a newly appearing paper cites previous

ones chosen at random with probability proportional to the number of citations those

previous papers already have plus a positive constant a9. The model is thus a simplified

representation of the citation process, and builds a directed, acyclic network. Let pq(n) be

the fraction of vertices in the network that have in-degree q when the network contains n

vertices. Let us examine what happens when we add a single new vertex to the network.

Consider one of the citations made by the new vertex. In the model, the probability

that the citation is to a particular other vertex i is proportional to qi +a. Since the citation

8To see the network formation process in action visit:

http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment

9The constant a gives each paper a number of “free” citations to get it started in the race.
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in question has to be some paper, this probability must be normalized. In other words the

probability must be

qi +a
∑i(qi +a)

=
qi +a

n〈q〉+na
=

qi +a
n(d +a)

. (2.32)

Since 〈q〉= 1
n ∑i qi and the average out-degree of the network is d by definition and the

average in- and out-degrees of a directed network are equal, so 〈q〉= d.

Since each new paper cites d others on average and since there are npq(n) vertices

with degree q in our network, the expected number of new citations to all vertices with

degree q is

npq(n)×d× q+a
n(d +a)

=
d(q+a)

d +a
pq(n). (2.33)

When we add a single new vertex to our network of n vertices, the number of vertices in

the network with in-degree q increases by one for every vertex previously of in-degree

q−1 that receives a new citation, thereby becoming a vertex of in-degree q. From

Equation 2.33 the expected number of such vertices is

d(q−1+a)
d +a

pq−1(n). (2.34)

Similarly, we lose one vertex of in-degree q every time such a vertex receives a new

citation, thereby becoming a vertex of in-degree q+1. The expected number of such

vertices receiving citations is

d(q+a)
d +a

pq(n). (2.35)

The number of vertices with in-degree q in the network after the addition of a single

vertex is (n+1)pq(n+1). We can thus write down the master equation for the evolution

of the in-degree distribution as

(n+1)pq(n+1) = npq(n)+
d(q−1)+a

d +a
pq−1(n)−

d(q+a)
d +a

pq(n). (2.36)
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The equation is valid for all values of q except q = 0. When q = 0 there are no vertices of

lower degree that can gain an edge to become a vertex of degree zero. On the other hand,

we can gain a vertex of degree zero whenever a new vertex is added, since by hypothesis

papers have no citations when they are fist published. So the approximate equation for

q = 0 is

(n+1)p0(n+1) = np0(n)+1− da
d +a

p0(n). (2.37)

Now let us consider the limit of large network size n→ ∞ and calculate the asymptotic

form of the degree distribution in this limit. Taking the limit n→ ∞ and using the

shorthand pq = pq(∞), Equations 2.36 and 2.37 become

pq =
q+a−1

q+a+1+ a
d

pq−1 for q≥ 1 (2.38)

and

p0 =
1+ a

d
a+1+ a

d
for q = 0. (2.39)

Solving the recurrence relation given by Equations 2.38 and 2.39, we get the correct

expression for general q as

pq =
(q+a−1)(q+a−2) . . .q

(q+a+1+ a
d ) . . .(a+2+ a

d )

1+ a
d

a+1+ a
d
. (2.40)

The Gamma function, Γ(x) =
∫

∞

0 tx−1e−tdt, has a property that Γ(x+1) = xΓ(x) for

all x > 0, iterating which we get

Γ(x+n)
Γ(x)

= (x+n−1)(x+n−2) . . .x. (2.41)

Using this result in Equation 2.40 we can write

pq =
(

1+
q
d

)
Γ(q+a)Γ(q+1+ a

d )

Γ(a)Γ(q+a+2+ a
d )

=
Γ(q+a)Γ(2+ a

d )

Γ(q+a+2+ a
d )

Γ(a+1+ a
d )

Γ(a)Γ(1+ a
d )

=
B(q+a,2+ a

d )

B(a,1+ a
d )

, (2.42)
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where B(x,y) = Γ(x)Γ(y)
Γ(x+y) is Euler’s beta function. Note that the Equation 2.42 is valid for

q≥ 0.

For large q and fixed a and d, we can rewrite the beta function using Stirling’s

approximation for the gamma function

Γ(x)≈
√

2xe−xxx− 1
2 , (2.43)

thus giving us

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

≈ e−xxx− 1
2

e−(x+y)(x+ y)x+y− 1
2

Γ(y). (2.44)

But

(x+ y)x+y− 1
2 = xx+y− 1

2

[
1+

y
x

]x+y− 1
2 ≈ xx+y− 1

2 ey. (2.45)

Therefore,

B(x,y)≈ e−xxx− 1
2

e−(x+y)xx+y− 1
2 ey

Γ(y) = x−y
Γ(y). (2.46)

In other words, the beta function B(x,y) falls off as a power-law for large values of x, with

exponent y.

Applying this finding to 2.42 we find that for large values of q the degree distribution

of the network goes as pq ∝ (q+a)−α or simply

pq ∝ q−α , (2.47)

when q� a, where the exponent α is

α = 2+
a
d
. (2.48)

Thus Price’s model for a citation network gives rise to a degree distribution with a

power-law tail, very much in agreement with the degree distribution of real citation
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networks. Note that α > 2 since a,d > 0. For real citation networks, the exponent of the

power-law is usually around α = 3, which can be achieved by setting a = d.

The Barabási-Albert model [BA99] is similar to Price’s model, though not identical,

since it is a model of an undirected network. In this model, we again add vertices one by

one to a growing network and each vertex connects to a suitably chosen set of previously

existing vertices. The connections, however, are now undirected and the number of

connections made by each vertex is exactly d, unlike Price’s model where the number was

required only to take an average value of d. This implies that d must be an integer.

Connections are made to vertices with probability precisely proportional to the vertices’

current degree. We will denote the degree of a vertex i by ki. There are no vertices with

k < d. The smallest degree in the network is always k = d. We next show that this is a

special case of Price’s model. Imagine that we give each edge added to the network a

direction, running from the vertex just added to previously existing vertex it connects to.

In this way we convert our network into a directed network in which each vertex has

out-degree d. The total degree ki of a vertex in the original undirected network is the sum

of the vertex’s in-degree and out-degree, which is ki = qi +d where qi is the in-degree as

before.

But given that the probability of an edge attaching to a vertex is simply proportional to

ki, it is thus also proportional to qi +d, which is the same as Price’s model if we make the

particular choice a = d. Thus the distribution of in-degree in this directed network is the

same as for Price’s model with a = d, which we find from Equation 2.42 as

pq =
B(q+d,3)

B(d,2)
. (2.49)
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To get the distribution of the total degree we then simply replace q+d by k to get

pk =


B(k,3)
B(d,2) for k ≥ d

0 for k < d.
(2.50)

Simplifying Equation 2.50 using B(x,y) = Γ(x)Γ(y)
Γ(x+y) , we get

pk =
3d(d +1)

k(k+1)(k+2)
for k ≥ d. (2.51)

In the limit where k becomes large, we have

pk ∝ k−3. (2.52)

Thus the Barabási-Albert model generates a degree distribution with a power-law tail that

always has an exponent α = 3. This model is attractive, since it does not require the offset

parameter a. Also, we can write the degree distribution without using special functions.

However, the model can no longer match exponents observed in real networks, being

restricted to just a simple exponent value α = 3. We will denote a Barabási-Albert model

network by ΓBA.

The average degree of the network generated by Barabási-Albert model is 2d. This is

direct consequence of the fact that d edges are added when each vertex enters the network,

and each edge contributes twice to the total degree.

A slight variation of the Barabási-Albert model, in which each new vertex entering the

network attaches to a fixed number of existing vertices chosen uniformly at random, is

called the growing random network model [CHK01]. This model produces networks with

exponential degree distribution. Such networks do show up in the real world. For

example, the electric power grid network of Southern California [ASB00] has a

cumulative degree distribution that is exponential.
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2.4.5 Power-Law Clustered Network

Many real-world networks, besides properties such as the small-world effect, and

power-law degree distribution, also exhibit high clustering. The networks generated by the

standard Barabási-Albert model do not have any clustering. Here we look at an extension

[HK02] of the model that produces small-world networks with power-law degree

distribution, and with high clustering. We denote these networks by ΓC
BA. The standard

Barabási-Albert model involves the following steps:

1. Initial condition - start with a network Γ0 containing n0 vertices and 0 edges.

2. Growth - at each time step t, add one vertex v to the current vertex set Vt−1 to give Vt .

3. Preferential attachment (PA) - each of d edges of v is then attached to an existing

vertex w ∈Vt−1 with probability proportional to its degree, i.e., the probability for a

vertex w to be attached to v is

pw =
kw

∑v∈Vt−1 kv
. (2.53)

In the Barabási-Albert model, the growth step is iterated n times, and for each growth step

the PA step is iterated d times for d edges of the newly added vertex v. In order to get high

clustering the Barabási-Albert model algorithm is modified by adding the following

additional step:

4. Triad formation (TF) - if an edge between v and w was added in the previous PA

step, then add one more edge from v to a randomly chosen neighbor of w. If there

remains no pair to connect, i.e., if all neighbors of w are already connected to v, do a

PA step instead.

When a vertex v with d edges is added to the existing network, we first perform one

PA step, and then perform a TF step with probability pt or a PA step with probability
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1− pt . The average number dt of the TF triads per added vertex is then given by

dt = (d−1)pt , which is considered as the control parameter of the model. If dt = 0 then

the model reduces to the standard Barabási-Albert model.

2.4.6 Power-Law Homophilic Network

The existence of homophilic association among vertices in a network is an important

property of real-world networks [New02]. Many social networks are homophilic, while

many technological and biological networks are heterophilic. Such association tendencies

in a network influence phenomena, such as the spreading of information or infectious

diseases on the network.

Here we look at an extension [XS04] of the Barabási-Albert model that can generate

undirected networks with homophilic or heterophilic association, and some clustering. We

denote such networks by Γh
BA. The model is governed by a single parameter p. The model

starts with a seed network built using the Barabási-Albert model and having the desired

average degree. At each step two edges of the network are chosen at random, so that four

vertices, in general with different degrees, are considered. The four vertices are ordered by

their degrees. Then with probability p, the edges are rewired in such as way that one edge

connects the two vertices with the larger degrees, and the other connects the two vertices

with smaller degrees. With probability 1− p they are randomly rewired. In the case when

one or more of these new edges already exist in the new network, the step is discarded and

a new pair of edges is selected. This avoids appearance of multiedges. The repeated

application of the rewiring step leads to a homophilic version of the original network. One

way of terminating the algorithm is when the desired level of homophily is reached, or

when a predetermined number of rewiring steps have been performed. Note that the
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rewiring procedure preserves the degree of every vertex, and thus does not alter the degree

distribution of the seed network.

The model can also generate networks with heterophilic association. To achieve this,

the rewiring step is modified so that with probability p, the highest-degree vertex is

connected to the lowest-degree vertex and the remaining two vertices are connected to

each other.

2.5 Basic Properties of Select Empirical Networks

Model networks do not entirely match the properties of real-world networks. We would

like to know if the subtle differences that exist between the model and real-world

networks have an effect on the outcome of dynamical processes that take place on the

networks. Therefore, in Chapters 4, 5, and 6, where we consider various dynamical

processes on networks, in addition to using model networks, we employ a selection of

real-world networks10 as substrates for the processes.

We consider the following undirected real-world networks (see Table 2 for a listing of

their basic properties):

• A symmetrized snapshot of the structure of the Internet at the level of autonomous

systems, reconstructed from BGP tables posted by the University of Oregon Route

Views Project, by Mark Newman. We denote this technological network by Γinternet.

• A network of coauthorships between scientists who posted preprints on the

High-Energy Theory E-Print Archive between January 1, 1995 and December 31,

1999 [New01]. We denote this social network by Γhepcoauth.

10Only the largest component of the networks are considered.
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• A network of coauthorships between scientists who posted preprints on the

Astrophysics E-Print Archive between January 1, 1995 and December 31, 1999.

[New01]. We denote this social network by Γastrocoauth.

• The largest component of the New Orleans Facebook network of user-to-user links

[VMC09]. We denote this social network by Γfb.

• A snapshot of the Gnutella peer-to-peer file sharing network from August 4, 2002

[LKF07, RF02]. We denote this information network by Γp2p.

• A network of protein-protein interactions in the yeast S. cerevisiae [JTA00, JMB01].

We denote this biological network by Γprotein.
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CHAPTER 3

EVOLUTIONARY DYNAMICS

Nothing in biology makes sense except in the light of evolution.

- Theodosius Dobzhansky

Another curious aspect of the theory of evolution is that everybody thinks he understands it.

- Jacques Monod

3.1 Introduction

The main objective of this thesis is to study the effects of network structure on the

dynamics of evolutionary processes, i.e., how the structural properties of networks affect

the long-term behavior of processes that take place on the networks. In subsequent

chapters we propose models to describe processes such as evolution of cooperative

behavior, and the spreading of infectious diseases in a population. We use a network to

represent the population, with the vertices of the network corresponding to the individuals

in the population, and the connection patterns in the network specifying who can interact

with whom in the population.

The interactions among individuals in the dynamical processes we consider are such

that their outcomes to an individual depend not only on the state or action of that

individual, but also on the states or actions of the individual’s neighbors, i.e., the

individuals with whom the given individual interacts. For example, when an animal fights

another animal over a territory, whether or not it uses a passive or an aggressive fighting

strategy depends on the strategy used by its opponent [SP73, Smi74]; similarly, in an

epidemic outbreak in a population, whether or not an individual is infected, and the extent
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to which the individual is infected, depends not only on the state (susceptible or immune)

of the individual but also on the state (infected or not) of the individual’s neighbors and

extent to which they are infected [AM92]. Such interdependent interactions are best

understood in the language of game theory, which provides a mathematical framework for

describing and analyzing strategic interactions.

Classical game theory1 assumes that the interacting decision makers are rational, i.e.,

they act so as to maximize their payoffs. This assumption, at times, is untenable even

when the decision makers are sentient human beings [GH01]. If we intend to apply

game-theoretic ideas to non-human organisms—and our models are indeed applicable in

such settings—then the assumption about rational behavior is not viable and must be

relaxed. A refinement of the theory, called evolutionary game theory [SP73, Smi74],

which incorporates ideas from Darwinian evolution [Dar69], does not assume the

interacting individuals to be rational. The theory has been enormously successful in

evolutionary biology, and more recently, has also been applied in social contexts [SN99].

Though classical and evolutionary game theory differ quite radically in how they perceive

strategic interactions, i.e., games, there are some deep connections between the two

theories.

Besides providing a framework for describing situations in which individuals are not

overtly making decisions, evolutionary game theory offers us an additional bonus. It

allows us to build an explicit model of the process by which the frequency of strategies

change in a population and study the properties of the evolutionary dynamics within that

model. Once a model of the population dynamics is specified [Zee80], all of the standard

concepts from the theory of dynamical systems, such as attractors and stability, can be

brought to bear.

1The original formulation of game theory is termed “classical” to contrast it with its relatively modern
incarnation called “evolutionary game theory”.
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As much as we would like, it not always easy to validate the results of our models by

conducting experiments in the real world. We instead rely heavily on computer

simulations to illustrate and verify our models. We propose agent-based models [Bon02]

that can be simulated on a computer, and which emulate how individuals in a population

might behave if our models were implemented in reality. We use agent-based simulations

not only to verify the predictions made by our models, but also to simulate scenarios for

which mathematical analysis is either very difficult, or simply impossible. We thus rely on

an in-silico exploration of the results of our models.

In this chapter we first provide a brief introduction to classical and evolutionary game

theories. We then look at games from a dynamical systems standpoint which will help us

analyze games with both discrete and continuous strategies. Finally, we look at

agent-based models for simulating evolutionary dynamics on computers.

3.2 Classical Game Theory

Classical game theory originated in the 1920s, when John von Neumann, a brilliant

Hungarian mathematician, wanted to develop a scientific approach to bluffing in the game

of poker. He observed that playing poker involves a strategic component that other parlor

games, such as chess, do not. In most ordinary games the players know everything that

they could know about what has happened in the game so far. In poker, however, the

players only possess information about their own cards and know nothing about the other

players’ cards, and this gives the players the chance to misrepresent their strengths and

weaknesses. Von Neumann realized that a science of how to best act in these situations

would apply to a huge swath of decision-making problems in society. In 1944, von

Neumann and economist Oskar Morgenstern wrote a classic book [NMK07] on game

theory in which they developed, for the first time, a systematic theory of games.
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Around 1950, a flurry of research in classical game theory was carried out in places

such as Princeton University and the RAND corporation, a nonprofit global policy think

tank. One of the most important contributions came from the American mathematician

John Nash, who invented a simple but powerful concept, now called the “Nash

equilibrium”2, which is used to analyze the outcome of strategic interactions among

decision makers.

Ideas from classical game theory are applicable not only in contexts that are literally

games, such as chess or poker, but also in settings that are not usually considered games

[EK10]. Examples include: pricing of a new product when other firms have similar new

products; deciding how to bid in an auction; choosing a route on the Internet or through a

transportation network; deciding whether to adopt an aggressive or passive stance in

international relations; and choosing whether to use performance-enhancing drugs in a

professional sport.

Since classical game theory crucially depends on ideas from rational choice theory, a

framework for understanding and formally modeling social and economic behavior, we

will need to explore some of those ideas before we get into the details of classical game

theory proper.

Suppose we are faced with the problem of decision making. One approach to the

problem is to determine the desired outcome and then to behave in a way that leads to that

result. But this is not always possible. An alternative approach is to list the courses of

action that are available and pick the outcome that maximizes something of value. The

second approach is called “making an optimal decision”. Rational choice theory provides

a mathematical framework for studying such decision problems. It is important to realize

that these decision problems are non interactive, i.e., the outcome to the individual making

2Nash’s PhD thesis led to a single-page paper [Nas50] in the Proceedings of the National Academy of
Sciences in 1950, which earned him the 1994 Nobel Prize for economics.
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a decision depends on that individual’s decision alone and not on those made by other

individuals who are also confronted with the same decision problem. For example, an

individual’s preference for a particular flavor of ice cream does not depend on what other

individuals might prefer.

A choice of behavior in a decision problem is called an action. The set of alternative

actions available to an individual is denoted by A, which can either be discrete, such as

{a1,a2, . . .}, or continuous, such as the unit interval [0,1].

A payoff is a function π : A→ R that associates a numerical value to every action

a ∈ A. An action a? is an optimal action if

π(a?)≥ π(a) ∀a ∈ A, (3.1)

or, equivalently

a? ∈ argmax
a∈A

π(a). (3.2)

Theorem 3.1. 3 The optimal action is unchanged if payoffs are altered by an affine

transformation, i.e., a transformation that changes payoffs π(a) into payoffs π ′(a)

according to the rule

π
′(a) = απ(a)+β , (3.3)

where α and β are constants independent of a, and α > 0.

The set of possible outcomes is denoted by Ω = {ω1,ω2, . . .}. We write ωi � ω j if an

individual strictly prefers ωi over ω j for some i, j; ωi ∼ ω j if an individual is indifferent

between the two; and ωi � ω j if an individual either prefers ωi to ω j or is indifferent

between the two. An individual is called rational if her preferences for outcomes satisfy

the following conditions:
3The proofs of theorems we state in this chapter, unless specified otherwise, can be found in [Web07].
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1. (Completeness) Either ωi � ω j or ω j � ωi; and

2. (Transitivity) If ωi � ω j and ω j � ωk, then ωi � ωk.

An individual has a personal utility function u(ω) that gives her the utility for any

outcome ω . The outcome may be numeric, such as, an amount of money or number of

vacation days, or something less tangible, such as degree of happiness. The utility function

assigns a number to the outcome and encapsulates everything about an outcome that is

important to the individual. Formally, the utility function is a function u : Ω→ R such that

u(ωi)> u(ω j)⇔ ωi � ω j, and

u(ωi) = u(ω j)⇔ ωi ∼ ω j. (3.4)

An immediate consequence of this definition is that a rational individual should seek to

maximize her utility. The relation between the utility function and the payoff function is

straightforward. If choosing an action a produces an outcome ω(a), then π(a) = u(ω(a)).

We only consider decision problems with ordinal payoffs, i.e., problems in which

individuals make decisions only based on the relative orderings of the payoffs, and not

their absolute differences. For example, an individual deciding between actions a1 and a2,

will prefer a1 over a2 as long as π(a1)> π(a2), no matter how small the difference may

be.

Individuals might also randomize their behavior. A general randomized behavior β is

given by a vector of probabilities p(a) with which each available action a ∈ A is chosen

and

∑
a∈A

p(a) = 1. (3.5)
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The set of all possible randomizing behaviors for a given decision problem is denoted by

B, and the payoff for using a behavior β is given by

π(β ) = ∑
a∈A

p(a)π(a). (3.6)

An optimal behavior β ? is one for which

π(β ?)≥ π(β ) ∀β ∈ B, (3.7)

or, equivalently

β
? ∈ argmax

β∈B
π(β ). (3.8)

The support of a behavior β is the set A(β )⊆ A of all the actions for which β specifies

p(a)> 0, i.e., A(β ) = {a|a ∈ A and p(a)> 0}.

Theorem 3.2. If β ? is an optimal behavior with support A?, then π(a) = π(β ?) ∀a ∈ A?.

A consequence of Theorem 3.2 is that if a randomizing behavior is optimal, then two

or more actions are optimal as well. Therefore, in a non-interactive decision problem,

randomization is not necessary to achieve maximal payoff, except may be as a tie breaker

in choosing between two or more equally acceptable actions.

So far we have been concerned with non-interactive decision problems in which the

payoff to an individual only depends on her own action and not on the actions of other

individuals around her. We now shift our attention to interactive decision problems, i.e.,

decision problems involving multiple individuals in which the outcome to an individual

depends not only on her own decisions but also on the other individuals’ decisions. We

illustrate this with a couple of examples.

Consider two firms A and B that manufacture a similar product. Any pricing decision

that each of the two companies makes will affect not only its own profits but also the
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profits of the other company. If, for example, A decides to lower the price of its product,

some of B’s customers will switch to using A’s product. As a result, A’s profits will

increase while B’s profits will drop, thus forcing B to also lower the price of its product.

Thus the action of one company depends on the action of the other company.

As another example, consider two candidates A and B from different political parties,

contesting in an election. Any reform that either of the candidates promises to bring about

if elected to office, will affect not only her chances of winning the election but also the

other candidate’s chances. For example, if A promises to increase educational spending,

then some of B’s followers who care about education will gravitate towards supporting A,

thus forcing B to respond in kind. Here again, the action of one depends on that of the

other.

In each of the two examples, we would like to predict the optimal behavior. In the case

of the two companies, we would like to know the price that each company should charge

for its product that is its best response to the price charged by the other company. In the

case of the election candidates, we would like to know the reforms that each candidate

must optimally promise. Classical game theory makes such predictions possible.

Classical game theory is a mathematical framework for dealing with situations, called

games, in which rational—as defined by rational choice theory—decision makers, called

players, interact with one another, and in which each participant’s satisfaction with the

outcome depends not only on her own action but also on the actions taken by everyone

else.

A strategy is a rule for choosing an action at every point that a decision might have to

be made. A pure strategy s is one in which there is no randomization. The finite set of all

pure strategies is denoted by S. A mixed strategy σ specifies the probability p(s) with

which each of the pure strategies s ∈ S is used. Suppose the set of n pure strategies is
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S = {s1, . . . ,sn}. Then a mixed strategy σ can be represented as a vector of probabilities

σ = (p(s1), . . . , p(sn)). (3.9)

A pure strategy can then be represented as a vector in which all the entries are zero except

one. For example, the strategy s2 can be represented as

s2 = (0,1,0, . . . ,0). (3.10)

And a mixed strategy can be represented as a linear combination of pure strategies, i.e.,

σ = ∑
s∈S

p(s)s. (3.11)

The set of all mixed strategies is denoted by Σ. The support of a mixed strategy σ is the

set S(σ)⊆ S of all the pure strategies for which σ specifies p(s)> 0.

Consider a game with n players indexed by i ∈ {1, . . . ,n}. Let S1, . . . ,Sn denote the

pure-strategy sets of the n players, and let Σ1, . . . ,Σn denote their mixed strategy sets. The

pure-strategy profile ŝ is a tuple of pure strategies given by ŝ = (s1, . . . ,sn), where si ∈ Si,

and it denotes the pure strategies played by each of the n players. Note that

ŝ ∈ Ŝ = S1×·· ·×Sn. We use ŝ−i to denote the pure-strategy profile that excludes the

strategy si of player i, i.e., ŝ−i = (s1, . . . ,si−1,si+1, . . . ,sn) ∈ Ŝ−i = S1×

·· ·×Si−1×Si+1×·· ·×Sn. Similarly, the mixed-strategy profile σ̂ is a tuple of mixed

strategies given by σ̂ = (σ1, . . . ,σn), where σi ∈ Σi, and it denotes the mixed strategies

played by each of the n players. Note that σ̂ ∈ Σ̂ = Σ1×·· ·×Σn. We use Σ̂−i to denote the

mixed-strategy profile that excludes the strategy σi of player i, i.e.,

σ̂−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn) ∈ Σ̂−i = Σ1×·· ·×Σi−1×Σi+1×·· ·×Σn.

For each choice of strategies, each player receives a payoff that depends on the

strategies used by everyone. Thus, the payoff to player i is given by

πi : S1×·· ·×Sn→ R. (3.12)
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We will use the abbreviation πi(si; ŝ−i) for πi(s1, . . . ,sn) when n > 2. If the players use

mixed strategies σ1, . . . ,σn, then the payoff to player i is given by

πi(σ1, . . . ,σn) = ∑
s1∈S1

∑
s2∈S2

. . . ∑
sn∈Sn

p1(s1)p2(s2) . . .πi(s1,s2, . . . ,sn), (3.13)

where pi(s) is the probability of choosing strategy s by player i. We will use the

abbreviation πi(σi; σ̂−i) for πi(σ1, . . . ,σn) when n > 2.

In order to reason about the behavior of players in a game, we assume that everything

that a player cares about is summarized in the player’s payoff. We also assume that each

player chooses a strategy that maximizes her own payoff given her beliefs about the

strategies used by the other players, and that each player succeeds in selecting the optimal

strategy.

In a game of perfect information, a player knows everything about the structure of the

game. She knows her own list of possible strategies, who the other players are, the

strategies available to them, and what is their payoff for any choice of strategies. An

example of such a game is chess. Contrarily, a game of imperfect information is one in

which not all the information is available to every player. Poker is an example of such a

game. A static game is one in which a single decision is made by each player, and each

player has no knowledge of the decision made by the other players before making her own

decision. Such games are also referred to as simultaneous games because any actual order

in which the decisions are made is irrelevant. The popular children’s game of

rock-paper-scissors (also known as Rochambeau) is an example of a static game4. There

are situations in which decisions are made at various times, with at least some of the

earlier choices being public knowledge when the later decisions are being made. Such

games are called dynamic games. Tic-tac-toe is a example of a dynamic game. In this

thesis we only deal with static games with perfect information.
4The rock-paper-scissors game has interesting parallels in nature [KRF02, SL96].
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A static game is usually represented in normal or strategic form. A finite n-player

normal-form game consists of

1. a set of n players indexed by i ∈ {1, . . . ,n};

2. a set Si of pure strategies assigned to each player i; and

3. a payoff πi(si; ŝ−i) assigned to player i for every possible combination of pure

strategies used by all players.

A natural way of representing the payoffs in a normal-form game with two players is

using an m×n matrix where m and n are the number of pure strategies in the strategy sets

of the two players. We illustrate this with an example.

Example 3.1. (Simplified poker) Consider a simplified game of poker played between

two players with a deck of just two cards: an Ace and a King. Each player puts two

dollars into the pot and one of them (say 1) is nominated to be the dealer and the other

(say 2) to be the recipient. Player 1 deals herself a card at random and after seeing it can

either fold, or raise by putting two more dollars into the pot. In the former case Player 2

wins, and in the latter case, Player 2 can either fold, in which case she loses, or can put

two more dollars into the pot and demand to see the remaining card, winning if it is Ace

and losing if it is King. The winner gets the contents of the pot.

The strategies for the dealer are: 1) always raise; 2) raise with Ace and fold with King;

3) fold with Ace and raise with King; and 4) always fold. The strategies for the recipient

are: 1) stay if Player 1 raises; and 2) fold if Player 1 raises. We assume that Player 1 is

equally likely to deal herself an Ace or a King.

We therefore have a game with two players: Player 1 and Player 2. The pure-strategy

set for Player 1 is S1 = {1,2,3,4}, and that for Player 2 is S2 = {1,2}. The payoffs π are
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given by the 4×2 matrix

π =



1 2

1 (0,0) (2,−2)

2 (1,−1) (0,0)

3 (−3,3) (0,0)

4 (−2,2) (−2,2)

. (3.14)

The matrix in Equation 3.14 is called a bimatrix. Player 1, called row-player, chooses a

strategy i along the rows and Player 2, called column-player, chooses a strategy j along

the columns. The pair of numbers (π1,π2) at (i, j) denote the payoffs to Player 1 and

Player 2 respectively. For example, if Player 1 chooses the strategy 1 (always raise) and

Player 2 chooses strategy 2 (fold if Player 1 raises) then Player 1 wins and Player 2 loses

the two dollars that Player 2 put into the pot.

The game in Example 3.1 is an asymmetric game because there is an asymmetry in the

roles of the two players; for example, π1(1,2) = 2 6= π2(2,1) =−1. The payoffs in such

two-player games are usually represented using bimatrices. When a game does not have

such role asymmetries, it is called a symmetric game; in such games the players have the

same strategy sets and their payoffs are symmetric. A two-player symmetric game can be

represented using a regular matrix in which the elements are single numbers instead of

pairs of numbers5.

A two-player normal-form game is a constant-sum game if there exists a constant c

such that π1(s, t)+π2(s, t) = c ∀s ∈ S1, t ∈ S2. A zero-sum game is a special case of a

constant sum game, with c = 0. The game in Example 3.1 is a zero-sum game. These are

games of pure conflict, i.e., in such games one player’s gain must come at the expense of

the other player.

5We will use a bimatrix even for symmetric games.
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Example 3.2. (Rock-paper-scissors game) The popular children’s game of

rock-paper-scissors provides yet another example of a two-player zero-sum game. Two

children simultaneously make the shape of the item with one of their hands: rock (R) beats

scissors (S); scissors beats paper (P); and paper beats rock. If both players choose the

same item, then the game is a draw.

We therefore have a two-player game in which both players have the same

pure-strategy set S = {R,P,S}, and the payoffs π are given by the 3×3 bimatrix

π =


R P S

R (0,0) (−1,1) (1,−1)

P (1,−1) (0,0) (−1,1)

S (−1,1) (1,−1) (0,0)

. (3.15)

Notice that the game is symmetric, since π1(s, t) = π2(t,s) ∀s, t ∈ S.

Now that we have defined what normal-form games are and what strategies are

available to the players involved, a natural question to ask is how does one reason about

such games. In non-interactive decision problems, the key notion is that of optimal action,

i.e., an action that maximizes the individual’s expected payoff for a given environment in

which she operates. In interactive settings, the environment includes other individuals, all

of whom are also hoping to maximize their payoffs. Thus the notion of optimal strategy

for a given individual is not meaningful; the best strategy depends on the choices of

others. Game theorists deal with this problem by identifying certain subsets of outcomes,

called solution concepts. We describe a few such solution concepts.

• A strategy σi for player i is strictly dominated by σ ′i if

πi(σ
′
i ; σ̂−i)> πi(σi; σ̂−i) ∀σ̂−i ∈ Σ̂−i, (3.16)
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i.e., whatever the other players do, player i is always better off using σ ′i rather than

σi. A strategy σi for player i is weakly dominated by σ ′i if

πi(σ
′
i ; σ̂−i)≥ πi(σi; σ̂−i) ∀σ̂−i ∈ Σ̂−i, and

∃σ̂ ′−i ∈ Σ̂−i such that πi(σ
′
i ; σ̂
′
−i)> πi(σi; σ̂

′
−i). (3.17)

• A Nash equilibrium for an n-player game is a mixed-strategy profile

σ̂? = (σ?
1 , . . . ,σ

?
n ) such that

πi(σ
?
i ; σ̂

?
−i)≥ πi(σi; σ̂

?
−i) ∀σi ∈ Σi. (3.18)

In other words, given the strategy adopted by the players, none of them could do

strictly better (i.e., increase their payoff) by adopting another strategy.

• A strict Nash equilibrium for an n-player game is a mixed-strategy profile

σ̂? = (σ?
1 , . . . ,σ

?
n ) such that

πi(σ
?
i ; σ̂

?
−i)> πi(σi; σ̂

?
−i) ∀σi 6= σ

?
i . (3.19)

It is clear that a strictly dominated strategy is never a best response to any strategy,

whereas a weakly dominated strategy may be a best response to some strategy. This

is why weakly dominated strategies may appear in Nash equilibria but strictly

dominated strategies do not. We can solve some games by eliminating strictly

dominated strategies as follows:

– We start with any n-player game, find all the strictly dominated strategies, and

delete them.

– We then consider the reduced game in which there may be strategies that are

now strictly dominated, despite not having been strictly dominated in the full

game. We find these and delete them.
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– We continue this process, repeatedly finding and removing strictly dominated

strategies until none can be found.

The procedure described above works because of the fact that the set of Nash

equilibria of the original game coincides with the set of Nash equilibria for the final

reduced game, consisting only of strategies that survive iterated deletion of strictly

dominated strategies. There is a problem with the iterated deletion of dominated

strategies when it comes to deleting weakly dominated strategies, since the solution

may depend on the order in which the strategies are eliminated.

• A strategy σ ′i for player i is a best response to σ̂−i if

σ
′
i ∈ argmax

σi∈Σi

πi(σi; σ̂−i), (3.20)

and a unique best response if σ ′i is unique.

• There is an alternative definition of a Nash equilibrium, which focusses on the

strategies rather than the payoffs. The mixed-strategy profile σ̂? = (σ?
1 , . . . ,σ

?
n ) is a

Nash equilibrium if for all i, the mixed-strategy σ?
i is the best response to σ?

−i; and a

strict Nash equilibrium if it is a unique best response.

• For a two-player game in which each player has the same set Σ of mixed strategies,

(σ?,σ?) is a symmetric Nash equilibrium if σ? is a best response to itself; and a

strict symmetric Nash equilibrium if it is a unique best response to itself.

We next state the fundamental theorem of classical game theory (also known as Nash’s

existence theorem) [Nas50], which states that every strategic-form game has at least one

Nash equilibrium. For a proof of the theorem see [Mye97].
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Theorem 3.3. (Nash’s existence theorem) A finite normal-form game, i.e., a game with

finite number of players and finite number of pure strategies for each player, has at least

one Nash equilibrium involving pure or mixed strategies.

As Theorem 3.3 suggests, an n-player game with a finite number of pure strategies for

each player, may have both pure-strategy and/or mixed-strategy equilibria. As a result,

one should first check all pure outcomes (given by an n-tuple of pure strategies) to see

which, if any, form equilibria. Then, to check for any mixed-strategy equilibria, we need

to look for mixed strategies σ1, . . . ,σn, each of which is a best response to the others. For

example, in a two-player two-strategy game, we look for mixing probabilities p1 and p2

that are best responses to each other. If there is a mixed-strategy equilibrium, we can

determine Player 2’s strategy (p2) from the requirement that Player 1 randomizes. Player

1 will only randomize if her pure strategies have equal expected payoff (see Theorem 3.5

below). This equality of expected payoffs for Player 1 gives an equation that we can solve

to determine p2. The same process gives an equation to solve for determining Player 1’s

strategy (p1). If both of the obtained values, p1 and p2, are strictly between 0 and 1, and

are thus legitimate mixed strategies, then we have a mixed-strategy equilibrium.

It is only the equilibrium of strategies, and not the payoffs, which are of interest. It is

possible to convert a difficult calculation into a simple one by means of a generalized

affine transformation of payoffs in a game, without affecting its Nash equilibria, as stated

by the following theorem.

Theorem 3.4. The set of Nash equilibria is unaffected if the payoffs πi(si; ŝ−i) are altered

to π ′i (si; ŝ−i) by a generalized affine transformation given by

π
′
i (si; ŝ−i) = αiπi(si; ŝ−i)+β (ŝ−i) ∀si ∈ Si, (3.21)

where αi > 0 and β (ŝ−i) ∈ R.
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Theorem 3.5. (Equality of payoffs) Let (σ?
1 , . . . ,σ

?
n ) be a Nash equilibrium, and let S?i be

the support of σ?
i . Then πi(s; σ̂?

−i) = πi(σ
?
i ; σ̂?

−i) ∀s ∈ S?i .

Theorem 3.5 says that all strategies s ∈ S?i give the same payoff as the randomizing

strategy. Why does player i randomize then? The answer: if player i were to deviate from

this strategy, then σ̂?
−i would no longer be a best response from other players, and the

equilibrium would disintegrate. This is why randomizing strategies are important for

games, in a way that they were not for the single player decision problems.

It is interesting to classify outcomes in a game not just by their equilibrium properties,

but also by whether they are “good for the society”. A choice of strategies is

Pareto-optimal, named after the Italian economist Vilfredo Pareto, if there is no other

choice of strategies in which all players receive payoffs at least as high, and at least one

player receives a strictly higher payoff. A stronger condition is social optimality. A choice

of strategies is a social welfare maximizer or Hicks optimal, named after economist John

Hicks, if it maximizes the sum of the players’ payoffs. Outcomes that are Hicks optimal

must also be Pareto-optimal: if such an outcome were not Pareto-optimal, there would be

a different outcome in which all payoffs were at least as large, and one was larger—and

this would be an outcome with a larger sum of payoffs. However, a Pareto-optimal

outcome need not be Hicks optimal.

A Nash equilibrium is Pareto-superior to another Nash equilibrium if in the first

equilibrium some players receive higher payoff and none get lower payoff compared to

the second equilibrium. A Nash equilibrium is payoff dominant if it is Pareto-superior to

all other Nash equilibria in the game, and risk dominant if players are more likely to

choose the strategy if they are uncertain about the actions of the other players.

We next look at some examples to see how these solution concepts apply to various

games. We start with a game with a unique pure-strategy Nash equilibrium.
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Example 3.3. (Prisoner’s dilemma game) This game is motivated by the following story

due to Albert Tucker, who was John Nash’s PhD advisor. Suppose two suspects have been

apprehended by the police and are being interrogated in separate rooms. The police

strongly suspect that these two individuals are responsible for a robbery, but there is not

enough evidence to convict either of them of the robbery. However, they both resisted

arrest and can be charged with that lesser crime, and be given a short-term jail sentence .

Each of the suspects is told the following story. “If you confess, and your partner does not,

then you will be released and your partner will be charged with the crime. Your

confession will be sufficient to convict her of the robbery and she will be given a

long-term jail sentence. If you both confess, then we do not need either of you to testify

against the other, and you will both be convicted of the robbery, although in this case your

sentence will be less because of your guilty plea. Finally, if neither of you confesses, then

we cannot convict either of you of the robbery, so we will charge each of you with

resisting arrest. Your partner is being offered the same deal. Do you want to confess?”

The story suggests a symmetric two-player game in which the players are the two

suspects (call them Player 1 and Player 2). Each player has two strategies: not confess (C)

or confess (D). The rank ordering of the payoffs to the two players is as follows:

π1(D,C)> π1(C,C)> π1(D,D)> π1(C,D);

π2(C,D)> π2(C,C)> π2(D,D)> π2(D,C). (3.22)

A particular assignment of values to the payoffs, while preserving their rank ordering and

the essence of the story described above, gives us the following payoff matrix6 for the

6The general form of the payoff matrix for the prisoner’s dilemma game is written as

π =

( C D
C (R,R) (S,T )
D (T,S) (P,P)

)
,
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game:

π =


C D

C (2,2) (0,3)

D (3,0) (1,1)

. (3.23)

We can find the Nash equilibrium for the game by eliminating strictly dominated

strategies. For Player 1, C is strictly dominated by D, and hence can be eliminated. Now if

Player 1 plays D, then Player 2 is better off playing D, since π2(D,D) = 1 which is greater

than π2(D,C) = 0. Therefore, (D,D) is a strict Nash equilibrium for the game, i.e., the

two suspects must confess. To show that (D,D) is indeed a Nash equilibrium we must

show that π1(D,D)≥ π1(σ ,D) for any (possibly mixed) strategy σ , and a similar

condition for π2(D,D). Let σ = pC+(1− p)D, where p ∈ [0,1].

π1(σ ,D) = pπ(C,D)+(1− p)π(D,D)

= p(0)+(1− p)(1)

= 1− p

= 0 ∀σ 6= D.

< π1(D,D). (3.24)

Thus, (D,D) is a strict Nash equilibrium.

It is interesting to note that the two suspects would have been better off if they had

both not confessed, in which case their payoffs would have been 2 each. However, even if

the two suspects were personally committed to not confess (C)—hoping to achieve the

outcome where both receive a payoff of 2—and even if one individual knew that the other

was doing this, the other has the incentive to confess (D) so as to achieve a still higher

where T,R,P, and S, respectively called the tempation, reward, punishment, and sucker payoff, satisfy the
condition T > R > P > S.
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payoff of 3 for herself. Thus for the prisoner’s dilemma game, the Hicks optimal outcome

of (C,C) is at odds with the Nash equilibrium. The outcomes (D,D), (D,C), (C,D) are all

Pareto-optimal.

The next two examples are of games with multiple (pure- and mixed-strategy) Nash

equilibria.

Example 3.4. (Chicken game) In this game two cars are headed for each other at high

speed. The loser is whoever chickens out first by swerving, and the winner is one who

stays on track, i.e., does not swerve. There is a cost associated with swerving. If neither

driver swerves, there is substantially higher cost of a collision.

The story suggests a symmetric two-player game in which the players are the car

drivers (call them Player 1 and Player 2). Each player has two strategies: swerve (C) or

not swerve (D). The rank ordering of the payoffs to the two players is as follows:

π1(D,C)> π1(C,C)> π1(C,D)> π1(D,D);

π2(C,D)> π2(C,C)> π2(D,C)> π2(D,D). (3.25)

A particular assignment of values to the payoffs, while preserving their rank ordering and

the essence of the story described above, gives us the following payoff matrix for the

game:

π =


C D

C (2,2) (1,3)

D (3,1) (0,0)

. (3.26)

If Player 2 chooses C, then the best response for Player 1 is to choose D because

π1(D,C) = 3 > π1(C,C) = 2. On the other hand, if Player 2 chooses D, then the best

response for Player 1 is to choose C because π1(C,D) = 1 > π1(D,D) = 0. A similar
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argument also holds for Player 2. Therefore, (C,D) and (D,C) are both Nash equilibria.

These equilibria agree with our intuition that if one player cooperates, i.e., swerves, the

best thing for the other player to do is to not cooperate, i.e., not swerve.

The game also allows a mixed-strategy equilibrium, which we find as follows.

Suppose Player 1 chooses C with probability p1, and Player 2 chooses C with probability

p2. If Player 1 plays the pure strategy C against Player 2’s mixed strategy, her payoff is

p2 +1, and if she plays pure strategy D, her payoff is 3p2. Since Player 1 will randomize

only if her pure strategies have equal expected payoff, p2 +1 = 3p2 =⇒ p2 =
1
2 . The

situation is symmetric when we consider things from Player 2’s point of view, i.e., we can

show that p1 =
1
2 . Thus, ((1

2 ,
1
2),(

1
2 ,

1
2)) is a mixed-strategy Nash equilibrium for the

game. To prove that this is the case, we must show that π1(σ1,σ2)≥ π1(σ
′
1,σ2) where

σ1 = σ2 =
1
2C+ 1

2D and σ ′1 = pC+(1− p)D, where p ∈ [0,1], and a similar condition for

Player 2.

π1(σ1,σ2) =
1
4

π(C,C)+
1
4

π(C,D)+
1
4

π(D,C)+
1
4

π(D,D)

=
1
4
(2)+

1
4
(1)+

1
4
(3)+

1
4
(0)

=
3
2
. (3.27)

π1(σ
′
1,σ2) =

p
2

π1(C,C)+
p
2

π(C,D)+
1− p

2
π(D,C)+

1− p
2

π(D,D)

=
p
2
(2)+

p
2
(1)+

1− p
2

(3)+
1− p

2
(0)

=
3
2
. (3.28)

We can similarly show that π2(σ1,σ2) = π1(σ1,σ
′
2) ∀σ ′2. Therefore, (σ1,σ2) is a Nash

equilibrium, but is not strict.

Example 3.5. (Coordination game) Consider the following story from the writings of the

famous Swiss philosopher Rousseau. Suppose that two people are out hunting; if they
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work together, then they can catch a stag (which would be the highest-payoff outcome),

but on their own each can catch a hare. The tricky part is that if one hunter tries to catch a

stag on her own, she will get nothing, while the other one can still catch a hare.

The story suggests a symmetric two-player game, called the stag-hunt game, in which

the players are the two hunters (call them Player 1 and Player 2). Each player has two

strategies: hunt stag (C) or hunt hare (D). The rank ordering of the payoffs to the two

players is as follows:

π1(C,C)> π1(D,C)> π1(D,D)> π1(C,D);

π2(C,C)> π2(C,D)> π2(D,D)> π2(D,C). (3.29)

A particular assignment of values to the payoffs, while preserving their rank ordering

and the essence of the story described above, gives us the following payoff matrix for the

game:

π =


C D

C (5,5) (0,4)

D (4,0) (2,2)

. (3.30)

If Player 2 chooses C, then the best response for Player 1 is to also choose C because

π1(C,C) = 5 > π1(D,C) = 4. On the other hand, if Player 2 chooses D, then the best

response for Player 1 is to also choose D because π1(D,D) = 2 > π1(C,D) = 0. A similar

argument also holds for Player 2. Therefore, (C,C) and (D,D) are both Nash equilibria. It

must be noted that (C,C) is payoff dominant while (D,D) is risk dominant. Rational

choice would seem to be the payoff dominant Nash equilibrium, but in evolutionary

approaches, the players may end up in the risk dominant Nash equilibrium.

The game also allows a mixed-strategy equilibrium ((2
3 ,

1
3),(

2
3 ,

1
3)), identified using the

procedure followed in Example 3.4. To prove that this is indeed a Nash equilibrium, we
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must show that π1(σ1,σ2)≥ π1(σ
′
1,σ2) where σ1 = σ2 =

2
3C+ 1

3D and

σ ′1 = pC+(1− p)D, where p ∈ [0,1], and a similar condition for Player 2.

π1(σ1,σ2) =
4
9

π(C,C)+
2
9

π(C,D)+
2
9

π(D,C)+
1
9

π(D,D)

=
4
9
(5)+

2
9
(0)+

2
9
(4)+

1
9
(2)

=
10
3
. (3.31)

π1(σ
′
1,σ2) =

2p
3

π(C,C)+
p
3

π(C,D)+
2(1− p)

3
π(D,C)+

1− p
3

π(D,D)

=
2p
3
(5)+

p
3
(0)+

2(1− p)
3

(4)+
1− p

3
(2)

=
10
3
. (3.32)

We can similarly show that π2(σ1,σ2) = π1(σ1,σ
′
2) ∀σ ′2. Therefore, (σ1,σ2) is a Nash

equilibrium, but is not strict.

The stag-hunt game is an example of a coordination game since the two players’

shared goal is really to coordinate on the same strategy. The game is an unbalanced

coordination game since the two coordinated alternatives are unequal in terms of their

payoffs to the two individuals.

A coordination game in which the alternatives are equal is called a balanced

coordination game. A motivating story for such a game is: suppose two individuals are

each preparing slides for a joint project presentation. Each individual is unable to reach

the other by phone, and needs to start working on the slides right away. Each can decide

whether to prepare her half of the slides using Beamer or using Prezi. It will be much

easier to merge the slides if both use the same software. In this two-player symmetric

game the players are the two individuals preparing the presentation; let us call them

players 1 and 2. Choosing Beamer (B) or choosing Prezi (P) form the two strategies. The
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rank ordering of the payoffs to the two players is as follows:

π1(P,P)> π1(B,B)> π1(B,P) = π1(P,B);

π2(P,P)> π2(B,B)> π2(P,B) = π2(B,P). (3.33)

Notice that in this game, the players get the least payoff when they miscoordinate, unlike

the stag-hunt game in which miscoordination is not the lowest-payoff outcome.

A variation of the presentation game in which the two individuals do not agree on

which software they prefer, is called the battle of the sexes game, because of the following

motivating story. A husband and wife want to see a movie together, and they need to

choose between a romantic comedy and an action movie. They want to coordinate on their

choice, but the (romance, romance) alternative gives a higher payoff to one of them while

the (action, action) alternative gives a higher payoff to the other. Thus, we have a

two-player game; let us call the husband Player 1 and the wife Player 2. The two

strategies are R for watching the romance movie and A for watching the action movie. The

rank ordering of the payoffs to the two players is as follows:

π1(A,A)> π1(R,R)> π1(A,R) = π1(R,A);

π2(R,R)> π2(A,A)> π2(R,A) = π2(A,R). (3.34)

The next two examples are of games that have no pure-strategy equilibria, but allow an

equilibrium in mixed strategies.

Example 3.6. (Matching pennies game) Two players each place a penny on a table, either

“heads up” (strategy H) or “tails up” (strategy T ). If the pennies match, Player 1 wins the

pennies; if the pennies differ, then Player 2 wins the pennies. The payoff structure of this
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two-player asymmetric game is given by the matrix

π =


H T

H (+1,−1) (−1,+1)

T (−1,+1) (+1,−1)

. (3.35)

Clearly, this is a game in which the two players have completely opposing interests: one

player only wins a penny when the other loses a penny. The game is therefore a zero-sum

game.

We can easily check that there is no pure strategy pair that is a Nash equilibrium:

(H,H) is not an equilibrium because Player 2 should switch to T ; (H,T ) is not an

equilibrium because Player 1 should switch to T ; (T,H) is not an equilibrium because

Player 1 should switch to H; and finally, (T,T ) is not an equilibrium because Player 2

should switch to H.

Let us consider the mixed strategies σ1 = (p,1− p) for Player 1 and σ2 = (q,1−q)

for Player 2. That is, Player 1 plays “heads” with probability p and Player 2 plays “heads”

with probability q. The payoff to Player 1 is

π1(σ1,σ2) = pq− p(1−q)− (1− p)q+(1− p)(1−q)

= 1−2q+2p(2q−1). (3.36)

Clearly, if q < 1
2 then Player 1’s best response is to choose p = 0, i.e., “play tails”. On the

other hand, if q > 1
2 then Player 1’s best response is to choose p = 1, i.e., “play heads”. If

q = 1
2 then every mixed (and pure) strategy is a best response.

Now consider the payoff to Player 2.

π2(σ1,σ2) =−pq+ p(1−q)+(1− p)q− (1− p)(1−q)

=−1+2p+2q(1−2p). (3.37)
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Clearly, if p < 1
2 then Player 2’s best response is to choose q = 1, i.e., “play heads”. On

the other hand, if p > 1
2 then Player 2’s best response is to choose q = 0, i.e., “play tails”.

If p = 1
2 then every mixed (and pure) strategy is a best response.

So the only pair of strategies for which each is best response to the other is

σ?
1 = σ?

2 = (1
2 ,

1
2). That is, (σ?

1 ,σ
?
2 ) =

((
1
2 ,

1
2

)
,
(

1
2 ,

1
2

))
is a Nash equilibrium and the

expected payoff to each player is π1(σ
?
1 ,σ

?
2 ) = π2(σ

?
1 ,σ

?
2 ) = 0.

Example 3.7. (Rock-paper-scissors game) Reconsider the rock-paper-scissors game from

Example 3.2 with the payoff matrix

π =


R P S

R (0,0) (−1,1) (1,−1)

P (1,−1) (0,0) (−1,1)

S (−1,1) (1,−1) (0,0)

. (3.38)

We can go through a similar exercise as in Example 3.6 to show that no pure strategy

profile (s, t) for s, t ∈ {R,P,S} is a Nash equilibrium for this game. The game has a unique

mixed Nash equilibrium given by ((1
3 ,

1
3 ,

1
3),(

1
3 ,

1
3 ,

1
3)), the justification for which can be

found in [Nou07].

There are several possible interpretations of mixed-strategy equilibria in real-world

situations [EK10]: when the players are genuinely playing a game, the players may be

actively randomizing their actions; sometimes the mixed strategies are better viewed as

proportions within a population; and finally, since a Nash equilibrium is often best thought

of as an equilibrium in beliefs, if each player believes that her partner will play according

to a particular Nash equilibrium, then she too will want to play according to it.

Now we turn our attention to some of the drawbacks of classical game theory. We

assumed that in reasoning about behavior in strategic games, each player actually

81



succeeds in selecting the optimal strategies. In simple games played by experienced

players, this seems like a reasonable assumption. But if the players are inexperienced and

the games are complex, then the assumption is absolutely unwarranted. It is also

unreasonable to assume that the individuals will always behave rationally. Recall that an

individual is considered rational only if their preferences satisfy the completeness and

transitivity conditions. It is very easy, for example, for an individual’s preferences to

violate the transitivity property. Consider an individual who is asked to choose between

255 shades of the color gray, ordered from the lightest to the darkest, and numbered from

1 to 255. She is quite likely to be indifferent between nearby shades since they are very

hard to tell apart, but she might have a preference for shades that are farther apart. Thus,

individuals cannot be expected to play games the way classical game theory predicts they

should, and in fact they do not [GH01].

How can we then apply the ideas from classical game theory to non-human

organisms? The theory has been applied, and quite successfully so, not just to higher

primates [SPN04], but also to fish [Mil87], bats [Wil84], dung beetles [CFR09], bacteria

[KRF02], viruses [TC99], and many other organisms. Clearly, rationality cannot be

assumed in any of these cases. So the theory needs to be refined before it is applied to

these contexts. Evolutionary game theory is such a refinement and we discuss it next.

3.3 Evolutionary Game Theory

In this section we explore evolutionary game theory, which shows that the basic ideas of

game theory can be applied even to situations in which no individual is overtly reasoning

or even making explicit decisions. Evolutionary game theory deals with settings in which

individuals can exhibit different forms of behavior, and helps us analyze the ones that can

persist in populations and the ones that can be driven out by others.

82



As the name suggests, evolutionary game theory has been applied most widely in the

area of evolutionary biology, the domain in which the idea was first articulated by the

British evolutionary biologist and geneticist John Maynard Smith and the American

population geneticist George Robert Price [SP73]. Evolutionary biology is based on the

idea that an organism’s genes, i.e., its genotype, largely determines its observable

characteristics, i.e., its phenotype, and hence its fitness in a given environment. Organisms

that are most fit will tend to produce more offspring, causing the genes that provide

greater fitness to increase in frequency in the population. Thus, fitter genes tend to win

over time because they provide higher rates of reproduction.

In order to apply classical game theory in an evolutionary context, John Maynard

Smith proposed the following changes:

• Strategy - In classical game theory, players have strategy sets from which they

choose particular strategies. In evolutionary game theory, populations have strategy

sets, which correspond to phenotypic variants, and individuals in the population

have one of these different phenotypes as strategies, which they use in strategic

interactions. Since the phenotype is determined by the individual’s genotype, the

strategy that an individual uses is genetically coded, and could have one of many

different forms. For example, a behavioral strategy, the growth forms of a plant, the

sex ratio of an organism and so on.

• Payoffs - In classical game theory, the payoffs are defined in terms of utility, which

is an elusive concept. In evolutionary game theory, the notion of payoff is very

clear. The payoff to an individual i using some strategy si against another individual

j using some strategy s j is defined to be the change in the Darwinian fitness of i as a

result of the interaction, i.e., the payoff to i is the change in the expected number of

offspring for i as a result of the interaction.
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• Equilibrium - In classical game theory the Nash equilibrium is the most important

solution concept. In evolutionary game theory, it is replaced by an evolutionarily

stable strategy (ESS). A strategy is an ESS if a whole population using that strategy

cannot be invaded by a small group of individuals using any mutant strategy, i.e.,

any variant strategy. The concept of an ESS, as we shall see, has interesting

connections to the idea of Nash equilibrium, although it arises in quite a different

way, and it is also linked to a dynamical theory of evolution.

• Interactions - In classical game theory, players play a single game against an

opponent, however, in evolutionary game theory, the players are assumed to play

many games against randomly chosen (by nature) opponents. That is, the

individuals engage in many random pairwise interactions using strategies coded by

their genome.

Applications of evolutionary game theory are not confined to evolutionary biology. It

has many interesting applications in economics and social sciences as well. The reason for

this that the basic concepts of evolutionary game theory can also be viewed in cultural

terms. For example, we can say that a society has a strategy set, i.e., the set of alternative

cultural norms, and individuals “inherit” them or choose among them. Similarly, a cultural

norm is evolutionarily stable if upon being adopted by all members of a society, no small

group of individuals using an alternative cultural norm can invade. Thus evolutionary

game theory, in this context, changes the problem from explaining the action of

individuals to understanding the spread of behavioral norms in society.

In classical game theory the outcome of a pairwise game depends on the choices of

rational and consciously reasoning individuals. The solution of this type of game—the

Nash equilibrium—was based on the idea that each player uses a strategy that is a best

response to the strategies chosen by the others. So neither would change what they were
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doing. For a symmetric Nash equilibrium (σ?,σ?), we can give an alternative

interpretation of the Nash equilibrium by placing the game in a population context. In a

population where everyone uses σ?, the best thing for an individual to do is to follow the

crowd. So if the population starts with everyone using σ?, then it will remain that way,

and the population is said to be in equilibrium. A natural question to ask is then: what

happens if the population is close to, but not actually at, its equilibrium configuration?

Consider an infinite population of individuals that can use some set of pure strategies

S. A population profile is a tuple x̂ that gives the probability x(s) with which each strategy

s ∈ S is played in the population, i.e., the frequency of each strategy within the population.

Note that a population profile need not correspond to a strategy adopted by any member of

the population.

In this thesis we will mostly be dealing with pairwise contest games which describe a

situation in which a given individual plays against an opponent that has been randomly

selected (by Nature) from the population and the payoff depends on what both individuals

do. In contrast a game against the field is one in which there is no specific “opponent” for

a given individual—their payoff depends on what everyone in the population is doing.

Pairwise contests are much more like games from classical game theory in that we can

write the payoff π(σ ; x̂) associated with a strategy σ generating a population profile x̂ as

π(σ ; x̂) = ∑
s∈S

∑
s′∈S

p(s)x(s′)π(s,s′), (3.39)

for suitably defined pairwise payoffs π(s,s′).

Starting with a population in which all the individuals adopt some strategy σ?,

suppose that a (genetic) mutation occurs and a small proportion ε of individuals use some

strategy other than σ?. The new population (i.e., after the appearance of the mutants) is

called the post-entry population, and its profile is denoted by x̂ε .
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As with any dynamical system, one interesting question is: what are the end points (if

there are any) of evolution? One type of evolutionary end-point is an evolutionarily stable

strategy (ESS). A mixed strategy σ? is an ESS if there exists an ε̄ such that for every

0 < ε < ε̄ and every σ 6= σ?

π(σ?; x̂ε)> π(σ ; x̂ε), (3.40)

where x̂ε is the post-entry population profile. In other words, a strategy σ? is an ESS if

mutants that adopt any other strategy σ leave fewer offspring in the post-entry population,

provided the proportion of mutants is sufficiently small.

We wish to find the conditions under which the population is stable. Let x̂? be the

profile generated by a population of individuals who all adopt strategy σ?. A necessary

condition for evolutionary stability is

σ
? ∈ argmax

σ∈Σ

π(σ ; x̂?). (3.41)

So, at an equilibrium, the strategy adopted by individuals must be a best response to the

population profile that it generates. Furthermore, we have the population equivalent of

Theorem 3.5.

Theorem 3.6. (Bishop-Canning theorem) Let σ? be a strategy that generates a population

profile x̂?. Let S? be the support of σ?. If the population is stable, then

π(s; x̂?) = π(σ?; x̂?) ∀s ∈ S?.

In the discussion of classical game theory we considered games that could be

asymmetric (for example, the simplified game of poker). The players in these games could

have different roles, with different strategy sets and different payoffs. However, in

symmetric games there is no role asymmetry between the players, i.e., they have the same

strategy sets and their payoffs are symmetric. Many games of interest in biological and

social sciences are symmetric and we will restrict our attention to this class of games.
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In a symmetric pairwise contest game, we write π(σ1,σ2) for the payoff to the row

player when she plays the (pure or mixed) strategy σ1 and the opponent plays σ2. Due to

the symmetry, the payoff of the column player is π(σ2,σ1). In addition, in a symmetric

game, at equilibrium each of the two players will play the same (pure or mixed) strategy,

since there is no distinction between them that would allow them to play different

strategies.

Example 3.8. (Beetle game) Consider a particular species of beetle and suppose that each

beetle’s fitness in a given environment is determined largely by the extent to which it can

find food and use the nutrients from the food efficiently. Now suppose a small fraction of

mutant beetles with large body size is introduced into the population, causing the beetles

with the mutation to grow a significantly large body size. Thus, we now have two distinct

kinds of beetles in the population: small ones and large ones. The beetles compete with

each other for food. When beetles of the same size compete, they get equal share of the

food. When a large beetle competes with a small beetle, the large beetle gets the majority

of the food. In all cases, large beetles experience less of a fitness benefit from a given

quantity of food, since some of it is directed into maintaining their expensive metabolism.

Based on the two strategies (L and S) used, the payoffs to the beetles is described by the

following payoff matrix:

π =


S L

S (5,5) (1,8)

L (8,1) (3,3)

. (3.42)

Note that the game has the same payoff structure as the prisoner’s dilemma game, and

thus (L,L) is a strict Nash equilibrium. We find the evolutionarily stable strategy as

follows. Let a fraction ε of the population use strategy L and let 1− ε use strategy S. The
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expected payoffs πS and πL to a small and large beetle in the population is given by

πS = 5(1− ε)+1ε = 5−4ε, and

πL = 8(1− ε)+3ε = 8−5ε. (3.43)

For small ε , the expected fitness of large beetles exceeds that of small beetles. Therefore,

(S,S) is not an ESS.

Now suppose that a fraction ε uses S and 1−ε uses L. The expected payoffs πS and πL

to a small and large beetle in the population is now given by

πS = (1− ε)+5ε = 1+4ε, and

πL = 3(1− ε)+8ε = 3+5ε. (3.44)

Again, for small ε , expected fitness of large beetles exceeds that of small beetles.

Therefore, (L,L) is an ESS.

Example 3.9. (Hawk-dove game) The hawk-dove game is one of the first evolutionary

games that was invented by John Maynard Smith to study conflict between animals

[SP73]. The two basic types are called “hawks” and “doves”. However, they are not

intended to represent two different species of animals; instead they represent two types of

behavior (i.e., actions or pure strategies) that could be exhibited by animals of the same

species. The terminology arises from human behavior where those who advocate

preemptive military solutions to international problems are called “hawks” while those

who prefer a more diplomatic approach are called “doves”7.

Individuals can use one of two possible pure strategies: H (be aggressive like a hawk);

D (be non-aggressive like a dove). In general, an individual can use a randomized strategy

which is to be aggressive with probability p, i.e., σ = (p,1− p). A population consists of

7Doves are in reality very aggressive.
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animals that are aggressive with probability x, i.e., x̂ = (x,1− x), which can arise because

in a monomorphic population, everyone uses the strategy σ = (x,1− x).

At various times, individuals in a population may come into conflict over a resource of

value v, such as food, or a breeding site. The outcome of a conflict depends on the types of

the two individuals that meet. If a hawk and a dove meet, then the hawk gains the resource

without a fight. If two doves meet then they share the resource. If two hawks meet then

there is a fight and each individual has an equal chance of winning. The winner gets the

resource and the loser pays a cost (e.g., injury) of c. The payoffs for a focal individual are

then

π(σ ; x̂) = px
v− c

2
+ p(1− x)v+(1− p)(1− x)

v
2
. (3.45)

We assume v < c (this is then “the hawk-dove game”). It is easy to see that there is no

pure-strategy ESS. In a population of doves, x = 0, and

π(σ ; x̂) = pv+ p(1− x)v+(1− p)
v
2
.

= (1+ p)
v
2
. (3.46)

so the best response to this population is to play hawk (i.e., individuals using the strategy

σ = (1,0) will do best in this population). As a consequence, the proportion of more

aggressive individuals will increase (i.e., x increases). In a population of hawks, x = 1, and

π(σ ; x̂) = p
v− c

2
. (3.47)

so the best response to this population is to play dove (i.e., p = 0—remember v < c).

Is there a mixed-strategy ESS, σ? = (p?,1− p?)? For σ? to be an ESS, it must be a

best response to the population x̂? = (p?,1− p?) that it generates. In the population x̂?, the
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payoff to an arbitrary strategy σ = (p,1− p) is

π(σ ; x̂?) = pp?
v− c

2
+ p(1− p?)v+(1− p)(1− p?)

v
2

= (1− p?)
v
2
+ p

c
2

(v
c
− p?

)
. (3.48)

If p? < v
c then the best response is p = 1 (i.e., p 6= p?). If p? > v

c , then the best response is

p = 0 (i.e., p 6= p?). If p? = v
c , then any choice of p (including p?) gives the same payoff

(i.e., π(σ?; x̂?) = π(σ ; x̂?)) and is a best response to x̂?. So we have

σ
? =

(v
c
,1− v

c

)
. (3.49)

To confirm that σ? is an ESS we must show that, for every σ 6= σ?,

π(σ?; x̂ε)> π(σ ; x̂ε), where the post-entry population profile is

x̂ε = ((1− ε)p?+ ε p;((1− ε)(1− p?)+ ε(1− p))

= (p?+ ε(p− p?);1− p?+ ε(p?− p)). (3.50)

After a few lines of algebra and using the fact that p? = v
c , we find

π(σ?; x̂ε)−π(σ ; x̂ε) =
εc
2
(p?− p)2

> 0 ∀p 6= p? (i.e., ∀σ 6= σ
?), (3.51)

which proves that σ? is an ESS.

Theorem 3.7. If σ? is an ESS in a pairwise contest, then ∀σ 6= σ? either

1. π(σ?,σ?)> π(σ ,σ?), or

2. π(σ?,σ?) = π(σ ,σ?) and π(σ?,σ)> π(σ ,σ).

Conversely, if either (1) or (2) holds for each σ 6= σ? in a two-player game, then σ? is an

ESS in the corresponding population game.
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The Nash equilibrium condition is π(σ?,σ?)≥ π(σ ,σ?) ∀σ 6= σ? so the condition

π(σ?,σ)> π(σ ,σ) in (2) is a supplementary requirement that eliminates some Nash

equilibria from consideration. In other words, there may be a Nash equilibrium in the

two-player game but no corresponding ESS in the population game. The supplementary

condition is particularly relevant in the case of mixed-strategy Nash equilibria.

Theorem 3.7 gives us an alternative procedure for finding an ESS in a pairwise contest

population game:

1. write down the associated two-player game;

2. find the symmetric Nash equilibria of the game;

3. test the Nash equilibria using conditions (1) and (2) from Theorem 3.7.

Any Nash equilibrium strategy σ? that passes these tests is an ESS, leading to a

population profile x̂? = σ̂?.

Example 3.10. Reconsider the hawk-dove game from Example 3.9. The associated

two-player game has the following payoff matrix:

π =


H D

H (v−c
2 , v−c

2 ) (v,0)

D (0,v) ( v
2 ,

v
2)

. (3.52)

It is easy to see that (for v < c) there are no symmetric pure-strategy Nash equilibria. To

find a mixed-strategy Nash equilibrium, we use Theorem 3.5.

π1(H,σ?) = π1(D,σ?)

⇔ p?
v− c

2
+(1− p?)v = (1− p?)

v
c

⇔ p? =
v
c
. (3.53)
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By the symmetry of the problem, we can deduce immediately that Player 2 also plays H

with probability p? = v
2 To show that σ? = (p?,1− p?) is an ESS, we must show that

either condition (1) or condition (2) of Theorem 3.7 holds for every σ 6= σ?. Because σ?

is a mixed strategy, Theorem 3.5 also tells us that π(σ?,σ?) = π(σ ,σ?). So condition (1)

does not hold, and the ESS condition becomes π(σ?,σ)> π(σ ,σ). After a few lines of

algebra, we find

π(σ?,σ)−π(σ ,σ) =
c
2
(p?− p)2

> 0 ∀p 6= p?. (3.54)

which proves that σ? is an ESS.

A general symmetric two-player game with pure-strategy set S = {A,B} has the

following payoff matrix:

π =


A B

A (a,a) (b,c)

B (c,b) (d,d)

. (3.55)

By applying affine transformations, we can turn this into the equivalent game:

π =


A B

A (a− c,a− c) (0,0)

B (0,0) (d−b,d−b)

. (3.56)

It is easy to see that the ESS conditions given in Theorem 3.7 are unaffected by this

transformation. Since we are considering generic games, we have a 6= c and b 6= d. There

are three possibilities to consider.

1. If a− c > 0, then π(A,A)> π(B,A) and hence σ = (1,0) is an ESS, by condition

(1) in Theorem 3.7.
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2. If d−b > 0, then π(B,B)> π(A,B) and hence σ = (0,1) is an ESS, by condition

(1) in Theorem 3.7.

3. If a− c < 0 and d−b < 0, then there is a symmetric mixed strategy Nash

equilibrium (σ?,σ?) with σ? = (p?,1− p?) and

p? =
d−b

a− c+d−b
. (3.57)

At this equilibrium, π(σ?,σ?) = π(σ ,σ?) for any strategy σ , so we have to

consider the inequality in condition (2) of Theorem 3.7. Now

π(σ?,σ)−π(σ ,σ) = p(p?− p)(a− c)+(1− p)(p− p?)(d−b)

= (p?− p)[p(a− c+d−b)− (d−b)]

=−(a− c+d−b)(p?− p)2

> 0. (3.58)

So σ? is an ESS.

Thus, all symmetric, two-strategy, pairwise games have an ESS. It is worth noting that

condition (1) or (2) yields the prisoner’s dilemma class of games; conditions (1) and (2)

yield the coordination class of games; and finally, condition (3) yields the chicken class of

games. The three games are thus considered to be canonical two-strategy games. Pairwise

games with more than two strategies need not have an ESS, as following example

illustrates.

Example 3.11. Reconsider the rock-paper-scissors game from Example 3.2. It has the

following payoff matrix:

π =


R P S

R (0,0) (−1,1) (1,−1)

P (1,−1) (0,0) (−1,1)

S (−1,1) (1,−1) (0,0)

. (3.59)
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We want to show that the game has no ESS. First, it is clear that no pure strategy is an

ESS, since π(P,R)> π(R,R), π(R,S)> π(S,S), and π(S,P)> π(P,P). Let us consider a

mixed strategy σ = pR+qS+(1− p−q)P. If σ is an ESS then, it follows from Theorem

3.6 that π(R,σ) = π(S,σ) = π(P,σ).

π(R,σ) = π(S,σ) =⇒ pπ(R,R)+qπ(R,S)+(1− p−q)π(R,P)

= pπ(S,R)+qπ(S,S)+(1− p−q)π(S,P)

=⇒ −1+ p+2q = 1−2p−q. (3.60)

Similarly,

π(S,σ) = π(P,σ) =⇒ 1−2p−q = p−q. (3.61)

Solving Equations 3.60 and 3.61 we get p = q = 1
3 . So if σ is an ESS it must be

σ = (1
3 ,

1
3 ,

1
3). Consider π(σ ,σ). It is equal to π(R,σ) so we must look at the condition

π(σ ,R)> π(R,R). However, π(σ ,R) =−1
3 +

1
3 = 0 and π(R,R) = 0. So

π(σ ,R) 6> π(R,R) and σ is not an ESS.

Let us now look at some of the limitations of evolutionary game theory, which can

(and have been) addressed in various ways.

1. Evolutionary game theory is a model of phenotypic evolution, i.e., the phenotype is

the central concept as this is identified with strategy. Thus, we do not consider genes

directly. However, since the phenotype is determined by the genotype, the change in

the frequency of the different phenotypes implies a corresponding change in

genotype frequencies. So we lose some information at the genotypic level.

However, we also gain a lot. We can often make a reasonable conjecture for the

strategies that an organism can use, and test this empirically, but we often have very

little idea as to what genes are responsible for what.
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2. Evolutionary game theory does not take into account the subtle features of sexual

reproduction—it assumes that individuals inherit the strategy of their parents. This

is exactly true in the case of asexual reproduction, but evolutionary game theory is

used to model interactions among many sexual organisms.

3. Evolutionary game theory assumes the interactions to be random. One can consider

more complex interaction schemes, such as assortative interactions or spatially

structured interactions, which we do in Chapters 4, 5, and 6.

4. Evolutionary game theory also often assumes that the individuals interact in pairs,

but we can generalize to groups of interacting individuals.

3.4 Replicator Dynamics

Although the concept of an evolutionarily stable strategy (ESS) implicitly assumes the

existence of some kind of evolutionary dynamics, it provides an incomplete description.

First, an ESS may not exist—the rock-paper-scissors game, for example, has no ESS—in

which case the analysis tells us nothing about the evolution of the system described by the

game. Second, the definition of an ESS deals only with monomorphic populations in

which every individual uses the same strategy. But, if the ESS is a mixed strategy, then all

the strategies in the support of the ESS obtain the same payoff as the ESS itself. It is

unclear if a polymorphic population with the same population profile as that generated by

the ESS can also be stable. Third, a game can have multiple ESSs—coordination games,

for example, have two ESSs. It is unclear which ESS will be preferred. In order to address

these issues we look at a specific type of evolutionary dynamics, called replicator

dynamics.
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A replicator is any entity that can make (approximately) accurate copies of itself.

Example of replicators are: genomes in asexual organisms, genes in sexual organisms, a

computer virus, a cultural norm, or a strategy in a game.

We define the fitness of a replicator to be the expected number of copies it makes of

itself, i.e., its expected number of offspring. Consider a large population of n types of

replicators R1, . . . ,Rn. We denote the fitness of replicator Ri by fi. Let xi be the

frequency of Ri. The state of the population is specified by the population profile

x̂ = (x1, . . . ,xn), which specifies the frequencies of the different types of replicators. Note

that xi ≥ 0 and ∑
n
i=1 xi = 1. The population profile x̂ is a point in Sn, the n-simplex defined

as Sn = {(x1, . . . ,xn)|xi ≥ 0,∑n
i=1 xi = 1}. Since only n−1 of the xi’s are independent, Sn

has dimension n−1.

Example 3.12. The 2-simplex S2 = {(x1,x2)|x1,x2 ≥ 0,x1 + x2 = 1} and the 3-simplex

S3 = {(x1,x2,x3)|x1,x2,x3 ≥ 0,x1 + x2 + x3 = 1} are illustrated in Figure 4.

x2 x1 + x2 = 1

0

1

S2 S3

0 1 1x1 x1

Figure 4: 2-simplex S2 and 3-simplex S3.

It is assumed that the replicators are programmed to use only pure strategies from a

finite set S = {s1, . . . ,sn}. Let ni be the number of individuals using si. The total
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population size is

N =
n

∑
i=1

ni, (3.62)

and the proportion of individuals using si is

xi =
ni

N
. (3.63)

Let β and δ be the background per capita birth and death rates in the population. The

rate of change of the number of individuals using si is8

ṅi = (β −δ + fi)ni, (3.64)

and the rate of change of the total population size is given by

Ṅ =
n

∑
i=1

ṅi

= (β −δ )
n

∑
i=1

ni +
n

∑
i=1

ni fi

= (β −δ )N +N
n

∑
i=1

xi fi

= (β −δ + f̄ )N, (3.65)

where we have defined the average fitness of the population by

f̄ =
n

∑
i=1

xi fi. (3.66)

Thus the population grows or declines exponentially. This may not be very realistic, but

we can improve the description by letting β and δ depend on N. So long as the fitness

increments fi depend only on the proportion xi, and not on the actual numbers ni, the

game dynamics will be unchanged.

8We use a dot over a variable to denote its time derivative. For example, ẋ = dx
dt .
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We are more interested in how the proportions of each type of replicators change over

time. Now

ṅi = Nẋi + xiṄ. (3.67)

So

Nẋi = ṅi− xiṄ

= (β −δ + fi)xiN− xi(β −δ + f̄ )N. (3.68)

Therefore,

ẋi = xi( fi− f̄ ). (3.69)

Equation 3.69 is called the replicator equation, originally introduced by Taylor and

Jonker [TJ78], and followed by Christopher Zeeman, Peter Schuster, Josef Hofbauer, and

Karl Sigmund. The equation has been enormously successful in modeling biological

evolution. It says that the proportion of individuals using strategy si increases (decreases)

if its fitness is bigger (smaller) than the average fitness in the population. Since a strategy

in an evolutionary game is a replicator we can use the replicator equation to describe

evolutionary game dynamics. Fixed points of the equation describe populations that are no

longer evolving.

Assume that we have n types of replicators R1, . . . ,Rn with frequencies x1, . . . ,xn (at

any given time) and fixed fitnesses f1, . . . , fn, respectively. Let f̄ be the average fitness of

the population. We are assuming frequency independent selection, i.e., the fitnesses of the

different replicators is fixed and does not depend on the frequencies of the replicators. The

dynamics is described by the replicator equation (Equation 3.69). How does evolution

work here?
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Let us first consider the case n = 2, i.e., just two replicators R1 and R2, with fitnesses

f1 and f2 and frequencies x1 and x2, respectively. Since x1 + x2 = 1, we can describe the

state of the system by one of the frequencies, say x = x1, and then x2 = 1− x. Also,

f̄ = x f1 +(1− x) f2. So, we have

ẋ = x( f1− f̄ )

= x[ f1− (x f1 +(1− x) f2)]

= x[(1− x) f1− (1− x) f2]

= x(1− x)[ f1− f2]

= rx(1− x), where r = f1− f2. (3.70)

This is just the logistic equation (see A.2) with r = f1− f2. If f1 > f2 then r > 0 and the

equilibrium point x? = 1 is stable (and x? = 0 is unstable), so the population evolves to all

R1. On the other hand, if f1 < f2 then r < 0 and the stability of the equilibrium points is

reversed, and the system evolves to R2. Thus, in this case, the system evolves to a state

consisting of the replicator type with the highest fitness.

This is true in general. Assume we have n replicator types and one type, say i, has

higher fitness than any of the others, i.e., fi > f j, ∀ j 6= i. We can show that Ri goes to

fixation as follows:

d
dt

(x j

xi

)
=

xi
dx j
dt − x j

dxi
dt

x2
i

=
xiẋ j− x jẋi

x2
i

=
xix j[ f j− f̄ ]− x jxi[ fi− f̄ ]

x2
i

=
xix j[ f j− fi]

x2
i

. (3.71)

Since fi > f j ∀ j 6= i, d
dt (

x j
xi
)< 0, which implies x j(t)→ 0 as t→ ∞. Hence, xi(t)→ 1 as

t→ ∞ and Ri goes to fixation.
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Let us next consider frequency dependent selection, i.e., the fitnesses of the replicators

depend on their frequencies at any given time. Consider a pairwise game with n pure

strategies s1, . . . ,sn, and a large population of individuals, where each individual uses one

of these n strategies. Let π denote the payoff matrix for the game. The state of the

population is x̂ = {x1, . . . ,xn}, where xi is the frequency of individuals using strategy si.

The fitness fi of strategy si (i.e., the expected number of offspring of any individual using

strategy si) is

fi = f0 +
n

∑
j=1

x jπ(si,s j), (3.72)

where f0 is the fixed background fitness, same for all individuals in the population, and

the average fitness of the population is

f̄ =
n

∑
i=1

xi fi. (3.73)

Now the dynamics of the system is given by the replicator equation

ẋi = xi( fi− f̄ ). (3.74)

Two-Strategy Pairwise Contests

Consider a population with profile x̂ playing a pairwise contest game with two pure

strategies s1 and s2. Let π be the payoff matrix for the game, and let π(s1, x̂) and π(s2, x̂)

denote the fitnesses of the two strategies. Suppose x≡ x1, the frequency of individuals

playing s1. Then the frequency x2 of individuals playing s2 is x2 = 1− x and ẋ2 =−ẋ1. So

we only need to consider a single differential equation

ẋ = x(π(s1, x̂)− π̄(x̂)), (3.75)

where π̄(x̂) is the average fitness of the population given by

π̄(x̂) = xπ(s1, x̂)+(1− x)π(s2, x̂) (3.76)
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Substituting Equation 3.76 into Equation 3.75 and simplifying the result, we get the

replicator equation for strategy s1 as

ẋ = x(1− x)(π(s1, x̂)−π(s2, x̂)). (3.77)

Example 3.13. Let us reconsider a general symmetric, two-strategy, pairwise game given

by the following payoff matrix:

π =


A B

A (a,a) (b,c)

B (c,b) (d,d)

. (3.78)

Let xA,xB be the frequencies of A,B, respectively, with xA + xB = 1. If we define x≡ xA

then xB = 1− x. In this case the replicator equation is:

ẋ = x(1− x)[π(A, x̂)−π(B, x̂)]

= x(1− x)[(a−b− c+d)x+b−d]. (3.79)

This equation has equilibria at x? = 0,1, and a possible internal equilibrium x? ∈ (0,1).

The allowed dynamics are as follows:

1. a > c,d < b: In this case A is globally stable.

2. a < c,d > b: In this case B is globally stable.

3. a > c,d > b: In this case A and B are bistable.

4. a < c,d < b: In this case the internal equilibrium is stable.

Figure 5 shows the phase line plots for each of the four cases. As we have seen before, (1)

and (2) yield the prisoner’s dilemma class of games; (3) yields the coordination class of

games; and (4) yields the chicken class of games.
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Figure 5: Phase line plots for a general symmetric, two-strategy, pairwise game.

Example 3.14. Consider a pairwise contest prisoner’s dilemma game with payoff matrix

π =


C D

C (3,3) (0,5)

D (5,0) (1,1)

. (3.80)

Let x be the population of individuals using C, then

π(C; x̂) = 3x+0(1− x) = 3x, (3.81)

and

π(D; x̂) = 5x+1(1− x) = 1+4x. (3.82)

The rate of change of the proportion of individuals using C is

ẋ = x(1− x)(π(C; x̂)−π(D; x̂))

= x(1− x)(3x− (1+4x))

=−x(1− x)(1+ x). (3.83)
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The fixed points for the dynamical system are x? = 0 and x? = 1. We know that the unique

Nash equilibrium for the prisoner’s dilemma game is for everyone to defect (play D). This

means x? = 0 corresponds to a Nash equilibrium but x? = 1 does not. We also see that

ẋ < 0 for x ∈ (0,1), which implies that any population that is not at a fixed point of the

dynamics will evolve towards the fixed point that corresponds to the Nash equilibrium and

away from the other one.

Theorem 3.8. Let S = {s1,s2} and let σ? = (p?,1− p?) be the strategy that uses s1 with

probability p? and s2 with probability 1− p?. If (σ?,σ?) is a symmetric Nash

equilibrium, then the population x̂? = (x?,1− x?) with x? = p? is a fixed point of the

replicator dynamics ẋ = x(1− x)(π(si; x̂−π(s2; x̂)).

Thus the Nash equilibria in two-player games and fixed points in the replicator

dynamics are related. How about ESSs? Do all ESSs have an evolutionary end point and

do all evolutionary end points have a corresponding ESS?

Example 3.15. Consider a pairwise contest with pure strategies A and B and with the

payoff matrix

π =


A B

A (3,3) (0,0)

B (0,0) (1,1)

. (3.84)

The ESSs for the game are for everyone to play A or for everyone to play B. The mixed

strategy σ = (1
4 ,

3
4) is a Nash equilibrium but not an ESS. Let x be the fraction of

individuals using A. Then the replicator dynamics is given by

ẋ =−x(1− x)(1−4x) (3.85)

with fixed points x? = 0, x? = 1, and x? = 1
4 .
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First, consider a population near x? = 0. Let x = x?+ ε where we must have ε > 0 so

that x > 0. Then ẋ = ε̇ since x? is a constant. Thus we have

ε̇ =−ε(1− ε)(1−4ε). (3.86)

Since ε � 1, we can ignore terms proportional to εn where n > 1. Thus

ε̇ ≈−ε (3.87)

which has solution

ε(t) = ε0e−t . (3.88)

This tells us that the dynamics reduces small deviations from the state x̂ = (0,1), i.e.,

ε → 0 as t→ ∞. In other words, the fixed points x? = 0 is asymptotically stable. We can

similarly show that x? = 1 is also asymptotically stable.

Now consider a population near x? = 1
4 . Let x = x?+ ε = 1

4 + ε . There is no sign

restriction on ε . Then we have

ε̇ ≈ 1
16

ε (3.89)

with solution

ε(t) = ε0e
t

16 . (3.90)

So x? = 1
4 is not asymptotically stable. So in this case we find that a strategy is an ESS if

and only if the corresponding fixed point in the replicator dynamics is asymptotically

stable.

Theorem 3.9. For any two-strategy pairwise contest, a strategy is an ESS if and only if

the corresponding fixed point in the replicator dynamics is asymptotically stable.
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Let F be the set of fixed points and let A be the set of asymptotically stable fixed

points in the replicator dynamics. Let N be the set of symmetric Nash equilibria and let E

be the set of ESSs in the symmetric game corresponding to the replicator dynamics. Then,

for any two-strategy pairwise contest game, the following relationships hold for a strategy

σ? and the corresponding population state x̂?:

1. σ?⇔ x̂? ∈ A;

2. x̂? ∈ A⇒ σ? ∈ N;

3. σ? ∈ N⇒ x̂? ∈ F .

More concisely, we have

E = A⊆ N ⊆ F. (3.91)

Games with More Than Two Strategies

If we increase the number of pure strategies to n, then we have n equations of the form

ẋi = fi(x1, . . . ,xn) i = 1, . . . ,n. (3.92)

Using the constraint ∑
n
i=1 xi = 1, we can introduce a reduced state vector (x1, . . . ,xn−1)

and reduce the number of equations to n−1.

ẋi = fi(x1, . . . ,xn−1) i = 1, . . . ,n−1 (3.93)

More compactly, in vector format, we have

ẋ = f(x). (3.94)

An invariant manifold is a connected subset M ⊂ Sn such that if x(0) ∈ Sn, then

x(t) ∈ Sn for all t > 0. To obtain a qualitative picture of the solutions of the dynamical
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system, we obtain a linear approximation to the dynamical system, and consider the

behavior of the solutions on (or close to) the invariant manifolds.

ẋi =
n−1

∑
j=1

(x j− x?j)
∂ fi

∂x j
(x̂?) (3.95)

If we define ηi = xi− x?j , then

η̇ =
n−1

∑
j=1

η
∂ fi

∂x j
(x̂?), (3.96)

which is a linear system η̇ = Aη with a fixed point at the origin. The matrix has constant

components

Ai j =
∂ fi

∂x j
(x̂?) (3.97)

and its eigenvalues determine the behavior of the linearized system at the fixed point.

From Theorem A.2, the behavior of the full, non-linear system is the same, provided the

fixed point is hyperbolic. Combining this information with the behavior of solutions on

the other invariant manifolds is usually sufficient to determine a complete qualitative

picture of the solution to the dynamical system. We illustrate this with an example.

Example 3.16. Consider the pairwise contest game with the payoff matrix

π =


A B C

A (0,0) (3,3) (1,1)

B (3,3) (0,0) (1,1)

C (1,1) (1,1) (1,1)

. (3.98)

The replicator dynamics for the game is

ẋ1 = x1(3x2 + x3− π̄(x̂))

ẋ2 = x2(3x1 + x3− π̄(x̂))

ẋ3 = x3(1− π̄(x̂)) (3.99)
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with π̄(x̂) = 6x1x2 + x1x3 + x2x3 + x3. Writing x1 = x,x2 = y and x3 = 1− x− y, this

system can be reduced to the two-variable dynamical system

ẋ = x(1− x+2y− π̄(x,y))

ẏ = y(1+2x− y− π̄(x,y)) (3.100)

with π̄(x,y) = 1+4xy− x2− y2.

The invariant manifolds are the fixed points ((0,0),(0,1),(1,0),(1
2 ,

1
2)), the boundary

lines x = 0, y = 0, and boundary line x+ y−1 = 0 since
d
dt (x+y) = ẋ+ ẏ = (x+y−1)(1− π̄(x,y)) = 0. The line x = y is also an invariant because

ẋ = ẏ on that line.

Consider the fixed point (x?,y?) = (1
2 ,

1
2). Close to the point we have the linear

approximationξ̇

η̇

=

−1 1
2

1
2 −1

ξ

η

 . (3.101)

The eigenvalues of A are λ1 =−1
2 and λ2 =−3

2 . Since both eigenvalues are real and

negative, the fixed point is a stable node. The eigenvector corresponding to λ2 =−3
2 is

ξ =−η , which lies along the boundary line x+ y = 1. The eigenvector corresponding to

λ =−1
2 is ξ = η , which lies along x = y.

The fixed points (x?,y?) = (1,0) and (x?,y?) = (0,1) both have eigenvalues λ1 = 3

and λ2 = 1, so both are unstable nodes.

Close to the point (x?,y?) = (0,0) the linear approximation isξ̇

η̇

=

0 0

0 0

ξ

η

 . (3.102)

which is not hyperbolic (λ1 = λ2 = 0). So the linearization tells us nothing about the

stability properties of this fixed point.
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On the line y = 0, ẋ = x2(x−1), so ẋ < 0 for 0 < x < 1. Similarly, on the line x = 0,

we have ẏ < 0 for 0 < y < 1. On the line x = y we have ẋ = x2(1−2x), so x and y are both

increasing for 0 < x,y < 1
2 . On the line x+ y−1 = 0 we have

ẋ = x(3−3x− π̄(x,1− x))

= x(3−9x+6x2). (3.103)

Hence x is increasing (y is decreasing) for 0 < x < 1
2 and x is decreasing (y is increasing)

for 1
2 < x < 1. Combining all this we have the qualitative picture of the dynamics shown

in Figure 6.

(0,0) (1,0)

(0,1)

Figure 6: Behavior of the full system 3.100.

Theorem 3.10. If (σ?,σ?) is a symmetric Nash equilibrium, then the population state

x̂? = σ̂? is a fixed point of the replicator dynamics.

Theorem 3.11. If x̂? is an asymptotically stable fixed point of the replicator dynamics,

then the symmetric strategy pair (σ?,σ?) with σ? = x? is a Nash equilibrium.
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Theorem 3.12. Every ESS corresponds to an asymptotically stable fixed point in the

replicator dynamics. That is, if σ? is an ESS, then the population with x̂? = σ̂? is

asymptotically stable.

For any pairwise contest game with more than two strategies, the following

relationships hold for a strategy σ? and the corresponding population state x̂?.

1. σ? ∈ E =⇒ x̂? ∈ A;

2. x̂? ∈ A =⇒ σ? ∈ N;

3. σ? ∈ N =⇒ x̂? ∈ F .

Identifying a strategy with its corresponding population state, we can write these relations

more concisely as

E ⊆ A⊆ N ⊆ F. (3.104)

Example 3.17. Reconsider the rock-paper-scissors game. Let x1,x2,x3 be the proportions

of R,S, and P players. Let the payoff matrix for the game be

π =


R P S

R (0,0) (−1,1) (1,−1)

P (1,−1) (0,0) (−1,1)

S (−1,1) (1,−1) (0,0)

. (3.105)

The replicator dynamics of the game is

ẋ1 = x1(x2− x3)

ẋ2 = x2(x3− x1)

ẋ3 = x3(x1− x2) (3.106)
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with fixed points ((1,0,0),(0,1,0),(0,0,1),(1
3 ,

1
3 ,

1
3)).

It is easy to see by considering the boundaries that the first three points are not stable.

For example, consider the invariant line x1 = 0 where, for 0 < x1,x3 < 1, we have ẋ2 > 0

and ẋ3 < 0. The results from the three invariant lines together imply that there is some

kind of oscillatory behavior about the polymorphic fixed point (1
3 ,

1
3 ,

1
3). If the fixed point

is asymptotically stable, then trajectories will spiral into it, and if unstable, then

trajectories will spiral out of it. The third possibility is that the solution trajectories form

closed loops around the fixed point.

That this is in fact the case can be confirmed by observing that the time derivative of

the relative entropy function along solution trajectories of the replicator dynamics is

d
dt

V (x) =−1
3
(x3− x1)−

1
3
(x1− x2) = 0. (3.107)

The qualitative picture of the replicator dynamics for the rock-paper-scissors game is

shown in Figure 7.

If the payoff is α < 0 to both players when the result is a draw, then it can be shown

that x̂? = (1
3 ,

1
3 ,

1
3) is asymptotically stable in the replicator dynamics. On the other hand, if

α > 0, then the boundaries of the 3-simplex for the replicator dynamics are attractors.

Thus an evolutionary process can produce apparently rational (Nash equilibrium)

behavior in a population composed of individuals not required to make conciously rational

descisions. In populations where agents are assumed to have some critical faculties—such

as human populations—the requirements of rationality are much less stringent than they

are in classical game theory. Individuals are no longer required to be able to work through

the (possibly infinite) sequence of reactions and counter-reactions to changes in behavior.

They merely have to be able to evaluate the consequences of their actions, compare them

to the results obtained by others two behaved differently and swap to a better (not
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(0,0) (1,0)

(0,1)

Figure 7: Behavior of the full system 3.106.

necessarily the best) strategy for the current situations. The population is stable when

given that what everyone else is doing no individual would get a better result by adopting

a different strategy.

3.5 Adaptive Dynamics

In this section we switch our attention to continuous-strategy games. These are games

which consider strategies that form a mathematical continuum, i.e., a section of the real

number line, such as, [0,1] or (−∞,∞). This is in contrast with discrete or matrix games

where the set of strategies is a finite, unordered list—for example, cooperate or defect.

Most traits studied in evolutionary ecology are continuous (or nearly so), such as date of

first flowering, time to maturity, an animal’s body size, the bill dimensions of a bird, or the

allocation of resources to roots, stems, and reproductive tissues on a plant. The

111



developments of matrix and continuous games have followed somewhat independent

paths, with various researchers trying to relate the two fields [MB07].

Suppose the pure strategy (action) sets are a subset of the real lile [a,b]. A pure

strategy is then a choice x ∈ [a,b]9 and a mixed strategy is defined by giving a function

p(x) such that the probability that the choice lies between x and x+dx is p(x)dx. The

existence of Nash equilibria for games with continuous pure-strategy sets was proved

independently by Debreu, Glicksburg, and Fan in 1952 (see [FT91, Mye97] for details).

Analyzing the evolution of a continuous trait x using the replicator equation is rather

complicated, since the population profile in this case is a point in infinite-dimensional

simplex. There is a much more direct way to attack the problem, and that is using the

mathematical framework of adaptive dynamics.

Adaptive dynamics [GKM97, MB07] is a set of techniques developed during the 1990s

for understanding the long-term consequences of small mutations in the traits expressing

the phenotype. It links population dynamics to evolutionary dynamics and incorporates

and the fundamental idea of frequency-dependent selection from evolutionary game

theory. Adaptive dynamics is gaining ground as a versatile tool for evolutionary modeling.

Two fundamental ideas of adaptive dynamics are that the resident population can be

assumed to be in a dynamical equilibrium when the new mutants appear, and that the

eventual fate of such mutants can be inferred from their initial growth rate when rare in

the environment consisting of the resident. The rate is known as the invasion exponent or

invasion fitness. A population consisting of individuals with the same trait is called a

monomorphic population. We assume the trait x to be a real number and the invading

mutant trait will be denoted by y. The invasion fitness fx(y)10, i.e., the expected growth

9Note that in the previous section on replicator dynamics, we used the letters x,y, etc., to denote frequency
of strategies. Here the letters denote (continuous) trait values.

10Here again, the letter f has a different meaning than what it did in the previous section on replicator
dynamics, where fi meant the fitness of the replicator Ri.
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rate of an initially rare mutant in the environment set by the resident, from Equation 3.77

is given by

fx(y) = π(y,x)−π(x,x), (3.108)

where π(x,y) is the payoff function that determines the payoff to the x-strategist against an

opponent playing the strategy y. For each x, the invasion fitness can be thought of as the

fitness landscape experienced by an initially rare mutant. The landscape changes with

each successful invasion as in the case of evolutionary game theory, but in contrast with

the classical view of evolution as an optimization process towards ever higher fitness.

The selection gradient is defined as the slope of the invasion fitness at y = x.

D(x) =
∂ fx(y)

∂y

∣∣∣
y=x

. (3.109)

The adaptive dynamics of the trait x is governed by D(x). Note that in general, x = mD(x),

where m depends on the population size and reflects the mutational process providing the

raw material for evolutionary change. For constant population sizes, m is simply a

parameter that scales time, and one can set m = 1 without loss of generality.

Traits or strategies x? for which D(x?) = 0 are called singular strategies. If there is no

such solution, the trait x either always increases or decreases evolutionarily, depending on

the sign of D(x). If a singular trait x? exists, it is convergent stable, and hence an attractor

for the adaptive dynamics if

dD
dx

∣∣∣
x=x?

< 0. (3.110)

If the inequality is reversed, x? is a repeller, i.e., the trait x evolves to even lower values if

the initial trait of the population x0 < x?, and to even higher values if x0 > x?.

Convergence stability does not necessarily imply evolutionary stability. A convergent

stable point x? is either a minimum or maximum of the invasion fitness fx(y). If x? is a
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maximum, i.e., if

∂ 2 fx?(y)
∂y2

∣∣∣
y=x?

< 0, (3.111)

then x? is evolutionarily stable, i.e., it cannot be invaded by any mutant. If, however, x? is

a minimum, i.e, if

∂ 2 fx?(y)
∂y2

∣∣∣
y=x?

> 0, (3.112)

then a population that is monomorphic for x? can be invaded by mutants with trait value

on either side of x?. In this case, the population first converges evolutionarily towards x?,

but subsequently splits into two distinct and diverging phenotypic clusters. This

phenomenon is called evolutionary branching, and the singular point is called an

evolutionary branching point (EBP). Once the population has branched into two

phenotypic clusters, the individuals in the population play a classical snowdfit game

[HD04] so that either strategy could invade a population consisting of individuals having

the other strategy. Furthermore, the average fitness of the individuals playing each of the

two strategies is the same.

Adaptive dynamics is a formal framework for modeling evolutionary dynamics with

special emphasis on the generation of diversity through branching of the evolutionary tree.

It helps us better understand speciation by taking into account the fact that the fitness

function itself is modified by the evolutionary process. A constant-fitness picture (each

phenotype has a fixed fitness value, and the fittest type out-competes all others) is unable

to explain the enormous diversity of life on earth: how could any type but the fittest

survive? Although evolutionary branching is reminiscent of speciation, in the context of

asexual population the species concept is not well defined. Applied to sexual population,

the framework could describe evolution in allele space rather than the strategy space.

Branching in the allele space can be interpreted as speciation only if the individuals in the

separate do not interbreed.
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We next look at an example of a continuous game and see how it is analyzed using

adaptive dynamics.

Example 3.18. (War of attrition game) The war of attrition (WoA) game is used as a

model of conflict. The model was originally formulated by John Maynard Smith [Smi74].

The two contestants in the game compete for a resource of value V by persisting while

constantly accumulating a cost that is a function of the time t that the contest lasts. If the

two individuals persist for the same time t, then the two receive half of the resource V

minus the cost of persistence for time t. If the two individuals persist for times t1 and t2

such that t1 > t2, then individual persisting longer gets all of the resource V and only

incurs the cost associated with the shorter persistence time t2 while the other individual

receives none of the resource but incurs the same cost.

The strategies of the two individuals, x and y, respectively, are the investments they

make to obtain the resource (e.g., their persistence times). The payoff in such an

interaction to the x strategist is given by

π(x,y) =V Θ(x− y)− cmin(x,y), (3.113)

where Θ(x) is the Heaviside step function

Θ(x) =


0 if x < 0

1
2 if x = 0

1 if x > 0,

(3.114)

expressed using the half-maximum convention, and c is a constant of proportionality

determining the cost of a given level of investment.

Note that this payoff function correctly determines the payoff structure of the game. If

x > y, (i.e., the x strategist makes the larger investment), then this individual gets the
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resource and incurs a cost cy, while the y strategist does not get the resource but incurs the

same cost. If x < y, then the x strategist incurs a cost cx but does not get the resource,

while the y strategist gets the resource and pays the same cost. Finally, if x = y ( i.e., the

two individuals make the same investment), then on average each obtains the resource V

with probability 1
2 , and both incur a cost cx.

In general, the cost need not be a linear function of the investment, and an immediate

generalization of the WoA game is obtained by allowing the payoff of an x-strategist

interacting with a y-strategist to be given by

π(x,y) =V Θ(x− y)−C(min(x,y)), (3.115)

where C a function of the minimum of the two strategies, representing the cost associated

with the investments. In the case when the cost function is the linear function C(u) = cu

we recover the classical WoA game with a mixed strategy Nash equilibrium given in terms

of the distribution of persistence times chosen, as p(t) = c
V exp(−ct

V ) [Web07].

The minimum function min(x,y) can be expressed in terms of Θ(x) as

min(x,y) = xΘ(y− x)+ yΘ(x− y), (3.116)

and thus we can write the payoff function in Equation 3.116 as

π(x,y) =V Θ(x− y)−C(xΘ(y− x)+ yΘ(x− y)). (3.117)

We can replace Θ(x) in Equation 3.117 with its smooth equivalent θ(x) given by

θ(x) =
1

1+ e−kx , (3.118)

where k is the smoothing parameter. This parameter is also referred to as “inverse

temperature” and models situations in which individuals are rational but payoffs have a

small random component, or when gathering perfect information about decision
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alternatives is costly. Note that θ(x) approximates Θ(x) as k→ ∞. Also,

limx→−∞ θ(x) = 0, limx→∞ θ(x) = 1,θ(0) = 1
2 ,θ
′(0) = k

4 , and θ ′′(0) = 0.

We can thus model the WoA game as a continuous game with strategies varying

continuously over R+ = [0,∞), and with payoff function given by

π(x,y) =V θ(x− y)−C(xθ(y− x)+ yθ(x− y)). (3.119)

We can now analyze the dynamics of the game using the framework of adaptive

dynamics. Consider a monomorphic population of x strategists, i.e., a population in which

every individual persists for time x. The invasion fitness fx(y) of a mutant strategy y in this

population of just x strategists is given by

fx(y) = π(y,x)−π(x,x)

=V θ(y− x)−C(yθ(x− y)+ xθ(y− x))−
[V

2
−C(x)

]
. (3.120)

The selection gradient D(x) is given by

D(x) =
∂ fx(y)

∂y

∣∣∣
y=x

=
V k
4
−C′(x)

2
. (3.121)

To obtain the singular strategies x?, we must solve D(x?) = 0, i.e., C′(x?) = V k
2 . If the

cost function C(x) is convex, i.e. C′′(x)> 0, then dD
dx

∣∣
x=x? =−

C′′(x?)
2 < 0. Therefore, x? is

convergent stable.

∂ 2 fx?

∂y2

∣∣∣
y=x?

=
∂ 2

∂y2

{
V θ(y− x)−C(yθ(x− y)+ xθ(y− x))−

=−C′′(x?)
4

+
kC′(x?)

2
. (3.122)
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Therefore, x? is an ESS if C′(x?)< C′′(x?)
2k , or C′′(x?)> 2kC′(x?). Otherwise, x? is an

evolutionary branching point.

Let us first consider the case where the cost function is linear, i.e., C(x) = cx where

c > 0. Therefore, C′(x) = c, and C′′(x) = 0. To obtain singular strategies x?, we must

solve D(x?) = 0.

D(x?) =
V k
4
−C′(x?)

2

=
V k
4
− c

2
. (3.123)

Since D(x?) does not depend on x?, there are no singular strategies. The long-term

trend of an initial strategy x can be obtained by considering the sign of D(x). If D(x)< 0,

i.e., if c > V k
2 , then x would evolve to lower and lower values. If on the other hand,

D(x)> 0, i.e., c < V k
2 , then x would evolve to the higher and higher values. In the parlance

of the WoA game, the individuals in the population will persist lesser and lesser if c > V k
2 ,

and longer and longer if c < V k
2 , where k is the smoothing parameter. For example, if

k = 4 and V = 0.25, then the individuals will persist longer if c < 0.5, and less if c > 0.5.

Let us next consider a more interesting case in which the cost function C(x) is

quadratic, i.e., C(x) = cx2 where c > 0. Therefore, C′(x) = 2cx, and C′′(x) = 2c. To obtain

singular strategies x?, we must solve D(x?) = 0.

D(x?) =
V k
4
−C′(x?)

2

=
V k
4
− cx?. (3.124)

So, x? = V k
4c is a singular strategy. Since dD

dx |x=x? =−1
2C′′(x?) =−c < 0, x? is convergent

stable.
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∂ 2 fx?

∂y2

∣∣∣
y=x?

=−C′′(x?)
4

+
kC′(x?)

2

=
1
2

(k2V
2
− c
)
. (3.125)

Therefore, if k2V
2 > c, i.e., k2V > 2c, then x? is an evolutionary branching point. If k2V

2 < c,

i.e., k2V < 2c, then x? is an ESS. For example, suppose k = 4, and c = 1. If V = 0.1, then

x? = 0.1 is an ESS. If V = 0.4, then x? = 0.4 is an evolutionary branching point.
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Figure 8: Evolution of the distribution of persistence time x in a war of attrition game. Sim-

ulated on a complete network ΓWM using parameters n = 10000,x0 = 0.5,µ = 0.05,σ =

0.005,c = 1.0, and k = 4.0. Darker shades of gray indicate higher concentration of individ-

uals. (a) V = 0.1; the singular strategy (dashed line) x? = 0.1 is an ESS. (b) V = 0.4; the

population undergoes evolutionary branching at the singular strategy (dashed line) x?= 0.4.

Figure 8 shows the results of simulating the war of attrition game on a complete

network ΓWM. The parameter values used in the simulations were: population size

n = 10000, mutation rate µ = 0.05, standard deviation for Gaussian mutations σ = 0.005,

coefficient in the cost function c = 1.0, and smoothing parameter k = 4.0. The strategies x
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were allowed to vary continuously over the interval (0,1), and the simulations were

carried out for 60000 generations.

Figure 8(a) shows the time evolution of the distribution of persistence time x on a

complete network, with the resource value V set to 0.1. The darker shades of gray indicate

higher concentrations of individuals. The population, starting out with an initial

monomorphic strategy of x0 = 0.5, evolves over time to a stage in which all the

individuals more or less play the strategy x? = 0.1, and beyond this stage, the individuals

do not deviate from this strategy by much. This is exactly what the analysis suggested; the

singular strategy x? = 0.1 is an ESS for the chosen parameters.

Figure 8(b) shows the time evolution of the distribution of persistence time x on a

complete network, but with the resource value V set to 0.4. In this case, the population,

starting out with an initial monomorphic strategy of x0 = 0.5, evolves to a stage in which

all the individuals play the strategy x? = 0.4, and then the population undergoes

evolutionary branching, again as suggested by the analysis. The population eventually

evolves to a stage where a fraction of the population plays one strategy and the rest play

another strategy.

3.6 Agent-Based Models

In Section 3.4 we saw how a simple evolutionary process in which individuals who do

well in a game are imitated by others who have had less success. This evolutionary

process often converges to a Nash equilibrium. Thus, very little intelligence is required of

the individuals who play the game. This dynamical process can be modeled on a computer

in what is known as an agent-based modeling [Bon02].

Agent-based models (ABMs) are computer programs that use game theory to create

artificial strategic actors called agents, set up the structure of their interactions and their

120



payoffs, and display and/or record the dynamics of the ensuing social order. An

evolutionary ABM has, in addition, a reproductive phase, in which agents reproduce in

proportion to their average success, old agents die off, and the new agents inherit the

behavior of their parents, perhaps with some mutation. Thus, in an evolutionary ABM,

there is a tendency for the more successful strategies to increase in frequency at the

expense of the less successful strategies.

ABMs are important because most games are too complicated to admit closed-form

analytical solutions. Moreover, sometimes the assumptions we make, such as, continuous

time, infinite number of potential agents, etc., to get explicit algebraic solutions to games

are sufficiently unrealistic that the ABM performs differently from the analytical

solutions, and perhaps more like the real-life situations we are trying to model. Playing

these games in real life can be very difficult, time consuming, and costly. ABMs offer us

the best shot at mimicking how real-life agents might play such games. ABMs provide us

a way of verifying the analytical results derived in cases where possible, and testing

scenarios which do not permit mathematical analysis. Some of the benefits of agent-based

modeling over other modeling techniques are:

• Agent-based modeling captures emergent phenomena. It is applicable when:

individual behavior is nonlinear and can be characterized by thresholds, if-then

rules, or nonlinear couplings; when individual behavior exhibits memory,

path-dependence, hysteresis, non-markovian behavior, or temporal correlations,

including learning, and adaption; and agent interactions are heterogeneous and can

generate network effects. In such situations, aggregate differential equations will

smooth out fluctuations, and thus not work.

• Agent-based modeling provides a natural description of the system. It can be used

when behavior cannot be clearly defined, individual behavior is complex;
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complexity of differential equations increases exponentially as the complexity of

behavior increases, and becomes intractable. It can also be used when stochasticity

applies to the agents’ behavior; sources of randomness are applied to the right

places as opposed to a noise term added more or less arbitrarily to an aggregate

differential equation.

• ABMs are flexible. It is easy to add more agents to an ABM. The model provides a

natural framework for tuning the complexity of agent behavior, degree of rationality,

ability to learn and evolve, and rules for interactions. It is also possible to easily

change levels of description and aggregation.

Some of the disadvantages of agent-based modeling include:

• Like most modeling techniques, agent-based modeling must also serve a specific

purpose; a general-purpose model will not work. The model must be built at the

right level of description.

• ABMs do not take into account soft factors, such as, irrational behavior, subjective

choices, complex psychology, etc., which are difficult to quantify. Hence the nature

of the output of ABMs vary from purely qualitative to quantitative results useable

for decision making.

• ABMs look at the system not at the aggregate level but at the level of its constituent

parts. Although the aggregate level could perhaps be described by just a few

equations, the lower-level description involves describing the individual behavior of

potentially many constituent units, thus placing heavy requirements on

computational power.

It is very important to try and implement ABMs in two very different programming

languages and ensure that the output of the two are the same. It is even better to have two
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different people provide the two different implementations. This is particularly important

when the model is too complicated to analyze mathematically. In such cases, being able to

verify the results of the model using two different implementations of the ABM bolsters

our confidence in our model. We have implemented our ABMs in Python and Java (see

Appendix B).

Algorithm 3.1 A typical evolutionary ABM.

Input: A population network Γ of size n with strategy profile x̂0 = {x0
1,x

0
2, . . . ,x

0
n} at

generation 0; a payoff function π; number of generations T ; and values for other

model parameters.

Output: The strategy profile x̂T at time T .

1: L← []

2: for t from 1 to T do

3: L.append(x̂t−1)

4: // Interaction rounds.

5: for count from 1 to n do

6: Two individuals i and j ∈ N(i) are selected (by nature) for a round of interaction,

in which the two play a game, and i receives a payoff π(xt−1
i ,xt−1

j ).

7: end for

8: // Update rounds.

9: for count from 1 to n do

10: Two individuals i and j ∈ N(i) are selected (again by nature) for a round of

update, in which i either updates its strategy xt
i to that of j strategy xt−1

j with a

possible mutation, or retains its own strategy.

11: end for

12: end for
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13: return L

Algorithm 3.1 provides the pseudo-code for a typical evolutionary ABM. We start

with a population network of n individuals labeled i = 1, . . . ,n with a strategy profile

x̂0 = {x0
1,x

0
2, . . . ,x

0
n} at generation 0. Since we wish to allow the possibility of complex

population structures, we identify the population with the set of vertices in a network Γ.

The structure of Γ determines which individuals in the population can interact. Strictly

speaking, two networks are required to specify the evolutionary dynamics: an interaction

graph, ΓI , specifies that two individuals in the population can interact by playing the game

only if they are adjacent in ΓI , and an updating graph, ΓU , specifies that an individual in

the population can update its strategy by comparing her state to the states only of those

individuals adjacent to it in ΓU . In this thesis, for simplicity, we shall assume that the

interaction and updating networks are the same i.e., ΓI = ΓU = Γ. Given an individual

i ∈ Γ, recall from Chapter 2 that the set of neighbors of i (i.e., the set of individuals

adjacent to i in Γ) is denoted by N(i).

The game is played for T generations, each involving n interactions and updates.

During an interaction, say at generation t, an individual i plays a game (with a payoff

function π) with a neighboring individual j ∈ N(i) and obtains a payoff. The two

individuals employ strategies xt−1
i and xt−1

j from the previous generation t−1. During an

update at generation t, an individual i either updates its strategy xt in the generation t with

strategy xt−1
j of its neighbor j ∈ N(i) in generation t−1 with a possible (Gaussian)

mutation, or retains her own strategy.

The details of how i and j are selected for update and how the update is actually

carried out depends on the update rule U . Let s denote the selection strength, and πi

denote the payoff of individual i obtained during the interaction round, and let fi denote

the individual’s fitness. The relationship between the payoff and fitness is given by the
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fitness-to-fecundity map

fi = esπi. (3.126)

We consider the following update rules (see [SF07] for a detailed survey of these and

other update rules):

• Fermi (FE) - The individuals i and j ∈ N(i) are randomly picked and the probability

pi← j that i inherits j’s strategy is given by

pi← j =
1

1+ e−s(π j−πi)
. (3.127)

• Replication (RE) - The individuals i and j ∈ N(i) are randomly picked and the

probability pi← j that i inherits j strategy is given by

pi← j =


0 if πi ≥ π j

s(π j−πi)
M−m otherwise,

(3.128)

where M = max
k∈Γ

πk, and m = min
l∈Γ

πl .

• Imitation (IM) - The individual i is randomly selected and the individual j ∈ N(i)∪ i

is picked with probability p given by

p =
f j

∑k∈N(i)∪i fk
. (3.129)

• Birth-death (BD) - The individual j is selected with probability p given by

p =
f j

∑k∈Γ fk
. (3.130)

The individual i ∈ N( j) is randomly selected. On a complete network ΓWM, this

update rule is also called the Moran process, named after Patrick Moran, an

Australian statistician who made significant contributions to probability theory and

its application to population and evolutionary genetics.
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• Death-birth (DB) - The individual i is picked at random, and the individual j ∈ N(i)

is selected with probability p given by

p =
f j

∑k∈N(i) fk
. (3.131)

The evolutionary dynamics on a complete network ΓWM is generally independent of

the update rule, but on other networks, there is usually a sensitive dependence of the

dynamics on the update rule.
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CHAPTER 4

DISCRETE GAMES

The only thing that will redeem mankind is cooperation.

- Bertrand Russell

4.1 Introduction

In this chapter we revisit the three symmetric, two-strategy, pairwise games we

encountered in the previous chapter: prisoner’s dilemma, chicken, and coordination

games. We use these games as models for cooperative behavior by formulating them in

terms of two strategies, namely cooperation and defection.

We consider a population of individuals playing the games through repeated pairwise

interactions. In a well-mixed population, we assume the interactions to be assortative

[Gra90], i.e., each individual interacts with other individuals of its own “type” with a

certain probability called degree of assortativity or simply assortativity, and with random

individuals from the population otherwise. In a population represented as a network, the

structure of the network dictates who can interact with whom, and thus induces a degree

of network assortativity in game interactions, which bears an inverse relationship to the

average degree of the network 1.

In each of the three games, the individuals playing the game have an incentive to be

selfish and defect. As a result, everyone does worse than if they had all cooperated

1This is because, on a network with a small average degree, an individual can only interact with small
number of other individuals, whereas on a network with high average degree, an individual can interact with
many other individuals. In the extreme case of a complete network, an individual can interact with every
other individual in the network.
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[Kol98]. We are interested in conditions that would lead to cooperative behavior among

selfish individuals. As we shall see, assortative interactions (both in well-mixed

populations and on networks) provide a mechanism for the promotion of cooperation and

thus to Hicks (or socially) optimal outcomes. In addition, network properties such as

clustering and homophily also have an effect on cooperation.

We propose agent-based models for emulating symmetric, two-strategy, pairwise

games on a computer. We analyze these games for a well-mixed population using the

replicator equation [TJ78], suitably modified to incorporate assortative interactions. We

present results of simulating the games on model and empirical networks and provide a

general discussion of the results. We conclude the chapter with suggestions for future

inquiry.

4.2 Assortative Interactions

An assortative interaction [Gra90] is an interaction among individuals of the same type,

which in the context of games would mean individuals playing the same strategy.

Assortativity is closely related to the idea of kin selection [Ham63], which was suggested

by William Donald Hamilton as a possible mechanism for the evolution of altruistic

behavior. There are many mays in which interactions can be assortative. In a well-mixed

population, we can quantify the extent to which an individual interacts with another

individual of its own type using a parameter r ∈ (0,1) called the degree of assortativity or

simply assortativity, which is interpreted as follows: with probability r, an individual

interacts with another individual of its own type, and with probability 1− r, the individual

interacts with a random individual from the population. We next derive the replicator

equation for a symmetric, two-strategy game with assortative interactions.
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Consider a well-mixed population of n individuals playing a symmetric, two-strategy

(C and D), pairwise game with payoff matrix

π =


C D

C (a,a) (b,c)

D (c,b) (d,d)

, (4.1)

where a,b,c,d ∈ R. Let x denote the fraction of individuals playing the strategy C, so the

fraction of the population playing the strategy D is 1− x. Let r denote the degree of

assortativity. The fitnesses f r
C and f r

D of the strategies C and D, using Equation 3.72, are

then given by

f r
C = rπ(C,C)+(1− r)[xπ(C,C)+(1− x)π(C,D)]

= ra+(1− r)[xa+(1− x)b], (4.2)

and

f r
D = rπ(D,D)+(1− r)[xπ(D,C)+(1− x)π(D,D)]

= rd +(1− r)[xc+(1− x)d]. (4.3)

The evolutionary dynamics of the population, using Equation 3.77, is given by

ẋ = x(1− x)( f r
C− f r

D)

= x(1− x){r(a−d)+(1− r)[x(a− c)+(1− x)(b−d)]}, (4.4)

which is the replicator equation for symmetric, two-strategy, pairwise games with

assortative interactions. Note that when r = 0, the equation reduces to

ẋ = x(1− x)[x(a−b− c+d)+b−d], (4.5)

which is the standard replicator equation for symmetric, two-strategy, pairwise games.

129



On a network, a combination of the structure of the network and the update rule

enforce assortative interactions. An individual is more likely to interact with other

individuals of its own type on a network with small average degree d than on a network

with a large value for d. Thus, the network assortativity in game interactions bears an

inverse relationship with the average degree of the network.

4.3 Agent-Based Model

An agent-based model [Bon02] provides a natural way of describing how individuals in a

population might play a symmetric, two-strategy, pairwise game with payoff matrix given

by Equation 4.1. One can simulate (B.4 describes how this is done) such a model on a

computer in order to study the evolution of the frequencies of the C and D strategies.

We start with a population network Γ of size n with a strategy profile

x̂0 = {x0
1,x

0
2, . . . ,x

0
n} at generation 0, where x0

i ∈ {C,D} for 1≤ i≤ n. Roughly, a fraction

x0 of individuals in the population play the strategy C and the remaining individuals play

the strategy D. The update rule U for the game is one of the five rules (FE, RE, IM, BD,

or DB) we discussed in the previous chapter, the selection strength is s, and the degree of

assortativity (applicable only if Γ = ΓWM, i.e., if Γ is a complete network) is r.

The game is played for T generations, each involving n interactions and updates.

During an interaction, say at generation t, an individual i plays the game with a

neighboring individual j ∈ N(i) and obtains a payoff πi. On a complete network ΓWM, the

interaction is assortative, i.e., with probability r, the individual i plays the game with

another individual j of its own type, and with probability 1− r, it plays the game with a

randomly picked individual j. The two individuals i and j employ strategies xt−1
i and xt−1

j

from the previous generation. During an update at generation t, an individual i updates its

strategy xt in the generation t with strategy xt−1
j of its neighbor j ∈ N(i). The updates we
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consider are non-innovative, i.e., the strategies are copied/inherited without error. As a

result, once the population fixates to a particular strategy, i.e., all the individuals in the

population play the same strategy, the strategy profile of the population remains

unchanged2 in future generations.

Based on how the individuals i and j are selected for interactions and updates, we have

two distinct algorithms for implementing the games on a computer. In the sequential

approach, the n update rounds follow the n interaction rounds for a given generation. So

the pair of individuals (i, j) considered for an interaction is generally not the same as the

pair (i, j) of individuals considered for an update. Figure 9 shows a schematic of

interactions and updates in the sequential approach. The box on the top depicts n rounds

of interactions while the box below depicts n rounds of updates. A circled vertex

represents the focal individual, i.e., the individual receiving a payoff during the interaction

round, or the individual (possibly) inheriting a strategy during the update round.

Algorithm 4.2 provides the pseudo-code for implementing symmetric, two-strategy,

pairwise games on a computer using sequential interactions and updates. In this case the

update rule can be one of FE, RE, IM, BD, or DB. Each generation t consists of n

interaction rounds followed by n update rounds (see Figure 9). In each interaction round,

an individual i is randomly sampled from Γ. If Γ is a complete network ΓWM, then i plays

the game with an individual of its own strategy type3 with probability r and receives a

payoff πi = π(xt−1
i ,xt−1

i ). Otherwise, i plays the game with a randomly sampled

individual j ∈ N(i), and receives a payoff πi = π(xt−1
i ,xt−1

j ). At the end of the n

interactions, on average every individual in the population would have played the game

2The software implementations can take advantage of this fact and terminate the simulation upon fixation
of strategies.

3We can either assume that such an individual always exists in the population, or that i actively seeks out
such an individual if it exists, and forgoes playing the game at generation t otherwise. Both these assumptions
result in the same dynamics up to rate of evolution of strategies. Our software implementation makes the
former assumption.
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Figure 9: Sequential interactions and updates per generation in a discrete game.

and thus received a payoff; if an individual does not interact in a generation, its payoff in

that generation is zero.

Two individuals i and j ∈ N(i) are selected based on the update rule U (see Chapter 3)

and i either ends up inheriting j’s strategy from generation t−1 or retaining its own

strategy.

At the start of each generation t, the strategy profile x̂t−1 from the previous generation

is saved in a list L of strategy profiles, and at the end of T generations the list L is returned

as output.
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Algorithm 4.2 Symmetric, two-strategy, pairwise games on complex networks, using se-

quential interactions and updates.
Input: A population network Γ of size n with strategy profile x̂0 = {x0

1,x
0
2, . . . ,x

0
n} at

generation 0, where x0
i ∈ {C,D} for 1≤ i≤ n; a 2×2 payoff matrix π; update rule U

(FE, RE, IM, BD, DB); selection strength s; degree of assortativity r; and number of

generations T .

Output: A list L = {x̂0, x̂1, . . . , x̂T−1}.

1: L← []

2: for t from 1 to T do

3: L.append(x̂t−1)

4: // Interactions.

5: for count from 1 to n do

6: i← random individual from Γ

7: if Γ = ΓWM and random()< r then

8: πi← π(xt−1
i ,xt−1

i )

9: else

10: j← random individual from N(i)

11: πi← π(xt−1
i ,xt−1

j )

12: end if

13: end for

14: // Updates.

15: for count from 1 to n do

16: Two individuals i and j ∈ N(i) are selected based on the update rule U (see

Chapter 3) and i either inherits j’s strategy from generation t−1 or retains its

own strategy

17: end for
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18: end for

19: return L

In the simultaneous approach, at each generation, each of the n updates immediately

follows two interactions, one in which an individual i interacts with another individual

k ∈ N(i) and obtains a payoff πi and the other in which an individual j ∈ N(i) ( j 6= k)

interacts with another individual l ∈ N( j) (l 6= i) and obtains a payoff π j. The same pair

(i, j) is then considered for an update. Figure 10 shows a schematic of the interactions and

updates in the simultaneous approach. A circled vertex again represents a focal individual,

i.e., the individual receiving a payoff during the interaction round, or the individual

(possibly) inheriting a strategy during the update round.

Algorithm 4.3 provides the pseudo-code for implementing symmetric, two-strategy,

pairwise games on a computer using simultaneous interactions and updates (see Figure

10). In this case the update rule U can either be FE or RE. Each generation t consists of n

rounds, each of which involves an interaction immediately followed by an update. In each

round, an individual i and an individual j ∈ N(i) are randomly sampled from Γ. If Γ is a

complete network ΓWM, then i plays the game with an individual of its own strategy type

with probability r and receives a payoff πi = π(xt−1
i ,xt−1

i ). Otherwise, i plays the game

with a randomly sampled individual k ∈ N(i), and receives a payoff πi = π(xt−1
i ,xt−1

k ).

Similarly, j plays the game with an individual of its own strategy type with probability r

and receives a payoff π j = π(xt−1
j ,xt−1

j ). Otherwise, j plays the game with a randomly

sampled individual l ∈ N(i), and receives a payoff π j = π(xt−1
j ,xt−1

l ). Note that on

Γ 6= ΓWM, i must be distinct from l and j must be distinct from k; otherwise, the process

continues with the next generation. The individual i updates its strategy xt
i to the strategy

xt−1
j of a randomly sampled individual j ∈ N(i), with probability pi← j determined by the

update rule, and with probability 1− pi← j, i retains its own strategy.
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Figure 10: Simultaneous interactions and updates per generation in a discrete game.

At the start of each generation t, the strategy profile x̂t−1 from the previous generation

is saved in a list L of strategy profiles, and at the end of T generations the list L is returned

as output.

Algorithm 4.3 Symmetric, two-strategy, pairwise games on complex networks, using si-

multaneous interactions and updates.
Input: A population network Γ of size n with strategy profile x̂0 = {x0

1,x
0
2, . . . ,x

0
n} at

generation 0, where x0
i ∈ {C,D} for 1≤ i≤ n; a 2×2 payoff matrix π; update rule U

(FE or RE); selection strength s; degree of assortativity r; and number of generations

T .

Output: A list L = {x̂0, x̂1, . . . , x̂T−1}.
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1: L← []

2: for t from 1 to T do

3: L.append(x̂t−1)

4: // Interactions.

5: for count from 1 to n do

6: i← random individual from Γ

7: j← random individual from N(i)

8: if Γ = ΓWM and random()< r then

9: πi← π(xt−1
i ,xt−1

i )

10: else

11: k← random individual from N(i)

12: if Γ 6= ΓWM and k = j then

13: continue

14: end if

15: πi← π(xt−1
i ,xt−1

k )

16: end if

17: if Γ = ΓWM and random()< r then

18: π j← π(xt−1
j ,xt−1

j )

19: else

20: l← random individual from N( j)

21: if Γ 6= ΓWM and l = i then

22: continue

23: end if

24: π j← π(xt−1
j ,xt−1

l )

25: end if
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26: The probability pi← j that individual i inherits individual j’s strategy is calculated

based on the update rule U (see Chapter 3)

27: if random()< pi← j then

28: xt
i ← xt−1

j

29: else

30: xt
i ← xt−1

i

31: end if

32: end for

33: end for

34: return L
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4.4 Prisoner’s Dilemma

An act of cooperation by an individual (donor) towards another individual (recipient) is

one which benefits the recipient by an amount b, but incurs a cost c to the donor, where

b,c ∈ R+ and b > c.

Two friends John and Bill are engaged in an act of cooperative behavior in which each

of them can either cooperate or defect, i.e., not cooperate. If both John and Bill cooperate,

then they both get a benefit of b but also incur a cost of c, and thus receive a payoff of

b− c. If both John and Bill defect, then they neither benefit nor incur a cost, and thus

receive a payoff of 0. If John cooperates and Bill defects, then Bill receives a benefit of b

but incurs no cost while John receives no benefit but incurs a cost of c. Thus the payoff

that John receives is −c while the payoff that Bill receives is b. Finally, if Bill cooperates

and John defects, then John receives a payoff of b while Bill receives −c.

If we denote the act of cooperation by C and that of defection by D, then we can define

a symmetric, two-strategy, pairwise contest game with the payoff matrix:

π =


C D

C (b− c,b− c) (−c,b)

D (b,−c) (0,0)

. (4.6)

By Theorem 3.4, transforming the payoff matrix of a game using an affine

transformation does not alter the equilibria of the game. So we can transform the above

matrix by dividing each element by b to obtain the following payoff matrix:

π =


C D

C (1− c
b ,1−

c
b) (− c

b ,1)

D (1,− c
b) (0,0)

. (4.7)
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Finally, denoting the cost-to-benefit ratio c
b by ρ , we can express payoff matrix for the

game more compactly as

π =


C D

C (1−ρ,1−ρ) (−ρ,1)

D (1,−ρ) (0,0)

, (4.8)

where 0 < ρ < 1.

It is easy to see that a game with payoff matrix given by Equation 4.8 belongs to the

prisoner’s dilemma class of games we encountered in the previous chapter. Therefore, the

set N of Nash equilibria for the game is N = {(D,D)} and the set E of ESSs for the game

is E = {(D,D)}. Comparing the payoff matrix for the game with the payoff matrix for a

general symmetric, two-strategy, pairwise contest game given by Equation 4.1, we have

a = 1−ρ , b =−ρ , c = 1, and d = 0. Substituting for a,b,c, and d in Equation 4.5 gives

us the evolutionary dynamics (without assortativity) for the game as ẋ =−x(1− x)ρ ,

where x is the fraction of individuals playing the C strategy and 1− x is the fraction of

individuals playing the D strategy. The set F of fixed points for the dynamics is

F = {(0,1),(1,0)} and the set A of asymptotically stable fixed points is A = {(0,1)}. The

four sets N,E,F , and A are related by E = A⊆ N ⊆ F . Therefore, a population of

individuals playing the prisoner’s dilemma game with payoff matrix given by Equation

4.8, starting from an initial fraction x0 > 0 of cooperators, will eventually end up in the

all-defector (x? = 0) equilibrium state. So a natural question to ask is: how can

cooperation evolve in a population of individuals playing the prisoner’s dilemma game?

Prisoner’s dilemma has been extensively studied as a model for cooperative behavior

[Now06b]. There are five mechanisms that have been proposed for the evolution of

cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and

group selection. Each mechanism suggests a simple rule—an inequality involving the
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cost-to-benefit ratio ρ of the cooperative act—which specifies whether natural selection

can lead to cooperation.

Kin Selection

Kin selection [Ham63] is the ingenious idea proposed by William Donald Hamilton that

natural selection can favor cooperation if the donor and the recipient of a cooperative act

are genetic relatives. Relatedness is defined as the probability of sharing a gene. For

example, the probability that two brothers share the same gene by descent is 1
2 , while the

same probability for cousins is 1
8 . More precisely, kin selection states that the coefficient

of relatedness r must exceed the cost-to-benefit ratio ρ of the cooperative act, i.e., r > ρ .

This simple rule is known as Hamilton’s rule. The idea was informally articulated much

earlier, supposedly in an English pub, by the irascible British geneticist and evolutionary

biologist J.B.S. Haldane when he famously quipped “I will jump into the river to save two

brothers or eight cousins”.

Direct Reciprocity

Cooperation is observed not only among relatives but also between unrelated individuals

or even between members of different species. Such considerations led the American

evolutionary sociobiologist Robert Trivers to propose direct reciprocity [Tri71] as another

mechanism for the evolution of cooperation. He considered the iterated prisoner’s

dilemma game in which there are repeated encounters between the same two individuals.

If one of them cooperates now, the other may cooperate later. Hence, it might pay off to

cooperate.

In search for a good strategy for playing the iterated prisoner’s dilemma, the American

political scientist Robert Axelrod, in two computer tournaments [Axe06], discovered that
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the “winning strategy” was the simplest of all, tit-for-tat (TFT). An individual playing this

strategy always starts by cooperating and then does whatever the opponent has done in the

previous round: cooperation for cooperation, defection for defection.

Unfortunately, the TFT strategy has a weakness. If there are erroneous moves, caused

by “trembling hands” or “fuzzy minds”, then the performance of TFT declines. TFT

cannot correct mistakes, because an accidental defection leads to a long sequence of

retaliation. In such cases, TFT is replaced by generous-tit-for-tat (GTFT) [NS92]. An

individual playing the GTFT strategy cooperates upon cooperation, but sometimes (with

probability 1−ρ) also cooperates upon defection, where ρ is the cost-to-benefit ratio of

the cooperative act.

TFT is subsequently replaced by the win-stay-lost-shift (WSLS) strategy. An

individual playing WSLS repeats the previous move whenever it is doing well, but

changes otherwise [NS93]. WSLS is more robust than either TFT or GTFT. TFT is an

efficient catalyst of cooperation in a society where nearly everybody is a defector, but

once cooperation is established WSLS is better able to maintain it.

Direct reciprocity can lead to the evolution of cooperation only if the probability w of

another encounter between the same two individuals exceeds the cost-to-benefit ratio, i.e.,

w > ρ .

Indirect Reciprocity

Interactions among individuals are often asymmetric and fleeting. One individual is in a

position to help another, but there is no possibility for a direct reciprocation. We often

help strangers who are in need. We donate to charities that do not donate to us.

In the standard framework of indirect reciprocity, there are randomly chosen, pairwise

encounters, where the same two individuals need not meet again. One individual acts as
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donor and the other as recipient. The donor can decide whether or not to cooperate. The

interaction is observed by a subset of the population who might inform others. Reputation

allows evolution of cooperation by indirect reciprocity [NS98]. Theoretical and empirical

studies of indirect reciprocity show that people who are more helpful are more likely to

receive help [NS05].

Although simple forms of indirect reciprocity can be found in animals [NS05], only

humans seem to engage in the full complexity of the game. Indirect reciprocity has

substantial cognitive demands. Not only do the individuals have to remember their own

interactions, but also monitor the ever-changing social network of the group.

Indirect reciprocity can promote cooperation if the probability q to know someone’s

reputation exceeds the cost-to-benefit ratio ρ of the cooperative act, i.e., q > ρ .

Network Reciprocity

The argument for natural selection of defection is based on a well-mixed population, in

which everyone is equally likely to interact everyone else. This approximation is used by

all standard approaches to evolutionary game dynamics [HS98, Smi82]. Real populations

are not well-mixed. Spatial structures or social networks imply that some individuals

interact more often than others. The approach of capturing this effect is evolutionary

network theory [LHN05], and the resulting mechanism for the evolution of cooperation is

called network reciprocity.

Games on networks are easy to study by computer simulation, but difficult to analyze

mathematically because of the enormous number of possible configurations that can arise.

Nonetheless, a simple rule 1
d > ρ determines if network reciprocity can favor cooperation,

where d is the average degree if the network and ρ is the cost-to-benefit ratio of a

cooperative act.
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Group Selection

Selection acts not only on individuals but also on groups. A group of cooperators might be

more successful than a group of defectors. In a simple model of group selection [TN06], a

population is subdivided into groups. Cooperators help others in their own group.

Defectors do not help. Individuals reproduce in proportion to their payoff. Offspring are

added to the same group. If a group reaches a certain size it can split into two. In this case,

another group becomes extinct in order to constrain the total population size. Only

individuals reproduce, but selection emerges on two levels. There is competition between

groups because some groups grow faster and split more often. In particular, pure

cooperator groups grow faster than pure defector groups, while in any mixed group

defectors reproduce faster than cooperators. Therefore, selection on the lower intra-group

level favors defectors, while selection on the higher inter-group level favors cooperators.

In the limit of weak selection and rare group splitting, group selection allows evolution

of cooperation provided 1
1+ n

m
> ρ , where n is the maximum group size, m the number of

groups, and ρ is the cost-to-benefit ratio of a cooperative act.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for the promoting

cooperation. We carry out a complete analysis of the prisoner’s dilemma game using the

replicator equation modified to incorporate assortative interactions. Since the network

assortativity in game interactions bears an inverse relationship to its average degree,

knowing how the assortativity parameter r affects cooperation in a well-mixed population

also informs us about how cooperation would be affected, albeit only qualitatively, when

the game is played out on networks.
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4.4.1 Analysis

Consider a population of individuals playing the prisoner’s dilemma game with the payoff

matrix given by Equation 4.8. Let x(t) denote the fraction of cooperators at time t, and let

x(0) = x0. Let the degree of assortativity be r. Substituting for a,b,c, and d in Equation

4.4, we get the evolutionary dynamics for the population as

ẋ = x(1− x)(r−ρ). (4.9)

The phase line plots for the above system, for different values of assortativity r, are

shown in Figure 11. The system has two equilibria, x? = 0 and x? = 1, so if a population
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Figure 11: Phase line plots for the system 4.9 for different values of assortativity r.

starts out with every individual cooperating or every individual defecting, then it remains

that way. When r = 0 or when r < ρ , the equilibrium point x? = 0 is stable, while the

equilibrium point x? = 1 is unstable. So a population, starting from an initial fraction

x0 > 0 of cooperators, will evolve to a state in which every individual defects. However,

when r > ρ , the stability of the two equilibrium points is reversed, and the population will

evolve to a state in which everyone cooperates.

144



Example 4.1. Consider a prisoner’s dilemma game with ρ = 0.3, i.e., with payoff matrix

π =


C D

C (0.7,0.7) (−0.3,1)

D (1,−0.3) (0,0)

. (4.10)

We simulate the game on a complete network ΓWM with parameter values n = 10000,

s = 1, x0 = 0.5,U = FE2,T = 5000,ν = 1, and τ = 1. Figures 12(a)-(c) show the

evolution of the fraction x of cooperators for different values of assortativity r. As

suggested by the analysis, when r = 0 and r < ρ the population evolves to the all-defector

state, and when r > ρ the population evolves to the all-cooperator state.
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Figure 12: Evolution of the fraction x of cooperators in a symmetric, two-strategy, pairwise

prisoner’s dilemma game for different values of assortativity r. (a) r = 0. (b) r = 0.2.

(c) r = 0.4. Simulation parameters: complete network ΓWM, ρ = 0.3, n = 10000, x0 =

0.5,U = FE2,s = 1,T = 5000,ν = 1, and τ = 1.

Thus in a well-mixed population, assortative interactions provide a mechanism for

promoting cooperative behavior. It is worth nothing that the relation r > ρ , which

provides a necessary condition for evolution of cooperation, has the same form as the

equation for kin selection [Gra90, Ham63], which has long been suggested as a possible

mechanism for the evolution of altruistic behavior.
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On a network, as we remarked earlier, assortativity increases with decreasing values of

the average degree d of the network. So when the prisoner’s dilemma game is played on

networks, we expect cooperation to emerge on networks with small values of d. We

explore this and other network effects in detail in the following section.

4.4.2 Simulation Results

In this section we present the results of simulating the prisoner’s dilemma game on

networks having different structural properties. All the simulations were carried out using

the following values for the parameters involved: payoff matrix π given by Equation 4.8,

population size n = 10000, initial fraction of cooperators x0 = 0.5, number of generations

T = 10000, report frequency ν = 100, number of trials τ = 1, update rule U = FE2, and

selection strength s = 1. See B.4 for details on how to simulate our discrete game models.

The results are presented using three different kinds of plots depicting the following:

1. Variation of the long-term value x∞ of the fraction x of cooperators, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks) and the cost-to-benefit ratio ρ . The values of r ∈ [0,1] and

ρ ∈ (0,1) were varied in steps of 0.01, and the value of d was varied from 20 to 4 in

steps of -2. The intensity of the shade in the plot indicates the level of cooperation,

with black corresponding to full cooperation (x∞ = 1) and white corresponding to

no cooperation (x∞ = 0).

2. Variation of x∞ with r (or d) for a fixed value of ρ . The dashed line in the case of

complete networks indicates values predicted by analysis.

3. Variation of x∞ with ρ for a fixed value of r (or d). The dashed line in the case of

complete networks indicates values predicted by analysis. We denote the fractional

146



area under the x∞ curve relative to the total area of the [x∞,ρ] square by C . We refer

to C as the cooperation index and use it as a measure of the extent to which a

network promotes cooperation. For a well-mixed population, the value of C (r) for a

given value of assortativity r can be calculated analytically as C (r) =
∫ 1

0 x∞(r,ρ)dρ ,

where x∞(r,ρ) = 1 if r > ρ and 0 otherwise.

Complete Network

The first set of results concerns complete networks ΓWM. Figures 13(a)(b) respectively

show how the predicted and simulated values of the long-term fraction x∞ of cooperators

vary with assortativity r and cost-to-benefit ratio ρ . Figure 13(c) shows how x∞ varies

with r when ρ = 0.25. Figure 13(d) shows how x∞ varies with ρ when r = 0.25.

Model Networks with Varying Average Degree

The next set of results concerns model networks with varying average degree d. Figures

14(a)(d)(g) show how the long-term fraction x∞ of cooperators varies with average degree

d and cost-to-benefit ratio ρ , on random regular ΓRR, Erdős-Rényi ΓER, and

Barabási-Albert ΓBA networks respectively. Figures 14(b)(e)(h) show how x∞ varies with

d on ΓRR, ΓER, and ΓBA networks respectively, when ρ = 0.1. Figures 14(c)(f)(i) show

how x∞ varies with ρ on ΓRR, ΓER, and ΓBA networks respectively, when d = 4.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 4, and

varying clustering coefficient C(2). Figures 15(a)-(d) show how the long-term fraction x∞
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Figure 13: Variation of the long-term fraction x∞ of cooperators with assortativity r and

cost-to-benefit ratio ρ , on a complete network. (a) x∞ (predicted) versus r and ρ . (b) x∞

(simulated) versus r and ρ . (c) x∞ versus r when ρ = 0.25. (d) x∞ versus ρ when r = 0.25

(C = 0.252). Simulation parameters: π given by Equation 4.8, n = 10000, x0 = 0.5, T =

10000, ν = 100, τ = 1, U = FE2, and s = 1.

of cooperators varies with the cost-to-benefit ratio ρ on networks with clustering

coefficient C(2) = 0,0.2,0.4, and 0.6.
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Figure 14: Variation of the long-term fraction x∞ of cooperators with average degree d

and cost-to-benefit ratio ρ , on model networks. (a)-(c) Random regular network ΓRR. (d)-

(f) Erdős-Rényi network ΓER. (g)-(i) Barabási-Albert network ΓBA. (a)(d)(g) x∞ versus

d and ρ . (b)(e)(h) x∞ versus d when ρ = 0.1. (d)(f)(i) x∞ versus ρ when d = 4 (C =

0.313,0.283,0.267). Simulation parameters: π given by Equation 4.8, n= 10000, x0 = 0.5,

T = 10000, ν = 100, τ = 1, U = FE2, and s = 1.
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Figure 15: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio ρ ,

on model power-law networks with clustering coefficient C(2). (a) C(2) = 0 (C = 0.269).

(b) C(2) = 0.2 (C = 0.264). (c) C(2) = 0.4 (C = 0.255). (d) C(2) = 0.6 (C = 0.248).

Simulation parameters: π given by Equation 4.8, n = 10000, d = 4, x0 = 0.5, T = 10000,

ν = 100, τ = 1, U = FE2, and s = 1.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 4, and

varying homophily coefficient h. Figures 16(a)-(d) show how the long-term fraction x∞ of
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cooperators varies with the cost-to-benefit ratio ρ on networks with homophily coefficient

h =−0.1,0,0.1, and 0.2.
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Figure 16: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on model power-law networks with homophily coefficient h. (a) h =−0.1 (C = 0.293).

(b) h = 0 (C = 0.250). (c) h = 0.1 (C = 0.239). (d) h = 0.2 (C = 0.372). Simulation

parameters: π given by Equation 4.8, n = 10000, d = 4, x0 = 0.5, T = 10000, ν = 100,

τ = 1, U = FE2, and s = 1.
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Empirical Networks

The last set of results concerns empirical networks. Figures 17(a)-(f) show how the

long-term fraction x∞ of cooperators varies with the cost-to-benefit ratio ρ on: the Γinternet

network (a); the Γhepcoauth network (b); the Γastrocoauth network (c); the Γfb network (d); the

Γp2p network (e); and the Γprotein network (f).
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Figure 17: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on empirical networks. See Table 2 for the basic properties of these networks. (a) the

Γinternet network (C = 0.276). (b) the Γhepcoauth network (C = 0.213). (c) the Γastrocoauth

network (C = 0.058). (d) the Γfb network (C = 0.027). (e) the Γp2p network (C = 0.190).

(f) the Γprotein network (C = 0.326). Simulation parameters: π given by Equation 4.8,

x0 = 0.5, T = 10000, ν = 100, τ = 1, U = FE2, and s = 1.
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4.5 Snowdrift Game

Two friends John and Bill are stuck in a car on their way home because the road is

blocked by a snowdrift. John and Bill have a choice between cooperation and defection,

where cooperation means get out of the car and shovel and defection means stay in the car

and do not shovel. Let the benefit of getting home be b and the cost of shoveling in the

cold be c, where b > c. If both John and Bill cooperate, then the amount of work is only

half as much, so both of them get a benefit of b and incur a cost of c
2 , thus receiving a

payoff of b− c
2 . If both John and Bill defect, then they both remain stuck in the snowdrift,

and receive a payoff of 0. If John cooperates and Bill defects, then they both get a benefit

of b but John is the only one paying a cost of c. So the payoff to Bill is b while the payoff

to John is b− c. Finally if Bill cooperates and John defects, then John receives a payoff of

b while Bill receives b− c.

If we denote the act of cooperation by C and the act of defection by D, then we can

define a symmetric, two-strategy, pairwise contest game, called the snowdrift game, with

the payoff matrix

π =


C D

C (b− c
2 ,b−

c
2) (b− c,b)

D (b,b− c) (0,0)

. (4.11)

By Theorem 3.4, transforming the payoff matrix of a game using an affine

transformation does not alter the equilibria of the game. So we can transform the above

matrix by dividing each element by b to obtain the following payoff matrix:

π =


C D

C (1− c
2b ,1−

c
2b) (1− c

b ,1)

D (1,1− c
b) (0,0)

. (4.12)
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Finally, denoting the cost-to-benefit ratio c
b by ρ , we can express the payoff matrix for

the game more compactly as

π =


C D

C (1− ρ

2 ,1−
ρ

2 ) (1−ρ,1)

D (1,1−ρ) (0,0)

, (4.13)

where 0 < ρ < 1.

It is easy to see that a game with payoff matrix given by Equation 4.13 belongs to the

chicken class of games we encountered in the previous chapter. Therefore, the set N of

Nash equilibria for the game is N = {(C,D),(D,C),( 1−ρ

1− ρ

2
,

ρ

2
1− ρ

2
)} and the set E of ESSs

for the game is E = {( 1−ρ

1− ρ

2
,

ρ

2
1− ρ

2
)}. Comparing the payoff matrix for the game with the

payoff matrix for a general symmetric, two-strategy, pairwise contest game given by

Equation 4.1, we have a = 1− ρ

2 , b = 1−ρ , c = 1, and d = 0. Substituting for a,b,c, and

d in Equation 4.5 gives us the evolutionary dynamics (without assortativity) for the game

as ẋ = x(1− x)[x(ρ

2 −1)+1−ρ], where x is the fraction of individuals playing the C

strategy and 1− x is the fraction of individuals playing the D strategy. The set F of fixed

points for the dynamics is F = {(0,1),(1,0),( 1−ρ

1− ρ

2
,

ρ

2
1− ρ

2
)} and the set A of asymptotically

stable fixed points is A = {( 1−ρ

1− ρ

2
,

ρ

2
1− ρ

2
)}. The four sets N,E,F , and A are related by

E = A⊆ N ⊆ F . Therefore, a population of individuals playing the snowdrift game with

payoff matrix given by Equation 4.13, starting from an initial fraction x0 > 0 of

cooperators, will eventually end up in the internal equilibrium state (x? = 1−ρ

1− ρ

2
) in which

cooperators and defectors coexist. So a natural question to ask is: how can the level of

cooperation, i.e., the fraction of cooperators at equilibrium, be increased through an

external mechanism?

Games in the chicken class, such as the hawk-dove game, have been studied

extensively in the fields of political science, economics, and biology as models of conflict
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between two players [Rus59, SP73, SF07]. The snowdrift game, which also belongs to the

chicken class, has been studied as a model for cooperation by [HD04], in which the

authors consider the effect of spatial structure on the snowdrift game and make the

interesting observation that spatial structure can inhibit cooperation.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for the promoting

cooperation. We carry out a complete analysis of the snowdrift game using the replicator

equation modified to include assortative interactions. Since the network assortativity in

game interactions bears an inverse relationship to its average degree, knowing how the

assortativity parameter r affects cooperation in a well-mixed population also informs us

about how cooperation would be affected, albeit only qualitatively, when the game is

played out on networks.

4.5.1 Analysis

Consider a population of individuals playing the snowdrift game with the payoff matrix

given by Equation 4.13. Let x(t) denote the fraction of cooperators at time t, and let

x(0) = x0. Let the degree of assortativity be r. Substituting for a,b,c, and d in Equation

4.4, we get the evolutionary dynamics for the population as

ẋ = x(1− x)
[
x(1− r)

(
ρ

2
−1
)
+

rρ

2
−ρ

]
. (4.14)

The phase line plots for the above system, for different values of assortativity r, are

shown in Figure 18. The system has three equilibria: x? = 0 and x? = 1 at the boundaries,

and an internal equilibrium

x? =
rρ

2 +1−ρ

(1− r)
(

1− ρ

2

) , (4.15)
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r = 0 r = r1 r = r2 > r1

Figure 18: Phase line plots for the system 4.14 for different values of assortativity r.

where 0 < ρ < 1 and x? ∈ [0,1] =⇒ 2r < ρ < 2
2−r . If a population starts out with a

fraction x? of individuals cooperating, then it remains that way. It is easy to verify that the

boundary equilibria are unstable, while the internal equilibrium is stable. So if a

population starts out with a fraction x0 6= x? of the individuals cooperating, then it will

evolve to a state of coexistence determined by internal equilibrium, in which fraction x? of

the population are cooperators and the rest are defectors.

Since ∂x?
∂ r > 0, increasing the assortativity r has the effect of increasing the fraction of

cooperators at equilibrium. And since ∂x?
∂ρ

< 0, increasing the cost-to-benefit ratio ρ has

the effect of decreasing the fraction of cooperators at equilibrium.

Example 4.2. Consider the snowdrift game with ρ = 0.5, i.e., with payoff matrix

π =


C D

C (0.75,0.75) (0.5,1)

D (1,0.5) (0,0)

. (4.16)

We simulate the game on a complete network ΓWM with parameter values n = 10000,

s = 1, x0 = 0.5,U = FE2,T = 5000,ν = 1, and τ = 1. Figures 19(a)-(c) show the

evolution of the fraction x of cooperators for different values of assortativity r. The

fraction x of cooperators at equilibrium not only agrees with the predicted values, but also

increases with increasing r, exactly as suggested by the analysis.
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Figure 19: Evolution of the fraction x of cooperators in a symmetric, two-strategy, pairwise

snowdrift game, for different values of assortativity r. (a) r = 0 (x? ≈ 0.67). (b) r = 0.1

(x? ≈ 0.78). (c) r = 0.2 (x? ≈ 0.92). Simulation parameters: complete network ΓWM,

ρ = 0.5, n = 10000, x0 = 0.5,U = FE2,s = 1,T = 5000,ν = 1, and τ = 1.

Thus in a well-mixed population, assortative interactions provide a mechanism for

increasing the levels of cooperative behavior. Since network assortativity in game

interactions bears an inverse relationship with the average degree of the network, when the

snowdrift game is played on a network, we expect levels of cooperation to increase on

networks with small values of d. We explore this and other network effects in detail in the

following section.

4.5.2 Simulation Results

In this section we present the results of simulating the snowdrift game on networks having

different structural properties. All the simulations were carried out using the following

values for the parameters involved: payoff matrix π given by Equation 4.13, population

size n = 10000, initial fraction of cooperators x0 = 0.5, number of generations T = 10000,

report frequency ν = 100, number of trials τ = 1, update rule U = FE2, and selection
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strength s = 1. See B.4 for details on how to simulate our discrete game models. The

results are presented using three different kinds of plots depicting the following:

1. Variation of the long-term value x∞ of the fraction x of cooperators, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks) and the cost-to-benefit ratio ρ . The values of r ∈ [0,0.5] and

ρ ∈ (0,1) were varied in steps of 0.01, and the value of d was varied from 20 to 4 in

steps of -2. The intensity of the shade in the plot indicates the level of cooperation,

with black corresponding to full cooperation (x∞ = 1) and white corresponding to

no cooperation (x∞ = 0).

2. Variation of x∞ with r (or d) for a fixed value of ρ . The dashed line in the case of

complete networks indicates values predicted by analysis.

3. Variation of x∞ with ρ for a fixed value of r (or d). The dashed line in the case of

complete networks indicates values predicted by analysis. We denote the fractional

area under the x∞ curve relative to the total area of the [x∞,ρ] square by C . We refer

to C as the cooperation index and use it as a measure of the extent to which a

network promotes cooperation. For a well-mixed population, the value of C (r) for a

given value of assortativity r can be calculated analytically as C (r) =
∫ 1

0 x∞(r,ρ)dρ ,

where x∞(r,ρ) is given by Equation 4.15.

Complete Network

The first set of results concerns complete networks ΓWM. Figures 20(a)(b) respectively

show how the predicted and simulated values of the long-term fraction x∞ of cooperators

vary with assortativity r and cost-to-benefit ratio ρ . Figure 20(c) shows how x∞ varies

with r when ρ = 0.75. Figure 20(d) shows how x∞ varies with ρ when r = 0.25.
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Figure 20: Variation of the long-term fraction x∞ of cooperators with assortativity r and

cost-to-benefit ratio ρ , on a complete network. (a) x∞ (predicted) versus r and ρ . (b) x∞

(simulated) versus r and ρ . (c) x∞ versus r when ρ = 0.75. (d) x∞ versus ρ when r = 0.25

(C = 0.701). Simulation parameters: π given by Equation 4.13, n = 10000, x0 = 0.5,

T = 10000, ν = 100, τ = 1, U = FE2, and s = 1.

Model Networks with Varying Average Degree

The next set of results concerns model networks with varying average degree d. Figures

21(a)(d)(g) show how the long-term fraction x∞ of cooperators varies with average degree

d and cost-to-benefit ratio ρ , on random regular ΓRR, Erdős-Rényi ΓER, and
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Barabási-Albert ΓBA networks respectively. Figures 21(b)(e)(h) show how x∞ varies with

d on ΓRR, ΓER, and ΓBA networks respectively, when ρ = 0.75. Figures 21(c)(f)(i) show

how x∞ varies with ρ on ΓRR, ΓER, and ΓBA networks respectively, when d = 4.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 4, and

varying clustering coefficient C(2). Figures 22(a)-(d) show how the long-term fraction x∞

of cooperators varies with the cost-to-benefit ratio ρ on networks with clustering

coefficient C(2) = 0,0.2,0.4, and 0.6.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 4, and

varying homophily coefficient h. Figures 23(a)-(d) show how the long-term fraction x∞ of

cooperators varies with the cost-to-benefit ratio ρ on networks with homophily coefficient

h =−0.1,0,0.1, and 0.2.

Empirical Networks

The last set of results concerns empirical networks. Figures 24(a)-(f) show how the

long-term fraction x∞ of cooperators varies with the cost-to-benefit ratio ρ on: the Γinternet

network (a); the Γhepcoauth network (b); the Γastrocoauth network (c); the Γfb network (d); the

Γp2p network (e); and the Γprotein network (f).
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Figure 21: Variation of the long-term fraction x∞ of cooperators with average degree d

and cost-to-benefit ratio ρ , on model networks. (a)-(c) Random regular network. ΓRR.

(d)-(f) Erdős-Rényi network ΓER. Barabási-Albert network ΓBA. (a)(d)(g) x∞ versus d

and ρ . (b)(e)(h) x∞ versus d when ρ = 0.75. (d)(f)(i) x∞ versus ρ when d = 4 (C =

0.886,0.814,0.851). Simulation parameters: π given by Equation 4.13, n = 10000, x0 =

0.5, T = 10000, ν = 100, τ = 1, U = FE2, and s = 1.
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Figure 22: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio ρ ,

on model power-law networks with clustering coefficient C(2). (a) C(2) = 0 (C = 0.850).

(b) C(2) = 0.2 (C = 0.852). (c) C(2) = 0.4 (C = 0.856). (d) C(2) = 0.6 (C = 0.859).

Simulation parameters: π given by Equation 4.13, n = 10000, d = 4, x0 = 0.5, T = 10000,

ν = 100, τ = 1, U = FE2, and s = 1.
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Figure 23: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on model power-law networks with homophily coefficient h. (a) h =−0.1 (C = 0.868).

(b) h = 0 (C = 0.836). (c) h = 0.1 (C = 0.825). (d) h = 0.2 (C = 0.871). Simulation

parameters: π given by Equation 4.13, n = 10000, d = 4, x0 = 0.5, T = 10000, ν = 100,

τ = 1, U = FE2, and s = 1.
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Figure 24: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on empirical networks. See Table 2 for the basic properties of these networks. (a) the

Γinternet network (C = 0.687). (b) the Γhepcoauth network (C = 0.734). (c) the Γastrocoauth

network (C = 0.644). (d) the Γfb network (C = 0.625). (e) the Γp2p network (C = 0.658).

(f) the Γprotein network (C = 0.810). Simulation parameters: π given by Equation 4.13,

x0 = 0.5, T = 10000, ν = 100, τ = 1, U = FE2, and s = 1.
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4.6 Sculling Game

Two friends John and Bill are rowing to get to their destination. Reaching their destination

at all has a value of b
2 to each of them. If they reach their destination before a certain

time—which will happen only if they both row—then they can attend a party they would

like to go to which has an additional value 3b
2 to each of them. It is assumed that if they do

not reach their destination at all, then the benefit to both is 0. Furthermore, the effort of

rowing carries a cost c to the rower. Thus, if both row they reach their destination on time

and can go to the party and each gets a benefit 2b. They each pay a cost c for rowing,

giving a payoff for each of 2b− c. If John rows and Bill does not then they will eventually

reach their destination, but late for the party, giving them each a benefit of b
2 . John will

pay a cost c for rowing and so get a payoff of b
2 − c. Bill will pay no cost and thus get a

payoff of b
2 . If neither rows, they drift in the river and do not reach their destination.

Neither gets any benefit nor pays any cost for rowing, and thus each gets a payoff of 0.

If we treat rowing as the cooperative strategy and denote it by C, and treat not rowing

as the defective strategy and denote it by D, then we can define a symmetric, two-strategy

(C and D), pairwise contest game, called the sculling game4, with the payoff matrix

π =


C D

C (2b− c,2b− c) (b
2 − c, b

2)

D (b
2 ,

b
2 − c) (0,0)

. (4.17)

By Theorem 3.4, transforming the payoff matrix of a game using an affine

transformation does not alter the equilibria of the game. So we can transform the above

4Sculling generally refers to a method of using oars to propel watercraft in which the oar or oars touch the
water on both the port and starboard sides of the craft, or over the stern. By extension, the oars themselves
are also often referred to as sculls when used in this manner, and the boat itself may be referred to as a scull.
[Source: Wikipedia]
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matrix by dividing each element by b to obtain the following payoff matrix:

π =


C D

C (2− c
b ,2−

c
b) (1

2 −
c
b ,

1
2)

D (1
2 ,

1
2 −

c
b) (0,0)

. (4.18)

Finally, denoting the cost-to-benefit ratio c
b by ρ , we can express payoff matrix for the

game more compactly as

π =


C D

C (2−ρ,2−ρ) (1
2 −ρ, 1

2)

D (1
2 ,

1
2 −ρ) (0,0)

, (4.19)

where 1
2 < ρ < 3

2 .

It is easy to see that a game with payoff matrix given by Equation 4.19 belongs to the

coordination class of games we encountered in the previous chapter. Therefore, the set N

of Nash equilibria for the game is N = {(C,C),(D,D),(ρ− 1
2 ,

3
2 −ρ)} and the set E of

ESSs for the game is also E = {(C,C),(D,D),(ρ− 1
2 ,

3
2 −ρ)}. Comparing the payoff

matrix for the game with the payoff matrix for a general symmetric, two-strategy, pairwise

contest game given by Equation 4.1, we have a = 2−ρ , b = 1
2 −ρ , c = 1

2 , and d = 0.

Substituting for a,b,c, and d in Equation 4.5 gives us the evolutionary dynamics (without

assortativity) for the game as ẋ = x(1− x)[x+ 1
2 −ρ], where x is the fraction of individuals

playing the C strategy and 1− x is the fraction of individuals playing the D strategy. The

set F of fixed points for the dynamics is F = {(0,1),(1,0),(ρ− 1
2 ,

3
2 −ρ)} and the set A

of asymptotically stable fixed points is A = {(0,1),(1,0)}. The four sets N,E,F , and A

are related by E = A⊆ N ⊆ F . Since the internal equilibrium state (x? = ρ− 1
2 ) is

unstable, a population of individuals playing the sculling game with payoff matrix given

by Equation 4.19, starting from an initial fraction x0 > 0 of cooperators, will eventually

end up in the all-defector (x = 0) state if x0 < x?, and in the all-cooperator (x = 1) state if
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x0 > x?. So a natural question to ask is: can the basin of attraction around the

all-cooperator (x = 1) state be widened through an external mechanism such that the

Hicks optimal outcome in which every individual cooperates will be favored?

Games in the coordination class, such as the stag-hunt game, have been studied

extensively in social science, including economics, to model situations in which all parties

can realize mutual gains, but only by making mutually consistent decisions [Sky03, SF07].

Coordination games, as far as we know, have not been used as models of cooperative

behavior, and our formulation of the sculling game as a model for cooperation is new.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for the promoting

cooperation. We carry out a complete analysis of the sculling game using the replicator

equation modified to include assortative interactions. Since the network assortativity bears

an inverse relationship to its average degree, knowing how the assortativity parameter r

affects cooperation in a well-mixed population also informs us about how cooperation

would be affected, albeit only qualitatively, when the game is played out on networks.

4.6.1 Analysis

Consider a population of individuals playing the sculling game with the payoff matrix

given by Equation 4.19. Let x(t) denote the fraction of cooperators at time t, and let

x(0) = x0. Let the degree of assortativity be r. Comparing the payoff matrix for the game

with the payoff matrix for a general symmetric, two-strategy, pairwise contest game given

by Equation 4.1, we have a = 2−ρ , b = 1
2 −ρ , c = 1

2 , and d = 0. Substituting for a,b,c,

and d in Equation 4.4, we get the evolutionary dynamics for the population as

ẋ = x(1− x)
[
x(1− r)+

3r
2
−ρ +

1
2

]
. (4.20)
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The phase line plots for the above system, for different values of assortativity r, are

shown in Figure 25. The system has three equilibria: x? = 0 and x? = 1 at the

x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

r = 0 r = r1 r = r2 > r1

Figure 25: Phase line plots for the system 4.20 for different values of assortativity r.

boundaries, and the internal equilibrium

x? =
−3r

2 +ρ− 1
2

1− r
, (4.21)

where 1
2 < ρ < 3

2 and x? ∈ [0,1] =⇒ 1
2 +

3r
2 < ρ < 3

2 + r. If a population starts out with a

fraction x? of individuals cooperating, then it remains that way. It is easy to verify that the

boundary equilibria are stable, while the internal equilibrium is unstable. So if a

population starts out with a fraction x0 6= x? of the individuals cooperating, then it will

evolve to the all-defector state if x0 < x? and to the all-cooperator state if x0 > x?.

Since ∂x?
∂ r < 0, increasing the assortativity r has the effect of increasing the basin of

attraction around x? = 1, thus decreasing the value of the initial fraction x0 of cooperators

that is needed for the population to evolve to the all-cooperator state. And since ∂x?
∂ρ

> 0,

increasing the cost-to-benefit ratio ρ has the effect of increasing the basin of attraction

around x? = 0, thus increasing the value of the initial fraction x0 of cooperators that is

need for the population to evolve to the all-cooperator state.
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Example 4.3. Consider the sculling game with ρ = 1, i.e., with payoff matrix

π =


C D

C (1,1) (−0.5,0.5)

D (0.5,−0.5) (0,0)

, (4.22)

We simulate the game on a complete network ΓWM with parameter values n = 10000,

s = 1, x0 = 0.3,U = FE2,T = 5000,ν = 1, and τ = 1. Figures 26(a)-(c) show the

evolution of the fraction x of cooperators for different values of assortativity r. When

r = 0 and r = 0.1, the initial fraction x0 of cooperators is smaller than the value of the

internal equilibrium x?, i.e., x0 < x?, so the population evolves to the all-defector state.

However, when r = 0.2, x0 > x?, so the population evolves to the all-cooperator state.
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Figure 26: Evolution of the fraction x of cooperators in a symmetric, two-strategy, pairwise

sculling game, for different values of assortativity r. (a) r = 0. (b) r = 0.1. (c) r = 0.2.

Simulation parameters: complete network ΓWM, ρ = 1, n = 10000, x0 = 0.3,U = FE2,s =

1,T = 5000,ν = 1, and τ = 1.

Thus in a well-mixed population, assortative interactions provide a mechanism that

favors the all-cooperator state by increasing the basin of attraction around the x? = 1

equilibrium. Since network assortativity bears an inverse relationship with the average
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degree of the network, when the sculling game is played on a network, we expect

all-cooperator outcomes on networks with small values of d. We explore this and other

network effects in detail in the following section.

4.6.2 Simulation Results

In this section we present the results of simulating the sculling game on networks having

different structural properties. All the simulations, unless specified otherwise, were

carried out using the following values for the parameters involved: payoff matrix π given

by Equation 4.19, population size n = 10000, initial fraction of cooperators x0 = 0.5,

number of generations T = 10000, report frequency ν = 100, number of trials τ = 5,

update rule U = FE2, and selection strength s = 1. See B.4 for details on how to simulate

our discrete game models. The results are presented using three different kinds of plots

depicting the following:

1. Variation of the long-term value x∞ of the fraction x of cooperators, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks) and the cost-to-benefit ratio ρ . The values of r ∈ [0,0.66] and

ρ ∈ (0.5,1.5) were varied in steps of 0.01, and the value of d was varied from 20 to

4 in steps of -2. The intensity of the shade in the plot indicates the level of

cooperation, with black corresponding to full cooperation (x∞ = 1) and white

corresponding to no cooperation (x∞ = 0).

2. Variation of x∞ with r (or d) for a fixed value of ρ . The dashed line in the case of

complete networks indicates values predicted by analysis.

3. Variation of x∞ with ρ for a fixed value of r (or d). The dashed line in the case of

complete networks indicates values predicted by analysis. We denote the fractional
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area under the x∞ curve relative to the total area of the [x∞,ρ] square by C . We refer

to C as the cooperation index and use it as a measure of the extent to which a

network promotes cooperation. For a well-mixed population, the value of C (r) for a

given value of assortativity r can be calculated analytically as

C (r) =
∫ 1.5

0.5 x∞(r,ρ)dρ , where x∞(r,ρ) = 1 if x0 > x? given by Equation 4.21 and 0

otherwise.

Complete Network

The first set of results concerns complete networks ΓWM. Figures 27(a)(b) respectively

show how the predicted and simulated values of the long-term fraction x∞ of cooperators

vary with assortativity r and cost-to-benefit ratio ρ . Figure 27(c) shows how x∞ varies

with r when ρ = 1.2. Figure 27(d) shows how x∞ varies with ρ when r = 0.25.

Model Networks with Varying Average Degree

The next set of results concerns model networks with varying average degree d. Figures

28(a)(d)(g) show how the long-term fraction x∞ of cooperators varies with average degree

d and cost-to-benefit ratio ρ , on random regular ΓRR, Erdős-Rényi ΓER, and

Barabási-Albert ΓBA networks respectively. Figures 28(b)(e)(h) show how x∞ varies with

d on ΓRR, ΓER, and ΓBA networks respectively, when ρ = 1.1. Figures 28(c)(f)(i) show

how x∞ varies with ρ on ΓRR, ΓER, and ΓBA networks respectively, when d = 4.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 4, and

varying clustering coefficient C(2). Figures 29(a)-(d) show how the long-term fraction x∞
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Figure 27: Variation of the long-term fraction x∞ of cooperators with assortativity r and

cost-to-benefit ratio ρ , on a complete network. (a) x∞ (predicted) versus r and ρ . (b) x∞

(simulated) versus r and ρ . (c) x∞ versus r when ρ = 1.2. (d) x∞ versus ρ when r = 0.25

(C = 0.634). Simulation parameters: π given by Equation 4.19, n = 10000, x0 = 0.5,

T = 10000, ν = 100, τ = 5, U = FE2, and s = 1.

of cooperators varies with the cost-to-benefit ratio ρ on networks with clustering

coefficient C(2) = 0,0.2,0.4, and 0.6.
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Figure 28: Variation of the long-term fraction x∞ of cooperators with average degree d

and cost-to-benefit ratio ρ , on model networks. (a)-(c) Random regular network ΓRR. (d)-

(f) Erdős-Rényi network ΓER. (g)-(i) Barabási-Albert network ΓBA. (a)(d)(g) x∞ versus

d and ρ . (b)(e)(h) x∞ versus d when ρ = 1.1. (d)(f)(i) x∞ versus ρ when d = 4 (C =

0.819,0.740,0.771). Simulation parameters: π given by Equation 4.19, n = 10000, x0 =

0.5, T = 10000, ν = 100, τ = 5, U = FE2, and s = 1.
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Figure 29: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio ρ ,

on model power-law networks with clustering coefficient C(2). (a) C(2) = 0 (C = 0.769).

(b) C(2) = 0.2 (C = 0.763). (c) C(2) = 0.4 (C = 0.767). (d) C(2) = 0.6 (C = 0.759).

Simulation parameters: π given by Equation 4.19, n = 10000, d = 4, x0 = 0.5, T = 10000,

ν = 100, τ = 5, U = FE2, and s = 1.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 4, and

varying homophily coefficient h. Figures 30(a)-(d) show how the long-term fraction x∞ of
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cooperators varies with the cost-to-benefit ratio ρ on networks with homophily coefficient

h =−0.1,0,0.1, and 0.2.
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Figure 30: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on model power-law networks with homophily coefficient h. (a) h =−0.1 (C = 0.800).

(b) h = 0 (C = 0.742). (c) h = 0.1 (C = 0.711). (d) h = 0.2 (C = 0.807). Simulation

parameters: π given by Equation 4.19, n = 10000, d = 4, x0 = 0.5, T = 10000, ν = 100,

τ = 5, U = FE2, and s = 1.
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Empirical Networks

The last set of results concerns empirical networks. Figures 31(a)-(f) show how the

long-term fraction x∞ of cooperators varies with the cost-to-benefit ratio ρ on: the Γinternet

network (a); the Γhepcoauth network (b); the Γastrocoauth network (c); the Γfb network (d); the

Γp2p network (e); and the Γprotein network (f).
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Figure 31: Variation of the long-term fraction x∞ of cooperators with cost-to-benefit ratio

ρ , on empirical networks. See Table 2 for the basic properties of these networks. (a) the

Γinternet network (C = 0.609). (b) the Γhepcoauth network (C = 0.626). (c) the Γastrocoauth

network (C = 0.534). (d) the Γfb network (C = 0.508). (e) the Γp2p network (C = 0.575).

(f) the Γprotein network (C = 0.747). Simulation parameters: π given by Equation 4.19,

x0 = 0.5, T = 10000, ν = 100, τ = 5, U = FE2, and s = 1.
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4.7 Discussion

For each of the three (prisoner’s dilemma, snowdrift, and sculling) games considered, the

simulation results (see Figures 13(a)-(d), 20(a)-(d), 27(a)-(d)) on complete networks ΓWM

agree very well with the values predicted by analysis on well-mixed populations. In case

of the prisoner’s dilemma game, a population, starting from an initial fraction x0 > 0 of

cooperators, eventually evolves to the all-cooperator (x? = 1) equilibrium state when the

inequality r > ρ is satisfied, where r is the degree of assortative interactions and ρ is the

cost-to-benefit ratio. When r < ρ , population evolves to the all-defector (x? = 0)

equilibrium state. In case of the snowdrift game, as predicted by the analysis, an increase

in r results in an increase in the internal equilibrium state x?, and an increase in ρ results

in a decrease in x?. In case of the sculling game, again as predicted by analysis, as r

increases, the basin of attraction around the all-cooperator (x? = 1) equilibrium state

widens and beyond a certain stage the initial fraction x0 > 0 of cooperators lies within the

basin, and the population evolves to the all-cooperator (x? = 1) equilibrium state. On the

other hand, as ρ increases, the basin of attraction around the all-defector (x? = 0)

equilibrium state widens and beyond a certain stage the initial fraction x0 > 0 of

cooperators lies within the basin, and the population evolves to the all-defector (x? = 0)

equilibrium state.

The simulation results (see Figures 14(a)-(i), 21(a)-(i), 28(a)-(i)) on model (random

regular, Erdős-Rényi, Barabási-Albert) networks with varying average degree d suggest

that the long-term fraction x∞ of cooperators increases as d decreases. This makes sense

because as the average degree of a network decreases, the network assortativity in game

interactions increases, and from the results on complete networks we know that

cooperation increases with increasing assortativity. For d as small as 20, the networks

yield results similar to complete networks with zero assortativity. This again makes sense

179



because as the average degree of a network increases, it more and more approximates a

complete network. The figures also suggest that x∞ decreases with increasing

cost-to-benefit ratio ρ , similar to what we witnessed on complete networks. Furthermore,

except for small values of d, the degree distribution of the networks has very little effect

on the value of x∞; when d = 4, the random regular network has the highest values for the

cooperation index C for all three games.

In case of the prisoner’s dilemma game on model networks with average degree d, our

results agree well with what is suggested by network reciprocity [Now06b], i.e., the

networks promote cooperation when 1
d > ρ . In case of the snowdrift game, our results on

random regular, Erdős-Rényi, and Barabási-Albert networks suggest that network

structure promote cooperation. This is in contradiction with the observation made by

Doebeli and Hauert in [HD04], in which the authors note that spatial structure inhibits

cooperation. The resolution of these observations could be that the argument of Doebeli

and Hauert assumes that the network is a lattice, and it probably only holds (at most) for a

planar network.

A comparison of the cooperation indices C from the simulation results (see Figures

15(a)-(d), 22(a)-(d), 29(a)-(d)) on model networks with clustering coefficient C(2)

suggests that in case of prisoner’s dilemma and sculling games, an increase in clustering

inhibits cooperation, while in case of snowdrift game, an increase in clustering promotes

cooperation.

A comparison of the cooperation indices C from the simulation results (see Figures

16(a)-(d), 23(a)-(d), 30(a)-(d)) on model networks with homophily coefficient h suggests

that in case of all three games, networks that are neither assortative nor disassortative, i.e.,

h = 0, inhibit cooperation, while assortative (positive or negative) networks promote

cooperation.
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A comparison of the cooperation indices C from the simulation results (see Figures

17(a)-(f), 24(a)-(f), 31(a)-(f)) on empirical networks further support the fact that networks

with small values of average degree d promote cooperation, while networks with high

values of d inhibit cooperation. For example, the Γprotein network, which has the smallest

average degree (d ≈ 3.56), has the highest values for C , while the Γfb network, which has

the highest average degree (d ≈ 46.51), has the smallest values for C . The six empirical

networks have very different sizes, and yet the trend of x∞ with respect to their average

degree d is comparable to the trend we observed in the case of model networks, which

were all of size 10000. This suggests that the results of our models, as long as all other

parameters are fixed, is independent of the population size.

Looking at the simulation results on Erdős-Rényi networks ΓER having small average

degree d and on the six empirical networks, we notice that the two strategies C and D

never fixated when the prisoner’s dilemma, snowdrift, and sculling games were played on

these networks. In other words, the long-term fraction x∞ of cooperators on these

networks was strictly between 0 and 1. The reason for this is that the networks consist of

vertices with degree less than two, and the update rule U = FE2 that we used in our

simulations excludes such vertices from the interaction and update rounds.

While the game dynamics on complete networks is independent of the update rule U ,

it generally does depend on U when the games are played on other networks. To illustrate

this, we simulated the prisoner’s dilemma, snowdrift, and sculling games on a complete

network ΓWM and a Barabási-Albert ΓBA network, using five different update rules U =

FE1, FE2, RE1, RE2, and BD. We were interested in how the variation of the long-term

fraction x∞ of cooperators with the cost-to-benefit ratio ρ is affected by the choice of

update rule.
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FE1 FE2 RE1 RE2 BD

Prisoner’s dilemma game 0.250 0.252 0.241 0.248 0.240

Snowdrift game 0.649 0.701 0.549 0.671 0.501

Sculling game 0.708 0.634 0.835 0.628 0.899

Table 3: Effect of update rule on discrete-game dynamics on a complete network. The

value for each (game, update rule) pair is the cooperation index C . Simulation parameters:

π given by Equations 4.8, 4.13, and 4.19 respectively; n = 10000; r = 0.25; x0 = 0.5;

r = 0.25; T = 10000; ν = 100; τ = 1; s = 1; and ρ was varied within the allowed range in

steps of 0.01.

Table 3 shows the cooperation indices C for each of the (game, update rule) pairs

when the games are played on a ΓWM network, and Table 4 shows the same when the

games are played on a ΓBA network. On a ΓWM network, the game dynamics is relatively

independent of the choice of update rule. However, on a ΓBA network, the dynamics of the

prisoner’s dilemma game is strongly affected by the update rule that is used, where only

the FE2, RE2, and BD rules seem to promote any cooperation.

4.8 Future Directions

In this section we propose two new lines of inquiry, along with an outline of a possible

approach for each.

1. The symmetric, two-strategy, pairwise games we considered in this chapter were all

analyzed for a well-mixed population, using the deterministic framework of

replicator dynamics, in which the abundance of individuals in a population is a

continuous variable. It is assumed in this framework that the population size is
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FE1 FE2 RE1 RE2 BD

Prisoner’s dilemma game 0.022 0.267 0.030 0.278 0.176

Snowdrift game 0.630 0.851 0.509 0.751 0.616

Sculling game 0.551 0.771 0.623 0.844 0.723

Table 4: Effect of update rule on discrete-game dynamics on a Barabási-Albert network.

The value for each (game, update rule) pair is the cooperation index C . Simulation param-

eters: π given by Equations 4.8, 4.13, and 4.19 respectively; n = 10000; d = 4; x0 = 0.5;

T = 10000; ν = 100; τ = 1; s = 1; and ρ was varied within the allowed range in steps of

0.01.

infinite. Simulation results on large complete networks, which model an infinitely

large well-mixed population, agree well with the analysis. Such agreement,

however, is not to be expected when the size of the network is small. We would like

to know the effects of small population sizes on the evolutionary dynamics of

symmetric, two-strategy, pairwise games with assortative interactions. In this case,

the dynamics is no longer given by differential equations, but require a stochastic

formulation [NST04] as highlighted below.

Consider a population of fixed size n, with two types of individuals: cooperators

C and defectors D. At each time step t, a random individual is chosen for

reproduction and another random individual is chosen for elimination, using

sampling with replacement. The only stochastic variable is the number of C

individuals, which is denoted by i.

The Moran process is defined on the state space i = 0, . . . ,n. The

(N +1)× (N +1) transition matrix M = [Mi j] is a tridiagonal, stochastic matrix that
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determines the probability pi, j of moving from any state i to any other state j. There

are four possibilities for picking the individuals in each time step:

(C,C),(D,D),(C,D), and (D,D), which define the probabilities pi,i, pi,i−1, and

pi,i+1, with pi,i = 1− pi,i−1− pi,i+1. We consider frequency-dependent selection, so

these probabilities are expressed in terms of the elements in the payoff matrix π for

a game, the degree of assortative interactions r, and the fitnesses of the strategies C

and D.

The states i = 0 and i = n are “absorbing states”. Once the process has reached

such as state, it will stay there forever. The state i = 1, . . . ,n−1 are called transient

states. Since the stochastic process has two absorbing states, we can ask: starting in

state i, what is the probability of reaching state n? In other words, given that we start

with i number of C individuals, what is the probability that eventually the whole

population will consist of only C individuals?

We denote by xi the probability of reaching state n starting from state i. Clearly,

1− xi denotes the probability of reaching state 0 starting from state i. In vector

notation, the stochastic dynamics is given by

xt+1 = Mxt , (4.23)

where xt = {x0,x1, . . . ,xn} denotes the absorption probabilities at time t. The

absorption probabilities are given by the right-hand eigenvectors associated with the

largest eigenvalue of M, which is 1 since it is a stochastic matrix.

Let ρC denote the probability that a single C individual will take over the whole

population. We call this the fixation probability of C. Similarly, we can define the

fixation probability for D as the probability that a single D individual will take over

the entire population. If ρD
ρC

> 1, then it is more likely that a single D individual will
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take over and become fixed, and if the inequality is reversed, it is more likely that a

single C individual will become fixed.

We can also consider mutations of the resident individuals, in which each

resident mutates to the other type with probability µ , and stays the same type with

probability 1−µ . We would be interested in the relative stability of a population of

cooperators when it is invaded by a mutant defector. We would also be interested in

whether a mutant cooperator can take over a population of defectors.

The stochastic dynamics described above is easily implemented in software,

which will help us confirm the results of the stochastic analysis.

2. As noted in Section 4.7, the dynamics of games on complete networks, which model

well-mixed populations, is unaffected by the choice of update rules. This is,

however, not the case on other networks, in which case the dynamics sensitively

depends on the update rule that is used. Furthermore, the structure of the network

also affects the dynamics of the game in significant ways. So any attempt at

analyzing the evolutionary dynamics of games on networks must take into account

both the structure of the networks and also the details of the update rule that is

employed [ON06b].

In our second line of inquiry, we would like to analyze symmetric, two-strategy,

pairwise games on networks with average degree d. We could follow the program

highlighted in [ON06b] and derive a system of ordinary differential equations that

describe how the expected frequency xi of each strategy in a game on a network

changes over time. The program uses pair approximation on regular graphs of

degree d [Ell01, MOS92, OHL06, ON06a], and works as follows.
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We introduce the n×n matrix B = [bi j] that incorporates the details of the

update rule U under consideration. We further introduce the the quantities

gi =
n

∑
j=1

x jbi j, (4.24)

which characterize the local competition among the strategies, such that

∑
n
i=1 xigi = 0.

In the limit of weak selection, we derive the replicator equation for the expected

frequency xi(t) of strategy i on an infinitely large graph of degree d at time t as

ẋi = xi( fi +gi−φ) i = 1, . . . ,n (4.25)

where fi denotes the fitness of strategy i, and φ is the average fitness of the

population given by φ = ∑
n
i=1 xi( fi +gi) = ∑

n
i=1 xi fi, since ∑

n
i=1 xigi = 0.

Equation 4.25, by a transformation of the payoff matrix π = [ai j]→ [ai j +bi j]

for the game, can also be written as

ẋi = xi[
n

∑
j=1

x j(ai j +bi j)−φ ], (4.26)

which is called the replicator equation on networks [ON06b]. It is well-known that

pair approximations give good results for random regular networks as n increases

and the probability of short loops becomes negligible. Based on the results of

simulating the games on different networks, we expect the results to also hold well

for the Erdős-Rényi and Barabási-Albert networks with average degree d.
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CHAPTER 5

CONTINUOUS GAMES

Seeing this gradation and diversity of structure in one small, intimately related group of birds, one might

really fancy that from an original paucity of birds in this archipelago, one species had been taken and

modified for different ends.

- Charles Darwin

5.1 Introduction

Cooperative behavior is not always discrete in nature. For example, when vampire bats

share blood with one another [Wil90], or when individuals share files over a peer-to-peer

network [RF02, SR04], they exhibit varying levels of cooperative behavior. Besides not

being able to take degrees of cooperative behavior into account, discrete game models

suffer from another problem in that they consider the invasiveness and stability of fully

developed, highly cooperative interactions, despite the fact that the gradual evolution of

cooperation from an initially selfish state represents a more plausible evolutionary

scenario. A framework which allows different degrees of cooperation is thus more natural.

Once variable levels of cooperation are considered it becomes possible to study the crucial

issue of how cooperation can evolve gradually from an initial state consisting of

non-cooperative entities.

Situations in which individuals exhibit varying degrees of cooperative behavior can be

described using continuous games. The level of cooperation—called an investment—of an

individual is that individual’s strategy in the game. An investment is represented as a

continuous variable; the cost and benefit associated with an investment are represented as
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continuous functions of the investment; and the payoff to an individual is simply the

difference between the benefit and cost, and thus is also a continuous function.

We consider three continuous games: the continuous prisoner’s dilemma game in

which a cooperative investment made by an individual (donor) towards another individual

(recipient) benefits the recipient but costs the donor; the continuous snowdrift game in

which the cooperative investment benefits both the donor and recipient but costs the

donor; and the continuous tragedy of the commons game in which the cooperative

investment1 benefits the donor but costs both the donor and recipient.

We consider, as we did in the previous chapter on discrete games, a population of

individuals playing the continuous games through repeated pairwise interactions. In a

well-mixed population, we again assume the interactions to be assortative [Gra90], i.e.,

each individual interacts with other individuals of their own “type” with a certain

probability, and with random individuals from the population otherwise.

In each of the three games, the individuals playing the game have an incentive to be

selfish and not make any cooperative investments. As a result, everyone does worse than if

they had all cooperated. We are interested in conditions that would lead to higher levels of

cooperative behavior among selfish individuals [Kol98]. Assortative interactions (both in

well-mixed populations and on networks), as we shall see, provide a mechanism for the

promotion and maintenance of cooperative investments, and thus lead to Hicks (or

socially) optimal outcomes. In addition network properties such as clustering and

homophily also affect cooperative investments.

We propose agent-based models for emulating on a computer how individuals in a

population might play the three continuous games. We analyze the games for a

well-mixed population for general cost and benefit functions, using the framework of

1In this context investment means the level of consumption of a limited common-pool resource, and
cooperative investments mean lower levels of consumption.
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adaptive dynamics [GKM97, MB07], suitably modified to incorporate assortative

interactions. We also consider a few specific cost and benefit functions for which the

analysis is tractable. We present results of simulating the games on model and empirical

networks and provide a general discussion of the results. We conclude the chapter with

suggestions for future inquiry.

5.2 Assortative Interactions

Here again, as in the case of discrete games, we consider assortative interactions [Gra90].

In a well-mixed population we quantify the extent to which an individual interacts with

another individual of its own type (strategy in the context of games) using a parameter

r ∈ (0,1) called the degree of assortativity or simply assortativity, which is interpreted the

same way as it was in the case of discrete games. We proceed to develop the framework of

adaptive dynamics with assortative interactions.

Consider a well-mixed population of individuals playing a continuous game. Let the

interactions be pairwise with π(x,y) denoting the payoff to the x-strategist when it plays

the game with a y-strategist. Let r denote the degree of assortativity. Let the population be

monomorphic at the outset, i.e., all the individuals play the same (resident) strategy, say x.

Let us now consider a small fraction ε of mutant individuals in the population playing

strategy y. The fitnesses f r
x and f r

y of the x and y strategies, using Equation 3.72, are given

by

f r
x = rπ(x,x)+(1− r)[(1− ε)π(x,x)+ επ(x,y)], (5.1)

and

f r
y = rπ(y,y)+(1− r)[(1− ε)π(y,x)+ επ(y,y)]. (5.2)
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Since there are just two strategies—the resident x and the mutant y, from Equation

3.72, the invasion fitness f r
x (y) of the mutant strategy y, i.e., the fitness of y relative to the

average fitness of the population is given by2

f r
x (y) = lim

ε→0
f r
y − f r

x

= rπ(y,y)+(1− r)π(y,x)−π(x,x). (5.3)

Note that when r = 0, the above equation reduces to

fx(y) = π(y,x)−π(x,x), (5.4)

which is the standard equation for the invasion fitness of a mutant y-strategist in a

population of predominantly x-strategists.

5.3 Agent-Based Model

An agent-based model [Bon02] provides a natural way of describing how individuals in a

population might play a pairwise continuous game with payoff function π . One can

simulate (see section B.4) such a model on a computer in order to study the evolution of

the strategies.

We start with a population network Γ of size n with a strategy profile

x̂0 = {x0
1,x

0
2, . . . ,x

0
n} at generation 0, where x0

1 = x0
2 = · · ·= x0

n = x0 ∈ (0,xm) and

xm ∈ R>0. Thus at generation t = 0, we have a monomorphic population with every

individual playing the strategy x0. The payoff function for the pairwise, continuous game

is π(x,y), the update rule U for the game is one of the five rules (FE, RE, IM, BD, or DB)

we discussed in the Chapter 3, the selection strength is s, and the degree of assortativity

(applicable only if Γ = ΓWM, i.e., if Γ is a complete network) is r, the rate µ of Gaussian

mutations of strategies, and the standard deviation σ for the Gaussian mutations.
2Note that the f ’s on the two sides of Equation 5.3 are different.
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The game is played for T generations, each involving n interactions and updates.

During an interaction, say at generation t, an individual i plays the game with a

neighboring individual j ∈ N(i) and obtains a payoff πi. On a complete network ΓWM, the

interaction is assortative, i.e., with probability r, the individual i plays the game with

another individual j of its own type, and with probability 1− r, it plays the game with a

randomly picked individual j. The two individuals employ strategies xt−1
i and xt−1

j from

the previous generation. During an update at generation t, an individual i updates its

strategy xt in the generation t with strategy xt−1
j of its neighbor j ∈ N(i), with a possible

mutation of the strategy, picked from a Gaussian distribution with mean xt−1
j and standard

deviation σ . The updates we consider are thus innovative.

Just as in the case of the discrete games, we have two distinct algorithms for

implementing the games on a computer. In the sequential approach, the n update rounds

follow the n interaction rounds for a given generation. So the pair of individuals (i, j)

considered for an interaction is generally not the same as the pair (i, j) of individuals

considered for an update. Figure 32 shows a schematic of interactions and updates in the

sequential approach. The box on the top depicts n rounds of interactions while the box

below depicts n rounds of updates. A circled vertex represents the focal individual, i.e.,

the individual receiving a payoff during the interaction round, or the individual inheriting

a strategy during the update round.

Algorithm 5.4 provides the pseudo-code for implementing pairwise continuous games

on a computer using sequential interactions and updates. In this case the update rule can

be one of FE, RE, IM, BD, or DB. Each generation t consists of n interaction rounds

followed by n update rounds (see Figure 9). In each interaction round, an individual i is

randomly sampled from Γ. If Γ is a complete network ΓWM, then i plays the game with an
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Figure 32: Sequential interactions and updates in continuous games.

individual of their own strategy type3 with probability r and receives a payoff

πi = π(xt−1
i ,xt−1

i ). Otherwise, i plays the game with a randomly sampled individual

j ∈ N(i), and receives a payoff πi = π(xt−1
i ,xt−1

j ). At the end of the n interactions, roughly

every individual in the population would have played the game and thus received a payoff.

Two individuals i and j ∈ N(i) are selected based on the update rule U (see Chapter 3)

and i either ends up inheriting j’s (possibly mutated) strategy from generation t−1 or

retaining their own strategy.

3We can either assume that such an individual always exists in the population, or that i actively seeks out
such an individual if it exists, and forgoes playing the game at generation t otherwise. Both these assumptions
result in the same dynamics up to rate of evolution of strategies. Our software implementation makes the
former assumption.
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At the start of each generation t, the strategy profile x̂t−1 from the previous generation

is saved in a list L of strategy profiles, and at the end of T generations the list L is returned

as output.

Algorithm 5.4 Continuous games on complex networks, using sequential interactions and

updates.
Input: A population network Γ of size n with strategy profile x̂0 = {x0

1,x
0
2, . . . ,x

0
n} at

generation 0, where x0
1 = x0

2 = · · ·= x0
n = x0 ∈ (0,xm) and xm ∈ R>0; a continuous

payoff function π(x,y); update rule U (FE, RE, IM, BD, DB); selection strength s;

probability r of assortative interactions; rate µ and standard deviation σ for Gaussian

mutations of strategies; and and number of generations T .

Output: A list L = {x̂0, x̂1, . . . , x̂T−1}.

1: L← []

2: for t from 1 to T do

3: L.append(x̂t−1)

4: // Interaction rounds.

5: for count from 1 to n do

6: i← random individual from Γ

7: if Γ = ΓWM and random()< r then

8: πi← π(xt−1
i ,xt−1

i )

9: else

10: j← random individual from N(i)

11: πi← π(xt−1
i ,xt−1

j )

12: end if

13: end for

14: end for

15: // Update rounds.
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16: for count from 1 to n do

17: Two individuals i and j ∈ N(i) are selected based on the update rule U (see

Chapter 3) and i either inherits j’s (possibly mutated) strategy from generation t−1

or retains their own strategy

18: end for

19: return L

In the simultaneous approach, at each generation, each of the n updates immediately

follows two interactions, one in which an individual i interacts with another individual

k ∈ N(i) and obtains a payoff πi and the other in which an individual j ∈ N(i) ( j 6= k)

interacts with another individual l ∈ N( j) (l 6= i) and obtains a payoff π j. The same pair

(i, j) is then considered for an update. Figure 33 shows a schematic of the interactions and

updates in the simultaneous approach. A circled vertex again represents a focal individual,

i.e., the individual receiving a payoff during the interaction round, or the individual

inheriting a strategy during the update round.

Algorithm 5.5 provides the pseudo-code for implementing pairwise continuous games

on a computer using simultaneous interactions and updates (see Figure 10). In this case

the update rule U can either be FE or RE. Each generation t consists of n rounds, each of

which involves an interaction immediately followed by an update. In each round, an

individual i and an individual j ∈ N(i) are randomly sampled from Γ. If Γ is a complete

network ΓWM, then i plays the game with an individual of its own strategy type with

probability r and receives a payoff πi = π(xt−1
i ,xt−1

i ). Otherwise, i plays the game with a

randomly sampled individual k ∈ N(i), and receives a payoff πi = π(xt−1
i ,xt−1

k ). Similarly,

j plays the game with an individual of its own strategy type with probability r and

receives a payoff π j = π(xt−1
j ,xt−1

j ). Otherwise, j plays the game with a randomly

sampled individual l ∈ N(i), and receives a payoff π j = π(xt−1
j ,xt−1

l ). Note that on
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Figure 33: Simultaneous interactions and updates in continuous games.

Γ 6= ΓWM, i must be distinct from l and j must be distinct from k. Otherwise, the process

continues with the next generation. The individual i updates its strategy xt
i to the (possibly

mutated) strategy xt−1
j of a randomly sampled individual j ∈ N(i), with probability pi← j

determined by the update rule, and with probability 1− pi← j, i retains its own strategy.

At the start of each generation t, the strategy profile x̂t−1 from the previous generation

is saved in a list L of strategy profiles, and at the end of T generations the list L is returned

as output.

Algorithm 5.5 Continuous games on complex networks, using simultaneous interactions

and updates.
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Input: A population network Γ of size n with strategy profile x̂0 = {x0
1,x

0
2, . . . ,x

0
n} at

generation 0, where x0
1 = x0

2 = · · ·= x0
n = x0 ∈ (0,xm) and xm ∈ R>0; a continuous

payoff function π(x,y); update rule U (FE or RE); selection strength s; probability r

of assortative interactions; rate µ and standard deviation σ for Gaussian mutations of

strategies; and and number of generations T .

Output: A list L = {x̂0, x̂1, . . . , x̂T−1}.

1: L← []

2: for t from 1 to T do

3: L.append(x̂t−1)

4: // Interaction and update rounds.

5: for count from 1 to n do

6: i← random individual from Γ

7: j← random individual from N(i)

8: if Γ = ΓWM and random()< r then

9: πi← π(xt−1
i ,xt−1

i )

10: else

11: k← random individual from N(i)

12: if Γ 6= ΓWM and k = j then

13: continue

14: end if

15: πi← π(xt−1
i ,xt−1

k )

16: end if

17: if Γ = ΓWM and random()< r then

18: π j← π(xt−1
j ,xt−1

j )

19: else

20: l← random individual from N( j)
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21: if Γ 6= ΓWM and l = i then

22: continue

23: end if

24: π j← π(xt−1
j ,xt−1

l )

25: end if

26: The probability pi← j that individual i inherits individual j’s strategy is calculated

based on the update rule U (see Chapter 3)

27: if random()< pi← j then

28: xt
i ← xt−1

j

29: if random()< µ then

30: xt
i ←max(0,min(gaussian(xt

i,σ),xm))

31: end if

32: else

33: xt
i ← xt−1

i

34: end if

35: end for

36: end for

37: return L
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5.4 Prisoner’s Dilemma

Two friends John and Bill are software developers. In addition to their day jobs, they also

invest time into open-source software development. The “free”4 software that John

develops is extensively used by Bill but not by John himself, and the one that Bill

develops is heavily used by John but not by Bill himself. Such interactions among pairs of

individuals in which the cooperative investment made by an individual (donor) benefits

the other individual (recipient) but is costly to the donor, can be described using a

pairwise, continuous prisoner’s dilemma (CPD) game [IKD04, KDK99, KD02].

The CPD game consists of two individuals, each making an investment x ∈ R≥0. The

investment x has the following effects: the payoff of the investor (donor) is reduced by

C(x), where C is a function that specifies the cost of making the investment; and the

payoff of the beneficiary (recipient) is increased by B(x), where B is a function that

specifies the benefit resulting from the investment. Therefore, if two interacting

individuals make investments x and y, then the payoff π(x,y) and π(y,x) to the individuals

are respectively given by

π(x,y) = B(y)−C(x),and (5.5)

π(y,x) = B(x)−C(y).

We assume that the cost and benefit functions are such that for investments between 0 and

an upper limit xm, B(x)>C(x). This assumption is a necessary condition for cooperation

to evolve; otherwise, if every individual invests x, the payoff of every individual is lower if

x > 0 than if x = 0.

For any positive investments x1 < x2 < xm, where xm is the investment that maximizes

B(x)−C(x), we have π(x1,x2)> π(x2,x2)> π(x1,x1)> π(x2,x1). Thus, restricting the

4Free as in beer and speech.
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investments to only two values x1 (defect) and x2 (cooperate), results in the standard

prisoner’s dilemma game we encountered in the previous chapter. Therefore, the CPD

game can be viewed as a generalization of the standard prisoner’s dilemma game in which

any level of investment can be made.

In a well-mixed population, the zero-investment strategy is the winning one. Starting

at any level, investments will gradually evolve to zero, since the defectors will benefit

from the investment of the cooperators without bearing the costs. The zero-investment

strategy is also evolutionarily stable, i.e., an ESS. So a natural question to ask is: is there a

way to promote and maintain non-zero investments levels in a population of individuals

playing the CPD game?

In [KDK99] the authors show that when the CPD game is played on two-dimensional

spatial lattices, investments evolve readily from very low levels to significant levels

corresponding to cooperation. This occurs under very general assumptions as long as the

spatial lattices are large enough for the interactions between individuals to be local enough

compared with the spatial extent of the whole population. In [KD02] the authors consider

the CPD game in a well-mixed population and demonstrate both analytically and by

simulation, that payoff-based strategies, which embody the intuitively appealing idea that

individuals invest more in cooperative interactions when they profit from these

interactions, provide a natural explanation for the gradual evolution of cooperation from

an initially noncooperative state and for the maintenance of cooperation thereafter. In

[IKD04] the authors examine the effect of increasing the neighborhood size when the

CPD game is played on a two-dimensional lattice, and find that the mean-field limit of no

cooperation is reached for a critical neighborhood size of about five neighbors on each

side in a Moore neighborhood5, which does not depend on the size of the lattice. The

5The Moore neighborhood comprises the eight individuals surrounding a central individual on a two-
dimensional square lattice.
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authors also find the related result that in a network of players, the critical average degree

of vertices for which defection is the final state does not depend on network size, but only

on the network topology. This critical average degree is considerably (about ten times)

higher for clustered (social) networks, than for random networks. This result strengthens

the argument made in [KDK99] that clustering is the mechanism which makes the

development and maintenance of the cooperation possible. In the lattice topology, the

authors further observed that when the neighborhood sizes for “interaction” and “update”

differ by more than 0.5, cooperation is not sustainable, even for neighborhood sizes that

are below the mean-field limit of defection. Finally, the authors note that the series of

interaction and update neighborhoods converge, and a final cooperative state with

considerable levels of average investment is achieved.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for promoting and

maintaining cooperation. We carry out a complete analysis of the CPD game using the

framework of adaptive dynamics modified to include assortative interactions. Since the

network-induced assortativity in game interactions bears an inverse relationship to its

average degree, knowing how the assortativity parameter r affects cooperation in a

well-mixed population also informs us about how cooperation would be affected, albeit

only qualitatively, when the game is played out on networks.

5.4.1 Analysis

Consider a population of individuals playing the CPD game with payoff function as given

by Equation 5.5. Suppose that each individual makes an investment x, i.e., the population

is monomorphic in strategy x, called the resident strategy. Let r ∈ [0,1] be the degree of

assortative interactions among the individuals. Now suppose a rare mutant strategy y

200



appears in the population. We are interested in knowing the eventual fate of the mutant

strategy y. From Equations 5.3 and 5.5, we can write the invasion fitness f r
x (y) of the

mutant strategy as

f r
x (y) = r[B(y)−B(x)]−C(y)+C(x). (5.6)

From Equation 3.109, the selection gradient D(x) is given by

D(x) =
∂ fx(y)

∂y

∣∣∣
y=x

(5.7)

= rB′(x)−C′(x).

In order to obtain the singular strategies x? for the dynamics, we solve D(x?) = 0, i.e.,

rB′(x?)−C′(x?) = 0. (5.8)

From Equations 3.110 and 3.111, the singular strategy x? is convergent stable if
dD
dx

∣∣∣
x=x?

< 0 and evolutionarily stable if ∂ 2 fx?(y)
∂y2

∣∣∣
y=x?

< 0. But since for the CPD game,

dD
dx

∣∣∣
x=x?

= ∂ 2 fx?(y)
∂y2

∣∣∣
y=x?

= rB′′(x?)−C′′(x?), the singular strategy x? is convergent stable if

and only if it is evolutionarily stable, i.e., when

rB′′(x?)−C′′(x?)< 0. (5.9)

We next consider specific forms of cost and benefit functions C(x) and B(x) which are

realistic and for which the analysis is mathematically tractable.

Linear Cost and Benefit Functions

Suppose the cost and benefit functions are linear functions of the investment x, i.e,

suppose C(x) = cx and B(x) = bx, where b > c. Figure 34 shows the two functions, along

with the payoff function π(x,x) when both of the interacting individuals are investing an
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amount x. Linear benefit functions arise as approximations to more general concave

functions when the investments levels are low. Linear cost functions are also interesting

because they arise as approximations to more general cost functions.
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Figure 34: Linear cost, linear benefit, and payoff functions for the CPD game. C(x) = 0.4x,

B(x) = x. Hicks optimal strategy xH = 1.

From Equation 5.7, we have D(x) = rb− c. Since D(x) is constant, there are no

singular strategies for the game, and the evolutionary fate of a mutant strategy is

determined solely by the sign of D(x). An initially monomorphic population in which

every individual is investing an amount 0 < x0 < xm, will evolve to a state in which

everyone cooperates by investing an amount xm if D(x)> 0, i.e., r > ρ , where ρ = c
b

6. If

on the other hand the inequality is reversed, then the population will evolve to a state in

which everyone defects by making zero investment. Note that the condition that promotes

cooperative investments is simply Hamilton’s rule [Ham63]. We illustrate this with an

example.

6We will refer to ρ as the cost-to-benefit ratio, although it is really the ratio of the derivative of the cost
function over the derivative of the benefit function at x = 0, i.e., ρ = C′(x)

B′(x)

∣∣∣
x=0

.
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Example 5.1. Consider a CPD game with linear cost function C(x) = 0.3x and linear

benefit function B(x) = x, i.e., ρ = c
b = 0.3. Suppose every individual in the population

initially invests an amount x0 = 0.2. We simulate the evolutionary dynamics of the game

on a complete network ΓWM with parameter values n = 10000, s = 1, x0 = 0.2, xm = 1,

µ = 0.01, σ = 0.005, T = 200000, ν = 100, and U = FE2. Figures 35(a)-(c) show the

evolution of the distribution of strategies x for different values of assortativity r. As

suggested by the analysis, when r = 0 and r < ρ the population evolves to a state in which

every individual makes zero investment, and when r > ρ the population evolves to the

state in which every individual makes the maximum investment xm = 1.
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Figure 35: Evolution of the distribution of strategies x in a CPD game with linear cost and

benefit functions. (a) r = 0. (b) r = 0.2. (c) r = 0.4. Simulation parameters: complete

network ΓWM, n = 10000, C(x) = 0.3x and B(x) = x, s = 1, x0 = 0.2, xm = 1, µ = 0.01,

σ = 0.005, T = 200000, ν = 100, and U = FE2.

Quadratic Cost and Benefit Functions

Now suppose the cost and benefit functions are quadratic functions of the investment x,

i.e, suppose C(x) = c1x2 and B(x) =−b2x2 +b1x, where c1,b1,b2,> 0. Figure 36 shows

the two functions, along with the payoff function π(x,x) when both of the interacting
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individuals are investing an amount x. There is good evidence that in many situations the

benefit function exhibits diminishing returns for sufficiently large levels of investment

[Alt79, SR83, Wei81] and the cost is well described by a quadratic function [SM76].
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Figure 36: Quadratic cost, quadratic benefit, and payoff functions for the CPD game.

C(x) = x2, B(x) =−x2 +2x. Hicks optimal strategy xH = 0.5.

Substituting for B′(x?) and C′(x?) in Equation 5.8, we obtain the singular strategy x?

for the game as

x? =
rb1

2rb2 +2c2
. (5.10)

If we let b1 = 2b2, we have xm = 1. Therefore,

x? =
1

1+ 2c1
rb1

, (5.11)

and 0 < x? < 1. Now since rB′′(x?)−C′′(x?) =−2b2r−2c1 < 0, Equation 5.9 suggests

that the singular strategy x? is convergent stable and hence also evolutionarily stable. As a

result, an initially monomorphic population in which every individual is investing an
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amount 0 < x0 < xm, will evolve to a state in which everyone cooperates by investing an

amount x? given by Equation 5.11. We illustrate this with an example.

Example 5.2. Consider a CPD game with quadratic cost function C(x) = 0.3x and

quadratic benefit function B(x) =−x2 +2x. Suppose every individual in the population

initially invests an amount x0 = 0.1. We simulate the game on a complete network ΓWM

with parameter values n = 10000, s = 1, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005,

T = 200000, ν = 100, and U = FE2. Figures 37(a)(b) show the evolution of the

distribution of strategies x for assortativity r = 0 and r = 0.5. As suggested by the analysis,

when r = 0 the population evolves to a state in which every individual is making zero

investment, and when r = 0.5 the population evolves to the state in which every individual

is making an investment given by the singular strategy x? = 0.33, indicated by the dashed

line. Note that π(x?,x?)< π(xH ,xH), where xH = 0.5 is the Hicks optimal strategy.
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Figure 37: Evolution of the distribution of strategies x in a CPD game with quadratic cost

and benefit functions. (a) r = 0. (b) r = 0.5. Simulation parameters: complete network

ΓWM, n = 10000, C(x) = x2 and B(x) = −x2 + 2x, s = 1, x0 = 0.1, xm = 1, µ = 0.01,

σ = 0.005, T = 200000, ν = 100, and U = FE2.
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Thus in a well-mixed population, assortative interactions provide a mechanism for

promoting and maintaining cooperative investments. On a network, assortativity in game

interactions increases with decreasing values of the average degree d of the network. So

when the CPD game is played on networks, we expect cooperative investments to evolve

on networks with small values of d. We will explore this and other network effects in

detail in the following section.
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5.4.2 Simulation Results

In this section we present the results of simulating the CPD game on networks having

different structural properties. We first consider a linear cost function C(x) = cx and a

linear benefit function B(x) = bx, such that b,c ∈ R≥0 and b > c. We denote the ratio c
b by

ρ and refer to it as the cost-to-benefit ratio. All the simulations were carried out using the

following values for the parameters involved: payoff function π given by Equation 5.5,

population size n = 10000, initial strategy x0 = 0.1, maximum strategy xm = 1, mutation

probability µ = 0.01, standard deviation for mutations σ = 0.005, number of generations

T = 200000, report frequency ν = 100, update rule U = FE2, and selection strength

s = 1. See B.5 for details on how to simulate our continuous game models on complex

networks. We present the results using three different kinds of plots depicting the

following:

1. Variation of the long-term value x̄∞ of the mean strategy x̄, averaged over the last

10% generations, with assortativity r on complete networks (average degree d on

other networks) and the cost-to-benefit ratio ρ . The values of r ∈ [0,1] and

ρ ∈ (0,1) were varied in steps of 0.02, and the value of d was varied from 20 to 4 in

steps of -2. The intensity of the shade in the plot indicates the level of cooperation,

with black corresponding to maximum cooperation (x̄∞ = xm) and white

corresponding to no cooperation (x̄∞ = 0).

2. Variation of x̄∞ with r (or d) for a fixed value of ρ . The dashed line in the case of

complete networks indicates values predicted by analysis.

3. Variation of x̄∞ with ρ for a fixed value of r (or d). The dashed line in the case of

complete networks indicates values predicted by analysis. We denote the fractional

area under the x̄∞ curve relative to the total area of the [x̄∞,ρ] square by C . We refer
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to C as the cooperation index and use it as a measure of the extent to which a

network promotes cooperation. For a well-mixed population, the value of C (r) for a

given value of assortativity r can be calculated analytically as C (r) =
∫ 1

0 x̄∞(r,ρ)dρ ,

where x̄∞(r,ρ) = xm if r > ρ and 0 otherwise.

The results for the CPD game played with linear cost and benefit functions thus have

the same format as the ones for the discrete prisoner’s dilemma game we encountered in

the previous chapter. The difference is that with the discrete prisoner’s dilemma game, we

were interested how the fraction x of cooperators changed with time, starting from an

initial fraction x0 of cooperators—we considered frequency-dependent selection without

mutations. In case of the CPD game we are interested in how the levels of cooperative

investments x made by individuals changes with time, starting from a (monomorphic)

state in which every individual in the population invests an arbitrarily small amount x0; in

this case mutation is the key ingredient that effects change.

Complete Network

The first set of results concerns complete networks ΓWM. Figures 38(a)(b) respectively

show how the predicted and simulated values of the long-term mean strategy x̄∞ vary with

assortativity r and cost-to-benefit ratio ρ . Figure 38(c) shows how x̄∞ varies with r when

ρ = 0.26. Figure 38(d) shows how x̄∞ varies with ρ when r = 0.26.

Model Networks with Varying Average Degree

The next set of results concerns model networks with varying average degree d. Figures

39(a)(d)(g) show how the long-term mean strategy x̄∞ varies with average degree d and

cost-to-benefit ratio ρ , on random regular ΓRR, Erdős-Rényi ΓER, and Barabási-Albert

ΓBA networks respectively. Figures 39(b)(e)(h) show how x̄∞ varies with d on ΓRR, ΓER,
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Figure 38: Variation of the long-term mean strategy x̄∞ with assortativity r and cost-to-

benefit ratio ρ , on a complete network. (a) x̄∞ (predicted) versus r and ρ . (b) x∞ (simulated)

versus r and ρ . (c) x∞ versus r when ρ = 0.26. (d) x̄∞ versus ρ when r = 0.26 (C = 0.241).

Simulation parameters: C(x) = cx and B(x) = bx with b > c, π given by Equation 5.5,

n = 10000, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100, U = FE2, and

s = 1.

and ΓBA networks respectively, when ρ = 0.2. Figures 39(c)(f)(i) show how x̄∞ varies

with ρ on ΓRR, ΓER, and ΓBA networks respectively, when d = 4.
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Figure 39: Variation of the long-term mean strategy x̄∞ with average degree d and

cost-to-benefit ratio ρ , on model networks. (a)-(c) Random regular network ΓRR. (d)-

(f) Erdős-Rényi network ΓER. (g)-(i) Barabási-Albert network ΓBA. (a)(d)(g) x̄∞ ver-

sus d and ρ . (b)(e)(h) x̄∞ versus d when ρ = 0.2. (d)(f)(i) x̄∞ versus ρ when d = 4

(C = 0.272,0.219,0.212). Simulation parameters: C(x) = cx and B(x) = bx with b > c, π

given by Equation 5.5, n = 10000, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000,

ν = 100, U = FE2, and s = 1.
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Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 4, and

varying clustering coefficient C(2). Figures 40(a)-(d) show how the long-term mean

strategy x̄∞ varies with the cost-to-benefit ratio ρ on networks with clustering coefficient

C(2) = 0,0.2,0.4, and 0.6.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 4, and

varying homophily coefficient h. Figures 41(a)-(d) show how the long-term mean strategy

x̄∞ varies with the cost-to-benefit ratio ρ on networks with homophily coefficient

h =−0.1,0,0.1, and 0.2.

Empirical Networks

The last set of results concerns empirical networks. Figures 42(a)-(f) show how the

long-term mean strategy x̄∞ varies with the cost-to-benefit ratio ρ on: the Γinternet network

(a); the Γhepcoauth network (b); the Γastrocoauth network (c); the Γfb network (d); the Γp2p

network (e); and the Γprotein network (f).
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Figure 40: Variation of the long-term mean strategy x̄∞ with cost-to-benefit ratio ρ , on

model power-law networks with clustering coefficient C(2). (a) C(2) = 0 (C = 0.215). (b)

C(2)= 0.2 (C = 0.199). (c) C(2)= 0.4 (C = 0.195). (d) C(2)= 0.6 (C = 0.176). Simulation

parameters: C(x)= cx and B(x)= bx with b> c, π given by Equation 5.5, n= 10000, d = 4,

x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100, U = FE2, and s = 1.
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Figure 41: Variation of the long-term mean strategy x̄∞ with cost-to-benefit ratio ρ , on

model power-law networks with homophily coefficient h. (a) h = −0.1 (C = 0.244). (b)

h = 0 (C = 0.193). (c) h = 0.1 (C = 0.165). (d) h = 0.2 (C = 0.122). Simulation param-

eters: C(x) = cx and B(x) = bx with b > c, π given by Equation 5.5, n = 10000, d = 4,

x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100, U = FE2, and s = 1.
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Figure 42: Variation of the long-term mean strategy x̄∞ with cost-to-benefit ratio ρ , on

empirical networks. See Table 2 for the basic properties of these networks. (a) the Γinternet

network (C = 0.111). (b) the Γhepcoauth network (C = 0.122). (c) the Γastrocoauth network

(C = 0.029). (d) the Γfb network (C = 0.012). (e) the Γp2p network (C = 0.103). (f) the

Γprotein network (C = 0.191). Simulation parameters: C(x) = cx and B(x) = bx with b > c,

π given by Equation 5.5, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100,

U = FE2, and s = 1.
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We next consider a quadratic cost function C(x) = x2 and a quadratic benefit function

B(x) =−x2 +2x. All the simulations, unless specified otherwise, were carried out using

the following values for the parameters involved: payoff function π given by Equation 5.5,

population size n = 10000, initial strategy x0 = 0.1, maximum strategy xm = 1, mutation

probability µ = 0.01, standard deviation for mutations σ = 0.005, number of generations

T = 200000, report frequency ν = 100, update rule U = FE2, and selection strength

s = 1. We present the results using two different kinds of plots depicting the following:

1. Variation of the distribution of the long-term values x∞ of strategies x, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks). The value of r ∈ [0,1] was varied in steps of 0.01, and the

value of d was varied from 20 to 4 in steps of -2. The intensity of the shade in the

plot indicates the number of individuals playing strategies within a particular range,

with black (white) corresponding to every (no) individual being in that range. The

dashed line in the case of a complete network corresponds to the predicted values of

the singular strategy x?.

2. Evolution of the distribution of strategies x. We indicate the long-term value x̄∞ of

of the mean strategy x̄ and use this value to compare the game dynamics across

networks.

Complete Network and Model Networks with Varying Average Degree

The first set of results concerns complete networks ΓWM, and model networks with

varying average degree d. Figure 43(a) shows how the distribution of the long-term values

x̄∞ of strategies x varies with assortativity r on a complete network. Figures 43(b)-(d)

show how the distribution of x∞ varies with average degree d, on random regular ΓRR,

Erdős-Rényi ΓER, and Barabási-Albert ΓBA networks respectively.
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Figure 43: Variation of the distribution of the long-term values x∞ of strategies with assor-

tativity r (average degree d) on complete (model) networks. (a) Complete network ΓWM.

(b) Random regular network ΓRR. (c) Erdős-Rényi network ΓER. (d) Barabási-Albert net-

work ΓBA. Simulation parameters: C(x) = x2 and B(x) = −x2 + 2x, π given by Equation

5.5, n = 10000, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100, U = FE2,

and s = 1.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 4, and

varying clustering coefficient C(2). Figures 44(a)-(d) show the evolution of the distribution

of strategies x on networks with clustering coefficient C(2) = 0,0.2,0.4, and 0.6.
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Figure 44: Evolution of the distribution of strategies x on model power-law networks with

clustering coefficient C(2). (a) C(2) = 0 (x̄∞ = 0.197). (b) C(2) = 0.2 (x̄∞ = 0.220). (c)

C(2)= 0.4 (x̄∞ = 0.197). (d) C(2)= 0.6 (x̄∞ = 0.214). Simulation parameters: C(x)= x2 and

B(x) =−x2 +2x, π given by Equation 5.5, n = 10000, d = 4, x0 = 0.1, xm = 1, µ = 0.01,

σ = 0.005, T = 200000, ν = 100, U = FE2, and s = 1.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 4, and

varying homophily coefficient h. Figures 45(a)-(d) show the evolution of the distribution

of strategies x on networks with homophily coefficient h =−0.1,0,0.1, and 0.2.
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Figure 45: Evolution of the distribution of strategies x on model power-law networks with

homophily coefficient h. (a) h = −0.1 (x̄∞ = 0.207). (b) h = 0 (x̄∞ = 0.205). (c) h = 0.1

(x̄∞ = 0.196). (d) h = 0.2 (x̄∞ = 0.155). Simulation parameters: C(x) = x2 and B(x) =

−x2 + 2x, π given by Equation 5.5, n = 10000, d = 4, x0 = 0.1, xm = 1, µ = 0.01, σ =

0.005, T = 200000, ν = 100, U = FE2, and s = 1.

Empirical Networks

The last set of results concerns empirical networks. Figures 46(a)-(f) show the evolution

of the distribution of strategies x on: the Γinternet network (a); the Γhepcoauth network (b);
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the Γastrocoauth network (c); the Γfb network (d); the Γp2p network (e); and the Γprotein

network (f).
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Figure 46: Evolution of the distribution of strategies x on empirical networks. Ssee Table

2 for the basic properties of these networks. (a) the Γinternet network (x̄∞ = 0.138). (b)

the Γhepcoauth network (x̄∞ = 0.114). (c) the Γastrocoauth network (x̄∞ = 0.045). (d) the

Γfb network (x̄∞ = 0.023). (e) the Γp2p network (x̄∞ = 0.082). (f) the Γprotein network

(x̄∞ = 0.173). Simulation parameters: C(x) = x2 and B(x) =−x2+2x, π given by Equation

5.5, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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5.5 Snowdrift Game

Two friends John and Bill are working on a joint software project. The effort that each

invests into the project benefits both of them, since they both would like to see the project

come to fruition. However, the investment only costs the investor. Such interactions

among pairs of individuals in which the cooperative investment made by an individual

(donor) benefits both the donor and the other individual (recipient), but involves a cost

only to the donor, can be described using a pairwise, continuous snowdrift (CSD) game

[DHK04].

The CSD game consists of two individuals, each making an investment x ∈ R≥0. The

investment has the following effects: the payoff of the investor (donor) is reduced by C(x),

where C is a function that specifies the cost of making the investment; and the payoff of

the beneficiary (recipient) is increased by B(2x), where B is a function that specifies the

benefit resulting from the investment. Therefore, if two interacting individuals make

investments x and y, then the payoff π(x,y) and π(y,x) to the individuals are respectively

given by

π(x,y) = B(x+ y)−C(x),and (5.12)

π(y,x) = B(x+ y)−C(y).

We assume that the cost and benefit functions are smooth, strictly increasing, and satisfy

B(0) =C(0) = 0.

In [DHK04] the authors study the CSD game in the context of a well-mixed

population. They provide a complete classification of the adaptive dynamics for quadratic

cost and benefit functions. Depending on the coefficients of these functions, the end state

of the population can be one of: evolutionary branching; convergent stable ESS;
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evolutionary repeller leading to bi-stable evolutionary dynamics; and in the absence of a

singular strategy, either uniform selection for defectors or cooperators.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for promoting and

maintaining cooperation. We carry out a complete analysis of the CSD game using the

framework of adaptive dynamics modified to include assortative interactions. Since the

network-induced assortativity in game interactions bears an inverse relationship to its

average degree, knowing how the assortativity parameter r affects cooperation in a

well-mixed population also informs us about how cooperation would be affected, albeit

only qualitatively, when the game is played out on networks.

5.5.1 Analysis

Consider a population of individuals playing the CSD game with the payoff function given

by Equation 5.12. Suppose that each individual makes an investment x, i.e., the population

is monomorphic in strategy x, called the resident strategy. Let r ∈ [0,1] be the degree of

assortative interactions among the individuals. Now suppose a rare mutant strategy y

appears in the population. We are interested in knowing the eventual fate of the mutant

strategy y. From Equations 5.3 and 5.5, we can write the invasion fitness f r
x (y) of the

mutant strategy as

f r
x (y) = (1− r)B(x+ y)+ rB(2y)−C(y)−B(2x)+ c(x). (5.13)

From Equation 3.109, the selection gradient D(x) is given by

D(x) =
∂ fx(y)

∂y

∣∣∣
y=x

(5.14)

= (1+ r)B′(2x)−C′(x).
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In order to obtain the singular strategies x? for the dynamics, we solve D(x?) = 0, i.e.,

(1+ r)B′(2x?)−C′(x?) = 0. (5.15)

From Equation 3.110, the singular strategy x? is convergent stable if dD
dx

∣∣∣
x=x?

< 0, i.e.,

2(1+ r)B′′(2x?)−C′′(x?)< 0, (5.16)

and a repeller if the inequality is reversed.

From Equation 3.111, the singular strategy x? is evolutionarily stable if
∂ 2 fx?(y)

∂y2

∣∣∣
y=x?

< 0, i.e.,

B′′(2x?)+3rB′′(2x?)−C′′(x?)< 0, (5.17)

and an evolutionary branching point (EBP) if the inequality is reversed.

We next consider specific forms of cost and benefit functions C(x) and B(x) which are

realistic and for which the analysis is mathematically tractable.

Quadratic Cost and Benefit Functions

Suppose the cost and benefit functions are quadratic functions of the investment x, i.e,

suppose C(x) =−c2x2 + c1x and B(x) =−b2x2 +b1x, where c1,c2,b1,b2,> 0. Figures

47(a)(b) show the two functions, along with the payoff function π(x,x) when both of the

interacting individuals are investing an amount x. Saturating benefits are clearly realistic

[Alt79, SR83, Wei81], whereas costs could often be expected to accelerate. However,

diminishing additional costs of larger cooperative investments are reasonable whenever

the initiation of cooperative acts, is more costly than subsequent increases in cooperative

investments.
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Figure 47: Quadratic cost, quadratic benefit, and payoff functions for the CSD game.

(a) C(x) = −1.6x2 + 4.8x, B(x) = −x2 + 5x, Hicks optimal strategy xH = 1. (b) C(x) =

−1.5x2 +4x, B(x) =−0.2x2 +3x, Hicks optimal strategy xH = 1.

Substituting for B′(x?) and C′(x?) in Equation 5.15, we obtain the singular strategy x?

for the game as

x? =
(1+ r)b1− c1

4(1+ r)b2−2c2
. (5.18)

From Equation 5.16, we see that the singular strategy x? is convergent stable if

b2 >
c2

2(1+ r)
, (5.19)

and a repeller if the inequality is reversed.

From Equation 5.17, we see that the singular strategy x? is an ESS if

b2 >
c2

1+3r
, (5.20)

and an evolutionary branching point (EBP) if the inequality is reversed.

Thus the state to which an initially monomorphic population in which every individual

is investing an amount 0 < x0 < xm will evolve crucially depends on the coefficients

224



c1,c2,b1, and b2 of the cost and benefit functions. If Equation 5.19 is satisfied, then the

population evolves to a state in which everyone is investing x?, and the fate of the

population thereafter depends on whether the Equation 5.20 is satisfied or not. If it is, then

x? is evolutionarily stable, so the population remains in that state. Otherwise, x? is an EBP

and the population splits into two phenotypic clusters which evolve away from each other.

If Equation 5.19 is not satisfied, then x? is a repeller and the fate of the population depends

on how the initial (resident) strategy x0 compares with x?. If x0 < x?, then the population

evolves to the zero-investment state. On the other hand, if x0 > x?, then the population

evolves to the maximum-investment state. We illustrate these possibilities with an

example.

Example 5.3. Consider a CSD game with quadratic cost function C(x) =−1.6x2 +4.8x

and quadratic benefit function B(x) =−x2 +5x. Suppose every individual in the

population initially invests an amount x0 = 0.1. We simulate the game on a complete

network ΓWM with parameter values n = 10000, s = 1, x0 = 0.1, xm = 1, µ = 0.01,

σ = 0.005, T = 300000, ν = 100, and U = FE2. If r = 0 the singular strategy x? = 0.25

is an EBP, so the population evolves toward x? and then branches out into two phenotypic

clusters (Figure 48(a)). When r = 0.3, the singular strategy x? = 0.85 is an ESS, so the

population evolves toward x? and remains there (Figure 48(b)). Note that

π(x?,x?)< π(xH ,xH), where xH = 1 is the Hicks optimal strategy.

Now consider the cost and benefit functions to be C(x) =−1.5x2 +4x and

B(x) =−0.2x2 +3x, and let r = 0. The singular strategy x? = 0.45 is a repeller in this

case, so if a population starts with the strategy x0 = 0.3, it evolves to the zero-investment

state (Figure 48(c)). On the other hand, if x0 = 0.6, then the population evolves to the

maximum-investment state (Figure 48(d)).
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Figure 48: Evolution of the distribution of strategies x in a CSD game with quadratic

cost and quadratic benefit functions. C(x) = −c2x2 + c1x2 and B(x) = −b2x2 + b1x. (a)

c1 = 4.8,c2 = 1.6,b1 = 5,b2 = 1,r = 0,x0 = 0.1 (x? = 0.25 is an EBP). (b) c1 = 4.8,c2 =

1.6,b1 = 5,b2 = 1,r = 0.3,x0 = 0.1 (x? = 0.85 is an ESS). (c) c1 = 4,c2 = 1.5,b1 = 3,b2 =

0.2,r = 0,x0 = 0.3 (x? = 0.45 is a repeller). (d) c1 = 4,c2 = 1.5,b1 = 3,b2 = 0.2,r = 0,x0 =

0.6 (x? = 0.45 is a repeller). Simulation parameters: complete network ΓWM, n = 10000,

s = 1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, and U = FE2.

Thus in a well-mixed population, by changing the degree of assortative interactions,

we can vary the nature of the singular strategy, each resulting in a different end state for

the evolutionary dynamics. The singular strategy can be one of: an EBP in which case
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high and low investors coexist—this scenario is referred to as “tragedy of the commune”

[DHK04]; an ESS in which case everyone invests the same amount given by the singular

strategy; or an evolutionary repeller in which case the individuals either invest nothing or

invest the maximum amount depending on how the initial strategy compares with the

singular strategy. On a network, assortativity in game interactions increases with

decreasing values of the average degree d of the network. So when the CSD game is

played on networks, we expect to see similar kinds of behavior by changing d. We will

explore this and other network effects in the following section.

5.5.2 Simulation Results

In this section we present the results of simulating the CSD game on networks having

different structural properties. We first consider a quadratic cost function

C(x) =−1.6x2 +4.8x and a quadratic benefit function B(x) =−x2 +5x. All the

simulations were carried out using the following values for the parameters involved:

payoff function π given by Equation 5.12, population size n = 10000, initial strategy

x0 = 0.1, maximum strategy xm = 1, mutation probability µ = 0.01, standard deviation for

mutations σ = 0.005, number of generations T = 300000, report frequency ν = 100,

update rule U = FE2, and selection strength s = 1. See B.5 for details on how to simulate

our continuous game models on complex networks. We present the results using two

different kinds of plots depicting the following:

1. Variation of the distribution of the long-term values x∞ of strategies x, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks). The value of r ∈ [0,0.6] was varied in steps of 0.01, and the

value of d was varied from 20 to 4 in steps of -2. As r increases (d decreases), the

singular strategy x? transitions from an EBP to an ESS. The intensity of the shade in
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the plot indicates the number of individuals playing strategies within a particular

range, with black (white) corresponding to every (no) individual being in that range.

The dashed line in the case of a complete network corresponds to the predicted

values of the singular strategy x?.

2. Evolution of the distribution of strategies x. If in the long term the individuals in the

population play a single strategy, we characterize the state of the population by x̄∞.

If on the other hand the population undergoes evolutionary branching, then we

characterize the state of the population using xBP, the strategy x at which the

population undergoes branching. We use these values to compare the game

dynamics across networks.

Complete Network and Model Networks with Varying Average Degree

The first set of results concerns complete networks ΓWM, and model networks with

varying average degree d. Figures 49(a) shows how the distribution of the long-term

values x̄∞ of strategies x varies with assortativity r on a complete network. Figures

49(b)-(d) show how the distribution of x∞ varies with average degree d, on random regular

ΓRR, Erdős-Rényi ΓER, and Barabási-Albert ΓBA networks respectively.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with varying clustering

coefficient C(2). Figures 50(a)-(d) show the evolution of the distribution of strategies x on

networks with average degree d = 4 and clustering coefficient C(2) = 0,0.2,0.4, and 0.6.

Figures 51(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and clustering coefficient C(2) = 0.1,0.2,0.3, and 0.4.
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Figure 49: Variation of the distribution of the long-term values x∞ of strategies with assor-

tativity r (average degree d) on complete (model) networks. (a) Complete network ΓWM.

(b) Random regular network ΓRR. (c) Erdős-Rényi network ΓER. (d) Barabási-Albert net-

work ΓBA. Simulation parameters: C(x) =−1.6x2+4.8x and B(x) =−x2+5x, π given by

Equation 5.12, n = 10000, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100,

U = FE2, and s = 1.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with varying homophily

coefficient h. Figures 52(a)-(d) show the evolution of the distribution of strategies x on
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Figure 50: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and clustering coefficient C(2). (a) C(2) = 0 (x̄∞ = 0.821). (b) C(2) =

0.2 (x̄∞ = 0.797). (c) C(2) = 0.4 (x̄∞ = 0.796). (d) C(2) = 0.6 (x̄∞ = 0.78). Simulation

parameters: C(x) = −1.6x2 + 4.8x and B(x) = −x2 + 5x, π given by Equation 5.12, n =

10000, d = 4, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2,

and s = 1.

networks with average degree d = 4 and homophily coefficient h =−0.1,0,0.1, and 0.2.

Figures 53(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and homophily coefficient h =−0.1,0,0.1, and 0.2.
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Figure 51: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and clustering coefficient C(2). (a) C(2) = 0.1 (xBP = 0.574). (b)

C(2) = 0.2 (xBP = 0.516). (c) C(2) = 0.3 (xBP = 0.543). (d) C(2) = 0.4 (x̄∞ = 0.551).

Simulation parameters: C(x) = −1.6x2 + 4.8x and B(x) = −x2 + 5x, π given by Equation

5.12, n = 10000, d = 10, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100,

U = FE2, and s = 1.

Empirical Networks

The last set of results concerns empirical networks. Figures 54(a)-(f) show the evolution

of the distribution of strategies x on: the Γinternet network (a); the Γhepcoauth network (b);
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Figure 52: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and homophily coefficient h. (a) h = −0.1 (x̄∞ = 0.82). (b) h = 0

(x̄∞ = 0.8). (c) h = 0.1 (x̄∞ = 0.751). (d) h = 0.2 (xBP = 0.7). Simulation parameters:

C(x) =−1.6x2 +4.8x and B(x) =−x2 +5x, π given by Equation 5.12, n = 10000, d = 4,

x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.

the Γastrocoauth network (c); the Γfb network (d); the Γp2p network (e); and the Γprotein

network (f).

We next consider a quadratic cost function C(x) =−1.5x2 +4x and a quadratic benefit

function B(x) =−0.2x2 +3x. All the simulations were carried out using the following
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Figure 53: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and homophily coefficient h. (a) h =−0.1 (xBP = 0.491). (b) h = 0

(xBP = 0.545). (c) h = 0.1 (xBP = 0.546). (d) h = 0.2 (xBP = 0.54). Simulation parameters:

C(x) =−1.6x2+4.8x and B(x) =−x2+5x, π given by Equation 5.12, d = 10, n = 10000,

x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.

values for the parameters involved: payoff function π given by Equation 5.12, population

size n = 10000, initial strategy x0 = 0.3, maximum strategy xm = 1, mutation probability

µ = 0.01, standard deviation for mutations σ = 0.005, number of generations

T = 300000, report frequency ν = 100, update rule U = FE2, and selection strength

s = 1. We present the results using two different kinds of plots depicting the following:
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1. Variation of the distribution of the long-term values x∞ of strategies x, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks). The value of r ∈ [0,0.3] was varied in steps of 0.01, and the

value of d was varied from 20 to 4 in steps of -2. For the entire range of r and d, the

singular strategy x? is a repeller. When r = 0 (d = 20), the x0 < x?, so the

population evolves to the state in which everyone makes zero investment. But as r

increases (d decreases), a stage is reached beyond which x0 > x?, and the population

evolves to a state in which everyone makes the maximum investment xm = 1. The

intensity of the shade in the plot indicates the number of individuals playing

strategies within a particular range, with black (white) corresponding to every (no)

individual being in that range. The dashed line in the case of a complete network

corresponds to the predicted values of the singular strategy x?.

2. Evolution of the distribution of strategies x. We indicate the long-term value x̄∞ of

of the mean strategy x̄ and use this value to compare the game dynamics across

networks.

Complete Network and Model Networks with Varying Average Degree

The first set of results concerns complete networks ΓWM, and model networks with

varying average degree d. Figures 55(a) shows how the distribution of the long-term

values x̄∞ of strategies x varies with assortativity r on a complete network. Figures

55(b)-(d) show how the distribution of x∞ varies with average degree d, on random regular

ΓRR, Erdős-Rényi ΓER, and Barabási-Albert ΓBA networks respectively.
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Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with varying clustering

coefficient C(2). Figures 56(a)-(d) show the evolution of the distribution of strategies x on

networks with average degree d = 4 and clustering coefficient C(2) = 0,0.2,0.4, and 0.6.

Figures 57(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and clustering coefficient C(2) = 0.1,0.2,0.3, and 0.4.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with varying homophily

coefficient h. Figures 58(a)-(d) show the evolution of the distribution of strategies x on

networks with average degree d = 4 and homophily coefficient h =−0.1,0,0.1, and 0.2.

Figures 59(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and homophily coefficient h =−0.1,0,0.1, and 0.2.

Empirical Networks

The last set of results concerns empirical networks. Figures 60(a)-(f) show the evolution

of the distribution of strategies x on: the Γinternet network (a); the Γhepcoauth network (b);

the Γastrocoauth network (c); the Γfb network (d); the Γp2p network (e); and the Γprotein

network (f).
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Figure 54: Evolution of the distribution of strategies x on empirical networks. See Table

2 for the basic properties of these networks. (a) the Γinternet network (x̄∞ = 0.734). (b)

the Γhepcoauth network (x̄∞ = 0.744). (c) the Γastrocoauth network (xBP = 0.4). (d) the Γfb

network (xBP = 0.3). (e) the Γp2p network (xBP = 0.6). (f) the Γprotein network (xBP = 0.75).

Simulation parameters: C(x) = −1.6x2 + 4.8x and B(x) = −x2 + 5x, π given by Equation

5.12, x0 = 0.1, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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Figure 55: Variation of the distribution of the long-term values x∞ of strategies with assor-

tativity r (average degree d) on complete (mode) networks. (a) Complete network ΓWM.

(b) Random regular network ΓRR. (c) Erdős-Rényi network ΓER. (d) Barabási-Albert net-

work ΓBA. Simulation parameters: C(x) = −1.5x2 + 4x and B(x) = −0.2x2 + 3x, π given

by Equation 5.12, n= 10000, x0 = 0.3, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100,

U = FE2, and s = 1.
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Figure 56: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and clustering coefficient C(2). (a) C(2) = 0 (x̄∞ = 1). (b) C(2) =

0.2 (x̄∞ = 1). (c) C(2) = 0.4 (x̄∞ = 1). (d) C(2) = 0.6 (x̄∞ = 1). Simulation parameters:

C(x) =−1.5x2+4x and B(x) =−0.2x2+3x, π given by Equation 5.12, n = 10000, d = 4,

x0 = 0.3, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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Figure 57: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and clustering coefficient C(2). (a) C(2) = 0.1 (x̄∞ = 0). (b) C(2) =

0.2 (x̄∞ = 0). (c) C(2) = 0.3 (x̄∞ = 0). (d) C(2) = 0.4 (x̄∞ = 0). Simulation parameters:

C(x) =−1.5x2+4x and B(x) =−0.2x2+3x, π given by Equation 5.12, n = 10000, d = 10,

x0 = 0.3, xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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Figure 58: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and homophily coefficient h. (a) h =−0.1 (x̄∞ = 1). (b) h = 0 (x̄∞ =

1). (c) h = 0.1 (x̄∞ = 1). (d) h = 0.2 (x̄∞ = 1). Simulation parameters: C(x) =−1.5x2 +4x

and B(x) = −0.2x2 + 3x, π given by Equation 5.12, n = 10000, d = 4, x0 = 0.3, xm = 1,

µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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Figure 59: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and homophily coefficient h. (a) h =−0.1 (x̄∞ = 0). (b) h = 0 (x̄∞ =

0). (c) h = 0.1 (x̄∞ = 0). (d) h = 0.2 (x̄∞ = 0). Simulation parameters: C(x) =−1.5x2 +4x

and B(x) = −0.2x2 +3x, π given by Equation 5.12, n = 10000, d = 10, x0 = 0.3, xm = 1,

µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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Figure 60: Evolution of the distribution of strategies x on empirical networks. See Table

2 for the basic properties of these networks. (a) the Γinternet network (x̄∞ = 1). (b) the

Γhepcoauth network (x̄∞ = 1). (c) the Γastrocoauth network (x̄∞ = 0). (d) the Γfb network (x̄∞ =

0). (e) the Γp2p network (x̄∞ = 0). (f) the Γprotein network (x̄∞ = 1). Simulation parameters:

C(x) =−1.5x2 +4x and B(x) =−0.2x2 +3x, π given by Equation 5.12, x0 = 0.3, xm = 1,

µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2, and s = 1.
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5.6 Tragedy of the Commons

Two friends John and Bill share an internet connection at home. The total bandwidth

available to them is of course limited. Each of them benefits from consuming the shared

bandwidth, but the incurring costs (slowdown in connectivity) are diluted and shared

among both. Such situations involving pairs of individuals sharing a common-pool

resource in which one individual’s consumption of the resource benefits that individual

but costs both the individuals involved, can be described using a pairwise, continuous

tragedy of the commons (CTOC) game [KDH10].

The CTOC game consists of two individuals, each making an investment7 x ∈ R≥0.

The investment has the following effects: the payoff of the investor (donor) is reduced by

C(2x), where C is a function that specifies the cost of making the investment; and the

payoff of the beneficiary (recipient) is increased by B(x), where B is a function that

specifies the benefit resulting from the investment. Therefore, if two interacting

individuals make investments x and y, then the payoff π(x,y) and π(y,x) to the individuals

are respectively given by

π(x,y) = B(x)−C(x+ y),and (5.21)

π(y,x) = B(y)−C(x+ y).

We assume that at least for small x, B(x)>C(x). This simply reflects the fact that the

public resource is valuable and thus creates an incentive for individuals to consume and

take advantage of the resource.

In the classic tragedy of the commons [Har68], each individual benefits from

consuming the common-pool resource, but the incurring costs are diluted and shared

7Recall that investment in this context means the level of consumption of a limited common-pool resource,
and cooperative investments mean lower levels of consumption.
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among all interacting individuals. As a result, the common resource is prone to

exploitation and self-interest drives over-consumption of the resource to the detriment of

all. In [KDH10] the authors consider the CTOC game in a well-mixed setting and

demonstrate both analytically and by simulation that the evolutionary outcomes based on

a continuous range of consumption levels of common-pool resources are often strikingly

different from the classic tragedy of the commons. The authors reveal a second tragedy:

not only is the common resource overexploited, but selection may result in states in which

high and low consumers stably coexist.

In what follows, we consider assortative interactions in a well-mixed population,

characterized by the parameter r ∈ [0,1], as a possible mechanism for promoting and

maintaining cooperation. We carry out a complete analysis of the CTOC game using the

framework of adaptive dynamics modified to include assortative interactions. Since the

network-induced assortativity in game interactions bears an inverse relationship to its

average degree, knowing how the assortativity parameter r affects cooperation in a

well-mixed population also informs us about how cooperation would be affected, albeit

only qualitatively, when the game is played out on networks.

5.6.1 Analysis

Consider a population of individuals playing the CTOC game with the payoff function

given by Equation 5.21. Suppose that each individual makes an investment x, i.e., the

population is monomorphic in strategy x, called the resident strategy. Let r ∈ [0,1] be the

degree of assortative interactions among the individuals. Now suppose a rare mutant

strategy y appears in the population. We are interested in knowing the eventual fate of the

mutant strategy y. From Equations 5.3 and 5.5, we can write the invasion fitness f r
x (y) of
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the mutant strategy as

f r
x (y) = B(y)− rC(2y)− (1− r)C(x+ y)−B(x)+C(2x). (5.22)

From Equation 3.109, the selection gradient D(x) is given by

D(x) =
∂ fx(y)

∂y

∣∣∣
y=x

(5.23)

= B′(x)− (1+ r)C′(2x).

In order to obtain the singular strategies x? for the dynamics, we solve D(x?) = 0, i.e.,

B′(x?)− (1+ r)C′(2x?) = 0. (5.24)

From Equation 3.110, the singular strategy x? is convergent stable if dD
dx

∣∣∣
x=x?

< 0, i.e.,

B′′(x?)−2(1+ r)C′′(2x?)< 0, (5.25)

and a repeller if the inequality is reversed.

From Equation 3.111, the singular strategy x? is evolutionarily stable if
∂ 2 fx?(y)

∂y2

∣∣∣
y=x?

< 0, i.e.,

B′′(x?)−3rC′′(2x?)−C′′(2x?)< 0, (5.26)

and an evolutionary branching point (EBP) if the inequality is reversed.

We next consider specific forms of cost and benefit functions C(x) and B(x) which are

realistic and for which the analysis is mathematically tractable.

Quadratic Cost and Cubic Benefit Functions

Suppose the cost function is a quadratic function of the investment x and the benefit

function is a cubic function of the investment x, i.e, suppose C(x) = c1x2 and
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B(x) =−b3x3 +b2x2 +b1x, where c1,b1,b2,b3 > 0. Figure 61 shows the two functions,

along with the payoff function π(x,x) when both of the interacting individuals are

investing an amount x. Accelerating costs represent a realistic assumption and are often

observed in nature [SM76]. Benefits also often accelerate initially and then saturate, as in

the case of Sigmoid benefit functions [Smi82].
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Figure 61: Quadratic cost, cubic benefit, and payoff functions for the CTOC game. C(x) =

x2, B(x) =−0.0834x3 +2x2 + x. Hicks optimal strategy xH = 0.25.

To simplify the analysis, we take b2 = 2b1 and c1 = b1. Substituting for B′(x?) and

C′(x?) in Equation 5.24, we obtain the singular strategy x? for the game as

x? =

√
16r2b2

1 +12b1b3−4rb1

6b3
. (5.27)

From Equation 5.25, since B′′(x?)−3rC′′(2x?)−C′′(2x?) =−6b3x?−4rb1 < 0 we

see that the singular strategy x? is convergent stable.

From Equation 5.17, we see that the singular strategy x? is an ESS if

b1 <

√
16r2b2

1 +12b1b3

2(1− r)
, (5.28)
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and an evolutionary branching point (EBP) if the inequality is reversed.

Thus the state to which an initially monomorphic population in which every individual

is investing an amount 0 < x0 < xm will evolve crucially depends on the coefficients c1,b1,

and b3 of the cost and benefit functions. The population first evolves to a state in which

everyone is investing x?, and the fate of the population thereafter depends on whether the

Equation 5.28 is satisfied or not. If it is, then x? is evolutionarily stable, so the population

remains in that state. Otherwise, x? is an EBP and the population splits into two

phenotypic clusters which evolve away from each other. We illustrate these possibilities

with an example.

Example 5.4. Consider a CTOC game with quadratic cost function C(x) = x2 and cubic

benefit function B(x) =−0.0834x3 +2x2 + x. Suppose every individual in the population

initially invests an amount x0 = 0.1. We simulate the game on a complete network ΓWM

with parameter values n = 10000, s = 1, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005,

T = 300000, ν = 100, and U = FE2. If r = 0 the singular strategy x? = 2 is an EBP, so

the population evolves toward x? and then branches out into two phenotypic clusters

(Figure 62(a)). When r = 0.4, the singular strategy x? = 0.57 is an ESS, so the population

evolves toward x? and remains there (Figure 62(b)). Note that π(x?,x?)< π(xH ,xH),

where xH = 0.25 is the Hicks optimal strategy.

Thus in a well-mixed population, by changing the degree of assortative interactions,

we can vary the nature of the singular strategy, each resulting in a different end state for

the evolutionary dynamics. The singular strategy can be: an EBP in which case high and

low investors, i.e., individuals who overexploit the common-pool resource and who

consume less, can coexist—this scenario posses a second tragedy, and is referred to as

“tragedy of the commune” [KDH10]; or an ESS in which case everyone invests the same
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Figure 62: Evolution of the distribution of strategies x in a CTOC game with quadratic

cost and cubic benefit functions. (a) r = 0 (x? = 2 is an EBP); (b) r = 0.4 (x? = 0.57

is an ESS). Simulation parameters: complete network ΓWM, n = 10000, C(x) = x2 and

B(x) = −0.0834x3 +2x2 + x, s = 1, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 300000,

ν = 100, and U = FE2.

amount given by the singular strategy. On a network, assortativity in game interactions

increases with decreasing values of the average degree d of the network. So when the

CTOC game is played on networks, we expect to see similar kinds of behavior by

changing d. We will explore this and other network effects in the following section.
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5.6.2 Simulation Results

In this section we present the results of simulating the CTOC game on networks having

different structural properties. We consider a quadratic cost function C(x) = x2 and a

cubic benefit function B(x) =−0.0834x3 +2x2 + x. All the simulations were carried out

using the following values for the parameters involved: payoff function π given by

Equation 5.21, population size n = 10000, initial strategy x0 = 0.1, maximum strategy

xm = 3, mutation probability µ = 0.01, standard deviation for mutations σ = 0.005,

number of generations T = 300000 unless specified otherwise in the figure legends, report

frequency ν = 100, update rule U = FE2, and selection strength s = 1. See B.5 for details

on how to simulate our continuous game models on complex networks. We present the

results using two different kinds of plots depicting the following:

1. Variation of the distribution of the long-term values x∞ of strategies x, averaged over

the last 10% generations, with assortativity r on complete networks (average degree

d on other networks). The value of r ∈ [0,1] was varied in steps of 0.01, and the

value of d was varied from 20 to 4 in steps of -2. As r increases (d decreases), the

singular strategy x? transitions from an EBP to an ESS. The intensity of the shade in

the plot indicates the number of individuals playing strategies within a particular

range, with black (white) corresponding to every (no) individual being in that range.

The dashed line in the case of a complete network corresponds to the predicted

values of the singular strategy x?.

2. Evolution of the distribution of strategies x. If in the long term the individuals in the

population play a single strategy, we characterize the state of the population by x̄∞.

If on the other hand the population undergoes evolutionary branching, then we

characterize the state of the population using xBP, the strategy x at which the
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population undergoes branching. We use these values to compare the game

dynamics across networks.

Complete Network and Model Networks with Varying Average Degree

The first set of results concerns complete networks ΓWM, and model networks with

varying average degree d. Figures 63(a) shows how the distribution of the long-term

values x̄∞ of strategies x varies with assortativity r on a complete network. Figures

63(b)-(d) show how the distribution of x∞ varies with average degree d, on random regular

ΓRR, Erdős-Rényi ΓER, and Barabási-Albert ΓBA networks respectively.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with varying clustering

coefficient C(2). Figures 64(a)-(d) show the evolution of the distribution of strategies x on

networks with average degree d = 4 and clustering coefficient C(2) = 0,0.2,0.4, and 0.6.

Figures 65(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and clustering coefficient C(2) = 0.1,0.2,0.3, and 0.4.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with varying homophily

coefficient h. Figures 66(a)-(d) show the evolution of the distribution of strategies x on

networks with average degree d = 4 and homophily coefficient h =−0.1,0,0.1, and 0.2.

Figures 67(a)-(d) show the evolution of the distribution of strategies x on networks with

average degree d = 10 and homophily coefficient h =−0.1,0,0.1, and 0.2.
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Figure 63: Variation of the distribution of the long-term values x∞ of strategies with assor-

tativity r (average degree d) on complete (model) networks. (a) Complete network ΓWM.

(b) Random regular network ΓRR. (c) Erdős-Rényi network ΓER. (d) Barabási-Albert net-

work ΓBA. Simulation parameters: C(x) = x2 and B(x) =−0.0834x3 +2x2 +x, π given by

Equation 5.21, n = 10000, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 300000, ν = 100,

U = FE2, and s = 1.

Empirical Networks

The last set of results concerns empirical networks. Figures 68(a)-(f) show the evolution

of the distribution of strategies x on: the Γinternet network (a); the Γhepcoauth network (b);
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Figure 64: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and clustering coefficient C(2). (a) C(2) = 0 (x̄∞ = 0.815). (b) C(2) =

0.2 (x̄∞ = 0.788). (c) C(2) = 0.4 (x̄∞ = 0.841). (d) C(2) = 0.6 (x̄∞ = 0.832). Simulation

parameters: C(x) = x2 and B(x) = −0.0834x3 + 2x2 + x, π given by Equation 5.21, n =

10000, d = 4, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 300000, ν = 100, U = FE2,

and s = 1.

the Γastrocoauth network (c); the Γfb network (d); the Γp2p network (e); and the Γprotein

network (f).
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Figure 65: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and clustering coefficient C(2). (a) C(2) = 0.1 (xBP = 1.425). (b)

C(2) = 0.2 (xBP = 1.389). (c) C(2) = 0.3 (xBP = 1.401). (d) C(2) = 0.4 (xBP = 1.419).

Simulation parameters: C(x) = x2 and B(x) = −0.0834x3 + 2x2 + x, π given by Equation

5.21, n = 10000, d = 10, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 500000, ν = 100,

U = FE2, and s = 1.
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Figure 66: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 4 and homophily coefficient h. (a) h = −0.1 (x̄∞ = 0.769). (b) h = 0

(xBP = 0.785). (c) h= 0.1 (xBP = 0.909). (d) h= 0.2 (xBP = 0.176). Simulation parameters:

C(x) = x2 and B(x) = −0.0834x3 +2x2 + x, π given by Equation 5.21, n = 10000, d = 4,

x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 500000, ν = 100, U = FE2, and s = 1.
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Figure 67: Evolution of the distribution of strategies x on model power-law networks with

average degree d = 10 and homophily coefficient h. (a) h =−0.1 (xBP = 1.373). (b) h = 0

(xBP = 1.380). (c) h = 0.1 (xBP = 1.391). (d) h = 0.2 (xBP = 1.4). Simulation parameters:

C(x) = x2 and B(x) =−0.0834x3 +2x2 + x, π given by Equation 5.21, n = 10000, d = 10,

x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 500000, ν = 100, U = FE2, and s = 1.
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Figure 68: Evolution of the distribution of strategies x on empirical networks. See Table

2 for the basic properties of these networks. (a) the Γinternet network (x̄∞ = 0.773). (b)

the Γhepcoauth network (xBP = 1.125). (c) the Γastrocoauth network (xBP = 1.5). (d) the Γfb

network (xBP = 1.8). (e) the Γp2p network (xBP = 1.3). (f) the Γprotein network (xBP = 0.6).

Simulation parameters: C(x) = x2 and B(x) = −0.0834x3 + 2x2 + x, π given by Equation

5.21, x0 = 0.1, xm = 3, µ = 0.01, σ = 0.005, T = 500000, ν = 100, U = FE2, and s = 1.
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5.7 Discussion

For the CPD game with linear cost C(x) = cx and benefit B(x) = bx functions, the

simulation results (see Figures 38(a)-(d)) on complete networks ΓWM agree very well with

the values predicted by analysis on well-mixed populations. A population, starting from a

state in which everyone invests a small amount x0 > 0, eventually evolves to the state in

which everyone invests the maximum amount xm = 1 when the inequality r > ρ is

satisfied, where r is the degree of assortative interactions and ρ is the cost-to-benefit ratio
c
b . When r < ρ , population evolves to the zero-investment state.

The simulation results (see Figures 39(a)-(i)) on model (random regular, Erdős-Rényi,

Barabási-Albert) networks with varying average degree d suggest that the average

long-term cooperative investment x̄∞ increases as d decreases. This makes sense because

as the average degree of a network decreases, the network assortativity increases, and

from the results on complete networks we know that cooperative investments increase

with increasing assortativity. For d around 20, the networks yield results similar to

complete networks with zero assortativity. This again makes sense because as the average

degree of a network increases, it more and more approximates a complete network. The

figures also suggest that x̄∞ decreases with increasing cost-to-benefit ratio ρ , similar to

what we witnessed on complete networks. Furthermore, except for small values of d, the

degree distribution of the networks has very little effect on the value of x∞; when d = 4,

the random regular network has the highest value for the cooperation index C .

A comparison of the cooperation indices C from the simulation results (see Figures

40(a)-(d)) on model networks with clustering coefficient C(2) suggests that an increase in

clustering inhibits cooperative investments. The results (see Figures 41(a)-(d)) on model

networks with homophily coefficient h suggests that an increase in homophily (from

negative to positive) also inhibits cooperative investments.
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A comparison of the cooperation indices C from the simulation results (see Figures

42(a)-(f)) on empirical networks further support the fact that networks with small values

of average degree d promote cooperation, while networks with high values of d inhibit

cooperation. For example, the Γprotein network, which has the smallest average degree

(d ≈ 3.56), has the highest values for C , while the Γfb network, which has the highest

average degree (d ≈ 46.51), has the smallest values for C . The six empirical networks

have very different sizes, and yet the trend of x̄∞ with respect to their average degree d is

comparable to the trend we observed in the case of model networks, which were all of size

10000. This suggests that the results of our models, as long as all other parameters are

fixed, is independent of the population size.

For the CPD game with quadratic cost C(x) = x2 and benefit B(x) =−x2 +2x

functions, the simulation results (see Figure 43(a)) on a complete network ΓWM agrees

very well with the values predicted by analysis on well-mixed populations. A population,

starting from a state in which everyone invests a small amount x0 > 0, eventually evolves

to the state in which everyone invests an amount given by the singular strategy x?, which

increases with an increase in assortativity r. The simulation results (see Figures 43(b)-(d))

on model (random regular, Erdős-Rényi, Barabási-Albert) networks with varying average

degree d suggest that the average long-term cooperative investment x̄∞ increases as d

decreases. This is what we expect because network-induced assortativity in game

interactions increases as average degree decreases. Furthermore, except for small values

of d, the degree distribution of the networks has very little effect on the value of x̄∞; when

d = 4, the random regular network has the highest value.

A comparison of x̄∞ values from the simulation results (see Figures 44(a)-(d)) on

model networks with clustering coefficient C(2) is inconclusive. The results (see Figures

45(a)-(d)) on model networks with homophily coefficient h suggests that an increase in

homophily (from negative to positive) inhibits cooperative investments.
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A comparison of x̄∞ values from the simulation results (see Figures 46(a)-(f)) on

empirical networks further support the fact that networks with small values of average

degree d promote cooperation, while networks with high values of d inhibit cooperation.

For example, the Γprotein network, which has the smallest average degree (d ≈ 3.56), has

the highest values for x̄∞, while the Γfb network, which has the highest average degree

(d ≈ 46.51), has the smallest values for x̄∞. The trend of x∞ with respect to the average

degree d of the networks is comparable to the trend observed in the case of model

networks of size 10000. This suggests that the results are independent of population size.

In summary, on complete networks, the cooperative investments that individuals make

approaches the Hicks optimal strategy xH , which for the parameters chosen is 0.5, as the

assortativity r increases. On other networks, the xH is approached as the average degree d

of the networks decreases. Clustering coefficient C(2) and homophily coefficient h of

networks also have an effect, albeit weaker than r or d, in driving the cooperative

investments towards or away from xH .

For the CSD game with quadratic cost C(x) =−1.6x2 +4.8x and benefit

B(x) =−x2 +5x functions, the simulation results (see Figure 49(a)) on a complete

network ΓWM agrees very well with the values predicted by analysis on well-mixed

populations. As the assortativity r increases, the singular strategy x? transitions at r = 0.2

from being an EBP to being an ESS. So the population, starting from a state in which

everyone invests a small amount x0 > 0, undergoes evolutionary branching for values of

r < 0.2, and for r > 0.2 evolves to the state in which everyone invests an amount given by

the singular strategy x?. The simulation results (see Figures 50(b)-(d)) on model (random

regular, Erdős-Rényi, Barabási-Albert) networks with varying average degree d show that

the population undergoes evolutionary branching when d > 4 and at d = 4, everyone in

the population invests an amount x̄∞. This trend makes qualitative sense because

network-induced assortativity in game interactions increases as average degree decreases.
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Furthermore, except for small values of d, the degree distribution of the networks has very

little effect on the dynamics. For d = 4 at which all three networks exhibit an ESS, the

random regular network has the highest value for x̄∞.

A comparison of x̄∞ values from the simulation results (see Figures 51(a)-(d)) on

model networks with average degree d = 4 and with clustering coefficient C(2) suggests

that an increase in clustering inhibits cooperative investments, but do not change the

nature of the singular strategy, which is an ESS throughout. The results (see Figures

52(a)-(d)) on model networks with average degree d = 10 and with clustering coefficient

C(2) suggests that an increase in clustering can change the nature of a singular strategy

from being an EBP to being an ESS.

The results (see Figures 53(a)-(d)) on model networks with average degree d = 4 and

with homophily coefficient h suggests that an increase in homophily (from negative to

positive) can change the nature of the singular strategy from being an EBP to being an

ESS. The results (see Figures 54(a)-(d)) on model networks with average degree d = 10

and with homophily coefficient h suggests that an increase in homophily (from negative to

positive) does not change the nature of a singular strategy, which is an EBP throughout.

A comparison of x̄∞ values from the simulation results (see Figures 55(a)-(f)) on

empirical networks further support the fact that networks with small values of average

degree d exhibit an ESS in general, while networks with high values of d exhibit

evolutionary branching. For example, the Γinternet network, which has the second smallest

average degree (d ≈ 4.219), exhibits an ESS, while the Γfb network, which has the highest

average degree (d ≈ 46.51), exhibits evolutionary branching. It is interesting to note that

the Γprotein network, which has the smallest value of d exhibits evolutionary branching.

This is probably because of secondary effects due to clustering and homophily. The trend

of x∞ with respect to the average degree d of the networks, which have very different
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sizes, is in general comparable to the trend observed in the case of model networks of size

10000. This suggests that the results are independent of population size.

In summary, on complete networks, the cooperative investments that individuals make

approaches the Hicks optimal strategy xH , which for the parameters chosen is 1, as the

assortativity r increases. For small values of r, there are some individuals that make high

investments, while others invest very little. On other networks, the value of xH is

approached as the average degree d of the networks decreases. Here again, at high values

of d, the population exhibits evolutionary branching, with individuals that make high

investments coexisting with ones that make low investments. Clustering coefficient C(2)

and homophily coefficient h of networks also have some effect on the dynamics, albeit

weaker than r or d.

For the CSD game with quadratic cost C(x) =−1.5x2 +4x and benefit

B(x) =−0.2x2 +3x functions, the simulation results (see Figure 55(a)) on a complete

network ΓWM agrees very well with the values predicted by analysis on well-mixed

populations. For the entire range of r values considered, the singular strategy x? is a

repeller, and this value decreases as r increases. So there is a threshold value of r below

which the initial strategy x0 satisfies x0 < x? and the population in this case evolves to the

zero-investment state. Above the threshold, x0 > x? and the population evolves to the

maximum-investment state. The simulation results (see Figures 55(b)-(d)) on model

(random regular, Erdős-Rényi, Barabási-Albert) networks with varying average degree d

show exactly what we expect from knowing that network-induced assortativity in game

interactions increases with decreasing average degree. There is a threshold value of d

below which the population evolves to the zero-investment state, and above which it

evolves to the maximum investment state. Furthermore, the degree distribution of the

networks has no effect on the dynamics.
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A comparison of x̄∞ values from the simulation results (see Figures 56-59) on model

networks with average degree d = 4,10 and with clustering coefficient C(2), and on model

networks with average degree d = 4,10 and with homophily coefficient h suggests that

when the singular strategy is a repeller, the dynamics is unaffected by clustering or

homophily.

A comparison of x̄∞ values from the simulation results (see Figures 60(a)-(f)) on

empirical networks show that if the initial strategy x0 has the right value, then on networks

with smaller average degree d, the singular strategy x? is more likely to satisfy x0 > x?, and

the population in this case evolves to the maximum-investment state. On the other hand,

for networks with higher values of d, the value of x? is likely to be higher than the value of

x0 and the population in this case evolves to the zero-investment state. For example, with

x0 = 0.3, the Γprotein network, which has the smallest average degree (d ≈ 3.56), the

population evolves to the maximum-investment state, while on the Γfb network, which has

the highest average degree (d ≈ 46.51), the population evolves to the zero-investment

state. The trend of x∞ with respect to the average degree d of the networks, which have

very different sizes, is in general comparable to the trend observed in the case of model

networks of size 10000. This suggests that the results are independent of population size.

In summary, on complete networks, the individuals switch from making zero

investments to making maximum (Hicks optimal) investments beyond a certain threshold

value of assortativity. On other networks, a similar trend is observed with decreasing

average degree d. Clustering coefficient C(2) and homophily coefficient h of networks

seem to have no effect when the singular strategy is a repeller.

For the CTOC game with quadratic cost C(x) = x2 and cubic benefit

B(x) =−0.0834x3 +2x2 + x functions, the simulation results (see Figure 63(a)) on a

complete network ΓWM agrees very well with the values predicted by analysis on
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well-mixed populations. As the assortativity r increases, the singular strategy x? decreases

and transitions at r = 0.3 from being an EBP to being an ESS. So the population, starting

from a state in which everyone invests a small amount x0 > 0, undergoes evolutionary

branching for values of r < 0.3, and for r > 0.3 evolves to the state in which everyone

invests an amount given by the singular strategy x?. The simulation results (see Figures

63(b)-(d)) on model (random regular, Erdős-Rényi, Barabási-Albert) networks with

varying average degree d show that except for Barabási-Albert networks, the population

undergoes evolutionary branching for all values of d. On Barabási-Albert networks, when

d = 4, the population exhibits an ESS. Though network-induced assortativity in game

interactions increases with decreasing average degree, the level of assortativity isn’t

sufficient on networks other than Barabási-Albert networks to change the nature of the

singular strategy from an EBP to an ESS.

A comparison of x̄∞ values from the simulation results (see Figures 64(a)-(d)) on

model networks with average degree d = 4 and with clustering coefficient C(2) is

inconclusive. The results (see Figures 65(a)-(d)) on model networks with average degree

d = 10 and with clustering coefficient C(2) suggests that an increase in clustering has no

effect on the nature of the singular strategy; it is an EBP throughout.

The results (see Figures 66(a)-(d)) on model networks with average degree d = 4 and

with homophily coefficient h suggests that an increase in homophily (from negative to

positive) changes the nature of the singular strategy from being an ESS to being an EBP.

The results (see Figures 67(a)-(d)) on model networks with average degree d = 10 and

with homophily coefficient h suggests that an increase in homophily (from negative to

positive) does not change the nature of a singular strategy that is an EBP.

A comparison of x̄∞ values from the simulation results (see Figures 68(a)-(f)) on

empirical networks further support the fact that networks with small values of average
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degree d exhibit an ESS in general, while networks with high values of d exhibit

evolutionary branching. For example, the Γinternet network, which has the second smallest

average degree (d ≈ 4.219), exhibits an ESS, while the Γfb network, which has the highest

average degree (d ≈ 46.51), exhibits evolutionary branching. Here again, it is interesting

to note that the Γprotein network, which has the smallest value of d exhibits evolutionary

branching. This is probably because of secondary effects due to clustering and homophily.

The trend of x∞ with respect to the average degree d of the networks, which have very

different sizes, is in general comparable to the trend observed in the case of model

networks of size 10000. This suggests that the results are independent of population size.

In summary, on complete networks, the cooperative investments that individuals make

approaches the Hicks optimal strategy xH , which for the parameters chosen is 0.25, as the

assortativity r increases. For small values of r, there are some individuals that make low

cooperative investments (i.e., overexploit the common-pool resource), while others make

very high cooperative investments (i.e., consume less of the common-pool resource). On

Barabási-Albert networks, xH is approached as the average degree d of the networks

decreases. On networks with high values of d, the population exhibits evolutionary

branching, with some individuals overexploiting the common-pool resource and others

consuming less of it. Clustering coefficient C(2) and homophily coefficient h of networks

also have an effect on the dynamics, albeit weaker than r or d.

When the CPD, CSD, and CTOC games are played on Erdős-Rényi networks ΓER

having small average degree d and on the six empirical networks, there is a fraction of

individuals that never evolve away from the initial monomorphic strategy x0. The reason

for this is that the networks consist of vertices with degree less than two, and the update

rule U = FE2 that we used in our simulations excludes such vertices from the interaction

and update rounds. The strategies of the individuals corresponding to these vertices have

been suppressed in the results.
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FE1 FE2 RE1 RE2 BD

CPD game 0.331 0.336 0.335 0.334 0.334

CSD game 0.584 0.549 0.472 0.523 0.582

CTOC game 1.294 1.345 1.257 1.288 1.201

Table 5: Effect of update rule on continuous-game dynamics on a complete network. The

value for each (game, update rule) pair indicates the long-term value x̄∞ of mean strategy

x̄ for the CPD game, and strategy xBP at which the population undergoes evolutionary

branching for the CSD and CTOC games. Simulation parameters: (CPD game) r = 0.5,

C(x) = x2 and B(x) = −x2 + 2x, π given by Equation 5.5, n = 10000, x0 = 0.1, xm = 1,

µ = 0.01, σ = 0.005, T = 200000, ν = 100, and s = 1; (CSD game) r = 0.3, C(x) =

−1.6x2+4.8x and B(x) =−x2+5x, π given by Equation 5.12, n= 10000, x0 = 0.1, xm = 1,

µ = 0.01, σ = 0.005, T = 300000, ν = 100, and s = 1; (CTOC game) r = 0.1, C(x) = x2

and B(x) =−0.0834x3 +2x2 + x, π given by Equation 5.21, n = 10000, x0 = 0.1, xm = 3,

µ = 0.01, σ = 0.005, T = 300000, ν = 100, and s = 1.

While the continuous game dynamics on complete networks is independent of the

update rule U , it does depend on U when the games are played on other networks. To

illustrate this, we simulated the CPD, CSD, and CTOC games on a complete network

ΓWM and a Barabási-Albert ΓBA network, using five different update rules U = FE1, FE2,

RE1, RE2, and BD. Table 5 shows the long-term value x̄∞ of mean strategy x̄ for the CPD

game, and the evolutionary branching point xBP for the CSD and CTOC games for each of

the (game, update rule) pairs when the games are played on a ΓWM network. Table 4

shows the same when the games are played on a ΓBA network. On a ΓWM network, the

game dynamics is relatively independent of the choice of update rule. However, on a ΓBA

network, the dynamics of all three games is significantly affected by the update rule.
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FE1 FE2 RE1 RE2 BD

CPD game 0.013 0.192 0.009 0.240 0.101

CSD game 0.186 0.576 0.118 0.481 0.400

CTOC game 2.011 1.688 1.906 1.500 1.625

Table 6: Effect of update rule on continuous-game dynamics on a Barabási-Albert net-

work. The value for each (game, update rule) pair indicates the long-term value x̄∞ of mean

strategy x̄ for the CPD game, and strategy xBP at which the population undergoes evolu-

tionary branching for the CSD and CTOC games. Simulation parameters: (CPD game)

d = 4, C(x) = x2 and B(x) = −x2 + 2x, π given by Equation 5.5, n = 10000, x0 = 0.1,

xm = 1, µ = 0.01, σ = 0.005, T = 200000, ν = 100, and s = 1; (CSD game) d = 10,

C(x) =−1.6x2+4.8x and B(x) =−x2+5x, π given by Equation 5.12, n= 10000, x0 = 0.1,

xm = 1, µ = 0.01, σ = 0.005, T = 300000, ν = 100, and s = 1; (CTOC game) d = 20,

C(x) = x2 and B(x) =−0.0834x3+2x2+x, π given by Equation 5.21, n = 10000, x0 = 0.1,

xm = 3, µ = 0.01, σ = 0.005, T = 300000, ν = 100, and s = 1.
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5.8 Future Directions

In this section we suggest two new lines of inquiry, along with an outline of how we might

want to approach them.

1. We analyzed our continuous game models on well-mixed populations, using the

framework of adaptive dynamics [GKM97, MB07], suitably modified to take into

account assortative interactions. Since the assortativity on a network bears an

inverse relationship to its average degree d, knowing how r, the degree of

assortative interactions in well-mixed populations, affects the game dynamics gives

us a qualitative sense of how the dynamics would behave on a network.

It would be nice to get a quantitative idea of how the game dynamics on a

network is affected by its structural properties. To do this, we need to develop a

framework of adaptive dynamics for networks, and this is how we would approach

the problem. Following the procedure highlighted in Section 4.8 of Chapter 4 we

can derive the replicator equation for a regular network Γ with average degree d,

taking into account the update rule U for the evolutionary dynamics; recall that the

evolutionary dynamics on networks depends on the update rule. Once we have the

replicator equation, we can obtain the invasion fitness fy(x) of a rare mutant strategy

y, which will then include the details of the network Γ and the update rule U . With

the expression for the invasion fitness of the mutant strategy in hand, we can carry

out the program of adaptive dynamics as usual to figure out the evolutionary fate of

the mutant strategy. Though the analysis is tractable only for simple networks such

as Bethe lattices or Caylee trees [Bet35], it should serve as a good approximation

for an arbitrary network with average degree d provided the probability of short

loops in the network becomes negligible as the network size n increases.
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2. The three continuous games we explored in this chapter only considered pairwise

interactions, i.e., interactions among pairs of individuals in a population. One can

easily think of situations in which groups of individuals engage in a cooperative act

among each other (CPD game), make cooperative investments toward a common

good (CSD game), or collectively consume a limited common-pool resource

(CTOC game). Such situations involving groups of individuals can be described by

generalizing the CPD, CSD, and CTOC games to groups of N > 2 individuals

making investments x1, . . . ,xN . In case of a well-mixed population, we might

interpret the degree r of assortative interactions as follows: with probability r an

individual interacts with N−1 other individuals of its own type, and with

probability 1− r it interacts with N−1 individuals randomly picked from the

population. The invasion fitness f r
y (x) of a rare mutant strategy y is thus given by

f r
y (x) = rπ(y; y, . . . ,y︸ ︷︷ ︸

N−1 terms

)+(1− r)π(y; x, . . . ,x︸ ︷︷ ︸
N−1 terms

)−π(x; x, . . . ,x︸ ︷︷ ︸
N−1 terms

). (5.29)

Note that when N = 2, the equation reduces to the invasion fitness given by

Equation 5.3.

The payoff π(xi;xi) to the ith individual playing strategy xi, for the CPD, CSD,

and CTOC games, is respectively given by

π(xi;xi) = B(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xN)−C(xi), (5.30)

π(xi;xi) = B(x1 + · · ·+ xN)−C(xi), and

π(xi;xi) = B(xi)−C(x1 + · · ·+ xN),

where C(x) and B(x) are the cost and benefit functions for the games, and

xi = x1, . . . ,xi−1,xi+1, . . . ,xN denotes the strategies of the individuals not including

the ith individual. Note the when N = 2, the payoff functions reduce to Equations

5.21, 5.12, and 5.21 respectively for the pairwise CPD, CSD, and CTOC games.

268



It is worth noting that the N-player CPD game is a generalization of the

N-player public goods game [Bin92, FG00], used extensively in economics to study

cooperative behavior, and in which the payoff π(xi;xi) to the ith individual

contributing an amount xi toward a public good, is given by

π(xi;xi) =
k
N

(
x1 + · · ·+ xi−1 + xi+1 + · · ·+ xN

)
−
(

1− k
N

)
xi, (5.31)

where k < N is the factor by which the contributions are multiplied before the public

good payoff is evenly divided among the players, and xi = x1, . . . ,xi−1,xi+1, . . . ,xN

denotes the contributions made by the individuals not including the ith individual.

With the invasion fitness of the mutant strategy y and payoff functions defined as

above, the analysis of the games involving groups of N > 2 interacting individuals

can be carried out as usual using the framework of adaptive dynamics.

When the games are played on a network Γ, the notion of a group is naturally

imposed by the network structure. The group to which an individual belongs is

determined by the individual’s neighborhood. For example, the payoff π(xi;xi) of

the ith individual playing strategy xi, for the CPD, CSD, and CTOC games, are

respectively given by

π(xi;xi) = B(x1 + · · ·+ xki)−C(xi), (5.32)

π(xi;xi) = B(x1 + · · ·+ xki + xi)−C(xi), and

π(xi;xi) = B(xi)−C(x1 + · · ·+ xki + xi),

where C(x) and B(x) are the cost and benefit functions for the games, and

xi = x1, . . . ,xki denote the strategies of the ki neighbors of i.
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CHAPTER 6

DISEASE DYNAMICS

Prevention is better than cure.

- Desiderius Erasmus

6.1 Introduction

In this chapter we turn our attention to yet another kind of dynamical process on complex

networks, namely the spreading of infectious diseases in a population. Mathematical

modeling of epidemics is an active area of research spanning multiple disciplines.

Epidemiologists, computer scientists, and social scientists share a common interest in

studying spreading phenomena and use similar models to describe the diffusion of viruses,

knowledge, and innovation [KSC97, Kle07, LM01].

In this chapter we first look at compartmental models from epidemiology—the study

of the patterns, causes, and effects of health and disease conditions in populations—in

which the within-host dynamics of a disease is represented as changes between a few

disease states or compartments, such as susceptible (S), infected (I), recovered (R), and so

forth [AM92, Bai75, DH00]. The individual-level disease parameters such as the

transmission rate of a disease are fixed in such models, and one is primarily interested in

the change of the number of infected individuals in the population as a function of time.

The main aim in these models is therefore to understand the properties of epidemics at

equilibrium, the existence of a non-zero density of infected individuals, the presence or
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absence of a global outbreak, etc. These models assume a fully-mixed population in which

every individual has an equal chance of coming into contact with every other individual.

In reality, most diseases spread over networks of contacts between individuals. For

example, contagious diseases and parasites are communicated when people come into

close contact, and HIV and other sexually transmitted diseases (STDs) are communicated

when people have sex. Such diseases are better understood using epidemiological models

that take into account the connection patterns among the individuals in a population. The

introduction of network structure into the models leads to important new results

concerning the basic properties of disease spreading processes

[AM92, BPV03, MA84, ML01, PV01b].

We propose a stochastic, discrete-time, evolutionary variant of the

susceptible-infected-recovered (SIR) compartmental model to study disease dynamics on

complex networks. We focus on the evolutionary dynamics of disease-causing

parasites—anything that lives and multiplies inside another organism called the “host” and

usually causes harm. We assume that the host does not evolve on the time scale under

consideration, which is a reasonable assumption, since parasites generally evolve much

faster than their hosts. The model is individual based and focuses on how the

disease-causing pathogen evolves in virulence [Ewa93, Now06a] in response to the

selection pressures acting on it. In addition to studying the evolution of virulence, we use

our model to evaluate the effectiveness of different vaccination strategies in combating a

disease [AM85, DB02, PV02b]. We analyze our model for a complete network and

describe how the model can be implemented on a computer for in-silico exploration of

disease dynamics. We present results from agent-based simulations on model and

empirical networks, and provide a general discussion of the results. We conclude the

chapter with suggestions for future inquiry.
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6.2 Models of Disease Dynamics

The biological details of what goes on when a host individual contracts an infection is

rather complicated. The pathogen responsible for the infection typically multiplies within

the body while the immune system tries to combat it. If we want to understand fully how

diseases spread through populations we need to take all of these details into account,

which is practically infeasible. Fortunately, there are more tractable approaches based on

simplified models which provide a good insight on disease dynamics in many cases and it

is on such models that we focus in this section.

Mathematical modeling of epidemics was first undertaken by Anderson McKendrick,

a doctor and amateur mathematician who made seminal contributions to the field in the

early twentieth century. The theories that he and others developed form the cornerstone of

classical mathematical epidemiology. The books by Bailey [Bai75], Anderson and May

[AM92], and the review article by Hethcote [Het00] are excellent resources on the subject.

Classical epidemiology [AM92, Bai75, DH00] avoids discussing contact

network—networks through which diseases typically spread—by making use of a fully

mixed or mass-action approximation, in which it is assumed that every individual has an

equal chance, per unit time, of coming into contact with every other, i.e., people meet

completely at random. In the real world, people have contact only with a small fraction of

the population of the world, and that fraction is not chosen at random, which is where

networks come into the picture. A familiarity with the classical models is still useful,

since the model we propose to study disease dynamics is based on these classical models.

Before we discuss the models, we must describe an important metric that is used in the

study of epidemics, namely the basic reproduction number R0 [Bai75], which is defined

as follows. Consider the spread of a disease when it is just starting out, i.e., when there are

only a few cases of the disease and the rest of the population is susceptible—a naive
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Disease Transmission R0

Measles Airborne 12 - 18

Pertussis Airborne droplet 12 - 17

Diphtheria Saliva 6 - 7

Smallpox Social contact 5 - 7

Polio Fecal-oral route 5 - 7

Rubella Airborne droplet 5 - 7

Mumps Airborne droplet 4 - 7

HIV/AIDS Sexual contact 2 - 5

SARS Airborne droplet 2 - 5 [WT04]

Influenza (1918 pandemic strain) Airborne droplet 2 - 3 [MRL04]

Table 7: Values of R0 for well-known infectious diseases. Unless otherwise noted, the R0

values are from [CW].

population in epidemiology jargon—and consider a susceptible individual who catches

the disease in this early stage of the outbreak. The basic reproduction number is defined to

be the average number of additional individuals that such an individual passes the disease

onto before she recovers. In general, it is possible to show that the extinction probability

of an epidemic starting with n infected individuals is equal to R−n
0 [Bai75]. For example,

in the case of a single infected individual, even for values of R0 as high as 2 the outbreak

probability is just 50%. Table 7 lists the value of R0 for various known diseases.

The point R0 = 1 which separates the growing and shrinking behaviors of a disease

marks the epidemic threshold between regimes in which the disease either multiplies or

dies out. The epidemic threshold is a central concept in epidemiology since it provides a
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reference frame to understand the evolution of contagion processes and to focus on

policies aimed at an effective reduction of the basic reproductive number in order to stop

epidemic outbreaks. Generally, the larger the value of R0, the harder it is to control the

epidemic. Assuming a well-mixed population, the proportion v of the population that

needs to be vaccinated to eradicate the disease is given by

v≥ v? = 1− 1
R0

. (6.1)

If v < v?, the disease will remain endemic, although at lower levels than in the case of

absence of vaccinations. For example, to prevent a disease with R0 = 5 from spreading, at

least 80% of the population must be vaccinated.

6.2.1 SI Model

The simplest model in epidemiology is the susceptible-infected (SI) model in which the

disease dynamics is represented as changes between two disease states, namely

susceptible (S) and infected (I) [AM92, Bai75, DH00]. An individual in the susceptible

state is someone who does not have the disease yet but could catch it if she comes into

contact with someone who does. An individual in the infected state is someone who has

the disease and can potentially pass it on if she comes into contact with a susceptible

individual. Figure 69 shows the allowed transitions between states in the SI model.

S Iβ

Figure 69: Allowed transitions between states in the SI model.

Consider a disease spreading through a population of n individuals. Let S(t) be the

number of individuals who are susceptible at time t and let X(t) be the number of infected
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individuals. Since the disease-spreading process is a random one, these numbers are not

uniquely determined. To circumvent this problem, S and X are interpreted as the average

or expected number of susceptible and infected individuals.

Suppose that people meet and make contacts sufficiently to result in the spread of

disease entirely at random with a per-individual transmission rate β , meaning that each

infected individual, on average, transmits the disease to β randomly chosen individuals

per unit time. The disease is transmitted when an infected individual comes into contact

with a susceptible one. If the total population consists of n individuals, then the average

probability of an individual being susceptible is S
n , and hence an infected person transmits

the disease to βS
n susceptible individuals per unit time. Since there are on average X

infected individuals in the population, the overall average rate of new infections is βSX
n

and we can write a differential equation1 describing the rate of change of X as

Ẋ = β
SX
n
. (6.2)

At the same time the number of susceptible individuals goes down at the same rate,

Ṡ =−β
SX
n
. (6.3)

It is often convenient to define variables representing the fractions of susceptibles and

infected individuals as:

s =
S
n
, x =

X
n
, (6.4)

in terms of which 6.2 and 6.3 can be written as

ṡ =−β sx (6.5)

ẋ = β sx.

1We use the notation Ẋ to denote the derivative of X with respect to time.
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Since S+X = n, or equivalently s+ x = 1, we do not need both of these equations.

Eliminating s from the equations by writing s = 1− x, we have

ẋ = β (1− x)x, (6.6)

which is just the logistic growth equation (see A.3) with the solution

x(t) =
x0eβ t

1− x0 + x0eβ t
, (6.7)

where x0 = x(0). This equation produces an S-shaped “logistic growth curve” for the

fraction of infected individuals, as the following example illustrates.

Example 6.1. Consider the SI model of disease spread through a population in which 1%

of the population is infected at the beginning and the rest of the individuals are in the

susceptible state, i.e., x(0) = 0.01 and s(0) = 0.99. Let β = 0.8. Figure 70 shows the

trajectories for the system, i.e., the evolution of the fractions s,x of the population in the

two disease states. The x curve increases exponentially for a short time, corresponding to
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Figure 70: The trajectories for the SI model. s(0) = 0.99,x(0) = 0.01, and β = 0.8.

the initial phase in which most of the population is susceptible. The curve then saturates
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as the number of susceptibles declines and the disease has a harder and harder time

finding new victims.

For the SI model, R0 is formally infinite since an infected individual can infect an

arbitrary number of others. For a population of finite size, however, the empirical value of

R0 is finite.

6.2.2 SIR Model

One way in which the simple SI model can be extended is by introducing recovery from

disease. In the SI model, individuals, once infected, are infected forever. For many real

diseases, however, people recover from infections after a certain time because their

immune system fights off the disease-causing agent. Furthermore, people often retain their

immunity to the disease after such a recovery so that they cannot catch it again. To

represent this behavior in our model we introduce a third disease state, usually denoted R

for recovered. The corresponding three-state model is called the

susceptible-infected-recovered or SIR model [AM92, Bai75, DH00].

The R state in the SIR model can also represent death, and thus accommodate diseases

with mixed outcomes where people sometimes recover and sometimes die—from a

mathematical standpoint we do not care whether the individuals in the R state are

recovered or dead, since either way they are effectively removed from the pool of potential

hosts for the disease. For this reason the model is also called susceptible-infected-removed

model.

The dynamics of the fully-mixed SIR model has two stages. In the first stage,

susceptible individuals become infected when they come in contact with infected

individuals; the transmission rate of infected individuals is β as in the SI model. In the

second stage, infected individuals recover, with γ denoting the probability of an infected
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individual recovering per unit time. Figure 71 shows the allowed transitions between

states in the SIR model.

S I Rβ γ

Figure 71: Allowed transitions between states in the SIR model.

The differential equations for the SIR model in terms of the fractions s,x,r of the

individuals in the three states are

ṡ =−β sx, (6.8)

ẋ = β sx− γx, (6.9)

ṙ = γx, (6.10)

and in addition the three variables satisfy

s+ x+ r = 1. (6.11)

To solve these equations we eliminate x between Equation 6.8 and Equation 6.10, giving

1
s

ṡ =−β

γ
ṙ, (6.12)

and then integrate both sides with respect to t to get:

s = s0e−
β r
γ , (6.13)

where s0 = s(0) and we have chosen the constant of integration so that there are no

individuals in the recovered state at t = 0.

Putting x = 1− s− r in Equation 6.10 and using Equation 6.13, we get

ṙ = γ(1− r− s0e−β r/γ). (6.14)
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If we can solve this equation for r then we can find s from Equation 6.13 and x from

Equation 6.11. Unfortunately, we cannot find a closed-form solution for the equation, and

have to resort to numerical means instead.

Example 6.2. Consider the SIR model of disease spread through a population in which

1% of the population is infected at the beginning and the rest of population is susceptible

to the disease. Let β = 0.8 and γ = 0.2. We can solve the differential equations for the

SIR model numerically, and the trajectories are shown in Figure 72. The fraction of
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Figure 72: The trajectories for the SIR model. s(0) = 0.99,x(0) = 0.01,r(0) = 0,β = 0.8,

and γ = 0.2.

susceptibles in the population decreases monotonically as they are infected and the

fraction of recovered individuals increases monotonically. The fraction infected, however,

goes up at first as people get infected, then down again as they recover, and eventually

goes to zero as t→ ∞. Note that the number of susceptibles does not go to zero, a close

inspection of which shows that the curve for s(t) ends a little above the axis. This is

because when x→ 0 there are no infected individuals left to infect the remaining

susceptibles. Any individuals who survive to late enough times without being infected
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will probably never get the disease at all. Similarly the fraction of recovered individuals

does not quite reach one as t→ ∞.

We can calculate R0 for the SIR model as follows. If an individual remains infectious

for a time τ then the expected number of others she will have contact with during that time

is βτ . The definition for R0 is for a naive population in which all of the individuals one

has contact with are susceptible, and hence βτ is also the total number of individuals the

infected individual will infect.

Given the value of γ we can calculate the length of time τ that an infected individual is

likely to remain infected before they recover. The probability of recovering in any time

interval δτ is γδτ , and the probability of not doing so is 1− γδτ . Thus the probability

that the individual is still infected after a total time τ is

lim
δτ→0

(1− γδτ)τ/δτ = e−γτ , (6.15)

and the probability p(τ)dτ that the individual remains infected this long and then recovers

in the interval between τ and τ +δτ is the quantity times γdτ:

p(τ)dτ = γe−γτdτ, (6.16)

which is a standard exponential distribution. We average βτ over the distribution of τ to

get the average number R0 as

R0 = βγ

∫
∞

0
τe−γτdτ =

β

γ
. (6.17)

The epidemic threshold for the SIR model is at R0 = 1, which corresponds to the point

β = γ . Note that if γ = 0, then R0 is infinite, which makes sense because the model in this

case reduces to the SI model for which R0 is indeed infinite.
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6.2.3 SIR Model with Births and Deaths

We next consider a variant of the SIR model in which we introduce births and deaths. In

this model, an individual in any disease state can die of natural causes. In addition, an

infected individual can die because of the virulence induced by the disease

[AM92, Bai75, DH00]. When an individual dies they are immediately replaced by a

new-born, susceptible individual. We let u denote the probability per unit time of an

individual dying of natural causes, and c denote the disease-induced death probability per

individual per unit time. The allowed transitions for this model is shown in Figure 73.

S R
β

u+ c

γI

u

u

Figure 73: Allowed transitions between states in the SIR model with births and deaths.

The differential equations for the model in terms of the fractions s,x,r of the

individuals in the three states are

ṡ =−β sx+(u+ c)x+ur, (6.18)

ẋ = β sx− (γ +u+ c)x, (6.19)

ṙ = γx−ur, (6.20)
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and the three variables as usual satisfy the relation s+ x+ r = 1. These equations can be

solved numerically to obtain the evolution of the fractions of susceptible, infected, and

recovered individuals.

Example 6.3. Consider the SIR model with births and deaths of disease spread through a

population in which 1% of the population is infected at the beginning and the rest of

population is susceptible to the disease. Let β = 0.8,γ = 0.2,u = 0.01, and c = 0.11. We

can evaluate the differential equations for the model numerically, and the trajectories are

shown in Figure 74. Notice how, unlike the standard SIR model, the curves oscillate
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Figure 74: The trajectories for the SIR model with births and deaths. s(0) = 0.99,x(0) =

0.01,r(0) = 0,β = 0.8,c = 0.11,γ = 0.2, and u = 0.01.

before reaching the equilibrium values. Moreover, the fractions of susceptible and

recovered individuals at equilibrium are respectively higher and lower than those in the

standard SIR model.

We can calculate R0 for the model as follows. The average lifetime τ of an infected

individual is 1
γ+u+c , since the probability of an individual leaving the infected state per
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unit time is γ +u+ c. The rate at which one infected individual produces new infections is

β s. The product of these two quantities is the average number of new infectious caused by

a single infected individual in her lifetime if there are s uninfected individuals. The

equilibrium abundance of uninfected individuals prior to the arrival of the infection

consists of the entire population. Therefore,

R0 =
β

γ +u+ c
. (6.21)

Note that when u = c = 0, we recover the R0 for the standard SIR model without births

and deaths.

We can understand parasite evolution in this model by studying the epidemiological

dynamics of at least two parasite strains S1 and S2 competing for the same host

[ALM94, Ewa93, LM94, Now06a]. Let β1 and β2 be the transmission rates of the two

strains, let c1 and c2 be their virulences, and let x1 and x2 be the fractions of individuals

infected by the two strains. The differential equations for the model in terms of the

fractions s,x1,x2,r of individuals in the three states are

ṡ = (u+ c1−β1s)x1 +(u+ c2−β2s)x2 +ur, (6.22)

ẋ1 = (β1s− γ−u− c1)x1, (6.23)

ẋ2 = (β2s− γ−u− c2)x2, (6.24)

ṙ = γx1 + γx2−ur, (6.25)

The basic reproductive numbers R1
0 and R2

0 for the two strains, using Equation 6.21, are

given by

R1
0 =

β1

γ +u+ c1
, (6.26)

and

R2
0 =

β2

γ +u+ c2
. (6.27)
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At equilibrium, the time derivatives ṡ, ẋ1, ẋ2, and ṙ must be zero. Furthermore, stable

coexistence between S1 and S2 requires that both x1 and x2 be positive at equilibrium.

From ẋ1 = 0 and x1 > 0, we obtain s = γ+u+c1
β1

. But from ẋ2 = 0 and x2 > 0, we obtain

s = γ+u+c2
β2

. Both conditions can hold simultaneously only if R1
0 = R2

0. Generally, however,

we expect R1
0 6= R2

0, in which case coexistence is not possible. The evolutionary fate of the

two strains is described by one of the following cases:

• If R1
0 < 1 and R2

0 < 1, then the only stable equilibrium is the uninfected population,

since ẋ1 < 0 and ẋ2 < 0.

• If R1
0 > 1 > R2

0, then S2 becomes extinct and S1 survives, since ẋ2 < 0 and ẋ1 > 0.

• If R1
0 < 1 < R2

0, then S1 becomes extinct and S2 survives, since ẋ1 < 0 and ẋ2 > 0.

• If R1
0 > 1 and R2

0 > 1, then the strain with the higher basic reproductive number will

outcompete the strain with the lower basic reproductive number. For example, if

R2
0 > R1

0, then all infected individuals will eventually carry S2, while S1 will become

extinct.

Evolution thus tends to maximize R0. If there is no constraint between the

transmission rate β and virulence c, then the evolutionary dynamics will increase β and

reduce c. This represents the conventional wisdom that infectious diseases will evolve to

become less virulent. In general, however, we expect an association between β and c;

usually the harm done to hosts (c) is associated with the production of transmission stages

(β ). For certain functional relations between β and c there is an evolutionarily stable

degree of virulence c?, corresponding to the maximum value of R0. Other situations allow

evolution toward the extreme values of very high or low virulences. The detailed

dynamics depend on the shape of β as a function of c. For example, if β (c) = β0cα ,

where β0,α ∈ (0,1), the maximum R0 is achieved at an intermediate optimum level of
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virulence given by c? = α(γ+u)
1−α

. We will restrict our attention to this class of saturating

functions for β (c), since it has a nice biological interpretation based on the law of

diminishing returns [LHN95]. Figure 75 shows how R0 varies with c for γ = 0.2,u = 0.01,

and α = 0.5. The dashed line and the inset in the plot show the value of c?, i.e., the value

of virulence that maximizes R0.
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Figure 75: The R0 curve for the SIR model with births and deaths. β (c) =
√

c,γ = 0.2, and

u = 0.01.

6.2.4 Our Model

We are now ready to present our own model for studying the evolutionary dynamics of

diseases. The model is based on the SIR model with births and deaths that we encountered

in the previous section, and as a result shares the same epidemiological parameters with

that model. However, the model is different from the equation-based models in the

following fundamental ways:
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• Unlike the equation-based approaches, it models disease dynamics at the level of

individuals in the population.

• It does not assume a well-mixed population. It instead represents a population as a

network in which the vertices correspond to the individuals in the population and

the edges correspond to the connection patterns among the individuals. Our model

can thus be used to study diseases that spread over contact networks.

• It is a discrete-time, stochastic model, and hence the parameters that were

interpreted as rates in the deterministic, equation-based models have to be

interpreted as probabilities. In the limit where the time interval between generations

tends to zero, the model well approximates the continuous-time model.

• Unlike the equation-based approaches which fix the epidemiological parameters and

simply focus on the time evolution of the number of individuals in the different

disease states, the main purpose of our model is to understand the evolution of the

virulence of a disease.

• Our model employs ideas from evolutionary game theory [Smi74] to study the

evolutionary dynamics of a disease. A population is a collection of individuals, each

in one of the disease states under consideration. We assume that each infected host

individual carries a single strain of the disease, and collectively refer to the

pathogens within a single host as a player. The strategy of a player is its

transmission probability. The payoff or fitness of a player is its virulence, which is

determined using the payoff function that relates the transmission probability to the

virulence. Finally, the long-term value of the mean virulence in the population

corresponds to an evolutionarily stable strategy (ESS).
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We now proceed to describe our model. Let Γ denote a contact network of n vertices

through which a disease spreads. The vertices, labeled i = 1, · · · ,n, represent the

individuals in a population and the edges represent the connection patterns among the

individuals. Since our model is based on the SIR model, each vertex is either a susceptible

(S), infected (I), or a recovered (R) vertex. An individual can in addition be in a

vaccinated (V ) state if the individual has been vaccinated for the disease2.

Recall that the neighbors of a vertex i ∈ Γ is denoted by N(i). We denote the set of

neighbors of i that are in state X by NX(i), and the number of such neighbors by nX(i), i.e.,

nX(i) = |NI(i)|. For example, NI(i) denotes the set of infected neighbors of i and nI(i)

denotes the number of infected neighbors of i.

The basic parameters in the model are: the infection probability βi which may vary for

different individuals in state I; the disease-induced death probability ci which may also

vary for different individuals in state I; the natural death probability u; and the recovery

probability γ .

The model is a stochastic process on Γ, carried out for T generations. At each

generation t of the process, a vertex i in Γ is picked at random and one of the following

occurs depending on the state of i:

If i is a S vertex, it can die with probability u and be reborn as a S vertex again. If this

happens, the process starts over again with another vertex in Γ.

If the vertex does not die, it can become infected by any infected neighbor it may have.

The probability pi that the S vertex i becomes infected is simply the complement of the

probability that the vertex is not infected by any of its infected neighbors, and is thus is

2A vaccinated individual cannot propagate the disease to her neighbors. Moreover, when vaccinated
individuals die, they are replaced by new born individuals who inherit their immunity to the disease, and
hence also belong to the vaccinated state. Thus, when an individual is vaccinated, we are effectively deleting
the corresponding vertex from the contact network Γ.
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given by

pi = 1− ∏
j∈NI(i)

(1−β j). (6.28)

If i does not get infected, the process starts over again with another vertex in Γ.

If i does get infected, it assumes the transmission probability of one of the infected

neighbors j ∈ NI(i) in proportion to the values of β j, i.e., the probability pi← j that i will

assume j’s transmission probability is given by

pi← j =
β j

∑
nI(i)
l=1 βl

. (6.29)

The β value is selected using the roulette-wheel selection method. This involves

picking a uniform random number r ∈ [0,L), where L = ∑
nI(i)
l=1 βl , and choosing the β

value corresponding to the interval in which r lands (βk in Figure 76). This procedure

determines (stochastically) which neighbor j of i infects i.

β1 βNI(i)

r ∈ [0,L)

0

· · ·

L

· · ·βk· · ·

Figure 76: Roulette-wheel selection of transmission probability for the S-vertex i from its

neighborhood.

If a mutation of the transmission probability does occur (with probability µ) then the

new β value of i is taken to be a random number picked from a the normal distribution

N(β j,σ), i.e., from a normal distribution whose mean is the transmission probability of j,

and whose standard deviation is σ .
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We are assuming that the values of βi and ci for any given vertex i are coupled through

the relation

βi = β0cα
i , (6.30)

where β0,α ∈ (0,1).

Thus if the β value assigned to i has mutated then the corresponding new c value for i

will be determined from the new β value using Equation 6.30.

If no mutation occurs (with probability 1−µ) then the β value of i is simply replaced

by that of j, i.e., by β j. Since β and c are coupled, we also replace the c value of i by the c

value of j.

If the vertex i is in state I it can die either of natural causes or due to the disease, i.e.,

with probability 1− (1−d)(1− ci). If the vertex dies, it is reborn as a S vertex, and the

process starts over again with another vertex in Γ. If the vertex does not die it can recover

with probability γ and become a R vertex.

If the vertex i is in the R state it can die with probability u and be reborn a S vertex.

If the vertex i is in the V state, the process starts over again with a new vertex in Γ.

The process is set in motion by infecting a single individual in a population Γ of n

susceptible individuals. This seed individual is picked as the random neighbor of a

randomly picked individual. On scale-free networks—social networks through which

human diseases spread and technological and information networks through which

computer viruses spread are typically scale-free—the seed individual is likely to be a

highly connected individual [CHB03, MKC04]. The seed individual is assigned a

transmission probability β , and hence the virulence c =
(

β

β0

) 1
α . The model is run for T

generations. The mean virulence c̄ of the population at any generation is calculated as

289



c̄ =
∑i∈NI (i)

ci

NI(i)
. We are interested in the long-term value of the mean virulence, which we

denote by c̄∞.

Algorithm 6.6 suggests a recipe for implementing the model as a computer program.

We provide Python- and Java-based implementations of the model, the details of which

can be found in B.6.

Algorithm 6.6 Disease dynamics on complex networks

Input: A population network Γ of size n with a single individual infected individual i

with infection probability β , and the rest in the susceptible (S) state, i.e., at generation

0, the population has the state profile s0 = {s0
1,s

0
2, . . . ,s

0
N} with

s0
1 = s0

2 = · · ·= s0
i−1 = s0

i+1 = · · ·= s0
N = R and s0

i = I and the virulence profile

c0 = {c0
1,c

0
2, . . . ,c

0
N} with c0

1 = c0
2 = · · ·= c0

i−1 = c0
i+1 = · · ·= c0

N = 0 and ci =
(

β

β0

) 1
α ;

the natural death probability u; recovery probability γ; constants β0 and α; rate µ and

standard deviation σ for Gaussian mutations of transmission probability; and number

of generations T .

Output: The lists L1 = {s0,s1, . . . ,sT−1}, and L2 = {c0,c1, . . . ,cT−1}.

1: L1← [],L2← []

2: for t from 1 to T do

3: L1.append(st−1),L2.append(ct−1)

4: for count from 1 to N do

5: i← random individual from Γ

6: if st
i = S then

7: if random()< u then

8: continue

9: end if

10: p←∏ j∈NI(i)(1−β
t−1
j )
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11: if random()< 1− p then

12: j← a random individual from NI(i) picked in proportion to infection

probability (Equation 6.29)

13: st
i← I,β t

i ← β
t−1
j

14: if random()< µ then

15: β t
i ←max(0,min(gaussian(β t

i ,σ),1))

16: end if

17: ct
i←

(β t
i

β0

) 1
α

18: end if

19: else if st−1
i = I then

20: if random()< 1− (1−u)(1− ct−1
i ) then

21: st
i← S,β t

i ← 0,ct
i← 0

22: else if random()< γ then

23: st
i← R,β t

i ← 0,ct
i← 0

24: end if

25: else if st−1
i = R then

26: if random()< u then

27: st
i← S,β t

i ← 0,ct
i← 0

28: end if

29: else if st−1
i =V then

30: continue

31: end if

32: end for

33: end for

34: return L1,L2
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There are few points worth noting about the model. First, the population size remains

constant over time in spite of births and deaths. This is because every dead individual is

immediately replaced by a new born individual. Second, the structure of the contact

network Γ also remains constant over time3. Third, the mutations of the transmission

probabilities provide an essential ingredient for the evolution of virulence of a disease.

Without mutations, i.e., if µ = 0, the model reduces to the standard SIR model with births

and deaths with fixed values of β and c.

We can derive R0 for a population represented by a complete network ΓWM as follows.

The mean infection period τ for an infected individual is the average time it takes for an

infected individual to leave the I state to which the individual belongs and either join the R

state or the S state. Let pI→R,S denote the probability that the individual leaves the I state,

pI→R denote the probability that the individual enters the R state, and pI→S denote the

probability that the individual enters the S state. The infected individual can join the R

state by recovering with a probability γ , so pI→R = γ . The infected individual can join the

S state by dying and being reborn; the individual can die of natural causes with probability

u or due the infection with probability c, so pI→S = 1− (1−u)(1− c). Therefore, pI→R,S

is obtained as follows:

pI→R,S = pI→R + pI→S− pI→R pI→S

= γ +[1− (1−u)(1− c)]− γ[1− (1−u)(1− c)]

= γ +1− (1−u)(1− c)− γ + γ(1−u)(1− c)

= 1− (1−u)(1− c)+ γ(1−u)(1− c)

= 1− [(1−u)(1− c)− γ(1−u)(1− c)]

= 1− (1− γ)(1−u)(1− c). (6.31)

3In Section 6.4 we explore the possibility where the network is slightly perturbed in each generation.
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So the mean infection period is given by τ = 1
PI→R,S

= 1
1−(1−γ)(1−u)(1−c) . Since the network

is complete, the infected individual is in contact with every other individual in the

population, and since the population is a naive, all of these individuals are in the

susceptible state, i.e., the fraction s of susceptible individuals is 1. Therefore, the number

of new infections caused by the infected individual per unit time is β . Thus

R0 = number of infections per unit time×mean infection period

= βτ

=
β

1− (1− γ)(1−u)(1− c)

=
β0cα

1− (1− γ)(1−u)(1− c)
. (6.32)

For small values of γ,d and c, we have the following approximation:

1− (1− γ)(1−u)(1− c)≈ γ +u+ c. (6.33)

Therefore, the expression for R0 can be approximated by

R0 =
β0cα

γ +u+ c
, (6.34)

which is what we derived for R0 for the standard SIR model with births and deaths. Thus,

for small values of the probabilities γ,u, and c, we expect the discrete-time model to

closely approximate the continuous-time model. Moreover, we expect, as in the case of

the continuous-time model, the virulence of disease to evolve so as to maximize R0, and

the following example demonstrates that this is indeed the case. Calculating the

expression for c? that maximizes R0 is a trivial exercise in calculus, and is given by

c? =
α(γ +u)

1−α
. (6.35)

Example 6.4. Consider a disease spreading over a complete network ΓWM having 10000

vertices. Let β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001, and σ = 0.05. Figure

77 shows how R0 varies with c. The value c? of virulence that maximizes R0 is c? = 0.09.
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Figure 77: The R0 curve for our model. β (c) =
√

c,γ = 0.2, and u = 0.01.

We simulate the disease dynamics on a computer for T = 300000 generations using

the software implementation of our model. The report frequency ν = 100. Figure 78(a)

shows the evolution of the fractions s,x,r of the population in the different disease states.

Figure 78(b) shows the evolution of the mean virulence c̄. The long-term value c̄∞ of the

mean virulence, indicated by the inset in the figure, is c̄∞ = 0.097, which agrees very well

with c?, the value of virulence that maximizes R0.
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Figure 78: Disease dynamics on a complete network. Simulation parameters: n =

10000,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and

ν = 100. (a) Evolution of the fractions s,x,r of the population in the three disease states.

(b) Evolution of the mean virulence c̄.
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6.3 Simulation Results

In this section we present the results of simulating our disease dynamics model on

networks having different structural properties. Our inquiry is two-fold: we want to know

how the structural properties of a network shape the long-term value c̄∞ of the mean

virulence of a disease spreading over the network; and what is the most effective way of

carrying out vaccination programs so that the disease is eliminated with the least number

of vaccinations administered.

All the simulations, unless specified otherwise, were carried out using the following

values for the parameters involved: population size n = 100000, transmission probability

β = 0.075, recovery probability γ = 0.08, natural death probability u = 0.01, β (c) =
√

c,

mutation probability µ = 0.0001, standard deviation for mutations σ = 0.05, number of

generations T = 300000, and report frequency ν = 100. See B.6 for details on how to

simulate our model of disease dynamics.

For the parameters chosen, the value c? of virulence that maximizes R0 is c? = 0.09,

and this value is marked by a dashed line in the plots. In the plots that show the evolution

of mean virulence c̄, the inset in the plots indicates the value c̄∞, the average value of the

mean virulence c̄ over the last 10% of the generations.

6.3.1 Evolution of Virulence

Complete Network

The results shown in each of the plots in this section is an average over ten runs. The first

set of results concerns complete networks ΓWM. Figure 79 shows the evolution of mean

virulence c̄ on a complete network.
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Figure 79: Evolution of mean virulence c̄ on a complete network. Simulation parameters:

n = 10000,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000,

and ν = 100.

Model Networks with Varying Average Degree

The next set of results concerns model networks with varying average degree d. Figures

80(a)-(d) show the evolution of mean virulence c̄ on random regular networks ΓRR with

average degree d = 4,6,8, and 10. Figures 81(a)-(d) show the evolution of mean virulence

c̄ on Erdős-Rényi networks ΓER with average degree d = 4,6,8, and 10. Figures 82(a)-(d)

show the evolution of mean virulence c̄ on Barabási-Albert networks ΓBA with average

degree d = 4,6,8, and 10. Figure 83 shows how the long-term value c̄∞ of mean virulence

varies with average degree d, for ΓRR, ΓER, and ΓBA networks. The solid line indicates the

value of c̄∞ on a complete network ΓWM.

297



0.0 0.5 1.0 1.5 2.0 2.5 3.0
t 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c̄

c̄∞ =0.364

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c̄

c̄∞ =0.224

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c̄

c̄∞ =0.174

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c̄

c̄∞ =0.147

(d)

Figure 80: Evolution of mean virulence c̄ on random regular networks with varying average

degree d. (a) d = 4. (b) d = 6. (c) d = 8. (d) d = 10. Simulation parameters: n =

10000,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and

ν = 100.

Model Networks with Clustering

The next set of results concerns power-law networks ΓC
BA with average degree d = 10, and

varying clustering coefficient C(2). Figures 84(a)-(d) show the evolution of mean virulence

c̄ on networks with clustering coefficient C(2) = 0.1,0.2,0.3, and 0.4. Figure 85 shows

how the long-term value c̄∞ of mean virulence varies with clustering coefficient C(2).
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Figure 81: Evolution of mean virulence c̄ on Erdős-Rényi networks with varying average

degree d. (a) d = 4. (b) d = 6. (c) d = 8. (d) d = 10. Simulation parameters: n =

10000,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and

ν = 100.

Model Networks with Homophily

The next set of results concerns power-law networks Γh
BA with average degree d = 10, and

varying homophily coefficient h. Figures 86(a)-(d) show the evolution of mean virulence c̄

on networks with homophily coefficient h =−0.1,0,0.1, and 0.2. Figure 87 shows how

the long-term value c̄∞ of mean virulence varies with homophily coefficient h.
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Figure 82: Evolution of mean virulence c̄ on Barabási-Albert networks with varying av-

erage degree d. (a) d = 4. (b) d = 6. (c) d = 8. (d) d = 10. Simulation parameters:

n = 10000,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000,

and ν = 100.

Empirical Networks

The last set of results concerns empirical networks. Figures 88(a)-(f) show the evolution

of mean virulence c̄ on: the Γinternet network (a); the Γhepcoauth network (b); the Γastrocoauth

network (c); the Γfb network (d); the Γp2p network (e); and the Γprotein network (f). Figure
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Figure 83: Long-term value c̄∞ of mean virulence versus average degree d, for random

regular, Erdős-Rényi, and Barabási-Albert networks. The solid line indicates the value

of c̄∞ on a complete network ΓWM. Simulation parameters: n = 10000,β = 0.075,γ =

0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and ν = 100.

89 shows the long-term values c̄∞ of mean virulence for each of the six empirical

networks.
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Figure 84: Evolution of mean virulence c̄ on power-law networks with clustering coeffi-

cient C(2). (a) C(2) = 0.1. (b) C(2) = 0.2. (c) C(2) = 0.3. (d) C(2) = 0.4. Simulation pa-

rameters: n = 10000,d = 10,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ =

0.05,T = 300000, and ν = 100.
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Figure 85: Long-term value c̄∞ of mean virulence versus clustering coefficient C(2), on

power-law networks. Simulation parameters: n = 10000,d = 10,β = 0.075,γ = 0.08,u =

0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and ν = 100.
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Figure 86: Evolution of mean virulence c̄ on power-law networks with homophily coef-

ficient h. (a) h = −0.1. (b) h = 0. (c) h = 0.1. (d) h = 0.2. Simulation parameters:

n = 10000,d = 10,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T =

300000, and ν = 100.
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Figure 87: Long-term value c̄∞ of mean virulence versus homophily coefficient h, on

power-law networks. Simulation parameters: n = 10000,d = 10,β = 0.075,γ = 0.08,u =

0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and ν = 100.
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Figure 88: Evolution of mean virulence c̄ on empirical networks. See Table 2 for the ba-

sic properties of these networks. (a) the Γinternet network. (b) the Γhepcoauth network. (c)

Γastrocoauth network. (d) the Γfb network. (e) the Γp2p network. (f) the Γprotein network. Sim-

ulation parameters: β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T =

300000, and ν = 100.
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Figure 89: Long-term value c̄∞ of mean virulence for empirical networks. See Table 2 for

the basic properties of these networks. Simulation parameters: β = 0.075,γ = 0.08,u =

0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and ν = 100.
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6.3.2 Vaccination Strategies

We next pursue our second line of inquiry, namely the effectiveness of different

vaccination strategies in the eradication of a disease [AM85, DB02, PV02b]. In the event

of an epidemic outbreak, health officials often have to work with a limited supply of

vaccinations, and have to respond as quickly as possible. So the efficiency with which

vaccinations are administered is of paramount importance.

We explore different vaccination strategies in the context of our model as follows. We

infect a single individual in a naive population with a disease and let it spread, giving it

enough time (say T1 generations) so that the mean virulence c̄ attains its equilibrium value

c̄∞. We next vaccinate a fraction v of individuals, i.e., change their disease state to V . We

then let the simulation continue for another T2 generations. We are interested in the

smallest value of v (we call it v?) that would wipe out the disease, i.e., drive c̄∞ to zero.

Human diseases spread over social networks [EGK04, LEA03] and computer viruses

spread over technological and information networks [KSC97, Kle07]. These networks

typically have a power-law degree distribution. We therefore restrict our study of

vaccination strategies to Barabási-Albert networks and to empirical networks which

mimic real-world contact networks. In particular we consider a Barabási-Albert network

with average degree d = 10, and the social network Γastrocoauth of coauthorships among

astrophysicists for our study.

We consider three different strategies for vaccinating individuals in a population: in

the degree (VD) strategy, the individuals are vaccinated in the reverse order of their degree

centrality, i.e., their degree [AM92]. We use a simultaneous approach, meaning the degree

centrality of the individuals is calculated once in advance before the vaccinations are

carried out; in the referral (VR) strategy [CHB03, MKC04], each individual that is picked

for vaccination is a random neighbor of a randomly picked individual—in power-law
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networks individuals picked using the referral method are typically highly-connected

individuals; finally, in the random (VN) strategy, each individual is picked at random

[AM92].

The results shown in each of the plots in this section is based on a single run. Figures

90(a)-(d) show the evolution of mean virulence c̄ on a Barabási-Albert network ΓBA with

v of the population vaccinated after T1 = 100000 generations. In (a) no vaccinations were

administered; in (b) 20% of the population was vaccinated using the VD strategy; in (c)

25% of the population was vaccinated using the VR strategy; and in (d) 50% of the

population vaccinated using the VN strategy. Figure 91 shows how the long-term value c̄∞

of mean virulence varies with the fraction v of individuals vaccinated, for each of the three

vaccination strategies.

Figures 92(a)-(d) show the evolution of mean virulence c̄ on the Γastrocoauth network

with fraction v of the population vaccinated after T1 = 100000 generations. In (a) no

vaccinations were administered; in (b) 20% of the population was vaccinated using the VD

strategy; in (c) 50% of the population was vaccinated using the VR strategy; and in (d)

55% of the population was vaccinated using the VD strategy. Figure 93 shows how the

long-term value c̄∞ of mean virulence varies with the fraction v of individuals vaccinated,

for the three vaccination strategies.
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Figure 90: Evolution of mean virulence c̄ on a Barabási-Albert network with vaccinations.

Fraction v of the population was vaccinated after T1 = 100000 generations. (a) No vaccina-

tions were administered. (b) 20% of the population was vaccinated using the VD strategy.

(c) 25% of the population was vaccinated using the VR strategy. (d) 50% of the popula-

tion was vaccinated using the VN strategy. Simulation parameters: n = 10000,d = 10,β =

0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 200000, and ν = 100.
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Figure 91: Long-term value of mean virulence c̄∞ versus the fraction v of individuals vac-

cinated on a Barabási-Albert network. Simulation parameters: n = 10000,d = 10,β =

0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 200000, and ν = 100.
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Figure 92: Evolution of mean virulence c̄ on an empirical network with vaccinations. Frac-

tion v of the population was vaccinated after T1 = 100000 generations. (a) No vaccinations

were administered. (b) 20% of the population was vaccinated using the VD strategy. (c)

50% of the population was vaccinated using the VR strategy. (d) 55% of the population

was vaccinated using the VN strategy. Simulation parameters: n = 17903,β = 0.075,γ =

0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 200000, and ν = 100.
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Figure 93: Long-term value c̄∞ of mean virulence versus the fraction v of individuals

vaccinated on an empirical network. Simulation parameters: n = 17903,β = 0.075,γ =

0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 200000, and ν = 100.
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6.4 Discussion

On a complete network ΓWM, the long-term value c̄∞ of mean virulence obtained from

simulations agrees (see Figure 79) very well with the predicted value c? of virulence that

maximizes R0 (Equation 6.32).

On random regular ΓRR, Erdős-Rényi ΓER, and Barabási-Albert ΓBA networks, the

long-term value c̄∞ of mean virulence is higher (see Figures 80-83) for small values of

average degree d, and approaches the value on a complete network ΓWM as d increases.

For example, on ΓBA networks with average degree d = 4, the value of c̄∞ is

approximately 3.25 times the value on a ΓWM network, while on ΓBA networks with

average degree d = 20, it is only about 1.2 times the value on ΓWM. This result makes

sense because with the increase in average degree, a network tends more and more

towards a complete network. What is surprising is that the value of d at which networks

behave like a complete network is rather small, about 20. Complete networks thus offer us

a baseline for the long-term value of virulence against which we can compare the value on

other networks, since if for a particular disease, we have knowledge of the parameters

such as γ,u and α , we can estimate a lower bound for c̄∞.

The fact that the virulence level on power-law networks is higher at low values of

average degree has important practical consequences since both human diseases and

computer viruses typically spread over contact networks having power-law degree

distributions, and small average degree.

It is well documented that heterogeneous networks such as power-law networks favor

the spreading of a disease [AM92, ML01, PV01b, PV02a]. Our model suggests that as

long as the mixing among individuals is non-random and the average degree of the contact

network is small, the levels of virulence of a disease will be high.
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Except for very small values of the average degree d, the effect of degree distribution

on the value of c̄∞ is insignificant.

On power-law networks ΓC
BA with fixed average degree d, the value of c̄∞ increases

(see Figures 84 and 85) with increasing clustering coefficient C(2). There is roughly a 17%

increase in the value of c̄∞ on a network with C(2) = 0.4 than on a network with no

clustering. This has important consequences for human diseases, which spread over social

networks that exhibit high clustering.

On a power-law network Γh
BA with fixed average degree d, the value of c̄∞ decreases

(see Figures 86 and 87) with increasing homophily coefficient h. There is roughly a 15%

decrease in the value of c̄∞ from a network with h =−0.1 to a network with h = 0.2. This

suggests that a human disease spreading over a (typically homophilic) social network will

be less virulent than a computer virus with same disease parameters spreading over a

(typically heterophilic) technological or information network.

The simulation results on empirical networks (see figures 88-89) further support our

claim that the value of c̄∞ increases with average degree d. On Γprotein, which has the

smallest average degree (d ≈ 3.56), the value of c̄∞ is the highest. On on Γfb, which has

the highest average degree (d ≈ 46.51), the value of c̄∞ is the lowest, and comparable to

the value on a complete network. These empirical networks have very different sizes, and

yet the trend of c̄∞ with respect to their average degree d is comparable to the trend we

observed in the case of model networks, which were all of size 10000. This suggests that

the results of the model, as long as all other parameters are fixed, is independent of the

population size.

In our model it was assumed that over the time scale over which the disease spreads

through a population, the contact network representing the population remains fixed in

terms of its structural properties. One could argue that this assumption is somewhat
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unrealistic, since people’s contacts often change over time [KKK02, Moo02, WM92]. We

explored this possibility in our model by carrying out a specified number s of double-edge

swap operations on the network per generation. Each such operation removes two

randomly chosen edges (u,v) and (x,y) and creates the new edges (u,x) and (v,y). These

operations change the structure of the network without altering its average degree. Figure

94 compares the value of c̄∞ against the value of s on a Barabási-Albert ΓBA network with

average degree d = 10. It indicates that for small values of s (about 100 swaps per

generation), the model behaves similarly to the one without the edge swaps, thus

suggesting that the model is robust against small fluctuations in the structure of the

underlying network. Of course, as s increases the underlying network changes so much

that it begins to approximate a complete network, and that is what we observe in the figure.
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Figure 94: Long-term value c̄∞ of mean virulence versus the number s of double-edge

swaps per generation on power-law networks. Simulation parameters: n = 10000,d =

10,β = 0.075,γ = 0.08,u = 0.01,β (c) =
√

c,µ = 0.0001,σ = 0.05,T = 300000, and ν =

100.
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Turning our attention to the results on vaccination strategies, for all three vaccination

strategies (VD,VR, and VN) the value of c̄∞ increases (Figures 90-93) with increasing v

before it starts to decrease and eventually drops to zero. For example, on the Γastrocoauth

network, the value of c̄∞ is about three times higher when 20% of the population is

vaccinated using the VD strategy than its value when no vaccinations were administered.

This makes sense because as vaccinations are carried out, the corresponding vertices are

effectively removed from the network, as a result of which the average degree of the

network decreases. From our earlier result, we know that for networks with low average

degree the value of c̄∞ is higher. This observation, unfortunately, has serious implications

for real-world diseases, suggesting that if enough vaccinations are not administered, then

problem could be made worse by increasing the level of virulence of the disease rather

than decreasing it.

Among the three strategies, VD is the most effective, VR is the second best, and VN is

the least effective. Adopting the VD strategy requires knowledge of the entire network, but

since maps of contact networks over which human diseases and computer viruses spread

are becoming more and more readily available [EGK04, LEA03, KSC97, Kle07],

implementing the VD strategy is not a far-fetched proposition. Thus, even though

power-law networks allow for higher levels of virulence, the heterogeneities in their

structure make them vulnerable to targeted attacks, and this can be put to our advantage in

trying to combat a disease. Human diseases and computer viruses typically spread over

power-law networks, so vaccination deployment programs can take advantage of the

vulnerabilities of these networks and favor the VD and VR strategies over the naive VN

strategy.
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6.5 Future Directions

In this section we propose three new lines of inquiry for our model of disease dynamics,

along with an outline of ways to approach them.

1. We did not establish analytically that on a complete network ΓWM, a

disease-causing parasite in our model evolves in virulence so as to maximize R0,

given by Equation 6.32. We argued instead that this should be the case for small

values of the (transmission, recovery, and death) probabilities involved, since in that

case our model approximates the continuous-time model for which we did establish

the result analytically. We supported our argument with simulation results.

A future project would be to establish the result explicitly for our model. This

could be done by treating the disease dynamics as a Markov process, with the

transition matrix M for the process specifying how individuals in a population

transition with respect to their disease states from time t to time t +1. This matrix is

easily written down in terms of the disease parameters, i.e., the transmission,

recovery, and (natural and disease-induced) death probabilities. We could consider

two strains S1 and S2 of the parasite, having transmission rates β1 and β2, and

disease-induced death rates c1 and c2 respectively. Comparing the steady-state

vectors—a three-dimensional vector whose components specify the fractions s,x,r

of the individuals in the population in the three disease states—of the transition

matrices M1 and M2 for the two strains of the parasite, we could show that the

virulence does indeed evolve so as to maximize R0.

2. For a given set of simulation parameters, the results obtained from our model on a

network Γ 6= ΓWM agree with the results predicted for a complete network ΓWM as

long as the average degree d of Γ is sufficiently large (d > 20). The agreement
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breaks down for small values of d. In the small-d regime, where the network effects

are the strongest, the analysis must take network structure into account.

Various approaches have been put forth for extending the classical

epidemiological models to networks. These include the study of late-time and

time-dependent properties of epidemics on networks, and degree-based

approximation [New10].

In the study of the late-time properties of epidemics on networks, one is

interested in the long-term behavior of the disease on networks. For example, in the

SI model as t→ ∞ every individual who can be infected by the disease is infected.

Thus in the limit of long times the disease will spread from every initial carrier to

infect all reachable vertices, i.e., all vertices in the component ot which the carrier

belongs. Most networks have one large component that contains a significant

fraction S of all vertices in the network, and a selection of smaller components. If

the initial carrier of the disease is chosen uniformly at random from the network, the

probability that it will fall in the large component, and hence cause a large outbreak

is S, and the size of the outbreak as a fraction of the network will also be S.

Conversely, with probability 1−S the initial carrier will fall in one of the small

components and the outbreak will be small.

In the SIR model, it is in general not true that the susceptible neighbor of an

infected individual will always get infected in the end. The probability that such

neighbors may never catch the disease is e−βτ , where β is the transmission rate and

τ is the amount of time for which the infected individual remains infected. Thus the

probability that the disease is transmitted is Φ = 1− e−βτ . Now, one could take the

network and “color in” or “occupy” each edge with probability Φ, or not with

probability 1−Φ. The disease dynamics can then be treated as an ordinary bond
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percolation process [SA94]. The occupied edges represent contacts sufficient to

spread the disease, but not necessarily actual disease transmission: if the disease

does not reach either end of an occupied edge then the disease will not be

transmitted along that edge, so edge occupation only represents the potential for

transmission if the disease reaches an edge. Now consider the spread of a disease

that starts at a randomly chosen vertex. The set of vertices to which the disease will

ultimately spread is precisely the set connected to the initial vertex by any path of

occupied edges. The end result is that the disease infects all members of the bond

percolation cluster to which the initial carrier belongs. The percolation transition for

bond percolation on the network corresponds precisely to the epidemic threshold for

a disease on the same network where the edge occupation probability Φ is given in

terms of the transmission rate β and recovery time τ , and the sizes of outbreaks are

given by the sizes of the bond percolation clusters.

In the study of the time-dependent properties of epidemic models, one is

interested in the time evolution of the probabilities for vertices to be in specific

disease states. One can imagine having repeated outbreaks of the same disease on

the same network, starting from the same initial conditions, and calculating for

example the average probabilities si(t) and xi(t) that vertex i is susceptible or

infected at time t. Given the adjacency matrix A of a network one can write down

differential equations for the evolution of such quantities as a straightforward

generalization of the equations for the corresponding classical models for

well-mixed populations. Unfortunately, these equations are not solvable in closed

form for a general matrix A. Moreover, even the results obtained from numerical

integration of such equations do not agree with the results obtained by simulating

the disease with the same set of disease parameters. The reason for this

disagreement is that the equations contain the product of average quantities such as
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si and xi, and it is implicitly assumed that the product of averages is equal to the

average of products. In the fully-mixed model this is true (for large n) because of

the mixing itself, but is not true for arbitrary networks, because the probabilities are

not independent. In general, these quantities will be correlated between neighboring

vertices. These correlations are incorporated into the calculations, at least

approximately, by using the so-called pair approximation or moment closure

method [Ell01].

In the degree-based approximation method, one focuses on outbreaks taking

place in the giant component of the network. The approximation assumes that all

vertices of the same degree have the same probability of infection at any given time.

Suppose sk(t) and xk(t) are the probabilities that a vertex with degree k is

susceptible or infected, respectively, at time t. Now consider a susceptible vertex A.

To become infected, A has to contract the infection from one of its infected

neighbors. The probability that a particular neighbor B is infected depends on B’s

degree. But by assumption vertex A is not infected and so B cannot have caught the

disease from A. If B is infected it must have caught the disease from one of its

remaining neighbors. B’s probability of infection is thus xk, but where k indicates

the excess degree—the number of edges it has other than the edge we followed from

A to reach it—and not the total degree. The advantage of this approach is that the

probability of B being infected depends only on B’s excess degree and not on A’s

degree, and the equations obtained are analytically tractable.

All of the the network-based approaches we discussed above fix the disease

parameters. In our model we consider the evolution of virulence of a disease. So the

most direct way of extending our model to networks is as follows. Consider two

strains S1 and S2 of the disease-causing parasite. Following the program of the study

of time-dependent properties of epidemics on networks, write down the differential
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equations for the probabilities si,x1
i ,x

2
i ,ri that a vertex i is susceptible, infected (by

S1 or S2), or recovered, in terms of the adjacency matrix A for the network Γ under

consideration. Find the condition under which one strain can invade the other. This

condition might hint at an expression for the basic reproductive number R0 for the

network Γ in terms of: the recovery probability γ , the natural death probability u,

the disease-induced death probability c, and the average degree d of the network.

We would thus have an analytical expression for the value c? that maximizes R0 on

networks. Except for simple networks without cycles, such as Bethe lattices or

Caylee trees [Bet35], we do not expect to be able to carry out the analysis in general

for arbitrary networks, although we could use pair approximations [Ell01] to refine

the results to obtain greater levels of accuracy. From simulating our model on

networks, we see that the average degree of a network, more than any other property

of the network, determines to a first approximation, the long-term value c̄∞ of the

mean virulence. So the expression for c? obtained for a Caylee tree of average

degree d, albeit simplistic, should be a reasonably good approximation for that on

an arbitrary network with average d.

We could alternatively follow the degree-based approximation program

discussed above and write down the differential equations for sk(t),x1
k(t),x

2
k(t), and

rk(t), which represent the probabilities that individuals with degree k are

susceptible, infected (by S1 or S2), or recovered at time t. Carrying out an invasion

analysis should give us the condition under which one strain can invade the other,

and thus provide us, possibly, with an expression for R0 on networks.

3. In exploring different vaccination strategies, we only considered a single

centrality-measure-based vaccination strategy, namely the strategy VD based on the

degree centrality of the vertices in a network. Recall that the concept of a centrality
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measure attempts to identify which vertices in a network are the most important or

central [WF94]. A number of measures of centrality, besides degree, have been

proposed for networks: eigenvector centrality, closeness centrality, and betweenness

centrality. Eigenvector centrality is a widely employed centrality measure [Bon87].

It can be viewed in a sense as a refinement of degree centrality. Whereas degree

centrality ranks a vertex as being important if it is connected to many other vertices,

eigenvector centrality is based on the more subtle notion that a vertex should be

viewed as important if it is linked to other vertices which are themselves important.

Closeness centrality of a vertex is defined as the reciprocal of the mean geodesic

between the vertex and all other vertices in the network4. The quantity takes high

values for vertices that are only a short geodesic distance from many other vertices

in the network, and is a natural measure of centrality which is widely used in

network studies. Betweenness centrality measures how many short paths between

vertices in a network pass through a given vertex [Fre77]. It is worth highlighting

that while degree centrality of a vertex is a local measure, the other centrality

measures are non-local and take into account the global structure of the network. As

noted earlier, obtaining a representation of contact networks over which diseases

spread is not at all a far-fetched proposition these days

[EGK04, LEA03, KSC97, Kle07]. Once we have the contact network for a disease,

these centrality measures are easily calculated using software tools such as

NetworkX (http://networkx.lanl.gov/) and iGraph

(http://igraph.sourceforge.net/).

As a future project, we could extend our study of vaccination strategies by

considering strategies based on the non-local centrality measures described above.

4If a network has more than one component then the closeness centrality of a vertex is calculated as the
reciprocal of the mean geodesic distance from the vertex to all other vertices in the same component.
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As with VD, in the strategies VE , VC, and VB based on eigenvector, closeness, and

betweenness centrality measures, we would vaccinate a fraction v of individuals in

reverse order of the respective centrality measure and see how that affects the

long-term value c̄∞ of the mean virulence. In addition, we could consider

simultaneous and sequential approaches to evaluating the centrality measures of

individuals. In the former, the values are calculated just once, before the

vaccinations are carried out. In the latter, the centrality measures are recalculated

after each vaccination; since the vaccination of an individual is tantamount to

removing the corresponding vertex from the contact network, centrality measures of

the individuals left in the network will be different each time an individual is

vaccinated.
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APPENDIX A

DYNAMICAL SYSTEMS

Prediction is very difficult, especially about the future.

- Niels Bohr

A.1 Introduction

In this appendix we provide a brief introduction to dynamical systems, a subject that deals

with systems that evolve with time. We only consider continuous-time dynamical systems,

and restrict our attention to those that do not explicitly depend on time, i.e., autonomous

systems. We start out simple by looking at one-dimensional dynamical systems, which are

relatively easy to understand. We then proceed to look at dynamical systems in two or

more dimensions. For a comprehensive treatment of these topics, see [Str94, Ban05], and

for proofs of theorems that we only state but do not prove, see [BC87, LS88].

A.2 One-Dimensional Dynamical Systems

A one-dimensional dynamical system or a first-order system is represented by the

differential equation

ẋ = f (x), (A.1)

where x(t) is a real-valued function of time t, and f (x) is a smooth, real-valued function of

x.
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We first look at an example that illustrates a qualitative (geometric) method for

analyzing one-dimensional dynamical systems by interpreting the corresponding

differential equations as a vector fields.

Example A.1. Consider the nonlinear differential equation

ẋ = sinx, (A.2)

which has an exact solution given by

x(t) = 2cot−1
[

cot
(x0

2

)
e−t
]
, (A.3)

where x0 = x(0). Though exact, the solution is a nightmare to interpret. In contrast, a

graphical analysis (also known as phase line analysis) of Equation A.2 is clear and simple

(see Figure A.95(a)). We think of t as time, x as the position of an imaginary particle

moving along the real line, and ẋ as the velocity of that particle. Equation A.2 then

represents a vector field on the line. It specifies the velocity vector ẋ at each x. To sketch

the vector field, it is convenient to plot ẋ versus x, and draw arrows on the x-axis to

indicate the corresponding velocity vector at each x. The arrows point right when ẋ > 0

and left when ẋ < 0. At points where ẋ = 0, there is no flow, and such points are called

fixed points, and are denoted by x?. There are two kinds of fixed points: stable fixed points

(also called attractors or sinks) represented by filled circles, and unstable fixed points

(also called repellers or sources) represented by open circles.

Equipped with a phase line plot, such as Figure A.95(a), we can easily understand the

solution to Equation A.2. We start our imaginary particle at x0 and watch it carried along

by the flow. The qualitative form of solutions for any initial condition, called the phase

portrait, is shown in Figure A.95(b).

The method described in Example A.1 can be extended to any one-dimensional system

ẋ = f (x). We just need to draw the graph of f (x) as shown in Figure A.96, and then use it
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Figure A.95: Phase line plot and phase potrait for the system A.2. (a) Phase line plot. (b)

Phase potrait.

to sketch the vector field on the real line. The flow is to the right when f (x)> 0 and to the

left when f (x)< 0. To find the solutions to ẋ = f (x) starting from an arbitrary initial

condition x0, we place an imaginary particle (called phase point) at x0 and watch it carried

along by the flow. As time goes by, the phase point moves along the x-axis according to
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some function x(t), called the trajectory based at x0, and it represents the solution of the

differential equation starting from the initial condition x0.

x

f (x)

ẋ

Figure A.96: Phase line plot for ẋ = f (x).

In terms of the original differential equation, fixed points represent equilibrium

solutions (sometimes called steady, constant, or rest solutions). An equilibrium point is

stable if all sufficiently small perturbations away from it damp out in time, and unstable if

the perturbations grow in time.

Linear Stability Analysis

One often desires a quantitative measure of the stability of fixed points of a dynamical

system. Such a measure can be obtained by linearizing the system about its fixed points.

Let x? be a fixed point, and let η(t) = x(t)− x? be a small perturbation away from x?.

To see whether the perturbation grows or decays, we derive a differential equation for η .

η̇ =
d
dt
(x− x?) = ẋ, (A.4)
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since x? is constant. Thus, η̇ = ẋ = f (x) = f (x?+η). Using Taylor series expansion we

obtain

f (x?+η) = f (x?)+η f ′(x?)+O(η2), (A.5)

where O(η2) denotes quadratically small terms in η . Since f (x?) = 0 we have

η̇ = η f ′(x?)+O(η2). (A.6)

Now if f ′(x) 6= 0, then O(η2) terms are negligible and we may write

η̇ = η f ′(x?). (A.7)

This linear equation in η is called the linearization about x?. It shows that the perturbation

grows exponentially if f ′(x?)> 0 and decays if f ′(x?)< 0. If f ′(x?) = 0, then the O(η2)

terms are not negligible and a nonlinear analysis is needed to determine stability. The

reciprocal 1
| f ′(x?)| is called characteristic time scale and it determines the time required for

x(t) to vary significantly in the neighborhood of x?.

Example A.2. Let us reconsider the dynamical system ẋ = sinx from Example A.1. The

fixed points of the system are given by x? = kπ where k is an integer. Also,

f ′(x?) = coskπ =


1 if k is even,

−1 if k is odd.
(A.8)

Therefore, x? is unstable if k is even and stable if k is odd, which agrees with the

qualitative analysis of the system presented in Example A.1.

Example A.3. A simple model1 for population growth of organisms is given by the

logistic equation

Ṅ = rN
(

1− N
K

)
, (A.9)

1The corresponding discrete-time model gives rise to complex dynamics, including chaos.

329



where N(t) is the population at time t, K is the carrying capacity, and r > 0 is the growth

rate. This model was first suggested by the Belgian mathematician Pierre François

Verhulst in 1838 to describe the growth of human population. The model has an exact

solution given by

N(t) =
KN0ert

K +N0(ert−1)
, (A.10)

where N0 = N(0). Figure A.97(a) shows a plot of Ṅ versus N. Note that we plot only

N ≥ 0 since it does not make much sense talking about negative populations. Fixed points

of Equation A.9 are N? = 0 and N? = K. By looking at the flow, we can see that N? = 0 is

unstable and N? = K is stable. In biological terms, N = 0 is an unstable equilibrium; a

small population will grow exponentially fast and run away from N = 0. On the other

hand, if N is perturbed slightly from K, the perturbation will decay monotonically and

N(t)→ K as t→ ∞. Also, for N0 <
K
2 , the phase point moves faster and faster until it

crosses N = K
2 . Then the phase point slows down and eventually crawls towards N = K.

Figure A.97(b) shows the trajectories of the system.

Quantitatively, f ′(N) = r−2r N
K . So, f ′(0) = r > 0 and f ′(K) =−r < 0. Thus, N? = 0

is unstable and N? = K is stable. The characteristic time scale is 1
| f ′(N?)| =

1
r in either

case.

The following theorem describes the conditions that guarantee the existence and

uniqueness of solution for a one-dimensional dynamical system.

Theorem A.1. (Existence and uniqueness theorem) Consider the initial value problem

ẋ = f (x), x(0) = x0. (A.11)

Suppose that f (x) and f ′(x) are continuous on an open interval R of the x-axis, and

suppose x0 ∈ R. Then the initial value problem has a solution x(t) on some time interval

(−τ,τ) about t = 0, and the solution is unique.
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Figure A.97: Phase line plot and phase potrait for the system A.9. (a) Phase line plot. (b)

Phase potrait.

A.3 Linear Systems

In one-dimensional phase spaces the flow is confined—all trajectories are forced to move

monotonically or remain constant. In higher-dimensional phase spaces, trajectories have
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much more freedom, and so a wider range of dynamical behavior is possible. We first

consider the simplest class of higher-dimensional systems, namely linear systems in two

dimensions. These are interesting in their own right, and also play an important role in the

classification of fixed points of nonlinear systems in two dimensions. A two-dimensional

linear system has the form

ẋ = f (x,y)

ẏ = g(x,y) (A.12)

where f and g are linear functions of x and y. Since f and g are linear, we can express the

system as

ẋ = ax+by

ẏ = cx+dy (A.13)

where a,b,c,d ∈ R are constants, or more compactly in matrix form as

ẋ = Ax, (A.14)

where

A =

a b

c d

 and x =

x

y

 . (A.15)

The system is linear in the sense that if x1 and x2 are two solutions, then so is any linear

combination c1x1 + c2x2. The zero vector 0 is always a fixed point for any choice of A.

The solutions of ẋ = Ax can be visualized as trajectories moving on the (x,y) plane,

called the phase plane. The fixed point x? is an attracting fixed point if all trajectories that

start near x? approach it as t→ ∞, i.e., x→ x? as t→ ∞. Given an attracting fixed point

x?, the set of initial conditions x0 such that x(t)→ x? as t→ ∞ is called the basin of
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attraction of x?. If x? attracts all trajectories in the phase plane, it is said to be globally

attracting. A fixed point x? is Lyapunov stable if all trajectories that start sufficiently close

to x? remain close to it at all times. When a fixed point is Lyapunov stable but not

attracting, it is called neutrally stable. If a fixed point is both Lyapunov stable and

attracting, it is called stable, or asymptotically stable. Finally, x? is unstable if it is neither

attracting nor Lyapunov stable.

The straight-line trajectories are those that start on a line and stay on the line forever,

exhibiting exponential growth or decay along the line. We would like to find the

trajectories of the form

x(t) = eλ tv, (A.16)

where v 6= 0 is some fixed vector, and λ is a growth rate. If such solutions exist, they

correspond to exponential motion along the line spanned by vector v. To find the

conditions on v and λ , we substitute x(t) = eλ tv into ẋ = Ax, and obtain λeλ tv = eλ tAv or

Av = λv, (A.17)

which says that the desired straight line solution exists if v is an eigenvector of A with the

corresponding eigenvalue λ .

For a 2×2 matrix

A =

a b

c d

 , (A.18)

the eigenvalues λ1 and λ2 can be calculated as

λ1 =
τ +
√

τ2−4∆

2
, λ2 =

τ−
√

τ2−4∆

2
(A.19)

where τ = trace(A) = a+d, and ∆ = det(A) = ad−bc.
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When λ1 6= λ2
2, any initial condition x0 can be written as a linear combination of

eigenvectors, say x0 = c1v1 + c2v2. This allows us to write down the general solution for

x(t) as

x(t) = c1eλ1tv1 + c2eλ2tv2 =
2

∑
i=1

cieλitvi. (A.20)

For an n-dimensional linear dynamical system ẋ = Ax, where A is an n×n matrix, the

general solution is given by

x(t) =
n

∑
i=1

cieλitvi, (A.21)

where the vi’s are the eigenvectors and the λi’s are the corresponding eigenvalues of the

matrix A.

In general, the eigenvalues and eigenvectors of the matrix can be complex. However,

the constants ci will also be complex in such a way that the final expression for x(t) is

always real.

We are not concerned with the exact solution of a linear dynamical system because it

will, in general, only be an approximation to the full nonlinear system that we are really

interested in. What is of interest is the qualitative behavior of the system near the fixed

point. The solution is the sum of terms involving eλ t where each complex eigenvalue λ

can be written as λ = α + iω . Thus, eλ t = e(α+iω)t = eαt(cosωt + isinωt). Table A.83

provides the classification of the fixed points of a linear dynamical system ẋ = Ax

according to the real and imaginary parts of the eigenvalues of A.

2For simplicity, we ignore the “degenerate cases” in which there is a single repeated eigenvalue or one or
more of the eigenvalues is zero.

3For a saddle point the trajectories move towards the fixed point in one direction called the stable manifold
and away from it in another direction called the unstable manifold.
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All α ω Nature of Fixed Point

< 0 = 0 Stable node

> 0 = 0 Unstable node

6= 0 = 0 Hyperbolic or saddle point

< 0 6= 0 Stable spiral

> 0 6= 0 Unstable spiral

= 0 6= 0 Center

Table A.8: Classification of fixed points of ẋ= Ax according to the real and imaginary parts

of the eigenvalues of A. “All α 6= 0” means some are positive and some negative.

A.4 Higher Dimensional Dynamical Systems

An n-dimensional nonlinear dynamical system given by

ẋ1 = f1(x1, . . . ,xn)

ẋ2 = f2(x1, . . . ,xn)

...

ẋn = fn(x1, . . . ,xn), (A.22)

where f1, . . . fn are nonlinear functions. More compactly

ẋ = f(x), (A.23)

where x = (x1, . . . ,xn) and f(x) = ( f1(x), . . . , fn(x)). Here x represents a point in

n-dimensional phase space, and ẋ is the velocity vector at that point. The fixed points x?

of the system satisfy f(x?) = 0 and correspond to the equilibrium points of the system.
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Linear Stability Analysis

Here we extend the linearization technique developed in Section A.2 for one-dimensional

systems, so that we can approximate the phase portrait near a fixed point by that of a

corresponding linear system.

Consider the nonlinear system given by Equation A.22, and suppose that

x? = (x?1, . . . ,x
?
n) is a fixed point. Let

η1 = x1− x?1

η2 = x2− x?2
...

ηn = xn− x?n (A.24)

denote the components of a small perturbation from the fixed point. To see whether the

perturbation grows or decays with time, we need to derive the differential equations for

η1, . . . ,ηn.

η̇1 = ẋ1

= f1(x?1 +η1, . . . ,x?n +ηn)

= f1(x?1, . . . ,x
?
n)+η1

∂ f1

∂x1
+ · · ·+ηn

∂ f1

∂xn
+O(. . .)

(using Taylor series expansion)

= η1
∂ f1

∂x1
+ · · ·+ηn

∂ f1

∂xn
+O(. . .)

(since f1(x?1, . . . ,x
?
n) = 0) (A.25)
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where that the partials are evaluated at (x?1, . . . ,x
?
n). Similarly,

η̇2 = η2
∂ f2

∂x1
+ · · ·+ηn

∂ f2

∂xn
+O(. . .)

...

η̇n = ηn
∂ fn

∂x1
+ · · ·+ηn

∂ fn

∂xn
+O(. . .). (A.26)

Hence the perturbation (η1, . . . ,ηn) evolves according to
η̇1
...

η̇n

=


∂ f1
x1

. . . ∂ f1
xn

... . . . ...
∂ fn
x1

. . . ∂ fn
xn




η1
...

ηn

+O(. . .). (A.27)

The n×n matrix in Equation A.27 is called the Jacobian matrix at the fixed point

(x?1, . . . ,x
?
n), and will be denoted by J(x?1, . . . ,x

?
n). Since the higher order terms O(. . .) in

Equation A.27 are tiny, we can neglect them and obtain the linearized system
η̇1
...

η̇n

=


∂ f1
x1

. . . ∂ f1
xn

... . . . ...
∂ fn
x1

. . . ∂ fn
xn




η1
...

ηn

 (A.28)

whose dynamics can be analyzed using methods from Section A.3. It is safe to neglect the

higher order terms as long as the fixed points for the dynamical system are not any of the

borderline cases (centers, degenerate nodes, stars, or non-isolated fixed points).

When the fixed points of the system are hyperbolic, they are sturdy, i.e., their stability

type is unaffected by small nonlinear terms. According to the Hartman-Grobman theorem

(stated below), the local phase portrait near a hyperbolic fixed point is “topologically

equivalent”4 to the phase portrait of the linearization about it. In other words, the theorem

4There is a homeomorphism—a continuous map with a continuous inverse—from one local phase portrait
onto the other such that the trajectories of the first map onto trajectories of the second and the sense of time
is preserved.
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justifies the use of linearization approach to discover the properties of fixed points in a

dynamical system in most cases. The exceptions are situations where one or more

eigenvalues are purely imaginary. In such cases, the stability (or otherwise) of the fixed

point must be determined by other means.

Theorem A.2. (Hartman-Grobman theorem) If x? is a hyperbolic fixed point for the

system of autonomous differential equations (A.22), then there is an open set U containing

x? and a homeomorphism h with domain U , such that the solutions of the differential

equations (A.22) are mapped by h to solutions of the linearized system (A.27) in U .

The following theorem provides the conditions for the existence and uniqueness of

solution for an n-dimensional nonlinear dynamical system.

Theorem A.3. (Existence and uniqueness theorem) Consider the initial value problem

ẋ = f(x), x(0) = x0. (A.29)

Suppose that f(x) is continuous and that all of its partial derivatives ∂ fi
∂x j

for i, j = 1, . . . ,n,

are continuous for x in some open connected set D⊂ Rn. Then for x0 ∈ D, the initial

value problem has a solution x(t) on some time interval (−τ,τ) about t = 0, and the

solution is unique.

To obtain the qualitative understanding of a nonlinear dynamical system with

hyperbolic fixed points, we must follow a four-step procedure:

1. Find the fixed points of the nonlinear system.

2. Derive the linear approximation of the system close to each fixed point.

3. Determine the properties of the fixed points in the linearized system (see Table A.8)

based on the real and imaginary components α and ω of the eigenvalues λ of the

linearized system.

338



4. Combine this information to produce the sketch of the full, nonlinear system.

We illustrate this with an example.

Example A.4. Consider the two-dimensional dynamical system

ẋ = x(1− x)(1−2y)

ẏ = y(1− y)(1−2x) (A.30)

defined on the unit square (i.e., 0≤ x,y≤ 1). The fixed points (x?,y?) of this system are

the set of points {(0,0),(0,1),(1,0),(1,1),(1
2 ,

1
2)}. We next linearize the system close to

each of the fixed points and determine their nature.

• (x?,y?) = (0,0). The Jacobian matrix at this fixed point is

J(0,0) =

1 0

0 1

 , (A.31)

with eigenvalues λ1 = λ2 = 1. The fixed point is thus an unstable node.

• (x?,y?) = (0,1). The Jacobian matrix at this fixed point is

J(0,1) =

−1 0

0 −1

 , (A.32)

with eigenvalues λ1 = λ2 =−1. The fixed point is thus a stable node.

• (x?,y?) = (1,0). The Jacobian matrix at this fixed point is

J(1,0) =

−1 0

0 −1

 , (A.33)

with eigenvalues λ1 = λ2 =−1. The fixed point is thus a stable node.
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• (x?,y?) = (1,1). The Jacobian matrix at this fixed point is

J(1,1) =

1 0

0 1

 , (A.34)

with eigenvalues λ1 = λ2 = 1. The fixed point is an unstable node.

• (x?,y?) = (1
2 ,

1
2). The Jacobian matrix at this fixed point is

J
(1

2
,
1
2

)
=

 0 −1
2

−1
2 0

 , (A.35)

with eigenvalues λ1 =
1
2 and λ2 =−1

2 , and corresponding eigenvectors

v1 =

 1

−1

 and v2 =

1

1

 . (A.36)

The fixed point is thus hyperbolic with stable manifold x = y and unstable manifold

x =−y.

The behavior of the (linearized) system near each of the fixed points is shown in Figure

A.98(a). Using Theorem A.2, we obtain the qualitative behavior of the full system, which

is shown in Figure A.98(b).

As we have already remarked, the stability (or otherwise) of a non-hyperbolic fixed

point cannot be determined by linearization. The linearized system about a

non-hyperbolic fixed point has eigenvalues with real parts that are zero, and the stability of

the system is determined by higher order terms in the Taylor series expansion about the

fixed point. In such cases we can make use of the direct Lyapunov method.

Theorem A.4. (Lyapunov stability theorem) Let ẋ = f(x) be a dynamical system with a

fixed point at x?. If we can find a scalar function V (x), defined for the allowed states of

the system close to x?, such that
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1. V (x?) = 0

2. V (x)> 0 for x 6= x?

3. dV
dt < 0 for x 6= x?

then the fixed point x? is asymptotically stable.
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Figure A.98: Behavior of the system A.30 near fixed points and as a whole. (a) Behavior

near fixed points. (b) Behavior as a whole.
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APPENDIX B

SIMULATION SOFTWARE

In the computer field, the moment of truth is a running program; all else is prophecy.

- Herbert Simon

B.1 Introduction

In this appendix we discuss the software we have implemented and used for simulating

the agent-based models described in Sections 4.3, 5.3, and 6.2.4. We provide information

on where to obtain the software from, what is contained in the distribution, and how to

configure and run the software. The code is made available under the GNU General Public

License.

B.2 Obtaining the Software

We provide two different implementations of our agent-based models: one in Python and

the other in Java. In order to run our Python code you must have the following software

installed on your computer:

• Python (v2.7.3),

• NumPy (v1.6.2),

• SciPy (v0.11.0),

• matplotlib (v1.2), and
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• NetworkX (v1.7);

and to run our Java code you must have the following:

• Java (version 7 update 9),

• google-gson (v2.2.2)1, and

• JUNG2 (v2.0.1)2.

The numbers in parentheses indicate the versions of the software that our code has been

tested against.

There are a few differences between the Python- and Java-based implementations,

some stemming from the differences in the implementation languages—Python and Java

in our case—and others from specific design choices. For example, the Java-based

implementation does not provide plotting capabilities; instead, we supply Python scripts

to generate plots from the results. The implementations also differ in terms of their

performance. The Java-based implementation runs much faster than the Python-based

implementation since Java is a compiled language and also because the Java Virtual

Machine (JVM) implements Just-In-Time (JIT) compilation for the native architecture3.

The Python- and Java-based implementations are packaged into a single archive

edcn.tar.gz (edcn is short for evolutionary dynamics on complex networks), which can

be downloaded from the following website:

http://www.cs.umb.edu/~swamir/research.html

1gson-xxx.jar must be included in the CLASSPATH environment variable.
2collections-generic-xxx.jar, jung-algorithms-xxx.jar, jung-io-xxx.jar,

jung-api-xxx.jar, and jung-graph-impl-xxx.jar must be included in the CLASSPATH en-
vironment variable.

3Performance of our Python code can be improved by running it using PyPy, a fast alternative implemen-
tation of the Python language.
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Extracting the archive into a folder (say /home/darwin) on your file system produces a

folder edcn under /home/darwin. Throughout this appendix we use the alias $edcn to

refer to the folder /home/darwin/edcn. The folders4 $edcn/discrete/python,

$edcn/continuous/python, and $edcn/disease/python contain Python code for

simulating symmetric, two-strategy, pairwise games (Section 4.3), continuous games

(Section 5.3), and disease dynamics (Section 6.2.4) respectively. The corresponding Java

versions are under the folders5 $edcn/discrete/java, $edcn/continuous/java, and

$edcn/disease/java. The following sections describe the Python- and Java-based

implementations in detail.

B.3 Common Utilities

Python Code

The folder $edcn/util/python contains common utilities used by rest of our Python

code. The module network.py provides a high-level abstraction (Vertex) for

representing vertices in a network, and several abstractions (Network and its sub-classes)

for representing different kinds of networks. This module is used by the simulation code

to build complex networks. The module supports several network topologies, and the ones

relevant to this thesis are listed in Table B.9, along with the corresponding parameters.

Table B.9: Some of the network topologies supported by the network.py module, along

with the corresponding parameters.

Network Topology Parameters

4These folders must be included in the PYTHONPATH environment variable.
5These folders must be included in the CLASSPATH environment variable.
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Complete: builds a complete network

ΓWM in which every vertex is connected

to every other vertex in the network (Sec-

tion 2.4.1)

Erdos Renyi: builds a network ΓER with

a binomial/Poisson degree distribution

(Section 2.4.2)

vertices: list of Vertex objects represent-

ing the vertices in the network

p: probability that two randomly picked

vertices have an edge between them

seed: seed for the random number gener-

ator used to build the network

Barabasi Albert: builds a network ΓBA

with a power-law degree distribution

(Section 2.4.4)

vertices: list of Vertex objects represent-

ing the vertices in the network

m: number of attachments made from the

new vertex to the existing vertices during

the network construction process

seed: seed for the random number gener-

ator used to build the network
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Powerlaw Homophilic: builds a network

Γh
BA with a power-law degree distribution

(Section 2.4.6) and with homophily

vertices: list of Vertex objects represent-

ing the vertices in the network

m: number of attachments made from the

new vertex to the existing vertices during

the network construction process

h: desired value for homophily

maxiter: maximum number of re-wiring

attempts

seed: seed for the random number gener-

ator used to build the network

Powerlaw Clustered: builds a network

ΓC
BA with a power-law degree distribution

(Section 2.4.5) and with clustering

vertices: list of Vertex objects represent-

ing the vertices in the network

m: number of attachments made from the

new vertex to the existing vertices during

the network construction process

p: probability of adding a triangle after

adding a random edge

seed: seed for the random number gener-

ator used to build the network

Random Regular: builds a random, gen-

erally non-planar network ΓRR (Section

2.4.3) in which every vertex has the spec-

ified degree

vertices: list of Vertex objects represent-

ing the vertices in the network

degree: degree of each vertex

seed: seed for the random number gener-

ator used to build the network
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GraphML File: builds a network from a

GraphML file

name: name of the GraphML file

The script gen_network.py can be used to generate any of the networks listed in

Table B.9 and save it as a GraphML file. The script supports the following command-line

syntax:

python gen_network.py <topology > <size > <params > <outfile >

where topology is the desired network topology, size is the network size, params is a

list of parameters for the network, and outfile is the name of the output GraphML file.

For example, the following command produces a 10000-vertex Barabási-Albert network

with average degree 4 using a seed of 42, and saves the network in network.graphml.

> python gen_network.py "Barabasi_Albert" 10000 \

"{\"m\":2 ,\" seed \":42}" "network.graphml"

The script network_stats.py can be used to print to STDOUT the values of some

basic properties of the input network in GraphML format. The script supports the

following command-line syntax:

> python network_stats.py <infile >

For example, the following command prints the basic properties of the network generated

above:

> python network_stats.py network.graphml

number of vertices = 10000

number of edges = 19996

average degree = 3.999200

number of components = 1
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fractional size of largest component = 1.000000

diameter = 5.097388

average clustering coefficient = 0.003618

homophily = -0.051038

Java Code

The folder $edcn/util/java contains common utilities used by rest of our Java code.

The module Network.java provides a high-level abstraction (Network) for a network,

and in particular, abstractions (CompleteNetwork and GraphMLNetwork) for dealing with

complete networks and networks built from GraphML files. The module Random.java

supports functions for random number generation, and the module Stats.java supports

basic statistical computations.

B.4 Simulating Discrete Games

Python Code

The folder $edcn/discrete/python contains Python code for simulating symmetric,

two-strategy, pairwise games (Section 4.3). The script experiment.py provides a

template for defining the simulation parameters (see Table B.10). Once the parameters for

a game are defined, the game can be simulated using the following command:

> python experiment.py [--realtime]

where the optional --realtime argument runs the simulation in real-time mode instead

of the default off-line mode.
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Table B.10: Parameters for simulating symmetric, two-strategy, pairwise games using our

Python code.

Parameter Description

payoff 2×2 payoff matrix π for the game, specified as [[a,b], [c,d]]

selection strength selection strength s

population population size n

init cooperators initial fraction x0 of cooperators

generations number of generations T

report freq frequency ν (in generations) at which the results are

saved/displayed

assortativity probability r with which an individual interacts with another

individual playing the same strategy as its own; only rele-

vant for complete networks

update rule update rule U for the evolutionary dynamics; must be one

of FE1, FE2, RE1, RE2, IM, BD, or DB; FE2 and RE2 work

with simultaneous interactions and updates (Algorithm 4.3)

and the rest work with sequential interactions and updates

(Algorithm 4.2)

seed seed for the random number generator

network topology network topology Γ (see Table B.9)

network params network parameters (see Table B.9)

The script discrete_omain.py runs the simulation in off-line mode. The results of

the simulation are saved in results.pkl, and a plot showing the evolution of the fraction

x of cooperators is saved in plot.pdf. The inset in the plot shows the value of x averaged
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over the last 10% of the generations, denoted by x∞. The script can also be used to extend

a previously run simulation to include more generations. This can be done by updating the

generations parameter in the experiment.py file for the simulation to a new value and

running the modified file using the above command.

The script discrete_rmain.py runs the simulation in real-time mode. The results of

the simulation are not saved in this case, but are rendered in real time as a plot on the

screen showing the evolution of x. The script can also be used to re-play an off-line

simulation.

Example B.1. Consider the following file dpd.py6 that defines the parameters for

simulating a discrete prisoner’s dilemma game with ρ = 0.3, i.e., with the payoff matrix

π =


C D

C (0.7,0.7) (−0.3,1)

D (1,−0.3) (0,0)

, (B.1)

on a complete network ΓWM. The parameters are n = 10000, s = 1, x0 = 0.5, r = 0.4,

T = 5000, ν = 1, τ = 1, and U = FE2:

# dpd.py

import discrete , discrete_omain , discrete_rmain , sys , time

def main(args):

params = {

"payoff" : [[0.7 , -0.3], [1.0, 0.0]] ,

"selection_strength" : 1.0,

"population" : 10000 ,

"init_cooperators" : 0.5,

"generations" : 5000,

"report_freq" : 1,

"assortativity" : 0.4,

6This file was created from the template $edcn/discrete/python/experiment.py.
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"update_rule" : "FE2",

"seed" : int(time.time()),

"network_topology" : "Complete",

"network_params" : {}

}

if len(args) == 1 and args [0] == "--realtime ":

discrete_rmain.run(params)

else:

discrete_omain.run(params)

if __name__ == "__main__ ":

main(sys.argv [1:])

We simulate the game using the following command:

> python dpd.py

which produces results.pkl containing the results of the simulation, and plot.pdf

showing the evolution (see Figure B.99) of x.

Java Code

The folder $edcn/discrete/java contains Java code for simulating symmetric,

two-strategy, pairwise games (Section 4.3). params.json provides a template for

defining the simulation parameters (see Table B.11), and Params.java facilitates reading

them. Once the parameters for a game are defined, the game can be simulated using the

following command:

> java Discrete params.json > results.txt

which saves the results (averaged over all trials) of the simulation in results.txt.
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Figure B.99: Evolution of the fraction x of cooperators in a discrete prisoner’s dilemma

game. Simulated on a complete network ΓWM using parameters n = 10000, ρ = 0.3, s = 1,

x0 = 0.5, r = 0.4, T = 5000, ν = 1, and U = FE2.

Table B.11: Parameters for simulating symmetric, two-strategy, pairwise games using our

Java code.

Parameter Description

payoff 2×2 payoff matrix π for the game, specified as [[a,b], [c,d]]

selection strength selection strength s

population population size n

init cooperators initial fraction x0 of cooperators

generations number of generations T per trial

report freq frequency ν (in generations) at which the results are saved

trials number of trials τ
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assortativity probability r with which an individual interacts with another

individual playing the same strategy as its own; only rele-

vant for complete networks

update rule update rule U for the evolutionary dynamics; must be one

of FE1, FE2, RE1, RE2, IM, BD, or DB; FE2 and RE2 work

with simultaneous interactions and updates (Algorithm 4.3)

and the rest work with sequential interactions and updates

(Algorithm 4.2)

network topology network topology Γ; must be Complete or GraphML File

graphml file null or name of the GraphML file

The Python script plots.py can be used to generate plot.pdf showing the evolution

of the fraction x of cooperators from results.txt. The command-line syntax for the

script is as follows:

python plots.py <results file > <start time > <end time >

where <results file> is the name of the file storing the simulation results produced by

Discrete, and <start time> and <end time> specify the time frame (in generations)

for the plot. The inset in the plot shows the value of x averaged over the last 10% of the

generations, denoted by x∞.

Example B.2. Consider the following file dpd.json7 that defines the parameters for

simulating the discrete prisoner’s dilemma game from Example B.1:

// dpd.json

{

payoff : [[0.7, -0.3], [1.0, 0.0]],

7This file was created from the template $edcn/discrete/java/params.json.
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selection_strength : 1.0,

population : 10000 ,

init_cooperators : 0.5,

generations : 5000,

report_freq : 1,

trials : 1,

assortativity : 0.4,

update_rule : "FE2",

network_topology : "Complete",

graphml_file : null

}

We simulate the game using the following command:

> java Discrete dpd.json > results.txt

which produces results.txt containing the results of the simulation. The following

command:

> python plots.py results.txt 0 600

produces plot.pdf showing the evolution (see Figure B.100) of x from generation t = 0

to generation t = 600.

B.5 Simulating Continuous Games

Python Code

The folder $edcn/continuous/python contains Python code for simulating continuous

games (Section 5.3). The script experiment.py provides a template for defining the
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Figure B.100: Evolution of the fraction x of cooperators in a discrete prisoner’s dilemma

game. Simulated on a complete network ΓWM using parameters n = 10000, ρ = 0.3, s = 1,

x0 = 0.5, r = 0.4, T = 5000, ν = 1, and U = FE2.

simulation parameters (see Table B.12). Once the parameters for a game are defined, the

game can be simulated using the following command:

> python experiment.py [--realtime]

where the optional --realtime argument runs the simulation in real-time mode instead

of the default off-line mode.

Table B.12: Parameters for simulating continuous games using our Python code.

Parameter Description

payoff payoff function π for the continuous game

selection strength selection strength s

population population size n

generations number of generations T
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report freq frequency ν (in generations) at which results are saved/dis-

played

init trait initial strategy x0

max trait maximum strategy xm

assortativity probability r with which an individual interacts with another

individual playing the same strategy as its own; only rele-

vant for complete networks

group number g of neighbors each individual interacts with dur-

ing each round of interactions; if None, each individual will

interact with its entire neighborhood; the average value of

the neighbors’ strategies is used in calculating the payoff;

note that this setting is not applicable for the FE2 and RE2

update rules, and must be set to 1 if r is positive

update rule update rule U for the evolutionary dynamics; must be one

of FE1, FE2, RE1, RE2, IM, BD, or DB; FE2 and RE2 work

with simultaneous interactions and updates (Algorithm 5.5)

and the rest work with sequential interactions and updates

(Algorithm 5.4)

mutation rate µ for Gaussian mutation of strategies

stddev standard deviation σ for the mutations

seed seed for the random number generator

network topology network topology Γ (see Table B.9)

network params network parameters (see Table B.9)
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The script continuous_omain.py runs the simulation in off-line mode. The results of

the simulation are saved in results.pkl, a plot showing the evolution of mean strategy x̄

is saved in plot1.pdf, and a plot showing the evolution of the distribution of strategies is

saved in plot2.pdf. The inset in plot1.pdf shows the average value of the mean

strategy x̄ over the last 10% of the generations, denoted by x̄∞. The script can also be used

to extend a previously run simulation to include more generations. This can be done by

updating the generations parameter in the experiment.py file for the simulation to a

new value and running the modified file using the above command.

The script continuous_rmain.py runs the simulation in real-time mode. The results

of the simulation are not saved in this case, but are rendered in real time as plots on the

screen, one showing the evolution of the strategy distribution, and the other showing the

strategy histogram as it varies with the time. The script can also be used to re-play an

off-line simulation.

Example B.3. Consider the following file ctoc.py8 that defines the parameters for

simulating the continuous tragedy of the commons game with payoff function

π(x,y) = B(x)−C(x+ y), where B(x) =− 1
12x3 +2x2 + x and C(x) = x2, on a complete

network ΓWM. The parameters are n = 10000, s = 1, x0 = 1.5, xm = 4, r = 0, µ = 0.01,

σ = 0.005, T = 300000, ν = 100, and U = FE2:

# ctoc.py

import continuous , continuous_omain , continuous_rmain , sys , time

def main(args):

def B(x):

return -0.0834 * x ** 3 + 2.0 * x ** 2 + x

def C(x):

return x ** 2

payoff = lambda x, y: B(x) - C(x + y)

8This file was created from the template $edcn/continuous/python/experiment.py.
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params = {

"selection_strength" : 1.0,

"population" : 10000 ,

"generations" : 300000 ,

"report_freq" : 100,

"init_trait" : 1.5,

"max_trait" : 4.0,

"assortativity" : 0.0,

"group" : None ,

"update_rule" : "FE2",

"mutation" : 0.01,

"stddev" : 0.005 ,

"seed" : int(time.time()),

"network_topology" : "Complete",

"network_params" : {}

}

if len(args) == 1 and args [0] == "--realtime ":

continuous_rmain.run(params , payoff)

else:

continuous_omain.run(params , payoff)

if __name__ == "__main__ ":

main(sys.argv [1:])

We simulate the game using the following command:

> python ctoc.py

which produces results.pkl containing the results of the simulation, plot1.pdf

showing the evolution (see Figure B.101(a)) of x̄, and plot2.pdf showing the evolution

(see Figure B.101(b)) of the distribution of strategies.
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Figure B.101: Evolution of the mean strategy x̄ and the distribution of strategies x in a

continuous tragedy of the commons game. Simulated on a complete network ΓWM using

parameters π(x,y) = B(x)−C(x+ y), where B(x) = − 1
12x3 + 2x2 + x and C(x) = x2, n =

10000, s = 1, x0 = 1.5, xm = 4, r = 0, µ = 0.01, σ = 0.005, T = 300000, ν = 100, and

U = FE2. (a) Evolution of x̄. (b) Evolution of the distribution of x.

Java Code

The folder $edcn/continuous/java contains Java code for simulating continuous games

(Section 5.3). params.json provides a template for defining the simulation parameters

(see Table B.13), and Params.java facilitates reading them. Once the parameters for a

game are defined, the game can be simulated using the following command:

> java Continuous params.json > results.txt

which saves the results of the simulation in results.txt.

Table B.13: Parameters for simulating continuous games using our Java code.

Parameter Description
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payoff name of the payoff function π (Payoff1 or Payoff2 for pris-

oner’s dilemma, Payoff3 for snowdrift game, and Payoff4

for tragedy of the commons) for the game

payoff params parameters (see Payoff*.java for details) for the payoff

function specified as [a,b, . . . ]

selection strength selection strength s

population population size n

generations number of generations T

report freq frequency ν (in generations) at which results are saved/dis-

played

init trait initial strategy x0

max trait maximum strategy xm

assortativity probability r with which an individual interacts with another

individual playing the same strategy as its own; only rele-

vant for complete networks

group number g of neighbors each individual interacts with during

each round of interactions; if 0, each individual will interact

with its entire neighborhood; the average value of the neigh-

bors’ strategies is used in calculating the payoff; note that

this setting is not applicable for the FE2 and RE2 update

rules, and must be set to 1 if r is positive
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update rule update rule U for the evolutionary dynamics; must be one

of FE1, FE2, RE1, RE2, IM, BD, or DB; FE2 and RE2 work

with simultaneous interactions and updates (Algorithm 5.5)

and the rest work with sequential interactions and updates

(Algorithm 5.4)

mutation rate µ for Gaussian mutation of strategies

stddev standard deviation σ for the mutations

network topology network topology Γ; must be Complete or GraphML File

graphml file null or name of the GraphML file

The modules Payoff1.java and Payoff2.java define the payoff functions for the

prisoner’s dilemma game, Payoff3.java defines the payoff function for the snowdrift

game, and Payoff4.java defines the payoff function for the tragedy of the commons

game.

The Python script plots.py can be used to generate plot1.pdf showing the

evolution of mean strategy x̄, and plot2.pdf showing the evolution of the distribution of

strategies. The command-line syntax for the script is as follows:

python plots.py <results file > <start time > <end time > [<xstar >]

where <results file> is the name of the file storing the simulation results produced by

Continuous, <start time> and <end time> specify the time frame (in generations) for

the plots, and the optional <xstar> argument specifies the singular strategy—if one

exists—for the game, indicated in the plots by a dashed line. The inset in plot1.pdf

shows the average value of the mean strategy x̄ over the last 10% of the generations,

denoted by x̄∞.
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Example B.4. Consider the following file ctoc.json9 that defines the parameters for

simulating the continuous tragedy of the commons game from Example B.3:

// ctoc.json

{

payoff : "Payoff4",

payoff_params : [1.0, 2.0, 0.0834 , 1.0],

selection_strength : 1.0,

population : 10000 ,

generations : 300000 ,

report_freq : 100,

init_trait : 1.5,

max_trait : 4.0,

assortativity : 0.0,

group : 0,

update_rule : "FE2",

mutation : 0.01,

stddev : 0.005,

network_topology : "Complete",

graphml_file : null

}

We simulate the game using the following command:

> java Continuous ctoc.json > results.txt

which produces results.txt containing the results of the simulation. The following

command:

> python plots.py results.txt 0 200000 2.0

9This file was created from the template $edcn/continuous/java/params.json.
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produces plot1.pdf showing the evolution (see Figure B.102(a)) of x̄, and plot2.pdf

showing the evolution (see Figure B.102(b)) of the distribution of strategies, each from

generation t = 0 to generation t = 200000.
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Figure B.102: Evolution of the mean strategy x̄ and the distribution of strategies x in a

continuous tragedy of the commons game. Simulated on a complete network ΓWM using

parameters π(x,y) = B(x)−C(x+ y), where B(x) = − 1
12x3 + 2x2 + x and C(x) = x2, n =

10000, s = 1, x0 = 1.5, xm = 4, r = 0, µ = 0.01, σ = 0.005, T = 300000, ν = 100, and

U = FE2. (a) Evolution of x̄. (b) Evolution of the distribution of x.

B.6 Simulating Disease Dynamics

Python Code

The folder $edcn/disease/python contains Python code for simulating disease

dynamics (Section 6.2.4). The script experiment.py provides a template for defining the

simulation parameters (see Table B.14). Once the parameters for a disease are defined, the

disease dynamics can be simulated using the following command:

> python experiment.py [--realtime]
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where the optional --realtime argument runs the simulation in real-time mode instead

of the default off-line mode.

Table B.14: Parameters for simulating disease dynamics using our Python code.

Parameter Description

population population size n

generations number of generations T

report freq frequency ν (in generations) at which results are saved/dis-

played

infection infection probability β of the single infected individual at

generation t = 0

b, a constants β0 and α in the function βi = β0cα
i relating infec-

tion probability βi of individual i to its virulence ci

recovery recovery probability γ

death probability u of dying due to natural causes

mutation rate µ for the Gaussian mutation of infection probability

stddev standard deviation σ for the Gaussian mutations

seed seed for the random number generator

network topology network topology Γ (see Table B.9)

network params network parameters (see Table B.9)

The script disease_omain.py runs the simulation in off-line mode. The results of the

simulation are saved in results.pkl, a plot showing the evolution of the fraction of

susceptible s, infected x, and recovered r individuals, is saved in plot1.pdf, and a plot

showing the evolution of the mean virulence c̄ and its average value c̄∞ over the last 10%
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of the generations is saved in plot2.pdf. The script can also be used to extend a

previously run simulation to include more generations. This can be done by updating the

generations parameter in the experiment.py file for the simulation to a new value and

running the modified file using the above command.

The script disease_rmain.py runs the simulation in real-time mode. The results of

the simulation are not saved in this case, but are rendered in real time as plots on the

screen, one showing the evolution of s, x, and r, and the other showing the evolution of the

mean virulence c̄. The script can also be used to re-play an off-line simulation.

The script r0_plot.py produces r0.pdf showing how the basic reproductive ratio R0

varies with the virulence c. The command-line syntax for the script is:

python r0_plot.py <a> <b> <recovery > <death >

The module disease.py can be used for studying the effects of vaccination on the

spread of a disease. This is done by simulating the disease dynamics for T1 generations,

vaccinating a fraction of the population using one of three strategies (degree, referral,

random), and then continuing the simulation for T2 generations. Vaccinations are carried

out on the command line by running one of the following functions defined in

disease.py:

• state_stats(infile) lists the number of individuals in the susceptible, infected,

recovered, and vaccinated states in infile.

• degree_vaccination(infile, outfile, v) vaccinates the top v percent of the

highly-connected individuals in infile, and saves the changes in outfile.

• referral_vaccination(infile, outfile, v) vaccinates v percent of the

population in infile—each vaccinated individual is a randomly picked neighbor of

a randomly picked individual—and saves the changes in outfile.
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• random_vaccination(infile, outfile, v) vaccinates v percent of the

population in infile uniformly at random, and saves the changes in outfile.

The infile and outfile arguments to each of the above functions denote input and

output (results.pkl) files that store simulation results.

Example B.5. Consider the following file dd.py10 that defines the parameters for

simulating disease dynamics on a complete network ΓWM. The parameters are n = 10000,

β0 = 1, α = 0.5, β = 0.075, γ = 0.08, d = 0.01, µ = 0.0001, σ = 0.05, T = 100000, and

ν = 100:

# dd.py

import disease , disease_omain , disease_rmain , sys , time

def main(args):

params = {

"population" : 10000 ,

"generations" : 100000 ,

"report_freq" : 100,

"infection" : 0.075 ,

"b" : 1.0,

"a" : 0.5,

"recovery" : 0.08,

"death" : 0.01,

"mutation" : 0.0001 ,

"stddev" : 0.05,

"seed" : int(time.time()),

"network_topology" : "Complete",

"network_params" : {}

}

if len(args) == 1 and args [0] == "--realtime ":

disease_rmain.run(params)

10This file was created from the template $edcn/disease/python/experiment.py.
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else:

disease_omain.run(params)

if __name__ == "__main__ ":

main(sys.argv [1:])

We simulate the disease dynamics using the following command:

> python dd.py

which produces results.pkl containing the results of the simulation, plot1.pdf

showing the evolution (see Figure B.103(a)) of s, x, and r, and plot2.pdf showing the

evolution (see Figure B.103(b)) of c̄.
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Figure B.103: Evolution of the fraction of susceptible s, infected x, and recovered r in-

dividuals, and evolution of the mean virulence c̄. Simulated on a complete ΓWM using

parameters n = 10000, β0 = 1, α = 0.5, β = 0.075, γ = 0.08, d = 0.01, µ = 0.0001,

σ = 0.05, T = 100000, and ν = 100. (a) Evolution of s, x, and r. (b) Evolution of c̄.
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Java Code

The folder $edcn/disease/java contains Java code for simulating disease dynamics

(Section 6.2.4). params.json provides a template for defining the simulation parameters

(see Table B.15), and Params.java facilitates reading them. Once the parameters for a

disease are defined, the disease dynamics can be simulated using the following command:

> java Disease params.json > results.txt

which saves the results of the simulation in results.txt.

Table B.15: Parameters for simulating disease dynamics using our Java code.

Parameter Description

population population size n

generations number of generations

report freq frequency (in generations) at which results are saved/dis-

played

infection infection probability β of the single infected individual at

generation t = 0

b, a constants β0 and α in the function βi = β0cα
i relating infec-

tion probability βi of individual i to their virulence ci

recovery recovery probability γ

death probability u of dying due to natural causes

mutation rate µ for Gaussian mutation of infection probability

stddev standard deviation σ for the mutations

seed seed for the random number generator

network topology network topology Γ; must be Complete or GraphML File

graphml file null or name of the GraphML file
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The Python script plots.py can be used to generate plot1.pdf showing the

evolution of the fraction of susceptible s, infected x, and recovered r individuals, and

plot2.pdf showing the evolution of the mean virulence c̄ and its average value c̄∞ over

the last 10% of the generations. The command-line syntax for the script is as follows:

python plots.py <results file > <start time > <end time >

where <results file> is the name of the file storing the simulation results produced by

Disease, and <start time> and <end time> specifiy the time frame (in generations)

for the plots.

Example B.6. Consider the following file dd.json11 that defines the parameters for

simulating disease dynamics from Example B.5:

// dd.json

{

population : 10000 ,

generations : 100000 ,

report_freq : 100,

infection : 0.075 ,

b : 1.0,

a : 0.5,

recovery : 0.08,

death : 0.01,

mutation : 0.0001 ,

stddev : 0.05,

network_topology : "Complete",

graphml_file : null

}

We simulate the disease dynamics using the following command:

11This file was created from the template $edcn/disease/java/params.json.
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> java Disease dd.json > results.txt

which produces results.txt containing the results of the simulation. The following

command:

> python plots.py results.txt 0 40000

produces plot1.pdf showing the evolution (see Figure B.104(a)) of s, x, and r, and

plot2.pdf showing the evolution (see Figure B.104(b)) of c̄, each from generation t = 0

to generation t = 40000.
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Figure B.104: Evolution of the fraction of susceptible s, infected x, and recovered r in-

dividuals, and evolution of the mean virulence c̄. Simulated on a complete ΓWM using

parameters n = 10000, β0 = 1, α = 0.5, β = 0.075, γ = 0.08, d = 0.01, µ = 0.0001,

σ = 0.05, T = 100000, and ν = 100. (a) Evolution of s, x, and r. (b) Evolution of c̄.
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[DB02] Z. Dezső and A.L. Barabási. “Halting viruses in scale-free networks.”
Physical Review E, 65(5):055103, 2002.

[DC96] A.P. Dobson and E.R. Carper. “Infectious diseases and human population
history.” Bioscience, 46(2):115–126, 1996.

[DH00] O. Diekmann and J.A.P. Heesterbeek. Mathematical Epidemiology of
Infectious Diseases: Model Building, Analysis and Interpretation, volume 5.
Wiley, 2000.

[DHK04] M. Doebeli, C. Hauert, and T. Killingback. “The evolutionary origin of
cooperators and defectors.” Science, 306(5697):859, 2004.

[DP] Centers for Disease Control and Prevention. “Tuberculosis.”
http://www.cdc.gov/tb/?404;http://www.cdc.gov:

80/TB/pubs/mdrtb/default.htm.

[Dug97] L.A. Dugatkin. Cooperation Among Animals: An Evolutionary Perspective.
Oxford University Press, 1997.

[EGK04] S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang. “Modelling disease outbreaks in realistic urban
social networks.” Nature, 429(6988):180–184, 2004.

[EK10] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About
a Highly Connected World. Cambridge University Press, 2010.

[Ell01] S.P. Ellner. “Pair approximation for lattice models with multiple interaction
scales.” Journal of Theoretical Biology, 210(4):435–447, 2001.

375

http://voices.yahoo.com/list-ten-worst-computer-viruses-5526277.html?cat=15
http://voices.yahoo.com/list-ten-worst-computer-viruses-5526277.html?cat=15
http://www.bt.cdc.gov/agent/smallpox/training/overview/pdf/eradicationhistory.pdf
http://www.bt.cdc.gov/agent/smallpox/training/overview/pdf/eradicationhistory.pdf
http://www.cdc.gov/tb/?404;http://www.cdc.gov:80/TB/pubs/mdrtb/default.htm
http://www.cdc.gov/tb/?404;http://www.cdc.gov:80/TB/pubs/mdrtb/default.htm


[EMB02] H. Ebel, L. Mielsch, and S. Bornholdt. “Scale-free topology of e-mail
networks.” Physical Review E, 66, 2002.
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