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ABSTRACT 

 

BIOCHEMISTRY OF 1,2-DEHYDRO-N-ACETYLDOPAMINE DERIVATIVES  

 

June 2013 

Adal T Abebe, B.S., Addis Ababa University, Addis Ababa, Ethiopia 

M.S., University of Massachusetts Boston 

Ph.D., University of Massachusetts Boston 

 

 

Directed by Professor Manickam Sugumaran 

 

Dehydrodopa/dopamine derivatives form an important group of biomolecules 

participating in sclerotization of all arthropod cuticles, gluing and cementing mussels and 

related organisms to solid surfaces, and defense reactions of countless marine and 

invertebrate organisms. Yet very little information is available on the biochemistry of 

these highly reactive and unstable molecules. To understand their physiological role, I 

conducted a thorough biochemical study on three representative compounds that cover 

the entire plethora of dehydrodopa/dopamine derivatives. Employing diode array UV-

visible spectroscopy, HPLC, liquid chromatography-mass spectrometry, and electrospray 

ionization tandem mass spectrometry, I investigated the oxidation chemistry of 1,2-

dehydro-N-acetyldopamine (dehydro NADA), 1,2-dehydro-N-acetyldopa and 1,2-

dehydro-N-acetyldopa methyl ester. Tyrosinase converted dehydro NADA to a reactive 
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quinone methide that formed oligomeric products with the parent compound. The sister 

enzyme laccase, produced semiquinone radicals that exhibited a novel coupling reaction 

producing just dimers. Nonenzymatic oxidation of dehydro NADA also produced 

semiquinone radicals that formed oligomeric products. Moreover, nonenzymatic 

oxidation resulted in the production of superoxide anions that could function in defense 

reactions. The nonenzymatic oxidation studies on dehydro NADA at mild alkaline 

conditions revealed the mechanisms of defense reactions and tunic formation in a vast 

array of tunicates. Oxidative transformations of 1,2-dehydro-N-acetyldopa indicated a 

new route for the biosynthesis of a vast array of bioactive marine molecules possessing 

dihydroxycoumarin skeleton. In addition, it revealed new transformations of coumarins to 

oligomeric products via highly reactive quinone methide intermediates. Biochemical 

studies on 1,2-dehydro-N-acetyldopa methyl ester revealed a new Diels Alder type 

condensation of its quinone with the parent compound. This reaction shed light on the 

mode of gluing of mussels and other bivalves to solid surfaces as well as the hardening 

reactions occurring in their periostracum.  I also examined the oxidation chemistry of 

dehydro NADA with a model nucleophile, N-acetylcysteine and discovered yet another 

new addition reaction of dehydro NADA that has tremendous biological significance. 

Finally, I investigated the mechanism of dehydro NADA binding to insect cuticle using 

labeled compounds and established that they could uniquely produce ketocatecholic 

compound, arterenone upon hydrolysis.  The biochemical significances of all these new 

reactions are discussed in the dissertation. 
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mM = millimolar 

M = molar 
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ml = milliliters 

mm = millimeter 

m/z = mass to charge ratio 

NAcDeDopa = 1, 2-dehydro-N-acetyldopa 

NAcCys = N-acetyl cysteine 

NAcHis = N-acetyl histidine 

NADA = N-acetyldopamine 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Dehydrodopa in insect cuticle sclerotization, in small molecules and peptides 

A variety of metabolic transformations convert the aromatic amino acid, tyrosine 

into biologically important products such as dopa, dopamine, epinephrine, N-

acyldopamines, homogentistic acid, cinnamate derivatives, thyroxine, etc. In addition, 

peptidyl tyrosine also undergoes a variety of post-translational modifications and 

generates a plethora of compounds that have crucial roles in several biological processes. 

The focus of this dissertation is on a particular group of compounds possessing 

dehydrodopamine (or dehydrodopa) units. Dehydrodopamine units are biosynthesized 

both from free tyrosine and peptidyl tyrosine compounds. In the last two decades, a vast 

variety of compounds possessing this unit have been identified from a diverse array of 

organisms (Sugumaran and Robinson, 2010). However, their biosynthesis and reactivity 

has remained largely unraveled due to their extreme instability and high reactivity. Our 

laboratory has been investigating the molecular mechanisms associated with the 

metabolic transformations of these novel compounds for over three decades. The simplest 

compound in this group is 1,2-dehydro-N-acyldopamine. The acyl group can be either 

acetyl group or β-alanyl group. Both 1,2-dehydro-N-acetyldopamine (Dehydro NADA) 
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and 1,2-dehydro-N-β-alanyldopamine (Dehydro NBAD) are produced in practically all 

insects for the construction and hardening of their exoskeleton. These two compounds are 

mainly responsible for protecting soft-bodied insects. Therefore, the biochemistry of 

these compounds will be discussed first. 

Insects and other arthropods, have a tough exoskeleton protecting them from the 

environment, enemies and dehydration. The exoskeleton also serves additional roles such 

as providing an anchorage point for the attachment of muscle and other tissues, allowing 

gaseous exchange as well as some waste deposition. But this comes with a major 

drawback. The hard cuticle (= exoskeleton) does not permit the continuous growth of the 

organism. Insects and arthropods have managed to overcome this difficulty by shedding 

their old cuticle periodically and making a new, larger one to accommodate growth. 

Freshly made cuticle is soft and transparent and it soon becomes hard and sometimes 

colored by a set of reactions collectively known as sclerotization. During sclerotization, 

cuticular sclerotizing enzymes oxidize catecholamine derivatives and the resultant 

quinonoid products form adducts and crosslinks that are necessary to harden and protect 

the cuticle. 

Simple ortho-benzoquinone arising from the oxidation of protocatechuic acid was 

the first sclerotizing agent to be identified in any insect system. Working with cockroach 

ootheca Pryor (1940) found that the interaction of phenoloxidase and protocatechuic acid 

lead to the hardening of ootheca. Phenoloxidases were known to oxidize catechols to 

ortho-benzoquinones at that time. This coupled with the fact that quinones have the 
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tendency to react with the nucleophilic groups present on protein side chains lead to the 

quinone tanning proposal (Pryor 1940). Thus, quinones act as glue in binding and making 

the ootheca proteins hard to protect the egg cases of cockroaches. Subsequently this 

proposal was extended to the insect cuticle. With the discovery of universal sclerotizing 

precursor, N-acetyldopamine (NADA) by Karlson and Sekaris (1962), the quinone 

tanning hypothesis gained wide acceptance and found its way into textbooks of 

entomology. According to the quinone tanning hypothesis, cuticular phenoloxidase 

oxidizes NADA (and related catecholamine derivatives that serve as the precursors of 

sclerotizing agents) to their oxidation products, quinones, during the onset of 

sclerotization. Quinones react with the cuticular protein and chitin polymer generating 

adducts and crosslinks (Figure 1.1). 

  However, concrete proof for the operation of quinone tanning was not obtained 

until the 1980’s. Using radioactive studies, our laboratory first provided evidence for the 

presence of catecholamine-amino acid adducts in the acid hydrolyzates of the sclerotized 

cuticle (Sugumaran and Lipke, 1982). Subsequently our laboratory was also successful in 

demonstrating protein polymerization reactions during the interaction of commercially 

available phenoloxidase with test proteins (Sugumaran et al., 1987). 
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Figure 1.1: Mechanism of quinone tanning. Phenoloxidases, both ortho-diphenoloxidases 

and laccases (A), oxidize sclerotizing precursors, such as NADA and NBAD (designated 

as N-acyldopamine), to their quinones. Quinones react with cuticular nucleophiles 

forming adducts by non-enzymatic reactions (D).  

 

Operation of a different mode of sclerotization came to light soon after 

Andersen’s group discovered arterenone and ketocatechol (Figure 1.2). In 1970, 

Andersen and his group isolated and characterized arterenone and ketocatechol from the 

cuticular hydrolyzates and proposed that the side chain of catecholamine derivatives such 

as NADA are somehow involved in crosslinking process.  
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Figure 1.2: Proposed mechanism for the formation of arterenone and ketocatechol in 

insect cuticle. NADA and related catecholamine derivatives are somehow activated at the 

-carbon atom of the side chain and used to make cuticle adducts through their side 

chain. Acid hydrolysis of these adduct will produce arterenone and ketocatechol.  

However the reactive species responsible for this kind of side chain participation 

as well as the mechanisms of the crosslinking reactions were not identified at that time. 

Based on the presence of a carbonyl group at the -position of arterenone, initially the -

carbon atom was proposed to participate in the crosslinking process and the process was 

named as -sclerotization. In support of this proposal, Andersen’s group also claimed that 

incubation of cuticle with side chain labeled NADA resulted in the release of tritium from 

the -position of labeled NADA and not from -position labeled NADA.  In 1980s 

however a number of benzodioxan derivatives of NADA were isolated from the cuticle of 



6 

 

insects. These compounds indicated the participation of the side chain of catecholamine 

in the crosslinking process. Subsequently, a new dehydro derivative of NADA was 

isolated from the lightly sclerotized cuticle of locusts by mild alkali hydrolysis and 

identified to be 1,2-dehydro-N-acetyldopamine (dehydro NADA) (Andersen and 

Roepstorff, 1980). These authors suggested that the quinone of this compound is 

somehow using both its side chain carbon atoms for crosslinking reactions. Therefore, -

sclerotization was renamed as ,-sclerotization (Figure 1.3).  
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Figure 1.3: The proposed mechanism for α,β-sclerotization. The isolation and 

characterization of dehydro NADA from locust cuticle called for the presence of cuticular 

“NADA desaturase” which converts NADA to dehydro NADA. The phenoloxidase  

generated quinone of the dehydro compound is believed to be the reactive intermediate 

responsible for cross-linking of proteins through its side chain carbon.. 

They also proposed the existence of a side chain desaturase that specifically 

converted NADA to dehydro NADA in insect cuticle. These authors, however did not 

explain why the quinone of dehydro NADA would exhibit side chain reactivity while all 

known quinones exhibit only ring reactivity. Also the mode of extraction of this 

compound (by mild alkaline extraction) casted doubts about the natural occurrence of 

dehydro NADA in cuticle. Finally this proposal also contradicted their tritium release 

studies. 
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Our group, after examining these fit falls, proposed an alternate theory whereby 

two-electron oxidation of catechols with methylene side chains at the 4-position would 

generate a quinone methide, an isomer of 4-alkyl quinones (Sugumaran and Lipke, 1983). 

Quinone methides have the tendency to undergo an addition reaction at the 1,6 position 

resulting in the regeneration of the catecholic group with nucleophiles attached to the 

methylene side chain. Accordingly, this process was named quinone methide 

sclerotization. Our proposal accounted for the side chain reactivity of the catecholamine 

sclerotizing agent as well as the liberation of dehydro NADA (Figure-1.4). A quinone 

mehtide adduct in cuticle would easily account for the generation of dehydro NADA by a 

β-elimination reaction during alkaline treatment. However, Andersen’s group also 

isolated trace amounts of dehydro NADA as a naturally occurring compound from the 

insect cuticle (Andersen and Roepstroff, 1982). Our group initially argued that dehydro 

NADA could be formed in trace amounts by a nonenzymatic reaction of enzymatically 

generated NADA quinone methide. In any case, the search for the enzyme producing 

dehydro NADA as well as quinone methide was seriously pursued in several laboratories 

to prove the operation these two mechanisms.  
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Figure 1.4: Quinone methide sclerotization. N-acyldopamines are converted to quinone 

methide intermediate by two electron oxidation, which react nonenzymatically with 

available nucleophile using side chain carbon atom.  Quinone methide also undergoes 

isomerization to dehydro NADA accounting for most of the observed reactions.  

Our laboratory finally succeeded in isolating not only the enzyme responsible for 

NADA quinone methide production in cuticle, but also the enzymes associated with 

dehydro NADA production. Contrary to the initial proposal, NADA quinone was not 

directly produced by a two-electron oxidation of catecholamine sclerotizing precursor, 

but by the combined action of two enzymes. Phenoloxidase converted the catecholamine 

derivatives to their quinones as usual. But a new enzyme called quinone isomerase 

converted the resultant 4-alkyl quinones to para-quinone methides and provided them for 
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quinone methide sclerotization. Additionally, yet another enzyme was discovered from 

this laboratory that generated dehydro NADA from NADA quinone methide by another 

isomerization reaction. Thus, dehydro NADA is biosynthesized by the combined action 

of three enzymes, phenoloxidase, quinone isomerase and quinone methide isomerase 

rather than a specific action of a side chain desaturase (Figure-1.5). 

 

               

Figure 1.5: Biosynthesis of dehydro NADA. Dehydro NADA is not biosynthesized by the 

direct side chain desaturation of NADA by a NADA desaturase, but by the combined 

action of three enzymes. Phenoloxidases convert NADA to its quinone, which is 

isomerized by quinone isomerase. Quinone methide isomerase converts NADA quinone 

methide to dehydro NADA.  
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Discovery of quinone isomerase and quinone methide isomerase accounted for all 

the observations made on lightly sclerotized cuticle. The reactivity of dehydro NADA 

through its side chain however remained unsolved for some time.  To explore all possible 

reactivities of dehydro NADA, we needed synthetic dehydro NADA. To this goal, 

several attempts were made to synthesize dehydro NADA in large scale. Initially dehydro 

NADA was synthesized using a multi step synthesis, but subsequently a simpler synthetic 

strategy was devised and large-scale synthesis of dehydro NADA was accomplished from 

norepinephrine (Dali and Sugumaran, 1988). Norepinephrine was first converted to 

tetraacetyl norepinephrine by acetylation and then deacylated under mild alkaline 

conditions to generate dehydro NADA in excellent yield. With the unlimited availability 

of dehydro NADA, examination of its oxidation chemistry became easier, despite the fact 

dehydro NADA is very unstable and often difficult to handle in solutions.  

  

Figure 1.6: Chemical synthesis of dehydro NADA. Dehydro NADA was 

synthesized from commercially available norepinephrine via tetraacetyl norepinephrine 

by a simple -elimination reaction.  
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Availability of dehydro NADA in large amounts helped us to study all of its 

reactivities. Oxidation of dehydro NADA by mushroom tyrosinase readily generated the 

two electron oxidation product (Sugumaran et al., 1987). The product exhibited a broad 

absorbance maximum centered around 480 nm, nearly 60 nm higher than that expected 

for a typical o-quinone. This observation was puzzling initially, but extensive subsequent 

work lead to the confirmation that this quinonoid species is not an o-quinone but a p-

quinone methide. Based on physicochemical evidence and quantum chemical calculations 

this compound was conclusively identified as the quinone methide imine amide (QMIA) 

(Sugumaran, 2000; Sugumaran et al., 1992). The normal o-quinone product turned out to 

be less stable and could only be visualized under acidic conditions. Since quinone to 

quinone methide tautomerization is a base catalyzed reaction (Sugumaran 2000), the 

quinone rapidly isomerized to the QMIA, as soon as the pH was raised to even neutral 

conditions. Thus, the only product that could be observed during the oxidation of dehydro 

NADA by tyrosinase at physiological pH is its QMIA derivative (Figure 1.7).  

          The QMIA thus formed is not stable and readily undergoes reaction with the 

parent dehydro NADA, forming benzodioxan type adducts. The quinone methide nucleus 

will add on to the phenolic group first and the modified Schiff’s base will subsequently 

undergo ring closure as shown in Figure 1.8, producing a benzodioxan type dimer. Since 

such nonenzymatic additions are non-stereoselective, one would get all possible isomeric 

products. Accordingly Tada et al., 2002 have isolated and separated all possible isomers 
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of dehydro NADA dimers from the cuticular exuvia of Cicada as naturally occurring 

compounds. 

                              

Figure 1.7: Oxidation of dehydro NADA. Oxidation of dehydro NADA produces a novel 

quinone methide instead of the normally expected quinone.    

     

Figure 1.8: Mechanism for oxidative dimerization of dehydro NADA. Oxidation of 

dehydro NADA produces the QMIA which reacts with the parent compound generating 

benzodioxan dimers. 
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  The dimerization reaction was not unique to dehydro NADA. Not only dehydro 

NADA reacts with QMIA, but also a number of catechols such as NADA, 1,2-

dihydroxybenzene etc., react with QMIA producing benzodioxan type dimers. Since 

these reactions involve the side chain addition, a similar addition of cuticular 

nucleophiles can also be envisaged and the result would be binding of dehydro NADA to 

the cuticle through both its side chain as shown in Figure 1.9. Thus the benzodioxan type 

adduct formation explains the participation of both side chain carbon atoms in 

crosslinking process. 

 

Figure 1.9: The oxidation product of dehydro NADA, could add on to cuticular 

nucleophiles also forming quinone methide adducts and crosslinks as shown in this 

figure.  

       Our laboratory also established that N-β-alanyldopamine (NBAD) could also 

be converted by the same set of enzymes used for the conversion of NADA to dehydro 

NADA to dehydro NBAD. These four compounds - NADA, dehydro NADA, NBAD and 
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dehydro NBAD -appear to be the major sclerotizing precursors used by most if not all 

species of insects. Based on our studies we have proposed a unified mechanism for 

sclerotization of insects that is depicted in Figure 1.10. 

                  

Figure 1.10: Unified Mechanism for Sclerotization of insect cuticle. Phenoloxidase 

generated quinones react with proteins and chitin forming adducts (called quinone 

tanning). Quinones also serve as substrates for quinone isomerase generating quinone 

methides that react with proteins and chitin (Quinone methide sclerotization). Quinone 

methides are converted by quinone methide isomerase to dehydro-N-acyldopamine, 

which is further oxidized by phenoloxidases producing quinone methide imine amide that 

will generate adducts and crosslinks (quinone methide sclerotization) (Sugumaran, 

1998).   
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               According to the unified mechanism for sclerotization depicted in Figure 

1. 10, during sclerotization NADA and NBAD, the two most common sclerotizing 

precursors are oxidized to their corresponding quinones by phenoloxidases. Quinone 

reacts with protein and chitin through a Michael 1,4-addition reaction forming adducts 

that account for quinone tanning. Quinones are also acted upon by quinone isomerase 

generating quinone methides. Quinone methides will undergo a Michael 1,6-reaction 

generating quinone methide adducts (quinone methide sclerotization). Some of the 

quinone methides serve as substrate for quinone methide isomerase generating dehydro 

N-acyldopamine derivatives. Dehydro N-acyldopamines are oxidized by cuticular 

phenoloxidases to a reactive QMIA that forms adducts and crosslinks through its side 

chain with nucleophilic groups of proteins and chitins, thereby accounting for another 

mode of quinone methide sclerotization reactions.  

Sclerotization reactions are not limited to insects alone. Other arthropods as well 

as marine organisms also use similar pathways, several of which are yet to be unraveled. 

Several marine organisms belonging to the phylum Mollusca attach to the substratum 

through sclerotization reactions. One system that has been well characterized is the 

hardening of the mussel byssal threads. The mussel byssus is strong threads which are 

made in succession, one at a time, throughout the life time of the organism, serve as 

holdfast to keep the mussel securely tethered to a hard substratum in wet environment. 

Mussels settle on a substratum and the glands from their foot secret polyphenolic proteins 

that are rich in tyrosine and dopa and a phenoloxidase. The interaction of polyphenolic 
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protein and the phenoloxidase leads to cementing and the mussels permanently adhere to 

the substratum (Waite 1990; Rubin et al., 2010).  Dopyl proteins seem to be undergoing 

oxidation and bonding to achieve this cementing.  Much like the conversion of NADA to 

dehydro NADA, dopyl proteins may also undergo conversion to dehydrodopyl 

derivatives and further oxidized to form crosslinks. The notable exception is the lack of 

quinone isomerase and quinone methide isomerase. Peptidyl derivatives such as N-

acetyldopa esters upon phenoloxidase action readily undergo oxidative transformation to 

dehydro dopyl compounds via quinone and quinone methide (Figure 1. 11). Thus, only 

for the production of quinones, enzyme action is needed in this case. The rest of the 

reactions, viz., quinone isomerization to quinone methide and the conversion of quinone 

methide to dehydro dopyl compound occur through nonenzymatic reactions. Use of dopyl 

proteins rather than soluble small catechols such as NADA has another advantage for 

marine organisms. Since the hardening takes place at the water rich interphase, use of a 

small molecule may be subjected to dilution and loss while the sticky protein may remain 

at the site where it is needed and function both as a structural protein and as a sclerotizing 

compound. Based on the unified mechanism for sclerotization of insect cuticle, one can 

also propose a parallel mechanism for cementing reactions occurring in mussels as 

depicted in Figure 1.12 (Sugumaran, 2010). The same reactions are also likely used for 

the hardening of periostracum in mollusks (Waite, 1990; Sugumaran, 2010; Rubin et al., 

2010).  
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The possible occurrence of dopyl proteins and their participation in cuticular 

hardening even in insects is a matter of speculation only at this time as various studies 

have indicated this possibility but concrete evidence is yet to come although the presence 

of dopa containing protein in the cuticle of Manduca sexta has been demonstrated (Okot-

Kotber et al., 1994).   

       

Figure 1.11 Oxidative transformations of dopyl derivatives. Dihydrocaffeic acid 

derivatives (compound 1; A = H; B = CONHCH3 or COOCH3) upon oxidation produces 

the corresponding quinone (2) that isomerizes to quinone methide (3) rapidly and 

nonenzymatically. Quinone methide undergoes subsequent isomerization yielding caffeic 

acid derivatives (Compound 4; A = H; B = CONHCH3 or COOCH3).  If dopa is 

decarboxylated and the amino group is protected (compound 1 N-acetyldopamine A = H; 

B = NHCOCH3) the quinone generated from this compound is incapable of undergoing 

spontaneous conversion to quinone methide but needs the enzyme quinone isomerase. 

The resultant quinone methide (3) again needs another isomerase - quinone methide  
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isomerase, to generate dehydro N-acetyldopamine (Compound 4; A = H; B = 

NHCOCH3). Both amino and carboxyl protected dopa derivatives such as N-acyldopa 

esters (Compound 5; A = COOCH3; B = NHCOCH3 or NHCOC2H5) do not need the 

assistance of any isomerases to generate dehydrodopa derivatives.    

               

Figure 1.12: Proposed mechanism for the oxidative transformation of dopyl peptides. 

Peptidyl dopas are oxidized by phenoloxidases (A) to their corresponding quinones that 

can participate in quinone tanning reactions. Quinone also undergoes nonenzymatic 

isomerization to quinone methide and participates in quinone methide sclerotization. 

Quinone methide is also isomerized to a dehydrodopa derivative, again by a 

nonenzymatic reaction. Oxidation of the dehydrodopas will produce quinones and 

quinone methides that can also participate in additional crosslinking (A = 

phenoloxidase; B = nonenzymatic reactions).    
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The use of the dehydrodopa/dehydrodopamine group is not unique for 

sclerotization alone. A number of marine organisms seem to generate these compounds 

for a variety of purposes. The ocean covers over 70% of the Earth’s surface and contains 

an incredible diversity of life with diverse species of plants, animals, and 

microorganisms. It can provide myriad compounds that can potentially serve as 

pharmaceuticals, nutritional supplements, cosmetics and material chemicals. Many 

pharmacologically important substances have been isolated with unique antitumor, 

antimicrobial and anti-inflammatory properties from marine organisms. A well-known 

example, azidothymidine or AZT, the first anti retroviral medicine approved for treating 

HIV/AIDS, is obtained from the sponge Cryptotethya. Despite the dramatic potentials 

shown by marine compounds, relatively few studies have been conducted on the marine 

organisms. A cursory survey of marine compounds containing the dehydro dopyl unit 

was recently published (Sugumaran and Robinson, 2010). The survey clearly indicated 

the diverse potentials of marine dehydro dopyl compounds. Among the promising 

candidates are lamellarins, which are a group of about 70 condensed polycyclic aromatic 

compounds possessing dehydrodopa units. Lamellarins were first isolated from the 

prosobranch mollusk of the genus Lamellaria (Andersen et al., 1985). They were later 

extracted and identified from various species of ascidians and sponges collected from 

diverse areas (Urban et al., 1995). Following the discovery of the potent anti-proliferative 

and pro-apoptotic activities of lamellarins their biological activities have been extensively 

studied. Some lamellarins are found to be potent inhibitor of topoisomerase I (Facompre  
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et al., 2003). They also function as multi-drug resistance reversal drugs (Vanhuyse et al., 

2005).  Furthermore some are found to inhibit HIV-1 integrase (Menna et al., 2011). The 

majority of the lamellarins possess either Type 1a or 1b structure shown in Figure 1. 13. 

In addition to lamellarins, ningalin A and ningalin B, whose structures are also shown in 

the same figure, possess a coumarin ring structure. Ningalins, as well as their derivatives, 

exhibit marked cytotoxicity against several cancer cell lines. They also exhibit significant 

multi-drug resistance reversal activity at non-cytotoxic concentrations. It is important to 

stress that 6, 7-dihydroxycoumarin units found in these compounds have dehydrodopa 

units embedded in them (Figure 1.13).   

 

            Figure 1.13: Structure of lamellarins and ningalins. Structures of marine natural 

products possessing 6,7-dihydroxycoumarin unit (R1 and R2 substituent in 

lamellarins are often either hydroxyl groups or its ester derivatives). Note the 

presence of dehydro dopa units in all these compounds. 
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The other group of dehydrodopa containing compounds is the low molecular 

weight oligopeptides isolated from tunicates, called tunichromes. The structure of these 

compounds along with other dehydro dopa containing compounds are shown in Figure 

1.14 and in Table 1.1. The biological role of tunichromes and related marine 

dehydrodopyl compounds remains largely speculative, although various researchers have 

proposed different possible functions over the years (Taylor et al., 1997a; Sugumaran and 

Robinson, 2010; Cai et al., 2008). Like other marine invertebrates, such as sponges and 

bivalves, tunicates are filter feeders. They could potentially accumulate high 

concentrations of marine viruses and bacteria in their system by this process. For 

successful survival the hosts must have potent antiviral and antibacterial compounds to 

combat any opportunistically infecting microorganisms. Tunichromes could play a 

crucial role in defense reactions, as they seem to possess suitable reactivity. They are 

extremely unstable and rapidly undergo oxidation producing harmful quinonoid 

compounds and free radicals that may be useful to kill invaders (Cai et al., 2008).  Some 

of the tunichromes seem to possess antibiotic properties (Cai et al., 2008; Tincu et al., 

2003).  In spite of such a crucial role only limited research has been carried out on the 

biochemistry of dehydrodopa and its derivatives. Instability, unusual reactivity, and 

difficulty in making these novel biological molecules severely hampered the 

advancement of knowledge of dehydrodopas. Because of their importance, I examined 

the oxidation chemistry of dehydro NADA and related compounds in detail and present 

the results in this dissertation thesis. 
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           Figure 1.14: Structure of tunichrome An-1, An-2 and An-3. 
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Table 1.1: Naturally occurring marine compounds possessing one or more dehydro 

dopamine units 

 

No. Compound    Structure  

1. Tunichrome An-1  Topa-DeTopa-DeTopamine 

2. Tunichrome An-2  Dopa-DeTopa-DeTopamine 

3. Tunichrome An-3  Dopa-DeTopa-DeDopamine 

4. Tunichrome Pm-1  Topa-Topa-DeTopamine 

5. Tunichrome Pm-2  Dopa-Topa-DeTopamine 

6. Tunichrome Pm-3  Dopa-Topa-DeDopamine  

7. Tunichrome Mm-1  Gly-DeDopa-DeDopamine 

8. Tunichrome Mm-2  Leu-DeDopa-DeDopamine 

9. Tunichrome Sp-1  Dopa-Dopa-Gly-Pro-DeDopamine 

10. Plicatamide   Phe-Phe-His-Leu-His-Phe-His-DeDopamine 

11.  Morulin Pm   Polypeptide with 6BrTrp and DeDopamine  

12. Clionamide1   6-BrTrp-DeTopamine 

13. Celenamide A   Leu-DeTopa-6-BrTrp-DeDopamine 

14. Celenamide B   Val-DeTopa-6-BrTrp-DeDopamine 

15. Celenamide C   Leu-DeTopa-6-BrTrp-DeTyramine 

16. Celenamide D   Leu-DeTopa-DeTopa-DeDopamine 

17. Celenamide E   DeTopa-6-BrTrp-DeDopamine 

18.  Lamellarins   Polycyclic compounds with deDopamine 

19.  Ningalins A-D   Polycyclic compound with deDopamine 

20. Purpurone   Polycyclic compound with deDopamine 

21.  Stroniamides A-D  Polycyclic compound with deDopamine 
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1.2 Research objectives: Insects and other arthropods serve as vectors to transmit a 

variety of diseases such as malaria, West Nile virus, Eastern Equine Encephalitis, yellow 

fever, and dengue fever. Insect vector-borne diseases infect nearly half of the world’s 

population. A variety of insecticides have been used to eradicate/control harmful insect 

populations. Unfortunately, an excessive and continuous use of pesticides has induced the 

development and spread of resistance, which presents the major obstacle in controlling 

arthropod born diseases. Moreover, many pesticides used are also persistent and highly 

toxic not only to insects but also to other animals including humans. As a result vector-

borne diseases continue to incur tremendous health and economic burdens especially in 

developing and underdeveloped countries. A rational approach to overcome resistance 

and minimize threats posed to public health is targeting a molecular process which is 

unique and extremely vital for insect development and survival, but is absent in human 

and other vertebrate animals. Cuticular sclerotization has been recognized as one such 

biological process.  But to develop insecticides based solely on this process, it is essential 

to understand the biochemistry and molecular biology of this process. The core objective 

of the present research is to understand the biochemistry of cuticle hardening. To this 

end, studies were designed to elucidate the unique reactivities of dehydrodopa containing 

compounds. Because of the complexity of the reaction and multiplicity and instability of 

products coupled with the lack of appropriate separation and characterization techniques, 

simple model compounds synthesized in our lab are used for the study. The model 

compound 1,2-dehydro-N-acetyldopamine (dehydro NADA) is used to study the 

biochemistry of cuticle sclerotization. The second objective focuses on the biosynthesis 
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and metabolic fate of bioactive natural compounds isolated from diverse marine 

organisms. These compounds have a wide range of different biological activities which 

are of pharmacological importance to humans. Their reactivity is investigated using a 

model compound, 1,2-dehydro-N-acetyldopa (DeNAcDopa). The third objective is to 

understand modifications of peptidyl dopa which seem critical and associated with a 

number of biological processes such as biological glue and cement formation using a 

model compound 1,2-dehydro-N-acetyldopa methyl ester (DeNAcDopa methyl ester). 

Better understanding of this transformation will establish the ground work to develop 

new kinds of biocompatible building materials and develop medical adhesives. 

          The results of oxidative transformation of dehydro NADA by tyrosinase and 

laccase are separately presented in Chapter 2 and 3 respectively. The nonenzymatic 

oxidative transformation of dehydro NADA is presented in Chapter 4. The results of 

enzymatic oxidation of DeNAcDopa and DeNAcDopa methyl ester are presented in 

Chapter 5 and 6 respectively. The reactivity of dehydro NADA with external 

nucleophiles, and its incorporation into insect cuticle and fate during hydrolysis are 

presented in Chapter 7 and 8 respectively.  
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CHAPTER 2 

TYROSINASE CATALYZED OXIDATION OF 1, 2-DEHYDRO-N- 

ACETYLDOPAMINE 

 

2.1 Chapter summary 

         Dehydrodopas are a group of important catecholamine derivatives synthesized from 

the amino acid tyrosine and peptidyl bound tyrosine residues, by a myriad of organisms 

for use in a diverse array of biological processes. The first well established process where 

dehydrodopa plays a crucial role is sclerotization of insect cuticle. During sclerotization, 

crosslinking occurs as a result of oxidative and nucleophilic reactions between highly 

reactive sclerotizing agents derived from catechols and nucleophilic side chain groups of 

protein and chitin. Dehydro NADA is a novel catecholamine compound that was first 

isolated from the sclerotized cuticle of locusts and proposed to be a reactive intermediate 

participating in the hardening and sclerotization of insect cuticle (Andersen and 

Roepstroff, 1981, 1982; Andersen et al., 1980). Oxidation of dehydro NADA by 

tyrosinase produces a transient QMIA intermediate which shows an absorbance 

maximum at about 485 nm and exhibits a Michael 1,6-addition reaction, and the Schiff’s 

base can undergo simple addition. The net result is the reactivity of the side chain to 

produce adducts and/or crosslinks through the two side chain carbon atoms leaving the 



28 

 

ring carbon intact. If no external nucleophiles are present, the two phenolic hydroxyl 

groups of dehydro NADA add to QMIA, forming the dimers (Sugumaran et al., 1988). 

Reexamination of oxidation of dehydro NADA by tyrosinase not only generated dimers 

as reported earlier, but also generated significant amounts of oligomers as a result of 

dimer addition onto another molecule of QMIA. This supports the idea that a similar 

reaction with cuticular nucleophiles can generate QMIA adducts in the cuticle.   

 

2.2 Introduction 

        Dehydro NADA is a novel catecholamine compound that was first isolated from the 

sclerotized cuticle of locusts and proposed to be a reactive intermediate participating in 

the hardening and sclerotization of insect cuticle (Andersen and Roepstroff, 1981, 1982; 

Andersen et al., 1980). The same group also proposed that dehydro NADA is synthesized 

from NADA by a specific NADA desaturase (Andersen and Roepstroff, 1982; Andersen 

et al., 1996). However, a specific desaturase causing the transformation of NADA to 

dehydro NADA has not been isolated and characterized from any insect cuticle so far. 

Available experimental evidence also did not support the presence of such a desaturase in 

insect cuticle. However, biosynthetic studies revealed that the dehydrogenation of NADA 

is achieved by the combined action of three enzymes, viz., phenoloxidase, quinone 

isomerase and quinone methide isomerase (Saul and Sugumaran 1988, 1989 a-c, 1990a & 

b, 1992b; Ricketts and Sugumaran, 1994). Occurrence of this reaction has been shown in 

a number of insects including Sarcophaga bullata, Drosophila melanogaster, Manduca 
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sexta, and Calliphora vicina, thus accounting for the generation of this reaction. Dehydro 

NADA is biosynthesized from the amino acid tyrosine sequentially and the process 

involves hydroxylation of tyrosine to dopa by phenoloxidase. Upon oxidative 

transformation to its quinone DOPA rapidly undergoes intramolecular cyclization 

because of the unprotected nucleophilic amine group and this limits its potential as a 

cross-linking precursor. Insects overcome this problem by first decarboxylating dopa to 

dopamine by dopadecarboxylase, acylation of dopamine by N-acetyl transferase/ N-beta 

alanyl transferase to form N-acetyldopamine in epidermis and finally transporting N-

acetyldopamine to cuticle where phenoloxidases oxidize it to quinone followed by 

tautomerization to quinone methide by quinone isomerase and rearranged to N-acyl 

dehydrodopamine by quinone methide isomerase. In dehydrodopa, the nucleophilic 

nitrogen is deactivatd by the adjacent carbonyl group through resonance. The 

consequence of which is the loss of the amino group’s nucleophilicity. This allows the 

side chains and the quinonoid nucleus to participate in external reactions (Saul and 

Sugumaran 1988, 1989 a-c, 1990a &b, 1992b; Ricketts and Sugumaran 1994). 

Furthermore, using cuticular enzymes consisting of phenoloxidase, quinone isomerase, 

and quinone methide isomerase, the generation of another dehydrodopamine derivative, 

1,2-dehydro-N--alanyldopamine, was also demonstrated from its saturated analog, N--

alanyldopamine (Ricketts and Sugumaran, 1994).  

           In the absence of external nucleophiles, oxidation of dehydro NADA produces a 

transient intermediate possessing a visible absorbance maximum at 485 nm before 
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generating stable dimeric end products (Sugumaran 1998; Sugumaran et al., 1987a, 1988, 

1990, 1992a).  Theoretically three possible reaction intermediates viz., dehydro NADA 

quinone, dehydro NADA semiquinone, and dehydro NADA quinone methide, can lead to 

the production of dimeric products. Pulse radiolysis, electron spin resonance, and time 

resolved UV-Visible spectral studies of the dehydro NADA oxidation reaction mixtures 

led to the identification of quinone methide imine amide (QMIA) as the transient reactive 

intermediate under the conditions employed for phenoloxidase reaction (Sugumaran, 

1998; Sugumaran et al., 1987a; 1988, 1992a). Thus dehydro NADA possesses unique 

reactivity in that it produces a reactive QMIA as the primary two-electron oxidation 

product at neutral pH values which subsequently undergoes a rapid addition reaction with 

the starting material generating dimeric products. Both the quinone methide nucleus and 

the imine amide part in the molecule act as electrophiles to form adducts with 

nucleophilic centers. In the cuticular environment, such reactions are expected to 

generate adducts with cuticular nucleophiles resulting in the production of various 

combinations of protein, chitin and dehydro NADA adducts and cross-links that are 

necessary for stabilization and hardening of the cuticle (Sugumaran, 1998).   

            During sclerotization, dehydro NADA is oxidized by cuticular phenoloxidase to a 

reactive QMIA that forms adducts and crosslinks through its side chain with nucleophilic 

groups of proteins and chitins, thereby accounting for sclerotization reactions. Tyrosinase 

(tyrosine: 3, 4-dihydroxy phenylalanine: oxygen oxidoreductase, EC.1.14.8.1) catalyzes 

both the ortho hydroxylation of monophenols (monophenolase activity) and the two 
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electron oxidation of ortho diphenol to ortho quinones (diphenolase activity) and have 

been suggested to be responsible for catalyzing the oxidation of sclerotizing agents to a 

highly reactive intermediate during sclerotization (Sugumaran, 1987). In insects 

tyrosinase catalyzes both hydroxylation of monophenols to ortho-diphenols and oxidation 

of ortho diphenols to ortho quinones; they will not oxidize para diphenols, and are 

inhibited by phenylthiourea. The study of Tribolium casteneum genome has demonstrated 

the presence of two genes for tyrosinase, TcTyr1 and TcTyr2 (Arakane et al., 2005). 

Tyrosinases occur both in hemocytes and cuticle. The hemolymphal tyrosinases are 

produced without N-terminal signal peptide, indicating that they are released to the  

hemolymph via rupture of the cells (Kanost and Gorman, 2008). Because products of the 

enzymatic reaction phenoloxidase are potentially cytotoxic, phenoloxidase is present in 

hemocyte and hemolymph as an inactive proenzyme and activated by limited proteolysis, 

where the N-terminal region of the peptide chain is removed, making the active center of 

the enzyme accessible for the substrate. In vitro activation of the proenzyme is also 

obtained by treatment with deteregents. The activation of tyrosinase in the cuticle 

probably occurs via limited proteolysis by proteases. Inaddition to sclerotization catechol 

oxidation by tyrosinase is also important in other process such as wound healing and 

immune response in insects. When cuticle is damaged or infected by microorganisms the 

proenzyme becomes activated and produces reactive intermediates which destroy the 

invaders. 
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            Andersen and Roepstroff, 1982 have isolated a number of benzodioxan derivative 

from sclerotized cuticle of L. migratoria and proposed that dehydro NADA could be 

oxidized by cuticular enzymes to the benzodioxan type dimer through corresponding 

quinone. However, later work (Sugumaran et al., 1987a) by fast scanning of the reaction 

mixture demonstrated tyrosinase catalyzed the dimerization of dehydro NADA through 

quinone methide. A closer look at the ultraviolet spectral changes associated with 

tyrosinase catalyzed oxidation of dehydro NADA shows the consumption of more than 

half of the starting material at the end of the reaction. This indicates the production of not 

only dimers, as thought earlier, but also oligomers. The kinetics and mechanism of 

oxidative transformation of dehydro NADA catalyzed by tyrosinase purified from 

Sarcophaga bullata and commercial tyrosinase was therefore reexamined using UV-Vis 

spectroscopy, RP-HPLC and high performance liquid chromatography-tandem mass 

spectrometry. Oxidation by tyrosinase (both commercial and purified) not only generated 

dimers as reported earlier, but also generated significant amounts of oligomers.   
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2.3 Materials and methods 

               Dehydro NADA was synthesized from norepinephrine following the published 

protocol (Dali and Sugumaran, 1988) (Figure 1.6).  Briefly, a mixture of (±) 

norepinephrine hydrochloride (25 g, 0.12 mol), acetic anhydride (150 ml) and 

triethylamine (25 ml) was stirred under nitrogen at 100 ºC for 1 hr. The cooled mixture 

was poured onto ice and extracted with 700 ml of ethyl acetate. The organic extract was 

washed with water, followed by brine and dried over anhydrous MgSO4. Removal of 

solvent gave tetraacetylnorepinephrine which was recrystallized from hexane to give 40 g 

(97%) of white solid, mp. 104-105 ºC:Rf (A) : 0.46. 
1
 H-NMR (CDCl3): δ 1.85 (s, 3H, 

CH3), 2.00 (s, 3H, CH3), 2.15 (s, 3H, CH3), 2.33 (s, 3H, CH3),  3.30-3.70 (m, 2H, CH2), 

5.60-6.00 (m, 1H, CH), 6.80-7.40 ppm (m, 4H, ArH and NH). IR (nujol):3250 (NH), 

1805 (CO), 1780 (CO), 1730 (CO), 1630 (NH), 1370 (CH3) cm
-1

, MS: m/e 337 (M
+
). A 

mixture of tetraacetylnorepinephrine (2.0 g, 6 mmol) and anhydrous potassium carbonate 

(2.0 g) in dimethyl sulfoxide (15 mL) was heated under nitrogen at 110 ºC for 2 hr. The 

reaction mixture was then poured onto water and extracted with 350 ml of ethyl acetate. 

The organic solution was washed with brine solution and dried over anhydrous MgSO4. 

Solvent removal on a rotary evaporator gave 1.4 g of an oily product. Crystallization 

from 0.2 N acetic acid produced 0.64 g (55%) of pure dehydro NADA, mp. 197-198 ºC, 

as white crystals. The NMR, IR, UV, and MS were identical as reported earlier. It was 

further purified by Biogel P-2 column chromatography and used. Mushroom tyrosinase, 

and laccase were purchased from Sigma Chemical Co., St. Louis Mo. HPLC grade 
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methanol and ammonium formate (99%) were purchased from Acros, Morris Plains NJ.   

HPLC-grade water used to prepare the ammonium acetate buffer and HPLC mobile phase 

was obtained from a Milli-Q
® 

synthesis A10 water purification system from Millipore, 

Milford, MA. All other chemicals were of analytical grade purchased from Fisher and/or 

VWR. 

       Tyrosinase from the larvae of Sarcophaga bullata was isolated as follows. Larvae of 

S. bullata were obtained from Carolina Biological Supplies Co., NC and maintained on 

dog food diet at 27 ºC with a 16 hr photoperiod. All operations were carried out 0-5 °C. 

Wandering stage larvae (3
rd

 instar) were collected and cleaned with ice cold water and 

homogenized in  a Waring blender for 1-2 min in homogenizing buffer (1% sodium tetra 

borate containing 0.1% ascorbic acid) with three changes. The homogenate was filtered 

through a 0.2 μm sieve and washed extensively with running cold water. The translucent 

cuticle thus obtained was extracted overnight (12 hr) at 4 °C with the homogenizing 

buffer. The extract was filtered through double layers of cheese-cloth and subjected to 

60% ammonium sulfate treatment at 4 ºC. The precipitated proteins were collected by 

centrifugation at 10,000 x g for 10 min. The pellet was dissolved in 50 mM sodium 

phosphate buffer pH 6.0, dialyzed against the same buffer and subjected to size exclusion 

chromatography on a Sephacryl S-200 column (115 x 2.0 mm) using 50 mM sodium 

phosphate pH 6.0 at a flow rate of 0.5 ml/min. Fractions exhibiting tyrosinase activity 

were pooled, concentrated, and used. 
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Assay of tyrosinase activities. All spectrophotometric assays were carried out using a 

Beckman DU-7500 spectrophotometer. Tyrosinase activity in the purified fractions was 

assayed using a 1 ml reaction mixture containing 2 mM dopamine in 50 mM sodium 

phosphate, pH 6.0. After adding the enzyme (usually 10-15 μg) the increase in 

absorbance at 475 nm due to dopamine quinone formation at room temperature was 

monitored.  

RP- HPLC Parameters : A low-flow Shimadzu (Kyoto, Japan) HPLC system, which 

included a SCL-10A vp controller, two LC-10AD vp pumps, a SIL-10AD vp auto 

injector, and a C18 BetaBasic column  (100 mm x 1 mm, 3 mm size) from 

ThermoElectron Corporation Sunnyvale, CA  was used to separate the oligomers of 

dehydro NADA.  The HPLC was operated at a flow rate of 35 μl/min under gradient 

elution conditions.  The gradient consisted of mobile phase A [H2O, 10 mM formic acid] 

and B [methanol, 10 mM formic acid].  The binary gradient was linear from 0%-50% B 

in 40 min.  Injection volume was 5 µl. 

Mass Spectrometer Parameters: A ThermoFinnigan LCQ Advantage ion trap mass 

spectrometer (Sunnyvale, CA) was used to detect and characterize dehydro NADA 

oligomers.  The connection from the HPLC column to the electrospray source was made 

through a 1/16 stainless steel zero-dead volume union and a 30 cm long, 50 µm ID, 185 

µm OD, segment of fused silica capillary.  The end of the fused silica capillary was fed 

into the electrospray interface through a metal sheath.  The tip of the capillary was 

carefully cut to provide a uniformly shaped tip.  The tip of the capillary was positioned so 
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that it was at the edge of the metal sheath. Prior to the start of the experiment, the 

instrument was tuned using a standard peptide solution. The operating parameters of the 

ion trap mass spectrometer were as follows; capillary temperature (280 C), spray voltage 

(4.00 kV), sheath gas (30 cm
3
/min). Collision-induced decomposition (CID) was 

performed at a relative collision energy of 28, an isolation mass window of 2.5 amu, and 

a default activation Q and activation time of 0.250 and 30.000 ms, respectively.  The CID 

experiment was designed to obtain the product spectra of a specific parent oligomer by 

programming the mass spectrometric method to perform CID for the appropriate m/z 

ratio during the time window that corresponded to elution time of the oligomer.  
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2.4 Results  

           Earlier from this laboratory it was shown that tyrosinase-catalyzed oxidation of 

dehydro NADA results in the rapid formation of a novel quinone methide imine amide 

(QMIA) as the initial two electron oxidation product (Sugumaran et al., 1992a). It was 

also shown that the QMIA thus formed reacts with the parent compound generating 

dimeric products as shown in Figure 1.8 (Sugumaran et al., 1987a; 1988, 1990, 1992a). 

At that time the product analysis was done on a low resolution RP-HPLC and low 

resolution NMR which gave poor resolution of products and proton signals respectively. 

Although it supported the generation of a conclusion that dimeric products are generated 

during the oxidation of dehydro NADA, the UV spectral analysis indicated further 

transformation of dimers. Figure 2.1 for instance shows the spectral changes associated 

with oxidation of dehydro NADA by tyrosinase. As is evident, the reduction in UV 

spectra keeps on proceeding and did not stop at half the original absorbance value of 

dehydro NADA. This indicated that dehydro NADA polymerization does not stop at 

dimer level but is proceeding further to other oligomers also.    
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Figure 2.1: Ultraviolet spectral changes associated with tyrosinase-catalyzed oxidation 

of dehydro NADA. A reaction mixture (1 ml) containing 50 moles of dehydro NADA in 

50 mM sodium phosphate, pH 6.0 and 10 g of tyrosinase was incubated at room 

temperature and the spectral changes associated with oxidation of dehydro NADA was 

monitored at 1 min interval. The reaction was initiated by the addition of substrate.  

 

          To evaluate this proposal, I conducted a detailed analysis of the dehydro NADA - 

tyrosinase reaction. As pointed out earlier, the reaction accompanied the rapid production 

of QMIA as witnessed by the intermediate absorbance increase at 485 nm in Figure 2.2. 

The QMIA rapidly degraded as shown in Figure 2.2. Note that absorbance change at 400 

nm as an indication of quinone production is not as drastic as observed for QMIA 

production and its further transformation. This observation is consistent with the 
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mechanism described in Sugumaran (2000) where tyrosinase oxidation of dehydro 

NADA form QMIA followed by its coupling with dehydro NADA.  

 

Figure 2.2: Assessing the QMIA production during tyrosinase catalyzed oxidation of 

dehydro NADA. A reaction mixture (1 ml) containing 50 moles of dehydro NADA in 50 

mM sodium phosphate buffer, pH 6.0 and tyrosinase  (10 g) was incubated at room 

temperature and the production of quinone methide imine amide (or quinone) was 

assessed by monitoring their absorbance maxima at indicated wavelengths.  

1. Tyrosinase-catalyzed reaction monitored at 485 nm is due to QMIA formation.  

2. Tyrosinase-catalyzed reaction monitored at 400 nm is due to potential quinone 

formation.  
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          In order to assess the products formed, HPLC studies were conducted on the 

tyrosinase - dehydro NADA reaction. HPLC analysis of the reaction mixtures containing 

dehydro NADA and tyrosinase are presented in Figure 2.3. Incubation of dehydro NADA 

with tyrosinase produced not only dimers (8 min peak) but also other oligomers such as 

trimers (eluting at about 11 min; Figure 2.3).   

 

Figure 2.3: RP-HPLC analysis of dehydro NADA-tyrosinase reaction. A reaction mixture 

(1 ml) containing 50 moles of dehydro NADA, 10 µg tyrosinase in 50 mM sodium 

phosphate, pH 6.0 was incubated at room temperature, an aliquot of the reaction mixture 

(5 µl) was subjected to HPLC analysis on Agilent 1100 HPLC series, C18 cartridge 

(Agilent Technologies, Santa Clara, CA) using isocratic elution with 50 mM citrate buffer 

pH 3.0 containing 7% acetonitrile at a flow rate of 0.6 ml/min. The solid line represents 

the zero min (control) reaction; the broken line represents the 10 min and the dotted line 

represents 20 min reaction.  
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        To further support the occurrences of the oligomerization reaction, reaction products 

were further analyzed by RP-HPLC/ESI/MS-MS. The base peak chromatogram depicted 

in Figure 2.4 shows the products of dehydro NADA oxidation catalyzed by tyrosinase as 

analyzed by RP-HPLC/ESI/MS-MS. These data correspond to a reaction time of 1 hr.  

The mass spectra associated with the initial two peaks at 13.66 min and 14.15 min are 

indicative of isomers of dehydro NADA dimers. The mass spectra associated with the 

next set of peaks at 15.46 min and 16.61 min indicate that these peaks are due to trimers 

of dehydro NADA. The mass spectra associated with the chromatographic peaks between 

17.76 min and 19.90 min are due to tetramers of dehydro NADA.  The multiple peaks for 

each of the oligomers arise because of the formation of different stereo isomeric addition 

products. For example, nonenzymatic coupling of dehydro NADA quinone methide to 

dehydro NADA can give rise to at least four different isomeric products, all of which has 

been identified as naturally occurring compounds in the cuticle of insects (Tada et al., 

2002). Upon further reaction with dehydro NADA quinone methide these isomeric 

dimers produce an array of isomeric trimers. These non-stereospecific chemical additions 

naturally result in the production of broad oligomeric peaks in the chromatogram.  As a 

result, there is a significant degree of co-elution between dimer and trimer species, as 

well as, between trimer and tetramer species.  
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Figure 2.4: The Base Peak Chromatogram from the RP-HPLC/ESI/MS-MS analysis of 

dehydro NADA/tyrosinase reaction mixture. The marked retention times indicate the 

location of the polymeric species identified. The first two chromatographic peaks between 

13.66 and 14.15 min are identified as isomers of the dimeric product. The peaks between 

15-17 min are identified as isomers of the trimeric product. The peaks between 17.5-21 

min are identified as isomers of the tetrameric product. 

 

                The average ESI-mass spectrum from 13.66 to 14.15 min peaks (from Figure 

2.4) is shown in Figure 2.5.  It exhibits major ions at m/z 385, 769 and 1153.  The ion at 

m/z 385 corresponds to the protonated dimer of dehydro NADA, [D+H]
 +

, the m/z 769 

ion represents its proton-bound dimeric ion, [2D+H]
 +

, and the m/z 1153 ion represents its 

proton-bound trimeric ion, [3D+H]
 +

. The [2D+H]
 +

 and [3D+H]
 +

 are formed in the gas- 



43 

 

phase during electrospray ionization.  The CID mass spectrum of the m/z 769 ion shows a 

dominant product ion at m/z 385, supporting its assignment as a proton-bound dimer 

formed in the gas-phase.  The CID spectrum of the m/z 385 ion (Figure 2.5 inset) shows 

an abundant product ion at m/z 192. This corresponds to the protonated quinone methide 

imine amide ion, which is a logical decomposition product of the protonated dimer. The 

intense product ion at m/z 326 corresponds to the loss of NH2COCH3. Other major 

product ions include m/z 284 (loss of 101), and m/z 267 (loss of 118).  
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Figure 2.5: The average electrospray mass spectrum of dimeric product of dehydro 

NADA. The m/z 385 ion corresponds to the protonated dimer ion. The m/z 769 ion 

corresponds to the proton-bound dimer of the dimeric product and is formed in the gas-

phase during electrospray ionization.  Inset: The average CID mass spectrum of the m/z 

385 parent ion.  
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       The average ESI mass spectrum from 15.46 to 16.61 min (from Figure 2.4) is shown 

in Figure 2.6. It shows dominant ions at m/z 576 and m/z 1151.  These peaks are ascribed 

to the protonated trimer, [T+H]
 +

, and its corresponding proton-bound dimeric ion, 

[2T+H]
 + 

respectively. Again, the latter is formed in the gas-phase during electrospray 

ionization.  Accordingly, the CID spectrum of the m/z 1151 ion shows a dominant peak 

at m/z 576, supporting its assignment as a proton-bound dimer of the trimer. The CID 

spectrum of the m/z 576 parent ion (Figure 2.6 inset) shows dominant product ions at m/z 

385, 383 and m/z 192, corresponding to the loss of the monomeric and dimeric moieties 

respectively. This confirms the assignment of the m/z 576 ion as the protonated trimer of 

dehydro NADA. The m/z 517-product ion corresponds to the loss of NH2COCH3 from 

the parent ion.  The major product ions include m/z 517 (loss of 59), m/z 458 (loss of 

101), m/z 385 (loss of 118), m/z 383 (loss of 193), m/z 326 (loss of 250), m/z 324 (loss of 

252), m/z 282 (loss of 294), and m/z 191 (loss of 384).  
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Figure 2.6:  The average electrospray mass spectrum of trimeric product of dehydro 

NADA.The m/z 576 ion corresponds to the protonated trimer ion.  Inset: The average 

CID mass spectrum of the m/z 576 parent ion.  

 

          The average mass spectrum from 17.76 to 19.90 min peaks (from Figure 2.4) is 

shown in Figure 2.7. It contains a dominant ion at m/z 767 which corresponds to 

protonated tetramer, [Tet+H]
 +.

  The CID spectra of the m/z 767 parent ion (Figure 2.7 

inset) shows dominant product ions at m/z 576 and 574 and m/z 385 and 383, 

corresponding to the loss of the monomer and dimer moieties, respectively. These 
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product ions provide strong evidence that the m/z 767 parent ion corresponds to the 

protonated tetrameric product of dehydro NADA. The m/z 708-product ion corresponds 

to the loss of NH2COCH3 group. The major product ions include m/z 708 (loss of 59), 

m/z 576 (loss of 191), m/z 574 (loss of 193), m/z 517 (loss of 250), m/z 385 (loss of 382), 

m/z 383 (loss of 384), m/z 324 (loss of 443), and m/z 282 (loss of 485).   
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Figure 2.7: The average electrospray mass spectrum of tetrameric product of dehydro 

NADA. The m/z 767 ion corresponds to the protonated tetrameric ion.  Inset: The 

average CID mass spectrum of the m/z 767 parent ion.  
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             Inspection of the product ions in the CID spectra illustrated in the inserts of 

Figures 2.5-2.7 show similarities that provide convincing evidence for the presence of the 

oligomeric series.  Figure 2.8 illustrates the key dissociation pathways for the protonated 

dimer, trimer and tetramer species.  The m/z 192, m/z 385 and m/z 576 are major product 

ions in the CID spectra of the [M+H]
 +

 parent ions of the dimer, trimer and tetramer, 

respectively, that correspond to the loss of a monomeric moiety.  In addition, the loss of 

NH2COCH3 is a dominant pathway for each of the species.  The dimer, trimer, and 

tetramer species contain two, three, and four NH2COCH3 groups, respectively.  The 

scheme shown in Figure 2.8 suggests that it is the terminal NH2COCH3 group that is lost.  

However, the group that is lost probably depends upon which site is protonated and it is 

likely that electrospray ionization results in some combination of species protonated at 

each of these cites.  The m/z 192 product ion does not appear in the CID spectrum of the 

protonated tetramer because the lower mass range in an ion trap mass spectrometer is 

limited to 1/3 the mass-to-charge ratio of the parent mass.  
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Figure 2.8: Analogous dissociation pathways for the protonated dimer (top), trimer 

(middle) and tetramer (bottom) species.  The m/z 192, m/z 385 and m/z 576 are major 

product ions in the CID spectra of the [M+H]
 +

 parent ions of the dimer, trimer and 

tetramer, respectively.  The m/z 192 product ion does not appear in the CID spectrum of 

the protonated tetramer because the lower mass range in an ion trap mass spectrometer 

is limited to 1/3 the mass-to-charge ratio of the parent mass.  
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           Using the average mass spectrum from 13-22 min peaks and assuming these 

oligomeric species have similar ESI/MS sensitivities, it is estimated that the reaction 

products consist of 73 % dimers, 22 % trimers, and 5 % tetramers. These results 

correspond to a two hr incubation. Results at longer reaction times (> 24 hr) were very 

similar, indicating that the polymerization reaction does not continue to form higher 

oligomers. In the estimation of the relative abundances of the reaction products the 

intensities of all of the ions containing these species were used as follows: 

Relative abundance of dimer = I385([D+H]
+
) + 2I769([2D+H]

+
) + I960([D+H+Tri]

+
) + 

3I1153([3D+H]
+
  

Relative abundance of trimer = I576([Tri+H]
+
) + 2I1151([2Tri+H]

+
) + I960([D+H+Tri]

+
) + 

I1342([Tri+H+Tet]
+
 

Relative abundance of tetramer = I767 ([Tet+H]
 +

) + 2I1533 ([2Tet+H]
 +

) + I1342 

([Tri+H+Tet]
 +

 

The mixed proton-bound dimeric species at m/z 960 and m/z 1342 were of relatively low 

abundance.  Formation of these ions occurred as a result of co-elution between dimer and 

trimer species, as well as, between trimer and tetramer species.    
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                 The reaction is not confined to only mushroom tyrosinase. Even insect 

phenoloxidase, isolated from Sarcophaga bullata, catalyzed this oligomerization 

reaction. The base peak chromatogram obtained using the insect cuticle tyrosinase was 

similar to the base peak chromatogram obtained using the commercial tyrosinase.  Figure 

2.9 shows the average mass spectrum obtained across the chromatographic peaks of 

dimers, trimers and tetramers for dehydro NADA incubated with the insect 

phenoloxidase for 2 hr.  This data shows the presence of sodiated species that were not 

nearly as dominant in the data shown in Figures 2.5-2.7.  It is likely that the reaction is 

contaminated to some degree with sodium ion as insect tyrosinase was purified using 

sodium phosphate buffer. Nevertheless, the sodiated peaks could be used for estimation 

of the relative abundances of the dimer, trimer and tetramer species, as described above 

for the commercial tyrosinase data. The analysis of the insect phenoloxidase data 

suggests that the reaction products consist of 66 % dimer, 28 % trimer and 6 % tetramer, 

which is very similar to the results obtained with the commercial tyrosinase.  
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Figure 2.9:  The average mass spectrum obtained across the chromatographic peaks of 

dimers, trimers and tetramers for dehydro NADA incubated with insect phenoloxidase. 

The reaction conditions are as outlined in materials and methods. The relative intensities 

of the annotated peaks were used to estimate the relative abundances of the dimer, trimer 

and tetramer species using the same approach outlined in the text for the commercial 

tyrosinase data. 

              The base peak chromatogram of insect tyrosinase reaction given in Figure 2.10 

clearly shows the presence of not only dimers, but also trimers and to certain extent 

tetramers. Thus the results presented in this chapter support not only dimerization of 

dehydro NADA by tyrosinase action but also the production of other oligomers such as 

trimer and tetramer. 
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Figure 2.10: The Base Peak Chromatogram and ion chromatograms corresponding to 

the dimer, trimer and tetramer products obtained from the RP-HPLC/ESI/MS-MS 

analysis of dehydro NADA/insect tyrosinase reaction. The ion chromatograms of the m/z 

769, m/z 576 and m/z 767 correspond to the dimer, trimer and tetramer products.  

Detailed structural analysis of these ions is described in the text and Figures 2.5, 2.6, 

and 2.7.   
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2.5. Discussion  

             Earlier it was reported that the tyrosinase-catalyzed oxidation of dehydro NADA 

produces dimeric products (Sugumaran et al., 1987a, 1988, 1990, 1992a; Sugumaran 

1998, 2000). The evidence for this proposal was based on the ultraviolet spectral data and 

low-resolution NMR spectra. It was contended that the reaction was probably arrested 

after dimer formation. Dehydro NADA dimers have also been isolated from the cuticle of 

Cicada as naturally occurring compounds and shown to be a mixture of four isomeric 

compounds (Tada et al., 2002). Close examination of the reactivity of QMIA reveals that 

formations of additional oligomeric products are possible. For instance, the reaction of 

QMIA with the free catecholic group of the benzodioxan dimer will result in the 

production of a trimeric compound (Figure 2.11). Similar additions to trimer will produce 

tetramer and the process can thus go on. However, this possibility has never been 

examined. Reversed-phase liquid chromatography electrospray mass spectrometry (RP-

HPLC/ESI/MS-MS) offered a unique way to look at such polymerization reactions, and 

reexamination of  the oxidation chemistry of dehydro NADA using RP-HPLC/ESI/MS-

MS confirmed tyrosinase-catalyzed oxidation of dehydro NADA produces dimeric, 

trimeric and tetrameric products in the reaction mixture. 
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Figure 2.11: Proposed mechanism for oligomerization of dehydro NADA by tyrosinase.            

Tyrosinase-catalyzed oxidation of dehydro NADA produces the QMIA which reacts with 

the parent molecule (in the absence of any other nucleophiles) generating the 

benzodioxan dimer (addition of two OH groups to the two reactive groups quinone 

methide and the imine amide). Since the dimer has two free OH groups similar to the 

parent catechol, when enough dimers are produced in the reaction mixture, QMIA can 

add on to the dimer also, producing trimeric and other polymeric products as indicated 

in the figure. The numbers in the figure indicate the molecular weight of each oligomer.   

          Tyrosinase is widely distributed in the cuticle, hemolymph, and other tissues of 

insects (Brunet, 1980). Catechol oxidase activity is typically found in flexible larval 

cuticles where its function may be associated more with wound healing than with  
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sclerotization (Andersen, 1985; Barett, 1987). Tyrosinases have also been isolated from 

pharate pupal integument of Manduca sexta undergoing cuticle sclerotization, so its role 

in oxidation of N-acylcatecholamines and in sclerotization has not been ruled out 

(Morgan et al., 1990; Aso et al., 1984; Gorman et al., 2010). Insect tyrosinase will also 

oxidize dehydro NADA and produces QMIA as transient intermediate which will form  

oligomers due to the addition of two phenolic hydroxyl groups to the reactive sites on 

QMIA. Both the quinone methide nucleus and the imine amide part in the molecule act as 

electrophiles to form adducts with nucleophilic center. In the cuticular environment, such 

reactions are expected to generate adducts with cuticular nucleophiles resulting in the 

production of various combinations of protein, chitin and dehydro NADA adducts and 

crosslinks that are necessary for stabilization and hardening of the cuticle apart from 

producing dimers and other oligomers.          

2.6 Conclusion 

          Results presented in this chapter confirms the earlier published work on 

dimerization of dehydro NADA via QMIA (Sugumaran et al., 1992a). In addition, it 

reveals the production of trimeric and other oligomeric products that has not been shown 

before. Since QMIA has the tendency to react with ortho-diphenols, it will keep on 

adding to monomer producing dimer, and then will add on to trimmers built in the 

reaction. Continuation of this reaction therefore produces trimmers, tetramers and other 

oligomers. The results of this new reaction have been published already (Abebe et al., 

2010).   
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CHAPTER 3 

LACCASE CATALYZED OXIDATION OF 1, 2-DEHYDRO-N-ACETYLDOPAMINE 

 

3.1 Chapter summary 

       In insects during sclerotization crosslinking occurs as a result of oxidative and 

nucleophilic reactions between highly reactive sclerotizing agents derived from catechols 

and nucleophilic side chain group of protein and chitin. Laccases are multicopper 

oxidases that have been recently shown to play a crucial role in cuticular sclerotization 

(Arakane et al., 2005). Therefore I undertook a study on the oxidation of dehydro NADA 

with laccase in hope of learning the detailed mechanism of its oxidation. Preliminary 

studies indicated that the course of oxidation of dehydro NADA differs drastically from 

that of tyrosinase and produced neither the quinone nor QMIA. Since laccases are known 

to generate primarily semiquinones as the initial products, lack of accumulation of two 

electron oxidation products indicated that laccase reaction is primarily occuring via free 

radical coupling mechanism. Consistent with this proposal, laccase catalyzed oxidation of 

dehydro NADA, resulted in the production of largely dimeric products, and failed to 

produce any significant amount of oligomeric materials. Thus laccases seems to use a 

radical coupling mechanism for the dimerization reaction. In insect cuticle, such reactions 

are likely to occur and cause free radical coupling reaction. 
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3.2 Introduction 

        Laccase (benzenediol: oxidoreductases; EC 1.10.3.2) are blue, multicopper oxidases, 

widely distributed in nature, and catalyze the oxidation of an array of aromatic substrates 

concomitantly with the reduction of molecular oxygen to water (Rosenzweig and 

Sazinsky, 2006). In addition to mono-and polyphenols, laccases have been found to be 

capable of oxidizing various aromatic compounds, such as substituted phenols, diamines, 

aromatic amines and thiols (Flurkey, 2003). Syringaldazine (4-hydroxy-3, 5-

dimthoxybenzaldehyde azine), for example, is a synthetic substrate often used to 

demonstrate the presence of laccases (Claus, 2003). Laccases exhibit no monophenol 

hydroxylase activity. Ortho-diphenoloxidases possess this activity to a varying degree. 

Laccases are also known to oxidize both para-, and ortho-diphenols while ortho- 

diphenols are specific to their substrates. Interestingly laccases produce semiquinone as 

primary product (Nakumara, 1960). But the extremely reactive semiquinones (2 

molecules) undergo reverse dismutation generating one molecule of parent diphenol and 

a molecule of quinone. This is in sharp contrast to tyrosinase or ortho-diphenoloxidase 

reaction where two electron oxidation product is the primary product. Irrespective of the 

course, the net reactions in both cases are the same that these two enzymes produce 

dimers as the products. Laccases are inhibited by azides and fluorides, but not 

phenythiourea while the latter is a potent inhibitor of ortho- diphenoloxidase.  

       Recently, Arakane et al (2005), using RNA interference demonstrated that cuticular 

laccase 2 is the primary enzyme responsible for sclerotization of cuticle in Tribolium 
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castanaeum. RNA interference inhibition of laccase 1 gene product as well as ortho 

diphenoloxidases in the same organism had no influence on the process. Other workers 

also showed involvement of laccase 2 in sclerotization of cuticle in the bettle species  

Monochamus alteranus (Niu et al., 2008), in the mosquito Culex pipens (Pan et al., 

2009), in Manduca sexta (Dittmer et al., 2009) and B.mori (Yatsu and Asano, 2009). 

These results clearly indicate the participation of laccase 2 in sclerotization reaction. In 

the light of these findings, it became obvious that the oxidation of dehydro NADA by 

laccase should be examined.  

      Therefore, I undertook a study on the kinetics and mechanism of oxidation of dehydro 

NADA by laccase purified from Manduca sexta and commercial laccase. I employed 

UV-Vis spectroscopy, RP-HPLC, and high performance liquid chromatography - tandem 

mass spectrometry to study the course of the reaction. Interestingly, oxidation by laccase 

failed to produce any detectable quinone or quinone methide as the primary two-electron 

oxidation product. Since laccases are known to generate primarily semiquinones as the 

initial products, lack of accumulation of two-electron oxidation products indicated that 

laccase produced semiquinones are primarily undergoing radical coupling generating 

dimer and not the quinone by dismutation. Consistent with this proposal, laccase-

catalyzed oxidation of dehydro NADA, resulted in the production of largely dimeric 

products and failed to produce any significant amount of oligomeric materials.  
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3.3 Materials and methods 

      Dehydro NADA was synthesized as outlined in Chapter 2, section 2.3. Cuticular 

laccase was isolated from the pharate cuticle of Manduca sexta using the protocol 

developed by Thomas et al., (1989) with the following modifications. Manduca sexta 

eggs were obtained from  a commercial supplier (Carolina Biological Supply Company, 

Burlington, North Carolina) and reared on Manduca diet at 30 ºC with 16 hr photoperiod. 

Integuments (50 mg) from pharate pupae collected at 4 ºC after the epidermis and fat 

body removed using glass/ metal spatula were homogenized in 0.1 M Tris-HCl buffer 

containing 1.0 M sodium chloride and 50 mM ascorbic acid, pH 7.8.  It was digested with 

trypsin (3 mg) at 37 ºC for 2 h in 0.1 M sodium phosphate buffer pH 7.0 containing 50 

mM ascorbic acid and the digest was passed through cheesecloth. The filtrate was treated 

with solid ammonium sulfate and brought to 40% saturation. After centrifugation at 

15,000 rpm for 15 min at 4 ºC, the pellet was dissolved in 20 mM sodium phosphate pH 

6.0, dialyzed against the same buffer and subjected to size exclusion chromatography on 

Sephacryl S-200 column (115 x 2.0 mm) using 20 mM sodium phosphate pH 6.0 at a 

flow rate of 0.5 ml/min.  Fractions exhibiting laccase activity were pooled, concentrated 

and used in biochemical studies.  

Assay of Laccase activities. All spectrometric assays were carried out using Beckman 

DU-7500 spectrophotometer. The purified laccase activity was assayed using dopamine 

and syringaldazine as the chromogenic substrates separately. A 1.0 ml reaction mixture 

containing either 3 mM syringaldazine (prepared in 95% ethanol) or 3 mM dopamine in 
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50 mM sodium phosphate, pH 6.0 was incubated at room temperature and the increase in 

absorbance (475 nm for dopamine and 525 nm for syringaldazine) was monitored after 

adding 30 μl aliquot of enzyme. All other techniques used such as RP-HPLC, RP-

HPLC/ESI/MS-MS are outlined in chapter 2 materials and methods.  
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3.4 Results 

        Laccase also rapidly oxidized dehydro NADA as indicated by the fast UV spectral 

changes shown in Figure 3.1A. The UV spectral changes exhibited a marked reduction in 

UV spectrum of dehydro NADA peak. Comparison of laccase reaction with tyrosinase 

reaction (shown in Figure 3.1B) clearly revealed that these two spectral changes are 

different and indicated a different course of reaction for these two enzymes.  

 

 

 

 

 

 

Figure 3.1:  Ultraviolet spectral changes associated with laccase-mediated oxidation of 

dehydro NADA (A). A reaction mixture (1 ml) containing 50 moles of dehydro NADA in 

50 mM sodium phosphate, pH 6.0 and 10 g of laccase was incubated at room 

temperature and the spectral changes associated with oxidation of dehydro NADA was 

monitored at 2 min intervals. The reaction was initiated by the addition of substrate. For 

comparison tyrosinase-mediated oxidation of dehydro NADA is shown in B (for 

conditions see Figure 2.2).  
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           As stated in the earlier chapter, tyrosinase catalyzed oxidation of dehydro NADA 

resulted in the transient accumulation and rapid decomposition of its two electron 

oxidation product QMIA as shown in Figure 3.2. The laccase catalyzed reaction is in 

sharp contrast, neither produced the transient QMIA nor the quinones as absorbance 

changes at either 485 nm (due to QMIA formation) or 400 nm (due to quinone formation) 

remained at nearly undetectable range. Furthermore laccase mediated oxidation of 

dehydro NADA exhibited a linear decay with respect to time (Figure 3.3, lanes 1 to 4), 

compared to an exponential decay for tyrosinase-dehydro NADA reaction (Figure 3.3, 

lines 5 to 8). This again indicates a different route for the oxidative transformation of 

dehydro NADA by laccase and tyrosinase. Since lacasses are well known to produce free 

radicals as the primary oxidation products (Nakumara, 1960), it is conceivable that the 

observed decay of dehydro NADA could be due to a slow production of free radicals 

followed by a fast coupling reaction. In accordance with the well-established laccase 

chemistry, one would expect the oxidation of dehydro NADA leading to the production 

of radical dismutation yielding two electron oxidized quinonoid product and the parent 

catechol. But again evidence for quinonoid production (Figure 3.2) did not support the 

dismutation. 
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Figure 3.2: Assessing the quinone methide imine amide production during laccase 

catalyzed oxidation of dehydro NADA. A reaction mixture (1 ml) containing 50 moles of 

dehydro NADA in 50 mM sodium phosphate buffer, pH 6.0 and indicated enzyme (10 g) 

was incubated at room temperature and the production of quinone methide imine amide 

(or quinone) was assessed by monitoring their absorbance maxima at indicated 

wavelengths. For comparison tyrosinase catalyzed oxidation of dehydro NADA are given 

in lines 1 and 2. 

Line 1- Tyrosinase catalyzed reaction monitored at 485 nm due QMIA formation, line 2 

tyrosinase catalyzed reaction monitored at 400 nm due to potential quinone formation, 

line 3- laccase catalyzed reaction monitored at 485 nm due QMIA formation and line 4- 

laccase catalyzed reaction monitored at 400 nm due quinone formation.    
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Figure 3.3: Kinetics of oxidation of dehydro NADA by laccase (solid lines). For 

comparison the results of tyrosinase oxidation of dehydro NADA are shown in broken 

lines. A reaction mixture (1 ml) containing 25 moles of dehydro NADA in 50 mM 

sodium phosphate, pH 6.0 and 10 g of laccase was incubated at room temperature. The 

absorbance changes associated with oxidation of dehydro NADA was monitored 

continuously for 20 min 1 and 5 at 285 nm; 2 and 6 at 295 nm; 3 and 7at 305 nm and 4 

and 8 at 315 nm. For comparison tyrosinase results are presented (broken lines). 

       Most likely radical coupling rather than radical dismutation must be accompanying 

the laccase reaction. If this is true, laccase catalyzed oxidation also lead to dimer 

formation similar to tyrosinase reaction albeit employing a different route. To further 

investigate the reaction course, RP-HPLC studies were conducted on laccase catalyzed 
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oxidation of dehydro NADA. The RP-HPLC analysis of this reaction is shown in Figure 

3.4. As outlined earlier tyrosinase generated dimer and trimeric products, while laccase 

produced only the dimer. 

 

 

 

    

 

 

 

 

 

Figure 3.4: HPLC analysis of dehydro NADA-laccase reaction. The same reaction 

conditions are used as in Figure 2.3 except tyrosinase is replace by laccase. Inset: RP-

HPLC analysis of tyrosinase-dehydro NADA reaction. Note the presence of dimer and 

trimer in tyrosinase-dehydro NADA reaction and the presence of only dimer in laccse 

reaction.  
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          To further confirm the course of reaction catalyzed by laccase RP-HPLC/ESI/MS-

MS studies were carried out. The average ESI-mass spectrum for dimer is shown in 

Figure 3.5. It exhibited major ions at m/z 385, 769 and 1153. The ion at m/z 385 

corresponds to the protonated dimer of dehydro NADA, [D+H]
 +

, the m/z 769 ion 

represents its proton-bound dimeric ion [2D+H] + and the m/z 1153 ion represent its 

proton bound trimeric ion, [3D+H]
 +

. The [2D+H]
 +

 and [3D+H]
 +

 are formed in the gas-

phase during electrospray ionization.   

                  

Figure 3.5: The average electrospray mass spectrum of dimeric product of dehydro 

NADA. The m/z 385 ion corresponds to the protonated dimer ion. The m/z 769 ion 

corresponds to the proton-bound dimer of the dimeric product and is formed in the gas 

phase during electrospray ionization.  The average CID mass spectrum of the m/z 385 

parent ion is similar to Figure 2.5 inset.  
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Figure 3.6: The Base Peak Chromatogram and ion chromatograms corresponding to the 

dimer, trimer and tetramer products obtained from the RP-HPLC/ESI/MS-MS analysis of 

the reaction mixture containing dehydro NADA-commercial laccase reaction. The ion 

chromatograms of the m/z 769 correspond to the dimer products. Detailed structural 

analysis of this ion is described in the previous chapter text and Figure 2.5. Essentially, 

reaction of dehydro NADA with commercial laccase forms only the dimeric products. 

        

                 The base peak chromatogram depicted in Figure 3.6 shows the products of 

dehydro NADA oxidation catalyzed by laccase as analyzed by RP-HPLC/ESI/MS-MS. 

The mass spectra associated with the peaks between 37-40 min corresponded to the 

isomers of dehydro NADA dimers.  They appear to make up nearly 100 % of the 

products.  That the reaction is not limited to commercial laccase and that even insect 

cuticular laccase could also perform such a reaction is illustrated in Figure 3.7.  



68 

 

Incubation of Manduca cuticular laccase with dehydro NADA generated the base peak 

chromatogram depicted in Figure 3.7. The dimeric products accounted for almost 100 % 

of the products. Thus the laccase-catalyzed reaction of dehydro NADA seem to differ 

significantly from that of the tyrosinase-catalyzed reaction. 

 

               

Figure 3.7: The base peak chromatogram and ion chromatogram corresponding to the 

dimer, trimer and tertameric products obtained from the RP-HPLC-\ESI\MS-MS analysis 

of dehydro NADA- Manduca sexta laccase reaction. The ion chromatograms of the m/z 

769, m/z 576 and m/z 767 correspond to the dimer, trimer and tetramer products. 

Detailed structural analysis of the m/z 769 ion is described in the text associated with 

Figure 2.5. Essentially, reaction of dehyro NADA with cuticle laccase forms only the 

dimeric product.   
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3.5 Discussion  

           Laccases have been detected in the cuticles of several species of insects and their 

developmental activity profile correlates with the main period of sclerotization 

(Andersen, 1985; Barett and Andersen, 1981). Using RNA interference (Arakane et al., 

2005; Suderman et al., 2006; Niu et al., 2008) demonstrated laccase is a key enzyme 

associated with sclerotization.  For these reasons I examined laccase catalyzed oxidation 

of dehydro NADA. Laccases are known to generate free radicals as the primary oxidation 

products (Nakamura, 1960). Since semiquinone radicals undergo rapid dismutation 

generating the parent catechol and the quinonoid two-electron oxidation product, it is 

expected that laccase-catalyzed oxidation will also produce the same quinonoid product 

as observed with tyrosinase reaction viz., QMIA as the first observable oxidation product.  

During pulse radiolytic studies, evidence was obtained for the occurrence of such a 

radical dismutation that generated QMIA (Sugumaran et al., 1992a). Therefore, it was 

suspected that the course of laccase-catalyzed oxidative transformation of dehydro 

NADA would be essentially identical to that of previously reported for tyrosinase 

reaction.  On the other hand, results presented in this section indicate that the course and 

mechanism of transformation of dehydro NADA are quite different for laccase and 

tyrosinase, although ultimately both reactions generate the same dehydro NADA dimeric 

products. First, the spectral changes observed during laccase–catalyzed oxidation of 

dehydro NADA is quite different from that of tyrosinase-catalyzed reaction (Figures 3.1 

and 2.1). Second, the kinetic studies at the early phase of the reaction discounted the 
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production of QMIA (or its corresponding quinone product) as the first observable two-

electron oxidation product for laccase reaction (Figure 3.2 and 2.2). Third the kinetics of 

decay of dehydro NADA is different for the two enzymes (Figure 3.3).   

        Finally, laccase produced consistently only dimeric products (Figures 3.4, 3.5 and 

3.6) while tyrosinase generated apart from dimers significant amount of higher oligomers 

(Figures 2.3, 2.4, 2.9 and 2.10). Thus, the course of oxidation of dehydro NADA by these 

two enzymes seem to differ markedly. This finding is quite surprising and unexpected 

because the laccase-generated semiquinones normally dismutate and form the quinonoid 

product and the parent catechol (Nakamura 1960). Since quinonoid product formation is 

not witnessed during the oxidation of dehydro NADA by laccase, it is conceivable that 

the semiquinones are undergoing entirely a different reaction under the experimental 

conditions. A cursory glance at the canonical structures of the semiquinone indicates that 

radical coupling rather than radical dismutation is likely to occur during the reaction 

(Figure 3.8). Such a coupling eventually gives rise to the same dimeric products as those 

observed during tyrosinase-catalyzed oxidation. Examination of the reaction mixture by 

LC-MS-MS confirmed the production of only dimers in the case of laccase. Thus 

dehydro NADA is oxidized by laccase to its free radical product first. The two isomeric 

forms of the radical exhibit coupling rather than dismutation allowing the generation of a 

quinone methide adduct. Further ring closure generates the benzodioxan dehydro NADA 

dimers as shown in Figure 3.8. 
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        Since free radical coupling rapidly removes the free radicals from undergoing any 

further transformation, one gets only dimeric products in this case. However, as pointed 

out in Figure 2.11 QMIA formed in tyrosinase case not only adds to monomeric dehydro 

NADA, but also to oligomers accumulated in the reaction mixture producing trimmers, 

tetramers and other oligomers. 

      

 

 

Figure 3.8: The proposed mechanism for the formation of dehydro NADA dimers by free 

radical coupling.  
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3.6 Conclusion 

         Benzodioxan dimer formation from dehydro NADA can occur by three different 

routes. The first route involves the transient formation of the two-electron oxidation 

product, QMIA and its subsequent addition to dehydro NADA. This route is 

predominantly used for the production of benzodioxan dimers and trimers by tyrosinase 

as shown in Figure 2.11. Quinone methide nucleus will undergo a Michael-1, 6-addtion 

to one of the phenolic groups of dehydro NADA and the modified Schiff’s base will add 

to the other phenolic group resulting in ring closure and generation of dimer. As the 

concentration of dimers builds up in the reaction mixture, they too could add on to QMIA 

producing trimers. Similar addition will account for the eventual polymerization observed 

in the case of tyrosinase reaction. This mechanism is certainly not possible for laccase 

reaction due to several reasons. First, the two-electron oxidation product QMIA could not 

be detected even during the initial phase of the reaction either as a stable intermediate or 

as transient intermediate. Second, the time course of oxidation of dehydro NADA by 

laccase significantly differed from that of tyrosinase reactions. Third, unlike tyrosinase 

reaction, which produced dimers, trimers and other oligomers, laccase reaction produced 

only dimeric products further supporting the operation of a different route.  Examination 

of the mechanism of operation of laccases indicates that these enzymes produce quinone 

products by a different route from tyrosinases from catechols. Tyrosinases oxidize 

catechols by a two-electron oxidation and generate the corresponding quinone 

(Sugumaran, 2010). On the other hand, laccases primarily produce one electron oxidation 
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product - semiquinones. However, semiquinones being extremely unstable and transient 

in nature readily undergo dismutation to quinone and the parent catechol. This reaction 

was witnessed during pulse radiolysis of dehydro NADA (Sugumaran et al., 1992a). Thus 

in spite of the mechanical differences, both tyrosinases and laccases produce the same 

quinonoid product.  Therefore, absence of either the quinone or the quinone methide 

during the oxidation of laccase is quite surprising. This leaves radical coupling as a 

predominant mechanism for the further transformation of dehydro NADA semiquinones. 

As shown in Figure 3.8 if the radicals couple and form an adduct, they will also produce 

the same dimeric product as observed with tyrosinase catalyzed oxidation of dehydro 

NADA. Notably, radical coupling effectively removes the reactive intermediate thereby 

preventing its further reaction, as a result only dimeric products are formed in the case of 

laccase.   

     Finally, a third possible route for benzodioxan production is possible theoretically. 

This route calls for the production of conventional two-electron oxidation product – 

quinone -and its subsequent addition to dehydro NADA by a Diels Alder type reaction. 

Diels Alder addition can occur by two different mechanisms - one by a retro Diels Alder 

mechanism and other by an ionic Diels Alder mechanism. Under biological conditions an 

ionic cycloaddition is most likely to occur. Such an ionic cyclo [4+2] addition has been 

demonstrated to occur between enamines and quinones (Omote et al., 1988). But the 

operation of this route seems to be unlikely in the present case, due to the absence of 

observable quinonoid product during laccase-catalyzed oxidation.  Since neither the 
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quinone nor the QMIA are generated as the initial observable two-electron oxidation 

product, it is likely that the semiquinones generated by the laccase are undergoing direct 

free radical coupling rather than exhibiting free radical dismutation reaction. During 

peroxidase catalyzed oxidation of dehydro NADA also facile production of dimer 

formation was also observed (Hasson and Sugumaran, 1987). Peroxidases also produce 

semiquinone as the primary products. Semiquinones possessing related structures have 

been shown to undergo radical coupling to generate similar benzodioxan dimeric 

products (Merlini et al., 1980). Thus free radical coupling mechanism seems to be the 

primary route for dimer production by laccase.  This opens up a new possibility for 

sclerotization reactions, viz., free radical coupling as the fourth mechanism. During lignin 

biosynthesis, it has been shown that laccases produce free radicals from monolignols 

such as coniferyl alcohol and provide for free radical coupling (Sterjiades et al., 1996). A 

similar process can occur with sclerotization by the participation of dehydro NADA 

semiquinones as the fourth type of sclerotizing agent.   

 

 

 

 

 



75 

 

 

CHAPTER 4 

NON ENZYMATIC OXIDATION OF 1,2-DEHYDRO-N-ACETYLDOPAMINE 

 

4.1 Chapter summary 

        In the previous chapters enzymatic oxidations of dehydro NADA were delineated. 

Dehydro NADA also undergoes nonenzymatic oxidation, a property that might be useful 

for sclerotization. During larval puparial transformation in S. bullata the pH of the cuticle 

changes abnormally to alkaline side due to the release of ammonia. This condition would 

favor certainly the nonenzymatic oxidative transformation of dehydro NADA. Moreover 

in marine organisms, as has been pointed out earlier, a plethora of dehydrodopyl 

compounds are biosynthesized and used for a variety of biological processes. One such 

group being tunichromes produced by a number of tunicates. Tunichromes are small 

oligopeptides possessing one or more dehydrodopa units prevalent in the blood cells of 

tunicates. Tunichromes have been implicated in many physiological processes for 

example metal binding, wound repair, and/or tunic formation and some have been shown 

to possess antibacterial properties. In order to elucidate the biochemical role of these 

compounds, oxidation studies were conducted with tunichromes isolated from Ascidia 

nigra in parallel with its model catecholic compound dehydro NADA. Exposure of these 

catecholamine derivatives to even mild alkaline conditions such as pH 7.5 - 8.0 caused 
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rapid nonenzymatic oxidation indicating instability of these compounds. High 

performance liquid chromatography as well as liquid chromatography mass spectrometry 

indicated the production of dimeric and other oligomeric products in the reaction mixture. 

Visible spectral studies associated with the oxidation of tunichrome by tyrosinase failed 

to provide evidence for the accumulation of conventional quinonoid products. Fast 

reaction studies, however, indicated the transient formation and further decomposition of 

quinonoid intermediate(s). Ultraviolet spectral changes suggested the probable formation 

of dimeric and oligomeric tunichrome products in the reaction mixture. Attempts to 

monitor the polymerization reaction of tunichrome isolated from Ascidia nigra by liquid 

chromatography mass spectrometry were unsuccessful due to the sticky nature of the 

products. Essentially the same results were observed regardless of whether the 

tunichrome reaction was carried out in seawater (pH ~ 8.0) or in sodium phosphate 

buffer, pH 8.0, even in the absence of tyrosinase. These nonenzymatic oxidation reactions 

of dehydro NADA and related tunichromes seem to proceed through free radical 

intermediates. Based on my studies, a possible role for oxidative transformation of 

tunichrome in defense reaction, tunic formation and/or wound healing is presented.  

 

4.2 Introduction 

       Tunicates (ascidians, sea squirts, Phylum Chordata, Class Ascdiacea) are sessile, 

marine filter feeders. Several species of tunicates contain a group of low molecular 

weight dehydrodopa containing oligopeptides named ‘tunichrome’ (Smith et al., 1991; 
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Taylor et al., 1997a); found primarily in the morula cells of their blood (Oltz et al., 1989). 

The first members of this group, tunichromes, An-1, An-2 and An-3, were obtained from 

whole blood cell lysates of the phlebobranch, Ascidia nigra (Macara et al., 1979a, b; 

Bruening et al., 1985, 1986; Lee et al., 1988) and all three were identified as tripeptides 

of modified tyrosines. Tunichrome An-1 is made up of   topa (3, 4, 5-trihydroxyphenyl- 

alanine), dehydrotopa and dehydrotopamine. Tunichrome An-2 contains dopa, 

dehydrotopa and dehydrotopamine, while tunichrome An-3 possesses dopa, dehydrotopa 

and dehydrodopamine (Figure 1.14). Subsequently, tunichromes Mm-1 and Mm-2 were 

isolated from the stolidobranch Molgula manhattensis (Bruening et al., 1986, Oltz et al., 

1988; 1989).   Tunichromes Mm-1 and Mm-2 are very similar to tunichrome An-3 with 

glycine (Mm-1) and leucine (Mm-2), respectively, substituted for the N-terminal dopa 

unit (Kustin et al., 1990). Another group of tunichromes was isolated and characterized 

from the phlebobranch, Phallusia mammilata, (Bayer et al., 1992), which differ in their 

structure from that of the An tunichromes in that the central dehydrotopa units are 

replaced with saturated topa units (Table 1.1). The morula cells of Phallusia mammilata 

also possessed an oligopeptide containing 6-bromotryptophan and dehydrodopamine 

called morulin (Taylor et al., 1997b). A modified pentapeptide tunichrome (Sp-1) was 

identified from the hemocytes of the stolidobranch ascidian Styela plicata, whose 

structure is elucidated to be dopa-dopa-Gly-Pro-dehydrodopamine (Tincu and Taylor. 

2002). From this same organism an octapeptide called plicatamide was isolated and its 

structure was established to be Phe-Phe-His-Leu-His-Phe-His-DehydroDopamine (Tincu 

et al., 2000, 2003). So far tunichromes have been isolated or characterized from eleven 
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species of tunicates (Macara et al., 1979a, Bruening et al., 1986, Oltz et al., 1988, Bayer 

et al., 1992, Parry et al., 1992, Robinson et al., 1996, Taylor et al., 1995, 1997a). 

Common to all tunichromes is the presence of dehydrodopa/topa and/or 

dehydrodopamine/topamine units. Surprisingly, these dehydrodopyl and dehydrotopyl 

units are also found in a number of other marine compounds such as clionamide, 

celenamides, purpurone, storniamides, ningalins and lamellarins (Table 1.1) (Sugumaran 

and Robinson, 2010). 

            The biological role of tunichromes and related marine dehydro dopyl compounds 

remains largely speculative, although various researchers have repeatedly proposed 

different possible functions over the years. Since tunicates that possess tunichromes also 

accumulate large amounts of specific trace metals (i.e. either vanadium or iron), and since 

catechol and pyrogallol groups are effective metal chelators, it was initially proposed, 

that tunichromes are involved in metal reduction and/ or accumulation (Macara et al., 

1979a). However, this hypothesis lost favor once it was discovered that tunichromes are 

predominately located in morula cells and the vast majority of the highly reduced form of 

vanadium is present in the signet ring cells (Oltz et al., 1989).  Since tunichrome can 

reduce V (V) to V (IV) and Fe (III) to Fe (II), they could still play a role in metal 

accumulation/metabolism (Smith et al., 1995). Another hypothesis attributes a defensive 

role to tunichromes. For example, the octapeptide plicatamide, isolated from the blood 

cells of Styela plicata possesses broad-spectrum antibacterial activity (Tincu et al., 2000, 

2003). From this laboratory, it has been reported that the tunichrome An mixture isolated 
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from Ascidia nigra possesses antibacterial activity (Cai et al., 2008). But the general role 

of tunichromes in a defense mechanism remains largely unexplored, although 

phenoloxidase, an enzyme that will readily oxidize tunichrome, has been shown to be 

part of the defense mechanism and allorecognition in tunicates (Ballarin 2008, 2012; 

Cammarata and Parrinello, 2009; Iwanaga and Lee, 2005). Finally, tunichromes have 

been proposed as key components of both tunic formation and tunic wound healing, two 

functions that utilize the same underlying biochemical mechanisms. In this regard, it is 

important to point out that monomeric units found in tunichromes (dehydrodopamines) 

are the very same compounds that are involved in the sclerotization and hardening of 

insect cuticle (Andersen, 2010; Sugumaran, 1998; 2010).  

         The extreme instability and high reactivity of tunichromes is examined in this 

chapter to gain knowledge on their biological function. I examined the nonenzymatic 

oxidation chemistry of a model compound dehydro NADA, whose structure is present in 

practically all tunichromes, I also studied the enzymatic and nonenzymatic oxidation of 

tunichrome isolated from Ascidia nigra in order to shed light on the biological role of 

tunichromes. The results of these studies are summarized in this chapter. 
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4.3 Materials and methods 

         Pyrogallol, mushroom tyrosinase, sodium periodate, sodium borate, acetic 

anhydride, superoxide dismutase (SOD), cytochrome c, and general laboratory chemicals 

were obtained from Sigma Chemical Co., St. Louis. MO.  All other chemicals were 

acquired from Fisher Scientific Co., and/or VWR Scientific Co, NJ. HPLC grade solvents 

and ammonium formate were purchased from Acros, Morris Plains, NJ. HPLC grade 

water was purified using a Milli-Q A-10 water purification system from Millipore, 

Milford, MA.  Dehydro NADA was synthesized as outlined in an earlier paper (Dali and 

Sugumaran, 1988). The tunichrome An mixture from tunicate Ascidia nigra was isolated 

by the modified procedure (Cai et al., 2008) based on a method developed by Taylor et 

al., (1995). Briefly, hemocyte cells from Ascidia nigra were isolated by collecting the 

blood after cutting the tunic of the ventral base of the body and centrifuging for 20 min at 

800 x g in a refrigerated centrifuge. Blood cells were extracted with 5% acetic acid 

containing 8 M urea and 0.1 M EDTA. This extract was subjected to chromatography on 

a Sep-Pak C18 cartridge (6 ml, 1 g) and eluted with 60 % aqueous acetonitrile containing 

0.09% trifluoroacetic acid after a 20 ml 0.1 % aqueous trifluoroacetic acid wash. The 

eluent was lyophilized and a concentrated solution of the sample compounds was 

subjected to reversed phase thin layer chromatography using 50 % acetonitrile containing 

0.09 % trifluoroacetic acid. The tunichrome band was visualized by its pumpkin color (Rf 

value = 0.37). It was eluted with 60 % aqueous acetonitrile containing 0.09 % 

trifluoroacetic acid, concentrated and used for all the biochemical studies.        
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        Oxidation studies were conducted on model compounds and tunichrome An 

mixtures as follows. A typical reaction mixture contained 0.1—0.5 mM of substrate 

(pyrogallol or dehydro NADA, or tunichrome An mixture), appropriate amounts of 

tyrosinase, and 0.1 mM of sodium phosphate buffer or other specified buffers at different 

pH values.  Reactions were conducted in 1 ml spectrophotometric cuvettes (10 mm path 

length) and the progress was monitored by following the UV and visible absorbance 

changes that occurred during the course of the reaction using a Beckman DU-7500 

spectrophotometer. For non-enzymatic oxidations, reactions were conducted at specific 

alkaline pH values without the use of enzyme.  

RP-HPLC analysis: A reaction mixture (1 ml) containing 0.2 mM dehydro NADA in 50 

mM Tris-HCl buffer, pH 8.5 was incubated at room temperature and at indicated time 

interval, an aliquot (5 l) of the reaction mixture was subjected to RP-HPLC analysis 

using isocratic elution  with 50 mM acetic acid containing 0.2 mM sodium octyl 

sulfonate in 20% methanol at a flow rate of 0.6 ml/min on a C18 cartridge column 

(Agilent Technologies, 5 µm, 4.6 x 150 mm). The instrument was equipped with a diode 

array spectrophotometer to detect the UV spectrum of the eluting compounds. 

Superoxide production: Superoxide production during the oxidation of dehydro NADA 

was monitored using a 1 ml reaction mixture containing 0.1 mM of dehydro NADA and 

0.1 mM cytochrome c in 50 mM sodium phosphate buffer, pH 7.5. The reduction of 

cytochrome c, which is indicative of superoxide production (Koppenol et al., 1976), was 

continuously monitored at 550 nm. Different amounts of superoxide dismutase (18 or 180 
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units) were added to this reaction mixture to confirm the production of superoxide anions. 

Typically inclusion of superoxide dismutase inhibited the cytochrome c reduction and the 

increase in absorbance at 550 nm (Koppenol et al., 1976). The stoichiometry of complex 

formation between dehydro NADA and ferrous or ferric iron was determined by 

monitoring the absorbance at 650 nm (due to the complex) of different fixed molar ratios 

of dehydro NADA and iron.  A typical inverted v shaped graph is obtained. From the 

graph, the mole ratio of dehydro NADA to iron in the complex is determined.  

Liquid chromatography - Mass Spectrometry: A sufficient amount of tunichrome 

oxidation products were obtained by reacting 29.5 µg tunichrome with 10 µg mushroom 

tyrosinase in 1 ml of 50 mM ammonium acetate buffer (pH 6.0) at room temperature for 

20 to 60 min.  At the end of this incubation, 10 µl of the reaction mixture was withdrawn 

from the tube and the reaction was arrested by the addition of 90 µl methanol containing 

2% acetic acid. It was subjected to Liquid Chromatography –Mass Spectrometry (LC-

MS) analysis. A low-flow rate Shimadzu (Kyoto, Japan) HPLC system fitted with a 10 

cm x 1 mm ID, 3 µm particle size, C18 Betabasic column from Thermo Electron 

Corporation (Sunnyvale, CA) was used to separate tunichrome oxidation products. The 

HPLC was operated at a flow rate of 35 µl/min using a linear gradient of 0 – 50% B in 40 

min (mobile phase A = 10 mM formic acid in water; B = 10 mM formic acid in 

methanol). The HPLC was coupled to a Thermo Finnigan LCQ Advantage ion trap mass 

spectrometer (Sunnyvale, CA) to detect the products. The operating conditions of the 

mass spectrophotometer were: Capillary temperature 280˚C; spray voltage 4.00 kV; and 
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sheath gas 30 cm
3
/min.  Collision induced decomposition (CID) was performed at a 

relative collision energy of 28, an isolation mass window of 2.5 amu, and a default 

activation Q and activation time of 0.025 and 30 msec respectively.  

Direct Injection Electrospray Ion Trap Mass Spectrometry: The mixture of 

tunichrome A1, A2 and A3 was analyzed via direct injection electrospray ion trap mass 

spectrometry. The operating parameters of the mass spectrometer were as described in 

the previous section.  A 500 µl syringe was used to inject the sample into the instrument 

at a rate of 10 ml/min.  An attempt was also made to analyze the oxidation products of 

tunichrome mixture using the same conditions. 
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4.4 Results 

Oxidation studies with the model compound, Dehydro NADA: As early as 1988, our 

laboratory reported that deydro NADA is unstable in mild alkaline conditions 

(Sugumaran et al., 1988). However, the mechanism of nonenzymatic oxidation was not 

investigated in depth. Since this reaction is extremely important for understanding the 

reactivity’s of tunichrome, a comprehensive study of nonenzymatic oxidation of dehydro 

NADA was undertaken. Figure 4.1 shows the ultraviolet absorbance changes 

accompanying the nonenzymatic oxidation of dehydro NADA. As is evident, dehydro 

NADA is converted into a compound(s) exhibiting a similar absorbance spectrum as that 

of the starting material upon exposure to mild alkaline conditions such as pH 8.5. 

Interestingly this nonenzymatic oxidation can be totally prevented, if the reaction is 

conducted in sodium borate buffer at the same pH instead of Tris-HCl buffer. Since 

borate complexes with catechols at alkaline pH this observation indicates that catecholic 

groups are involved in the oxidation (Sugumaran and Lipke, 1982).  

 

 

 

 

 



85 

 

      

Figure 4.1: Ultraviolet spectral analysis of the nonenzymatic oxidation of dehydro 

NADA. A reaction mixture containing 0.2 mM of dehydro NADA in 50 mM Tris-HCl 

buffer, pH 8.5 was incubated at room temperature and the ultraviolet spectral changes 

associated with the reaction was continuously monitored at 2 min intervals. Scan 1 is 

zero time reaction; scan 12 is 22 min reaction.  

 

              It was reported earlier that such nonenzymatic oxidation of dehydro NADA 

leads to dimeric product formation (Sugumaran et al., 1988). In order to reassess the 

oxidation chemistry, reversed phase high performance liquid chromatography (RP-

HPLC) was conducted on the nonenzymatic oxidation reaction. RP-HPLC analysis of a 

typical nonenzymatic reaction is shown in Figure 4.2. As indicated in the figure, 

incubation of dehydro NADA at mild alkaline conditions (pH 8.5) generated a number of 
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products. The ultraviolet absorbance spectra of these compounds remarkably resembled 

each other and resembled the starting material except for the disappearance of the 

shoulder at 330 nm indicating that they are closely related, and are most likely oligomeric 

products.   

 

Figure 4.2: Reversed phase high performance liquid chromatography of the 

nonenzymatic oxidation of dehydro NADA.  The reaction conditions are the same as 

outlined for Figure 4.1. At indicated time intervals of the reaction, aliquot of the reaction 

mixture (5 µl) was subjected to RP-HPLC analysis. The 5.7 min peak observed at zero 

time is due to dehydro NADA. The 20 min reaction has additional peak at 7.1 min which 

was due to dimeric products, the 12.7 min peak predominant in 45 min reaction is  due to 

trimeric products and the 20.9 min peak from 75 min reaction is due to tetrameric 

products of dehydro NADA. 
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      To confirm this contention, LC-MS analysis was conducted. The base peak 

chromatogram depicted in Figure 4.3 shows the products of nonenzymatic oxidation of 

dehydro NADA generated during a long-term incubation of the reaction (60 min) as 

analyzed by RP-HPLC/ESI/MS-MS.  The mass spectra associated with the initial peaks 

at 29.5, 31.9 and 35.9 min show a parent ion at m/z 384.9, which represents the dimer of 

dehydro NADA plus a proton. The mass spectra associated with the next set of peaks at 

about 36.0 to 41.7 min indicate that these peaks are due to trimers of dehydro NADA. 

The mass spectra associated with the chromatographic peaks between 42.0 min and 44.0 

min are identified as the tetramers of dehydro NADA.  
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Figure 4.3: The Base Peak Chromatogram (m/z 150-2000) from the RP-HPLC/ESI/MS-

MS analysis of dehydro NADA nonenzymatic reaction mixture.  The reaction conditions 

are the same as that employed for Figure 4.2 with the exception of using ammonium 

acetate buffer pH 7.8 instead of Tris HCl buffer.  The reaction was carried for 60 min.  

The marked retention times indicate the location of the polymeric species identified. The 

chromatographic peaks at 29.5 min, 31.9 and 35.9 are identified as isomers of the 

dimeric product. The subsequent peaks are due to trimers and tetramers.   

      The average ESI-mass spectrum of the 29.5 min peak is shown in the top frame of 

Figure 4.4.  It exhibits major ions at m/z 385 and m/z 769.  The ion at m/z 385 

corresponds to the protonated dimer of dehydro NADA, [D+H]
 +

, and the m/z 769 ion 

represents its proton-bound dimeric ion, [2D+H]
 +

, and the weak ion at m/z 791 

corresponds to the sodium bound dimeric ion, [2D+Na]
 +

 and the m/z 1174 ion represents 
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its sodium-bound dimeric ion, [3D+Na]
 +

. Similar spectra were obtained for the 31.9 and 

35.9 min peaks. The dimeric and trimeric ions are formed routinely in the gas-phase 

during electrospray ionization, especially when the product concentration is high in the 

mixture.  

           The average ESI mass spectrum of the 37.5 min (from Figure 4.3) is shown in the 

second panel of Figure 4.4. It shows dominant ions at m/z 576 and m/z 1151, which are 

ascribed to the protonated trimer, [T+H]
 +

, and its corresponding proton-bound dimeric 

ion, [2T+H]
 +

 respectively. The weak ion at m/z 599 corresponds to the sodium bound 

trimeric ion, [T+Na]
 +

. Again, the latter is formed in the gas-phase ion complexation.  

Accordingly, the CID spectrum of the m/z 1151 ion shows a dominant peak at m/z 576, 

supporting its assignment as a proton-bound dimer of the trimer.  A similar spectral 

pattern was obtained for the other three trimer peaks also.  

            The average mass spectrum of the 43.8 min peak (from Figure 4.3) is shown in 

the bottom panel of Figure 4.4. It contains a dominant ion at m/z 767 and an ion of 

weaker intensity at m/z 789.  The m/z 767 ion corresponds to the protonated tetramer, 

[Tet+H]
 +

, and the weak ion at m/z 789 corresponds to the sodium bound tetramer ion, 

[Tet+Na]
 +

. Similar spectra were obtained for the other tetrameric peaks also (data not 

shown).    

 



90 

 

                

Figure 4.4: Mass spectral characteristics of selected product ions from Figure 4.3. Top 

frame - the mass spectrum of the dimeric product eluting at 29.5 min. Middle frame - the 

mass spectrum of the trimeric product eluting at 37.5 min. Bottom frame - the mass 

spectrum of the tetrameric product eluting at 43.8 min. 

             

Figure 4.5: The average CID mass spectrum of the m/z 385 parent ion corresponding to 

the dimeric species with retention time of 29.5 min. 
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        The CID spectrum of the m/z 385 ion (Figure 4.5) shows abundant product ion at 

m/z 192, corresponding to the protonated quinone methide ion, which is a logical 

decomposition product of the protonated dimeric species.  

       The average ESI mass spectrum from 36 to 41.7 min (from Figure 4.3) is shown in 

the middle panel of Figure 4.4. It shows dominant ions at m/z 576 and it corresponds to 

the protonated trimer, [T+H]
 +

. The CID spectrum of the m/z 576 ion shown in Figure 4.6 

shows dominant product ions at m/z 385 and m/z 192, corresponding to the loss of the 

monomeric and dimeric moieties, respectively.  This confirms the assignment of the m/z 

576 ion as the protonated trimeric species of dehydro NADA.  The m/z 517 product ion 

corresponds to the loss of NH2COCH3 from the parent ion.  Other major and unidentified 

product ions include m/z 458 (loss of 101) and m/z 324 (loss of 252). 

               

Figure 4.6: The CID spectrum of the m/z 576 parent ion which corresponds to the 

protonated trimeric species that eluted between 36.0 and 41.7 min.  
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      The average mass spectrum from 42 to 44 min peaks (from Figure 4.3) is shown in 

the bottom panel of Figure 4.4. It contains a dominant ion at m/z 767 and it corresponds 

to the protonated tetramer, [Tet+H]
 +

. The CID spectra of the m/z 767 parent ion in 

Figure 4.7 shows dominant product ions at m/z 576/574 and m/z 383, corresponding to 

the loss of the monomer and dimer moieties, respectively.  

 

 

          

Figure 4.7: The average CID spectrum of the m/z 768 parent ion, which corresponds to 

the protonated tetrameric species that eluted between 42 and 44 min. 

       These product ions provide strong evidence that the m/z 767 parent ion corresponds 

to the protonated tetrameric product of dehydro NADA. The m/z 708 product ion 
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corresponds to the loss of NH2COCH3 group. The major product ions include m/z 708 

(loss of 59), m/z 576 (loss of 191), m/z 574 (loss of 193), m/z 517 (loss of 250), m/z 383 

(loss of 384) and m/z 324 (loss of 443).  Careful inspection of the product ions in the CID 

spectra illustrated from Figures 4.5 to 4.7 show similarities that provide convincing 

evidence for the presence of the oligomeric products.  For instance, [M-192]
 +

 product 

ion, corresponding to the loss of a monomeric moiety, is present in the CID spectra of the 

[M+H]
 +

 parent ion of the dimer, trimer and tetramer. 

         Using the average mass spectrum from 29 to 44 minutes and assuming these 

oligiomeric species have similar ESI/MS sensitivities, it is estimated that the reaction 

product consists of 74 % dimers, 23 % trimers, and 3 % tetramers.  For this calculation 

the sum of the relative intensities of the ions at m/z 385,769, 791 and 1175 were used to 

estimate the relative abundance of the dimers, the sum of the relative intensities of the 

ions at m/z 576, 598, 1151 and 1173 were used to estimate the relative abundance of the 

trimers, and the sum of the relative intensities of the ions at m/z 767,789 and 1533 were 

used to estimate the relative abundance of the tetramers. The relative intensities of the 

proton bound dimer and trimer peaks were multiplied by two and three respectively prior 

to the summation to take into account the presence of multiple polymers in these species. 

For example, the relative intensity of 385*2 (the relative intensity of 767) +2 (the relative 

intensity of 791) +3 (the relative intensity of 1175). 
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Free radical participation: The oligomerization of dehydro NADA at alkaline pH 

should proceed via a free radical coupling reaction. For this reaction to occur, dehydro 

NADA must be oxidized to a semiquinone at alkaline pH, during this process naturally 

molecular oxygen should be reduced to superoxide anion. Superoxide anion formation 

has been documented during the reaction of different catechols such as 5, 6-

dihydroxyindole with oxygen at alkaline pH (Novellino et al., 1999). One way of 

characterizing superoxide anion production is by measuring cytochrome c reduction 

which results in the increase in absorbance at 550 nm (Koppenol et al., 1976). Superoxide 

dismutase, which destroys the superoxide anion radical that is formed in the reaction, 

typically inhibits this increase in absorbance (Koppenol et al., 1976).  As shown in Figure 

4.8, nonenzymatic oxidation of dehydro NADA at pH 7.5 in the presence of cytochrome 

c resulted in the rapid reduction of cytochrome c. This reduction as is seen from the 

figure is strongly inhibited by increasing amounts of superoxide dismutase to the reaction 

mixture thus confirming the production of superoxide anions. More alkaline conditions 

(pH 8.0) caused faster reduction of cytochrome c and this reduction was again inhibited 

by superoxide dismutase         . 
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Figure 4.8: Evidence for superoxide anion production during nonenzymatic oxidation of 

dehydro NADA. A reaction mixture containing 0.1 mM of dehydro NADA and 0.1 mM 

cytochrome c in 50 mM sodium phosphate buffer pH 7.5 was mixed and the reduction of 

cytochrome c was continuously monitored at 550 nm. Solid line - no superoxide 

dismutase. Broken line - 12 µg (18 units) superoxide dismutase and dotted line - 120 µg 

(180 units) of superoxide dismutase.  
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Metal complexation: The ability of dehydro NADA to complex/react with transition 

state metal ions was examined using the spectral changes associated with the interaction 

of dehydro NADA and iron. Incubation of various fixed mole ratios of ferrous sulfate and 

dehydro NADA resulted in the production of different complexes in the reaction mixture 

with different absorbance maximum. By plotting the absorbance values against molar 

ratios (Figure 4.9A), one can find out the ratio of dehydro NADA to ferrous iron in the 

complex. From the figure, it can be deduced that a complex of three dehydro NADA to 

one atom of ferrous iron is formed under the conditions employed. This finding is 

consistent with the typical octahedral complex that is usually formed by ferrous ion 

during its interaction with catechols (Figure 4.9B). Interestingly such a complex 

formation is not readily observed with ferric iron (more of a smooth curve rather than an 

inverted v graph) because ferric iron cause the oxidation of dehydro NADA and 

interfered with a specific complex production. As a consequence spectral changes did not 

show a clear peak as observed for the ferrous dehydro NADA interaction, rather it 

produced an ill-defined smooth curve as shown in Figure 4.9A.  
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Figure 4.9A: Complex formation between dehydro NADA and iron. A 1 ml reaction 

mixture containing different concentrations of dehydro NADA (ranging from 0 – 1.0 mM) 

and either ferric sulfate or ferrous sulfate (ranging from 1 mM to 0 mM) in 50 mM 

sodium phosphate buffer pH 6.0 was incubated at room temperature for 2 min and the 

absorbance at 650 nm was recorded.   

 

Figure 4.9B: Possible structure of the 3:1 complex formed between dehydro NADA and 

ferrous iron.  
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Tyrosinase catalyzed oxidation of tunichromes: Mushroom tyrosinase is a nonspecific 

phenoloxidase known to attack a number of catechols converting them to quinonoid 

products. It even acts on peptidyl dopa producing peptidyl dopaquinones (Burzio and 

Waite, 2001). Tunichrome An’s are tripeptides containing topa, dehydrotopa and 

dehydrotopamine, or dopa, dehydrotopa and dehydrodopamine. Since all of them possess 

one or more pyrogallol moieties, we first checked to see if tyrosinase would act on simple 

pyrogallol. Oxidation of catecholic compounds usually generates quinonoid products that 

exhibit absorbance maximum at 400 – 480 nm range. Therefore, such oxidations can be 

conveniently monitored using visible spectral changes. As expected, tyrosinase readily 

oxidized pyrogallol generating the hydroxy-o-benzoquinone product, which exhibits 

absorbance at about 420 nm (Figure 4.10). This product is reasonably stable and 

accumulates in the reaction mixture. We therefore expected that the oxidation of 

tunichrome would also produce quinonoid product(s) that can be easily monitored by 

visible spectroscopy.  
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Figure 4.10: Visible spectral changes accompanying the oxidation of pyrogallol by 

mushroom tyrosinase. A reaction mixture containing 0.2 mM pyrogallol, 10 µg 

mushroom tyrosinase in  950 µl of 50 mM sodium phosphate buffer pH 6.0 was incubated 

at room temperature and the spectral changes accompanying the enzymatic oxidation 

was monitored at 20 sec intervals. Scan 1is zero time reaction; scan 12 is 220 sec 

reaction. 

 

                 The ultraviolet and visible spectral changes accompanying the tyrosinase-

catalyzed oxidation of tunichrome were however different from that of pyrogallol. First 

of all, there were no visible spectral changes during the entire time course of the reaction. 

Accordingly the reaction mixture remained nearly colorless throughout the time course of 

oxidation of tunichrome. Yet rapid spectral changes accompanied the oxidation in the 
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ultraviolet region of the spectrum (Figure 4.11). The 334 nm absorbance peak of 

tunichrome rapidly decreased during the oxidation and abruptly stopped at about half its 

original absorbance level. This phenomenon is similar to the finding demonstrated for the 

oxidation of dehydro NADA. For comparison, the tyrosinase catalyzed oxidation of 

dehydro NADA is presented in Figure 4.12. Note the close resemblance in the spectral 

changes occurring in the case of both these compounds. As outlined in chapter two  

tyrosinase-catalyzed oxidation of dehydro NADA leads to the production of dimeric and 

oligomeric benzodioxan type adducts in the reaction mixture (Abebe et al., 2010). Hence, 

I hypothesized that a similar dimerization reaction would also occur during the oxidation 

of tunichromes. Unfortunately, the high aromatic content and reactivity of the 

tunichromes resulted in failure to chromatograph tunichrome oxidation products under a 

variety of HPLC conditions. Electrospray mass spectrometry, however, offers a 

promising means to monitor oligomer formation, with the advantages of selective 

detection of the three tunichrome species based on their molecular masses and the 

requirement of a small amount of sample. Unfortunately, although we were able to obtain 

electrospray mass spectra of unoxidized tunichrome An-1, An-2 and An 3, we were 

unable to characterize the oxidation products of tunichromes most likely due to the 

stickiness of the oxidation products and the limited mass range of the ion trap mass 

spectrometer employed in the present study. Again The LC-MS analysis of the dehydro 

NADA oxidation products showed that abundant gas-phase dimer complexes of the 

dimeric oxidation products are formed in the electrospray process. If similar dimer 
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complexes of the dimeric oxidation products of the tunichromes form, these ions would 

be beyond the mass range of our instrument (2000 m/z).   

 

Figure 4.11: Visible spectral changes associated with oxidation of tunichrome by 

mushroom tyrosinase at pH 6.0. A reaction mixture containing 20 μg of tunichrome and 

10 µg of mushroom tyrosinase in 950 ml of 50 mM sodium phosphate buffer, pH 6.0, was 

incubated at room temperature and the spectral changes associated with the enzymatic 

oxidation were monitored at 5 min intervals (scan 1: 0 time reaction; scan 12:  55 min 

reaction). 

Inset: Time course of oxidation of tunichrome monitored at 400 nm and 485 nm. 

Reaction conditions are as outlined above.  Solid line - quinone production monitored at 

400 nm; broken line - quinone methide production monitored at 485 nm.  
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Figure 4.12: Visible spectral changes associated with the oxidation of dehydro NADA by 

mushroom tyrosinase. A reaction mixture containing 50 µmoles dehydro NADA and 10 

µg mushroom tyrosinase in 1 ml of 50 mM sodium phosphate buffer, pH 6.0 was 

incubated at room temperature and the spectral changes associated with the enzymatic 

oxidation were monitored at 1 min intervals (scan 1: zero time reaction; scan 12: 11 min 

reaction).  

 

Non-enzymatic oxidation of tunichromes: Presence of di- and tri-hydroxy groups on 

multiple aromatic rings could introduce high reactivity and susceptibility to aerial 

oxidation especially under mild alkaline conditions that are comparable to seawater (pH ~ 

8.0). However, a systematic study on the oxidative mechanism of tunichromes under 

alkaline conditions has not been reported so far. In order to understand the fate of 
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tunichrome at alkaline conditions, I examined its stability at pH 8.0. As shown in Figure 

4.13, exposure of tunichrome to seawater caused dramatic changes in its spectral 

properties. These spectral changes are remarkably similar to those observed for the 

tyrosinase-catalyzed oxidation of tunichrome at pH 6.0 (Figure 4.11) 

 

Figure 4.13: Visible spectral changes associated with the nonenzymatic oxidation of 

tunichrome in seawater. A reaction mixture containing 20 μg of tunichrome in 960 ml of 

seawater pH 8.0; salinity 32 psu, was incubated at room temperature and the spectral 

changes associated with the non-enzymatic oxidation were monitored at 2 min intervals. 

Scan 1: 0 time reaction; scan 12:  22 min reaction. 

Inset: Time course of oxidation of tunichrome in seawater monitored at 400 nm and 485 

nm. The reaction conditions are the same as outlined above. Solid line - quinone 

production monitored at 400 nm; broken line - quinone methide production monitored at 

485 nm. 
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      Since seawater is not a defined chemical medium, one might argue that trace metal 

ions present in the seawater could be causing this non-enzymatic oxidation. To rule out 

this possibility and to show definitively that pH plays a crucial role in the oxidation 

process, two experiments were conducted. The first one examined the stability of 

tunichrome in sodium borate buffer at pH 8.0. Borates, as mentioned earlier, forms 

chelate with catecholic groups under mild alkaline conditions and prevent them from 

undergoing aerial oxidation (Sugumaran and Lipke, 1982). Hence, at pH 8 in borate 

buffer, tunichrome should remain stable without exhibiting any non-enzymatic oxidation. 

Accordingly, when tunichrome was placed in sodium borate, its UV spectrum remained 

unaltered for more than an hour indicating that it is quite stable at pH 8.0 in borate. On 

the other hand, when tunichrome was exposed to sodium phosphate buffer at pH 8.0, it 

readily exhibited the same rapid spectral changes as observed in the case of seawater. 

Therefore, the instability of tunichrome in seawater can be ascribed to the aerial oxidation 

occurring during alkaline condition. Thus, the nonenzymatic oxidation seems to be 

occurring even without the participation of any metal ions at alkaline pH values.  As 

demonstrated in the case of dehydro NADA, such a nonenzymatic oxidation must 

proceed through free radical production and superoxide anion generation. To test the 

production of superoxide anion, we conducted the nonenzymatic oxidation in presence of 

cytochrome c. As shown in Figure 4.14 the nonenzymatic oxidation of tunichrome 

accompanied the reduction of cytochrome c and this reduction was inhibited by increased 

amounts of superoxide dismutase. Thus, it can be concluded that the instability of 

tunichrome is due to the dehydro NADA skeleton and the reaction products obtained for 
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the nonenzymatic oxidation of dehydro NADA – viz., oligomerization compounds and 

superoxide anion production – should be applicable to tunichrome oxidation.     

            

Figure 4.14: Evidence for superoxide anion production during nonenzymatic oxidation of 

tunichrome. A reaction mixture containing 0.01 mM of tunichrome and 0.01 mM 

cytochrome c in 50 mM sodium phosphate buffer pH 7.5 was mixed and the reduction of 

cytochrome c was monitored continuously at 550 nm. Solid line had no superoxide 

dismutase. Broken line had 12 µg (18 units) of superoxide dismutase and dotted line had 

of 120 µg (180 units) of superoxide dismutase.  
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4.5 Discussion 

      The non-enzymatic oxidation of dehydro NADA was conducted for two main 

reasons. First, it is formed as a key intermediate during sclerotization of insect cuticle 

(Sugumaran, 1998). The pH of S.bullata larva cuticle changes from neutral to basic while 

the animal undergoes larval puparial transformation. This could trigger nonenzymatic 

oxidation of dehydro NADA and ensure further progression of sclerotization reactions. 

This may be essential because, the reactive metabolites formed during sclerotization such 

as quinones and quinone methides are extremely deleterious to biological molecules as 

they react instantaneously with every nucleophile. Such a reaction with enzyme 

generating these transient intermediates will result in the inactivation of these essential 

enzymes and perhaps premature arrest of sclerotization. The availability of nonenzymatic 

reactions offers an additional advantage for the organism to complete the sclerotization 

reactions even in the absence of enzymes. The second reason is to understand the role of 

tunichrome in the tunicate biochemistry. Since the discovery of tunichrome An mixture 

in 1979 (Macara et al., 1979 a,b), their extreme instability has been documented by many 

researchers (Bruening et al., 1985, 1986; Oltz et al., 1988, 1989; Bayer et al., 1992; Nette 

et al., 2000: Tincu and Taylor 2002). Subsequently derivatization methods have been 

developed to protect the phenolic groups while isolating and characterizing tunichromes, 

thereby preventing them from undergoing facile oxidation (Oltz et al., 1988; Kim et al., 

1990). Derivatization with acetyl groups prevented the oxidation of labile catecholic and 

pyrogallol moieties present in tunichromes. Of late, an elegant method developed by 

Taylor et al. (1995) using acid urea and high performance thin layer chromatography 
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separations have aided the successful isolation of tunichromes without derivatization. Yet 

their extreme instability and sensitivity to aerial oxidation has severely hampered the 

assessment of the biological and physiological role of these compounds. The An 

tunichrome mixture for example frequently adheres to gels and other column materials 

used for biological purifications (Bayer et al., 1992; Lee et al., 2001). They even bind to 

glass, as evidenced by the yellow coloration of glass walls that resists solubilization. 

Thus all experiments conducted to characterize the oxidation products of tunichromes by 

RP-HPLC/UV-Vis and electrospray mass spectrometry were unsuccessful. Nevertheless, 

both enzymatic oxidation studies with mushroom tyrosinase and nonenzymatic oxidation 

studies under mild alkaline conditions reveal that tunichromes are perhaps undergoing 

oxidative conversion to dimers and other oligomers. Tyrosinase catalyzed oxidation will 

generate the corresponding two-electron oxidation product that will undergo further 

reaction. In the case of dehydro NADA, tyrosinase catalyzed oxidation generates the two 

electron oxidation product QMIA with an absorbance maximum at 485 nm (Sugumaran 

et al., 1992). However, transient kinetic study seems to indicate the production of only 

the conventional quinone product as shown in the inset of Figure 4.11. Nonenzymatic 

oxidation may proceed through free radical production and subsequent polymerization. 

More direct evidence for the mechanism of nonenzymatic oxidation comes from the 

study of the model compound dehydro NADA, whose structure is embedded in most 

tunichromes and may be the most likely group attributing high instability to tunichromes.     
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          At slightly alkaline pH range, nonenzymatic oxidation of dehydro NADA 

generated a reactive compound which is most likely the one electron oxidation product, 

dehydro NADA semiquinone (Figure 4.15). Molecular oxygen simultaneously undergoes 

reduction to superoxide anion, which was detected through the reduction of cytochrome 

c. This reduction of cytochrome c is inhibited by inclusion of superoxide dismutase in the 

reaction mixture further confirming the production of superoxide anions. Such production 

of free radicals and superoxide anion has been documented during the oxidation of 

related catecholamine derivative, 5, 6-dihydroxyindole also (Novellino et al., 1999). 

Since quinone to semiquinone methide isomerization is a base catalyzed reaction (Bolton 

et al., 1996; Sugumaran 2000) and the reaction conditions are alkaline, it is expected that 

QMIA would be the most predominant oxidation species present under these conditions. 

The QMIA seem to react with the parent dehydro NADA generating dimers and other 

oligomers as shown in Figure 4.15.  However, such direct evidence could not be obtained 

in the case of tunichromes, although ultraviolet and visible spectral studies seem to 

indicate the occurrence of an oligomerization reaction. Even direct injection into the 

electrospray mass spectrometer (circumventing the liquid chromatography columns), did 

not give any indication of polymerization, although the “disappearance” of tunichrome 

was readily witnessed. Nevertheless studies described in this section clearly support the 

notion that dehydro NADA, one of the key structural units that is present in tunichromes, 

is mostly responsible for the extreme reactivity of tunichromes. 
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         Based on these reactions one can propose a possible role for tunichromes that is 

depicted in Figure 4.16. When tunic is damaged by a wound or pathogen entry, morula 

cells containing tunichrome and phenoloxidases migrate to the damaged site to aid in the 

repair of the wound and/or defend against the parasites. This coupled with the fact that 

the pH of sea water is slightly alkaline, will trigger nonenzymatic oxidation of 

tunichrome and superoxide anion production. While superoxide anion could be used to 

defend and kill the parasite by free radical reactions through reactive oxygen species, 

polymerization of oxidized tunichromes can also attack the parasites and kill them. Thus 

tunichromes might play a crucial role in defense and wound repair reactions of tunicates; 

all possible by the unusual reactivity of dehydro NADA units.    
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Figure 4.15: Proposed mechanism for the oligomerization of dehydro NADA via free 

radical coupling. Nonenzymatic oxidation of dehydro NADA produces the corresponding 

semiquinone free radical and superoxide anions. The QMIA coupling to the parent 

dehydro NADA generate an adduct that will undergo ring closure to produce the 

benzodioxan type dimer. Since these reactions are nonenzymatic in nature, they generate 

all possible streoisomeric products accounting for the multiplicity of product ions 

observed in the mass spectrometer. Dimers will add on to the QMIA causing trimers and 

other oligomers. 
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Figure 4.16:  Proposed mechanism for the biological role of tunichrome. Morula cells 

containing tunichrome (TC) and phenoloxidase (PO) are routinely transported to the 

tunic by circulating blood. When tunichromes and phenoloxidase come in contact, they 

participate in tunic crosslinking via quinonoid products of tunichrome (TCQ). The same 

reaction will also occur rapidly at a wound site to seal the wound. During the defense 

reaction, an invading parasite can be kept at check also by this reaction. Exposure to 

mild alkaline pH of the sea water at wound site will initiate nonenzymatic oxidation of 

tunichromes and generate toxic quinonoid free radicals (TSCQ) and reactive oxygen 

species that can offer additional defense benefits to the ascidian. The Haber-Weiss type 

reaction shown in the Figure for ferrous ion is also applicable to vanadium through V 

(III) to V (IV) conversion and V (IV) to V (V) conversion (Sugumaran and Robinson, 

2012).   
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4.6 Conclusion 

           Based on the results presented in this chapter one can propose the scheme of 

reactions shown in Figure 4.16 to account for the physiological role of tunichromes. 

Tunichrome containing morula cells travel to the tunic and may participate in tunic 

hardening, wound healing and antimicrobial defense. Since phenoloxidase is also present 

in the morula cells (apparently as an active form rather than the inactive proenzyme form, 

Ballarin, 2012), interaction of tunichromes with this enzyme, will produce its two 

electron oxidation product. The quinonoid product formed during the oxidation can 

directly react with the nucleophilic side chains of the proteins and the tunic biopolymers 

such as cellulose resulting in adduct and crosslink formation. The ability of tunichrome 

An mixture as well as dehydro NADA to cause protein polymerization has been 

demonstrated (Cai et al., 2008). Such incorporation of tunichromes into the tunic allows 

its strengthening and hardening, thus protecting the soft-bodied tunicates. This reaction is 

similar to the well-established biochemical mechanism for the sclerotization insect cuticle 

(Andersen, 2010; Sugumaran 1988; 2010).  Direct relevance to the current study is the 

fact that dehydro NADA and dehydro NBAD are two important compounds that 

participate in exoskeletal hardening of insects. These two molecules along with their 

saturated counter parts are oxidized by cuticular phenoloxidases and the resultant quinone 

and quinone methide reactive intermediates add onto the nucleophilic sites on structural 

protein and the chitin polymer generating protein-protein, protein-chitin and chitin-chitin 

adducts and crosslinks that make the insect cuticle hard and tough. Therefore, a similar 

reaction with tunichrome is highly likely to occur (Cai et al., 2008). Interestingly, the 
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sclerotization process in insects requires three enzymes (phenoloxidase, quinone 

isomerase and quinone methide isomerase) working consecutively, whereas the tunic 

crosslinking process in tunicates only requires phenoloxidase. Preliminary studies 

revealed that covalent bound catechol derivatives are abundant in the tunic of a number 

of tunicate species. This is possible only if tunichromes and/or similar molecules are 

incorporated into the tunic.  

        The same mechanism should also be useful in sealing a wound. During tunic 

formation and/or the wound healing processes, tunichromes are brought in contact with 

seawater (pH ~8.0). At this juncture, exposure to oxygen and mild alkaline pH will cause 

the rapid production of free radicals from tunichromes and subsequent reduction of 

molecular oxygen to superoxide anions (Figure 4.16). Similar to the quinonoid products, 

the free radicals will also couple with the structural proteins and cellulose like 

carbohydrate polymer present in the tunic forming protein-protein, protein-cellulose and 

cellulose-cellulose adducts thus accounting for the wound sealing/healing reaction and 

tunic repair/formation. Free radicals also undergo coupling to generate dimeric 

tunichrome products and/or other polymeric condensation products, which might provide 

additional benefits to the organism. The superoxide anions formed during the reaction 

will react with metal ions released by blood cells (such as either ferrous iron or vanadium 

(III) present in the signet ring cells) forming even more reactive hydroxyl radicals 

(Kehrer, 2000) that may be recruited for killing microorganisms at the wound site, thus 

providing an important avenue for defense reactions (Figure 4.16). In addition, the 
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tunichrome radicals themselves could cause free radical damage to the foreign organism 

this providing a powerful defense mechanism for the tunicates. Moreover, during a 

microbial infection, phenoloxidase present in the morula cells along with tunichromes, 

could come together and generate quinonoid products at the site of infection. The role of 

phenoloxidase and its reaction products in the defense mechanism of invertebrate animals 

has been well documented (Cerenius and Söderhäll, 2004; Sugumaran, 2002; Iwanaga 

and Lee, 2005).  Ascidians seem to be no exception to this generalization (Ballarin, 2008; 

2012; Cammarata and Parrinello, 2009; Cammarata et al., 1996). Phenoloxidase activity 

has been identified in the cytotoxic cells in different ascidians and seems to play crucial 

role in defense reaction as well as allorecognition (Arizza et al., 1995; Ballarin et al., 

1998; Hata et al., 1998, Jackson et al., 1993). The phenoloxidase-generated quinones 

would form aggregates with the blood cells and a foreign object, aiding their eventual 

encapsulation and killing. In support of a defense role, some of the tunichromes have 

been shown to possess antibiotic activity and this property could be useful in defending 

the invading microorganisms that breach the hard cuticle and gain access through the 

weak spots in tunic. (Tincu et al., 2003; Cai et al., 2008).  Thus the reactivities of 

tunichromes - both enzymatic and nonenzymatic – may play a very critical role in the 

physiology and biochemistry of tunicates. All these are possible by the presence of 

dehydro NADA units in tunicates. Plus, the unique properties of tunichromes likely lead 

to their multifunctional role in tunicate physiology – tunic formation, would repair and 

antibacterial defense. 
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CHAPTER 5 

ENZYMATIC OXIDATION OF 1, 2-DEHYDRO-N-ACETYL DOPA 

 

5.1 Chapter summary 

Lamellarins are a group of bioactive marine natural compounds possessing the 6,7- 

dihydroxycoumarin moiety. Although they seem to be synthesized from dehydro dopa 

derivatives, practically nothing is known on the biosynthesis and metabolic fate these 

compounds. The metabolic fate of these compounds was investigated using a simple 

synthetic model dehydro compound, 1,2-dehydro-N-acetyldopa (NAcDeDopa). 

Oxidation of NAcDeDopa by tyrosinase or sodium periodate resulted in the generation of 

quinone methide which seems to undergo rapid intramolecular ring closure generating a 

coumarin type product, 3-aminoacetylesculetin. Interestingly, 3-aminoacetylesculetin 

thus formed also suffered further oxidation and eventual polymerization producing not 

only dimeric and trimeric compounds but also oligomeric products. The identities of 

these products were established by liquid chromatography-mass spectrometry. The 

significance of this reaction to a number of marine natural products such as Ningalin and 

Lamellarin are presented in this paper. 
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5.2 Introduction 

         Marine organisms constitute a relatively untapped source of novel drugs of great 

biotechnological and pharmaceutical application potential. Among the promising 

candidates which have attracted researcher’s attention due to their structural originality 

and complex mechanism of action are lamellarins. The lamellarins form a group of more 

than seventy highly condensed Dopa and Topa derived pyrrole marine alkaloids that have 

been isolated from diverse marine organisms, mainly ascidians and sponges (Fan et al., 

2008). The first four, lamellarins A-D were isolated and characterized from the 

prosobranch mollusc, Lamellaria sp. (Faulkner et al., 1985) and four more compounds 

were later extracted and identified (E-H) from the ascidian didemnid ascidian 

Didemnum chartaceum (Andersen et al., 1985; Lindquist, et al., 1988). Since then, as 

many as seventy different, yet structurally closely related, polycyclic aromatic condensed 

compounds have been isolated from a number of marine organisms. A wide range of 

different biological activities are reported for this family of alkaloids, including, 

antibiotic, antitumor, antioxidant, DNA topoisomerase I inhibition (Facompe et al., 2003) 

and multi drug resistance reversal activities (Quesada et al., 1996). A few members of 

this family revealed HIV integrase inhibition activity (Reddy et al., 1999), human aldose 

reductase inhibition, cell division inhibition, immunomodulatory activity, and feeding 

deterrent activity. However, the most common and remarkable property of the lamellarins 

is their capacity to inhibit the proliferation of cancer cells. The majority are considerably 

cytotoxic with lethal dose values in the nanomolar or micromolar range (Fan et al., 2008; 

Ishibashi et al., 2002).  The majority of the lamellarins possess either Type 1a or 1b 
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structure shown in Figure 1.13. In spite of the vast literature available on the isolation, 

characterization and biological activities of these interesting metabolites, practically 

nothing is known about the biosynthetic aspects and metabolic fate of these compounds. 

A close examination of their structure indicates that bulk of lamellarins possesses a 

dehydrodopamine unit and that most if not all lamellarins seem to possess a 6, 7-

dihydroxycoumarin skeleton. Pyrrole-derived alkaloids related to lamellarins include 

ningalins which are condensed aromatic system that appear derived from the 

condensation of two to five DOPA precusors. The structures of ningalin A and ningalin B 

isolated from Didemnum sp. are also shown in Figure 1.13. Like lamellarins, ningalins 

also possess coumarin ring structure (Kang et al., 1997).  Ningalins, as well as their 

derivatives, exhibit marked cytotoxicity against several cancer cell lines. They also 

exhibit significant multi drug resistance reversal activity at non-cytotoxic concentrations 

(Fan et al., 2008). 

                Coumarins are of widespread occurrence in the plant kingdom as secondary 

metabolites. Their exact role in plants is unclear. However, they are thought to play a key 

role in plant defense due to the induction of their biosynthesis following various stress 

events. Moreover they also seem to possess antimicrobial and antioxidant activities (Kai 

et al., 2008). They are usually biosynthesized from p-coumaryl coenzyme A and/or 

feruloyl Coenzyme A via phenylpropanoid pathway (Vogt., 2010). For example, 7-

hydroxy-6-methoxycoumarin (scopoletin) is biosynthesized from feruloyl CoA by the 

formation of 6’-hydroxyferuloyl CoA and subsequent isomerization and lactonization to 
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produce scopoletin with the release of Coenzyme A (Figure 5.1). The Coenzyme A seems 

to be necessary for the activation of the carboxyl group and preparing it for lactonization 

reaction (Vogt, 2010; Kai et al., 2008). An alternate route involving the intramolecular 

cyclization of dopa derived metabolites via quinone formation is possible because a large 

number of marine organisms are known to possess dehydrodopyl and dehydrotyrosyl 

compounds (Sugumaran and Robinson, 2010) and their oxidation could lead to coumarin 

production. For example 3, 4-dihydroxyphenylpropionic acid, the simplest precursor for 

coumarin production, exhibits a spontaneous intramolecular cyclization reaction upon 

oxidation to its corresponding quinone generating dihydroesculetin (Sugumaran et al., 

1989). Therefore, such a reaction is quite likely to occur in the marine environment as 

well (Figure 5.2). In order to assess the production of dihydroxycoumarin skeleton 

through oxidative cyclization of dehydrodopa units and to shed more light on the general 

biosynthetic and metabolic fate of dihydroxycoumarins related to lamellarins, 

biochemical studies were conducted on the model compound, 1, 2-dehydro-N-acetyldopa 

(NAcDeDopa). The results indeed confirm that tyrosinase could readily generate 

dihydroxycoumarin ring structure via oxidative cyclization of the dehydro dopa units. 

Interestingly the resultant dihydroxycoumarin also undergoes additional oxidative 

polymerization producing a series of olgomeric products arising from the coupling of 

reactive quinone methide imine amide (QMIA) derivative with the parent compound.  
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Figure 5.1: Synthesis of scopoletin from feruloyl CoA. 

            

Figure 5.2: Synthesis of dihydroesculetin. 
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5.3 Materials and methods 

       Mushroom tyrosinase, sodium periodate and general laboratory chemicals were 

obtained from Sigma Chemical Co., St. Louis. MO.  All other chemicals were acquired 

from Fisher Scientific Co and/or VWR Scientific Co, NJ. HPLC grade solvents and 

ammonium formate were purchased from Acros, Morris Plains, NJ. HPLC grade water 

was purified using a Milli-Q A-10 water purification system (Millipore, Milford, MA). 

NAcDeDopa was synthesized by Strecker synthesis and hydrolysis of the resultant cyclic 

ester (Dong et al., 2009). Briefly, a mixture of 3, 4-dihydroxybenzaldehyde (69.06 gm), 

N-acetyl glycine (58.55 gm), sodium acetate (42 gm) and 160 ml of acetic anhydride was 

stirred at 110 C for 2 hr and cooled at room temperature. The contents were then poured 

on ice and left at 5C for overnight. The yellow crystals precipitated were collected and 

re-crystallized from ethanol water mixture (1:1) to obtain pure (Z)-2-acetamido-3-(3’,4’-

diacetylphenyl) acrylic acid in 70 % yield. M.pt. 181 C.  Hydrolysis of this compound 

was achieved by suspending 3.21 gm of the compound in 40 ml of 5% sodium 

bicarbonate solution and stirring for 24 hr. Acidification of the solution to pH 5 with HCl 

and work up gave the required NAcDeDopa in 72% yield. M.pt. 217-218 C.    

Oxidation studies: Oxidation studies were conducted on NAcDeDopa as follows. A 

typical reaction mixture containing 0.1 mM of NAcDeDopa and appropriate amounts of 

mushroom tyrosinase in 50 mM of sodium phosphate buffer (at specified pH values) was 

incubated at room temperature and progress of the reaction was monitored using UV-Vis 

spectrophotometer. The reaction conditions for individual experiments are described 
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under the legends to the figures that follow. The reactions were conducted in 1 ml 

cuvettes (10 mm path length).  

RP-HPLC analysis of NAcDeDopa: A reaction mixture (1 ml) containing 0.1 mM 

NAcDeDopa and 5 µg mushroom tyrosinase in 50 mM sodium phosphate pH 6.0 was 

incubated at room temperature. An aliquot of the reaction mixture (5 µl) was subjected to 

HPLC analysis on Agilent 1100 HPLC series, C18 cartridge (Agilent Technologies, Santa 

Clara, CA) using isocratic elution with 35% methanol and 65% MilliQ water containing 

0.1% TFA at a flow rate of 0.5 ml/min. The ultraviolet absorbance spectra of the eluents 

were monitored using a diode array spectrophotometer.  

 Liquid Chromatography –Mass spectrometry (LC-MS) studies: A reaction mixture 

containing 0.1 mM NAcDeDopa and 5 µg mushroom tyrosinase in 1 ml of ammonium 

acetate buffer pH 6.0 was incubated at room temperature. 10 μl was withdrawn from the 

reaction and the reaction was arrested by the addition 90 μl of methanol containing 2% 

acetic acid and subsequently subjected to analysis by reversed-phase high performance 

liquid chromatography electrospray tandem mass spectrometry (RP-HPLC/ESI/MS-MS). 

RP-HPLC conditions for Mass spectrophotometer: A low-flow rate Shimadzu (Kyoto, 

Japan) HPLC system fitted with a 10 cm x 1 mm ID, 3 µm particle size, C18 Betabasic 

column from ThermoElectron Corporation (Sunnyvale, CA) was used to separate the 

products. The HPLC was operated at a flow rate of 35 µl/min using a linear gradient of 0 

– 50% B in 40 min consisting of the mobile phase A = 10 mM formic acid in water and B 
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= 10 mM formic acid in methanol. Flow from the column was directly fed into the source 

of RP-HPLC/ESI/MS-MS. 

Mass spectrometric operating conditions: A Thermo Finnigan LCQ Advantage 

electrospray ion trap mass spectrometer (Sunnyvale, CA) was used to detect and 

characterize the products. The operating conditions of the ion trap mass spectrometer are: 

Capillary temperature 280˚C; Spray voltage 4.00 kV; and sheath gas 30 cm
3
/min.  

Collision induced decomposition (CID) was performed at a relative collision energy of 

28, an isolation mass window of 2.5 amu, and a default activation Q and activation time 

of 0.025 and 30 msec respectively.  

 

5.4 Results  

          Oxidation of o-diphenols by tyrosinase, in general, results in the generation of 

corresponding o-quinonoid products that typically exhibit absorbance maximum at about 

400 nm. But surprisingly in spite of rapid oxidation witnessed by the drastic spectral 

changes occurring in the ultraviolet spectral region, the reaction mixture containing 

NAcDeDopa and tyrosinase remained relatively colorless. Accordingly there was no 

visible absorbance maximum at the 400 – 450 nm region that is typically observed during 

tyrosinase-catalyzed oxidation of catechols (Figure 5.3).    

 

 



123 

 

 

 

Figure 5.3: Ultraviolet spectral changes associated with the oxidation NAcDeDopa by 

mushroom tyrosinase at pH 6.0. A reaction mixture containing 0.1 mM NAcDeDopa and 

5 µg mushroom tyrosinase in 50 mM sodium phosphate buffer pH 6.0 was incubated at 

room temperature and the spectral changes accompanying the enzymatic oxidation was 

monitored at 30 sec intervals (scan 1: 0 time reaction; scan 12; 330 sec reaction). Note 

the absence of absorbance maximum at 400 nm due to quinone. 
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Figure 5.4: Ultraviolet spectral changes associated with the oxidation NAcDeDopa by 

mushroom tyrosinase at pH 8.0. A reaction mixture containing 0.1 mM NAcDeDopa and 

5 µg mushroom tyrosinase in 50 mM sodium phosphate buffer pH 8.0 was incubated at 

room temperature and the spectral changes accompanying the enzymatic oxidation was 

monitored at 30 sec intervals (scan 1; 0 time reaction; scan 12: 330 sec reaction).     

         

              The same results were obtained at other pH values as well. Figure 5.4 for 

example shows the spectral changes associated with the oxidation of NAcDeDopa at pH 

8.0. Again the visible absorbance maximum at 400 – 450 nm, indicative of quinone 

production, is missing under these conditions. Yet the rapid spectral changes indicated 

the production of a product that exhibits an absorbance maximum at about 370 nm. In the 
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case of a few catechols, it is known that the initial quinone is extremely unstable and 

decomposes rapidly. Thus 3, 4-mandeloquinone, which could not be seen during the 

normal time course of oxidation of 3, 4-dihydroxymandelic acid could be visualized 

under pre-steady state conditions (Sugumaran, 1986; Sugumaran et al., 1992). Similarly, 

dehydro NADA upon oxidation generates a very transient quinone methide imine amide 

rather than the conventional quinone that could only be visualized under pre-steady state 

conditions (Sugumaran et al., 1987; Sugumaran et al., 1988a; Sugumaran et al., 1990; 

Sugumaran et al., 1992a; Sugumaran, 2000). Since tyrosinase generates only catalytic 

amounts of the quinonoid product, it is likely that the small amount of quinonoid 

intermediate formed, coupled with the fact that it is also undergoing rapid transformation, 

is escaping the limits of the detection technique. Sodium periodate is known to oxidize 

catechols quantitatively and stoichiometrically and has been a valuable tool in monitoring 

transient quinonoid intermediates such as Dehydro NADA quinone methide (Sugumaran, 

2000). Therefore, a molar ratio of sodium periodate was used to oxidize NAcDeDopa. 

Figure 5.5 shows the spectral changes accompanying the oxidation of NAcDeDopa 

during the first few seconds of periodate oxidation of NAcDeDopa. As is evident, a 

colored quinonoid product exhibiting absorbance maximum at 485 nm is instantaneously 

formed (within three sec) and is rapidly decomposed resulting in the production of 

colorless product.  The transient compound with 485 nm absorbance maximum cannot be 

the conventional o-quinone product because most related o-quinone show absorbance 

maximum at 400 - 420 nm, which is nearly 60 nm lower than the observed result. The o-

quinone of DeNAc Dopa methyl ester, the esterified product of NAcDeDopa itself shows 
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absorbance maximum at about 420 nm (Sugumaran et al, 1992).  The o-quinone of 

Dehydro NADA generated under acidic conditions again shows an absorbance maximum 

at about 400 nm only (Sugumaran, 2000). However, this quinone rapidly undergoes 

isomerization to its quinone methide with an absorbance maximum of 485 nm as soon as 

the pH is brought to near neutral conditions (Sugumaran, 2000). Based on the close 

structural analogy, the initial colored product formed in the case of NAcDeDopa was also 

determined to be a QMIA. The major difference between these two QMIA is their further 

reactivity. In the case of Dehydro NADA, the QMIA formed, rapidly reacts with the 

parent catechol generating dimeric and trimeric benzodioxan type adducts. However, 

since NAcDeDopa QMIA possesses an internal carboxyl group suitably positioned to 

exhibit an intramolecular cyclization reaction, it seems to undergo cyclization than 

exhibiting external reaction. The UV spectrum of the product formed in Figures 5.3 and 

5.4 are consistent with such a proposal and attest to the production of a colorless 

compound with dihydroxy coumarin skeleton.   
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Figure 5.5: Evidence for the formation of quinone methide during sodium periodate -

catalyzed oxidation of NAcDeDopa. A reaction mixture containing 0.2 mM of 

NAcDeDopa and 0.2 mM sodium periodate in 50 mM sodium phosphate buffer, pH 6.0 

was incubated at room temperature and the spectral changes accompanying the 

oxidation for the first few minutes was monitored continuously at 400 to 600 nm (scan 1: 

0 time reaction; scan 12: 330 sec reaction).   

 

       In order to characterize the reaction product(s), HPLC studies were carried out. 

Figure 5.6A shows the HPLC analysis of the reaction mixture containing NAcDeDopa 

and tyrosinase. Even as early as 3 min of the reaction, the production of a new product 

eluting at about 9 min is evident. As the incubation time is increased, an additional 

product is formed with an elution time of 6 min. The UV spectra of all three 

chromatographic peaks observed in the HPLC are shown in Figure 5.6B. The 4 min peak 
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was due to the starting compound, NAcDeDopa. The 9 min peak was ascribed to the 

colorless product exhibiting absorbance maximum at about 360 nm. The UV absorbance 

properties of this peak matched that of esculetin type compounds indicating that the 

transient NAcDeDopa QMIA has undergone rapid intramolecular cyclization generating 

3-aminoacetylesculetin. Long-term incubations generated a new product eluting at 6 min 

range, which possessed a combination of absorbance spectrum of the substrate, 

NAcDeDopa and the product, 3-aminoacetylesculetin. 

             

Figure 5.6A: HPLC analysis of oxidation products of NAcDeDopa mushroom tyrosinase 

reaction. A reaction mixture (1 ml) containing 0.1 mmoles of NAcDeDopa and 5 g 

mushroom tyrosinase in 50 mM sodium phosphate, pH 6.0 was incubated at room 

temperature and an aliquot of the reaction mixture (5 l) was subjected to HPLC 

analysis as outlined under material and methods. The long dashed broken line represents 

the zero min (control) reaction, the short dashed line represents 3.5 min reaction and the 

solid line represents 45 min reaction. 
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Figure 5.6B: The ultraviolet absorbance spectrum of the product peaks from figure 5.6A.  

Dotted line (A) represents the UV spectrum of substrate peak (retention time = 4.02 min), 

solid line (B) represents the UV spectrum of the product peak eluting with the retention 

time of 6.1 min and the broken line (C) represents the product eluting at 9.39 min.   

       To further analyze the nature of these products, samples from control and reaction 

products were subjected to RP-HPLC/ESI/MS-MS analysis. The base peak 

chromatogram of the product(s) of NAcDeDopa oxidation catalyzed by tyrosinase during 

the initial phase of the reaction (5 min reaction) as analyzed by RP-HPLC/ESI/MS-MS 

indicated the generation of a single product eluting at about 8.4 min with a molecular  
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mass of 235.05 units consistent with the production of 3-aminoacetylesculetin. The 

average ESI-mass spectrum of this peak is shown in Figure 5.7. It exhibits major ions at 

m/z 236 and 194. The ion at m/z 236 corresponds to the protonated 3-

aminoacetylesculetin, the m/z 194 ion represents the protonated deacylated or 

decarboxylated product. The CID spectrum of the m/z 236 ion (Figure 5.7 bottom) shows 

an abundant product ion at m/z 194, corresponding to the protonated deacylated product. 

 

    

Figure 5.7: The average electrospray mass spectrum of the initial product of 

NAcDeDopa/ tyrosinase reaction (Top). The m/z 236 ion corresponds to the protonated 

3-aminoacetylesculetin and the m/z 194 ion represents the protonated deacylated 

product. Bottom: The average CID mass spectrum of the m/z 236 parent ion shows an 

abundant product ion at m/z 194, corresponding to the protonated deacylated product.  
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         The base peak chromatogram depicted in Figure 5.8 shows the products of 

NAcDeDopa oxidation catalyzed by tyrosinase generated during a long-term incubation 

of the reaction (30 min) as analyzed by RP-HPLC/ESI/MS-MS.  The mass spectrum 

associated with the initial peak at 11 min shows a parent ion at m/z 469.0, which 

represents the dimer(s) of 3-aminoacetyl esculetin. The mass spectra associated with the 

next set of peaks observed between 18.0 min 19.7 min shows a parent ion at 702.0, which 

is indicative of the trimers.  The mass spectra associated with the chromatographic peaks 

between 20 and 21 min shows a parent ion at m/z 935.0, which is indicative of the 

tetramers of 3-aminoacetylesculetin. The mass spectra associated with the minor 

chromatographic peak at 21.2 min shows a parent ion at m/z 1167.9, which is indicative 

of the pentamer(s). The multiple peaks observed for some of the oligomers arise because 

of the formation of different stereoisomeric addition products. For example, oxidation of 

dehydro NADA leads to the production of multiple isomeric oligomeric benzodioxan 

type products (Abebe et al., 2010). This multiple adduct formation is consistent with the 

nonenzymatic addition reaction of dehydro NADA with its oxidation product, QMIA and 

subsequent addition of QMIA to dimers and trimers. Since nonenzymatic reactions are 

generally nonstereospecific, it usually leads to multiple isomeric products; a fact that has 

been verified with the naturally occurring dimers of dehydro NADA in the cuticle of 

insects (Tada et al., 2002). These nonstereospecific chemical additions naturally result in 

the production of broad oligomeric peaks in the chromatogram. As a result, there is some 

degree of co-elution between oligomeric products.  
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Figure 5.8: The Base Peak Chromatogram from the RP-HPLC/ESI/MS-MS analysis of 

NAcDeDopa /tyrosinase reaction mixture performed after long-term (30 min) incubation.  

The marked retention times indicate the location of the polymeric species identified. The 

first chromatographic peaks near 11 min are identified as isomers of the dimeric product 

(Figure 5.10). The peaks between 18.0 and 19.7 min are identified as isomers of the 

trimeric product (Figure 5.11). The peaks between 20.0 and 21.0 min are identified as 

isomers of the tetrameric product (Figure 5.12). The peaks at 21.2 min are identified as 

isomers of the pentameric product (Figure 5.13). 

                   The base chromatogram and ion chromatograms corresponding to the dimers, 

trimers, tetramers, pentamers and hexamers obtained from the RP-HPLC/ESI/MS-MS 

analysis of NAcDeDopa tyrosinase long-term reaction is shown in Figure 5.9. The ion 

chromatograms of the m/z 469, 702, 935, 1168, and 1401 correspond to dimers, trimers, 

tetramers, pentamers and hexamers, respectively. Detailed structural analysis of the m/z 
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ions 469, 702, 935, and 1168 is described in the text associated with Figures 5.10, 5.11, 

5.12, and 5.13. 

 

Figure 5.9: The base chromatogram and ion chromatograms corresponding to the 

oligomers obtained from the RP-HPLC/ESI/MS-MS analysis of NAcDeDopa tyrosinase 

long term reaction. The ion chromatograms of the m/z 469, 702, 935, 1168, and 1401 

correspond to dimers, trimers, tetramers, pentamers and hexamers.  

             The average ESI-mass spectrum of the 11 min peak (from Figure 5.8) is shown in 

Figure 5.10. It exhibits major ions at m/z 469 and 385. The ion at m/z 469 corresponds to 

the dimer of 3-aminoacetylesculetin and the m/z 385 ion represents its deacetylated 

product. The CID mass spectrum (Figure 5.10 bottom) of the m/z 469 ion shows a 
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dominant product ion at m/z 427 (due to loss of C2H2O from the NHCOCH3 moiety) and 

the minor peak at 385 is again the deacetylated product  (the loss of two C2H2O groups 

one from each NHCOCH3 moiety). 

 

    

Figure 5.10: The average electrospray mass spectrum of dimeric product of 3-

aminoacetylesculetin (Top). The m/z 469 ion corresponds to the protonated dimer ion, 

and m/z 385 ion represent its deacetylated products.  Bottom: The average CID mass 

spectrum of the m/z 469 parent ion, the m/z 427 is the deacetylated product of m/z 469. 

         The average ESI-mass spectrum from 18.03 to 18.63 min peaks (from Figure 5.8) is 

shown in Figure 5.11. It exhibits major ion at m/z 702 which corresponds to the 

protonated trimer of 3-aminoacetylesculetin. The m/z 1402.6 ion represents its proton-

bound dimeric form of this trimer ion, which is formed in the gas-phase during 
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electrospray ionization and the minor ions at m/z 660 and m/z 618 are deacetylated 

products of m/z 702. The CID mass spectrum of the 702 ion (Figure 5.11 bottom) shows 

a dominant product ion at m/z 660 ion due to loss of C2H2O from the NHCOCH3 moiety 

and the minor peak at 618 due to the loss of C2H2O from two of the NHCOCH3 moieties.  

 

             

 

Figure 5.11: The average electrospray mass spectrum of trimeric product of 3-

aminoacetylesculetin.  The m/z 702 ion corresponds to the protonated trimer ion. The m/z 

660 and 618 ions represent its deacetylated products.  The m/z 1402.6 ion corresponds to 

the proton-bound dimer of the trimeric product and is formed in the gas-phase during 

electrospray ionization. Bottom: The average CID mass spectrum of the m/z 702 parent 

ion. 
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          The average ESI-mass spectrum from 20 to 21 min peaks (from Figure 5.8) is 

shown in Figure 5.12. It exhibits major ions at m/z 935 and minor ion at 957. The ion at 

m/z 935 corresponds to the protonated tetramer of 3-aminoacetylesculetin, and the m/z 

957 ion represents its sodiated tetramer of 3-aminoacetylesculetin. The CID mass 

spectrum (Figure 5.12 bottom) of the m/z 935 ion shows a dominant product ion at m/z 

893 and two minor product ions at m/z 851 and 809. These product ions are formed from 

the loss of C2H2O ([MH-42]
 +

) from the NHCOCH3 moieties. 

 

         

 

Figure 5.12: The average electrospray mass spectrum of tetrameric product of 3-

aminoacetylesculetin.  The m/z 957.1 ion corresponds to the sodiated tetramer ion (Top).   

Bottom: The average CID mass spectrum of the m/z 935 parent ion. 
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         The average ESI-mass spectrum of the 21.25 min peak (from Figure 5.8) is shown in 

Figure 5.13. It exhibits a major ion at m/z 1168, which corresponds to the protonated 

pentamer of 3-aminoacetyl esculetin (the m/z 935 ion is co-eluting tetramer and m/z 

742.7 is an unidentified ion). The CID mass spectrum (Figure 5.13 Bottom) of the m/z 

1168 ion shows a dominant product ion at m/z 1126 and m/z 1084 and a minor product 

ion at m/z 1042. These product ions are formed from the loss of C2H2O ([MH-42]
 +

) from 

the NHCOCH3 moieties. 

             These results confirm that the 3-aminoacetylesculetin that is formed initially is 

undergoing further oxidative polymerization generating oligomers, which differ by a 

molecular weight of 233 amu corresponding to the sequential addition of 3-

aminoacetylesculetin QMIA to the starting material (viz., 3-aminoacetylesculetin) to 

form dimers, trimers, tetramers, pentamers and hexamers.  

 

 

 

 

 

 

 



138 

 

 

 

  

 

Figure 5.13: The average electrospray mass spectrum of pentameric product of 3-

aminoacetylesculetin. The m/z 1168 ion corresponds to the protonated tetramer ion       

(Top). Bottom: The average CID mass spectrum of the m/z 1168 parent ion. 
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5.5 Discussion 

          The results presented in this section on the oxidative transformation of 

NAcDeDopa can be summarized as follows. Tyrosinase rapidly oxidizes NAcDeDopa to 

its corresponding QMIA similar to the reaction reported in the case of dehydro NADA, a 

close structural analog that lacks a carboxyl group. Thus both QMIA produced from 

NAcDeDopa (current work) and Dehydro NADA (Sugumaran et al., 1992; Abebe et al., 

2010) show typical visible absorbance maximum at 485 nm. The normally generated 

quinone should have an absorbance maximum at about 400 - 420 nm range, as observed 

for the related DeNAcDopa methyl ester (Sugumaran et al., 1992). The QMIA formed, 

being extremely unstable, undergoes rapid and direct oligomerization in the case of 

dehydro NADA (Abebe et al., 2010). In the case of NAcDeDopa, however its QMIA, due 

to the presence of an internal carboxyl group that is suitably positioned to exhibit an 

intramolecular cyclization, instead produces a coumarin derivative as shown in Figure 

5.14. 3-aminoacetylesculetin thus formed, subsequently undergoes further oxidative 

polymerization as shown in Figure 5.15. The QMIA thus formed will undergo an addition 

reaction with the remaining 3-aminoacetylesculetin forming benzodioxan-type dimer 

first. The dihydroxy group of this dimer adds on to another molecule of QMIA producing 

the trimer. The process continues to produce tetramers, pentamers and hexamers.  This 

reaction is similar to the oligomerization of dehydro NADA that was reported recently 

from this laboratory (Abebe et al., 2010). It is important to note that the dehydro NADA 

structure is embedded in the skeleton of 3-aminoacetylesculetin. Based on this structural 
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feature, it is naturally expected that 3-aminoacetyl esculetin is also oxidized by tyrosinase 

to its QMIA and the resultant QMIA exhibits oligomerization reaction with the parent 3-

aminoacetylesculetin.   

   

 

Figure 5.14: Proposed mechanism for the tyrosinase catalyzed oxidation of NAcDeDopa. 

Tyrosinase oxidizes NAcDeDopa to its corresponding p-quinone methide rather than the 

conventional o-quinone derivative. The resultant quinone methide is very unstable as it 

exhibits rapid intramolecular cyclization producing 3-aminoacetylesculetin via a 

transient dienone intermediate.  
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Figure 5.15: Proposed mechanism for the further transformation of NAcDeDopa – 

tyrosinase reaction product. 3-Aminoacetylesculetin produced during the oxidation of 

NAcDeDopa by tyrosinase, being a catechol conjugated with a double bond, is extremely 

labile and suffers further oxidation. The product formed in this case is a highly reactive 

QMIA rather than the simple quinone. QMIA due to the presence of quinone methide 

nucleus and Schiff’s base undergoes rapid reaction with the parent 3- 

aminoacetylesculetin through the two phenolic hydroxyl groups resulting in the formation 

of a benzodioxan type dimer. The dimer adds onto another molecule of QMIA producing 

trimer. The oligomerization seems to generate as many as six polymeric products.  
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5.6 Conclusion 

          The above studies strongly support the proposal that lamellarin-type compounds 

could arise by oxidative coupling of dehydrodopyl derivatives. Dehydrodopyl and 

dehydrotyrosyl derivatives have been shown to be abundantly present in numerous 

marine invertebrates (Sugumaran and Robinson, 2010). Tyrosinase present in these 

invertebrates can definitely cause nonspecific oxidation of these compounds and generate 

their quinonoid products. Production of dihydroxycoumarin skeletons found in 

compounds such as lamellarins and ningalins is therefore, certainly possible by the 

oxidative cyclization of dehydrodopyl derivatives present in these marine invertebrates.  

It is interesting to note that the majority of the lamellarins are methylated at the 

catecholic group.  The methylation reactions prevent the further oxidation of the esculetin 

type products formed by oxidative cyclization.  This is certainly necessary and important 

to prevent the oxidative polymerization as observed in the present study with the model 

compound.    

 

 

 

 

 



143 

 

 

 

CHAPTER 6 

ENZYMATIC OXIDATION OF 1, 2-DEHYDRO-N-ACETYL DOPA METHYL 

ESTER 

 

6.1 Chapter summary 

                Some peptidyl tyrosine residues undergo post-translational modification to 

dopa and are used for a variety of purposes such as natural glues, metal chelators, 

antimicrobial agents etc. Previous studies have indicated that peptidyl dopa units are 

converted to dehydrodopa derivatives under oxidative conditions.  In an effort to 

understand the further fate of peptidyl dehydrodopa units, a model oxidation studies with 

1, 2-dehydro-N-acetyldopa methyl ester (DeNAcDopa methyl ester) was conducted. 

Ultraviolet and visible spectral studies associated with tyrosinase-catalyzed oxidation of 

DeNAcDopa methyl ester indicated the facile production of transient 

DeNAcDopaquinone methyl ester as the primary two-electron oxidation product. This 

unstable quinone rapidly reacted with the parent compound probably via a Diels-Alder 

type condensation generating benzodioxan adduct(s). Essentially the same result was 

obtained with chemical oxidation. Liquid chromatography studies of DeNAcDopa methyl 
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ester -tyrosinase reaction mixture indicated the production of more than one product(s). 

Mass spectrometry confirmed this contention and provided evidence for the production of 

dimeric and other oligomeric products. Based on these results, I propose that peptidyl 

dehydrodopa also can undergo similar transformations accounting for the adhesive and 

cementing properties of the dopyl proteins in nature. 

 

6.2 Introduction 

          Tyrosine residues in peptides are frequently the targets of post-translational 

modification, one of which involves hydroxylation to peptidyl dopa. These modifications 

seem to be critical and associated with a number of biological processes such as 

biological glue and cement formation (Waite, 1990; Rubin et al., 2010). The marine 

bivalves for example, produce tyrosine rich peptides and the enzyme tyrosinase at the site 

of foot adhesion to substratum. The resultant mixture generates peptides heavily 

decorated with dopa units and these units upon further oxidative transformation, produce 

cross-links and adducts that are necessary for binding in water, allowing them to attach 

themselves in marine environments, in spite of adverse effects caused by  salinity, 

humidity, tides, turbulence, and waves. These adhesive proteins are able to form not only 

permanent and strong but also flexible underwater bonds to substrates such as glass, 

Teflon, metal, and plastic. Moreover, the bivalve does not have to expend energy to 

maintain its position on substrate. The adhesion is rapid, strong, and tough, and prevents 

the organism from being dislodged and dashed to pieces by the next incoming wave. This 
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ability to produce a strong attachment in the form of byssus made them dominate in hard 

surfaces in temperate aquatic habitat. The same reactions are also used for the hardening 

of the periostracum in bivalves (Waite, 1990; Rubin et al., 2010).  It was reported that 

mussel adhesive protein analogs without dopa showed greatly reduced ability for 

adhesion (Yu and Deming, 1998). The stickiness of mussel’s foot, especially how it 

works in a wet environment could be mimicked to develop new kinds of biocompatible 

building materials, use as medical adhesives such as for bonding broken teeth and bones 

since they are nontoxic to human body and do not impose immunogenicity (Dove and 

Sheridan, 1986). Unlike the urea-formaldehyde wood adhesives, which are associated 

with health concerns and are based on expensive petroleum products, mussel adhesives 

biodegradable properties makes them environmentally friendly ‘green” products with no 

apparent deleterious or toxic impact on the environment. Mainly with this reason, several 

groups of workers have been examining the oxidative fate of both naturally occurring and 

synthetic dopyl peptides.  

        Our laboratory first reported that dihydrocaffeate methyl ester (Figure 1.11 

Compound 1 A = H; B = COOCH3) and dihydrocaffeate methylamide (Figure 1.11, 

Compound 1 A = H; B = CONHCH3) (the deaminated derivatives of dopa) undergo 

unique oxidative transformation yielding caffeate derivatives (Sugumaran et al., 1989a, 

b). This unusual side chain dehydrogenation was shown to occur through the 

intermediacy formation of the corresponding quinone and its isomeric quinone methide 

(Figure 1.11). These catechols once oxidized, produce their corresponding quinones, 



146 

 

which exhibit rapid nonenzymatic isomerization generating transient quinone methide 

analogs, which finally yielded caffeic acid derivatives through yet another isomerization 

reaction (Figure 1.11). Subsequently, it was demonstrated that even peptidyl model 

compounds such as N-acetyldopa esters (Figure 1.11, Compound 1; A = NHCOCH3; B = 

COOCH3or COOC2H5) could generate dehydro dopyl units through this mechanism 

(Sugumaran and Ricketts 1995; Rzepecki et al., 1991; Rzepecki and Waite 1991).  It has 

also been established a similar transformation with the insect cuticular sclerotizing 

precursor, N-acetyldopamine (NADA; Figure 1.11 Compound 1; A = H B = NHCOCH3) 

(the decarboxylated derivative of dopa). In this case, however, enzymatic intervention 

was absolutely essential to witness the side chain desaturation. Thus, isomerization of 

NADA quinone required the use of a new quinone isomerase and the subsequent 

conversion of NADA quinone methide to dehydro NADA required the use of yet another 

isomerase, quinone methide isomerase (Saul and Sugumaran 1988, 1989a, 1989b, 

1990a). This is in sharp contrast with the oxidative transformations of dihydrocaffeates 

and N-acetyldopa esters where beyond tyrosinase action, the rest of the reactions seem to 

occur without the need for any enzymes. The driving force for the introduction of double 

bond in carbonyl containing compounds apparently is coming from the carboxyl group 

that seems to assist the isomerization reactions. Thus a number of dehydro dopa units can 

be easily produced by the oxidative transformation of dopyl units.  

       

                A careful survey of naturally occurring compounds reveals that a variety of 

dehydro dopa derivatives are found in marine organism especially tunicates. Some of the 
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dehydro compounds found in marine animals are listed in Table 1.1. The biological 

significances of these molecules are still not clear. Various workers have theorized that 

they could serve as metal chelators and trap vanadium in the center, or serve as hardening 

agent for the tunic. Some of them have been identified as antibiotic compounds and some 

are associated with cementing/adhering properties (Cai et al., 2008). With the exception 

of simple dehydro NADA, which is formed in insect cuticle in relation to cuticular 

hardening process, practically nothing is known about the fate of other dehydro 

compounds.  In this chapter the reaction pathway of peptidyl tyrosine following its 

hydroxylation to peptidyl dopa was explored using a model compound DeNAcDopa 

methyl ester.  

 

          Extensive studies carried out on the oxidation chemistry of dehydro NADA reveal 

that upon enzymatic oxidation at physiological pH, generates a quinone methide imine 

amide as the immediate two-electron oxidation product and not the conventional quinone 

(Sugumaran 2000; Sugumaran et al., 1992a). The normally expected quinone is only 

produced under acidic conditions, which prevents the conversion of quinone-to-quinone 

methide tautomerization. The quinone methide thus formed is very unstable and highly 

reactive. The quinone methide nucleus undergoes facile Michael-1, 6-addition reaction 

and the Schiff’s base amide undergoes rapid addition. As a result both the side chain 

carbon atoms form adduct with external nucleophiles generating adducts and crosslinks 

(Sugumaran, 1998). In the absence any external nucleophiles, the reactive intermediate 

forms adducts with parent catechols resulting in dimer formation.   A similar reaction is 
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possible with other peptidyl dopa derivatives also but this realization has not been 

assessed. In order to assess this possibility, oxidation studies was conducted with the 

peptidyl dehydro dopa mimic, 1, 2-dehydro-N-acetyldopa methyl ester (DeNAcDopa 

methyl ester) and found similar reaction is possible although by a different mechanistic 

route.  

 

6.3 Materials and methods 

       DeNAcDopa methyl ester was synthesized from N-acetyltyrosine through N-

acetyltyrosine methyl ester in methanol and HCl gas with 87% yield and was further 

purified by Biogel P-2 column chromatography using 0.2 M acetic acid as the eluent. 

Dehydro NADA is prepared as outlined in chapter 2 materials and methods section. 

Mushroom tyrosinase and laccase were procured from Sigma Chemical Co., St. Louis, 

MO. All other chemicals were of analytical grade purchased from Fisher and/or VWR. 

HPLC grade methanol and ammonium formate (99%) were purchased from Acros, 

Morris Plains NJ. HPLC grade water was obtained from MilliQ synthesis A10 Water 

purification system purchased from Millipore, Milford, MA. 

Enzyme assays: A reaction mixture containing different catechols (usually 0.2 mM), 

about 10 μg of tyrosinase in 50 mM sodium phosphate buffer at specific pH was 

incubated at room temperature and the spectral changes associated with the oxidation was 

followed. For non-enzymatic reactions the enzyme was omitted and the pH of the buffer 

used was 8.0. 
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RP-HPLC analysis of DeNAcDopa methyl ester: A reaction mixture (1 ml) containing 

0.25 mM  DeNAcDopa methyl ester and 10 μg mushroom tyrosinase in 50 mM sodium 

phosphate pH 6.0 was incubated at room temperature. An aliquot of the reaction mixture 

(5 μl) was subjected to HPLC analysis on Agilent 1100 HPLC series (Agilent 

Technologies, Santa Clara, CA) fitted with diode array detector and reversed phase C8 

Cartridge (IBM Instrument Inc. premium LC Columns) (250 x 4.0 mm, 5 μm size) using 

isocratic elution with 50 mM Citrate buffer pH 3.0 containing 7% acetonitrile at a flow 

rate of 1ml/min. 

Mass Spectrometer Parameters-Direct injection:   A Thermofinnigan LCQ Advantage 

ion trap mass spectrometer (Sunnyvale, CA) was used to detect and characterize the 

reaction products. The sample was directly injected to the LC-MS/MS and the operating 

parameters of the ion trap mass spectrometer were as follows: capillary temperature (280 

C), spray voltage (4.00 kV), sheath gas (30 cm
3
/min).  Collision-induced decomposition 

(CID) was performed at a relative collision energy of 28, an isolation mass window of 2.5 

amu, and a default activation Q and activation time of 0.250 and 30 ms, respectively.  

The CID experiment was designed to obtain the product spectra of a specific parent 

oligomer by programming the mass spectrometric method to perform CID for the 

appropriate m/z ratio during the time window that corresponded to elution time of the 

oligomer.  
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6.4 Results 

         Tyrosinase is a non-specific enzyme readily attacking a number of o-diphenolic 

compounds and converting them to their corresponding quinones. Accordingly 

mushroom tyrosinase oxidized a number of dopa derivatives such as dopa, dopamine, 

dopa methyl ester, N-acetyldopa, N-acetyldopa methyl ester, dehydro-N-acetyldopa and a 

plethora of related catechol derivatives. Typically oxidation of catechols by tyrosinase 

generates the corresponding o-quinone as the initial observable product. Most o-

benzoquinones exhibit visible absorbance maximum at 400 nm. However, spectral 

changes depicted in Figure 6.1, that is associated with the tyrosinase-catalyzed oxidation 

of DeNAcDopa methyl ester failed to support the generation and accumulation of its 

corresponding o-quinone having an absorbance maximum at around 400 nm range. Yet 

the rapid spectral changes occurring in the UV region clearly indicated the facile 

oxidative transformation of this compound. Essentially the same results were observed 

even if the reaction was conducted at different physiological pH values. Figure 6.2 for 

example shows the UV and visible spectral changes accompanying the oxidation of 

DeNAcDopa methyl ester by tyrosinase at pH 8.0. Again, the absence of the typical 

absorbance maximum at 400 nm due to quinone accumulation is quite evident.  
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Figure 6.1: Ultraviolet spectral changes associated with the tyrosinase-catalyzed 

oxidation of DeNAcDopa methyl ester at pH 6.0.  A reaction mixture containing 0.2 mM 

of DeNAcDopa methyl ester in 50 mM sodium phosphate, pH 6.0 and 10 g of tyrosinase 

was incubated at room temperature and the spectral changes associated with oxidation of 

DeNAcDopa methyl ester was monitored at one minute interval (scan 1: zero time; scan 

12: 11 minutes). The reaction was initiated by the addition of substrate.  
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Figure 6.2: Ultraviolet spectral changes associated with tyrosinase-catalyzed oxidation 

of DeNAcDopa methyl ester at pH 8.0. The same conditions used for Figure 6.1 were 

employed except for replacing the pH of the sodium phosphate buffer with pH 8.0 (scan 

1: zero time; scan 12: 11 minutes).  

        It is established earlier from this laboratory that the oxidation of dehydro NADA by 

tyrosinase produces a transient isomeric quinone methide imine amide (QMIA) with an 

absorbance maximum at 485 nm. To assess whether the quinone or the quinone methide 

formed during the initial phase of the oxidation of DeNAcDopa methyl ester fast reaction 

studies were conducted by monitoring the increase in absorbance at 400 nm (due to 

quinone) and 485 nm (due to quinone methide). Figure 6.3 shows the absorbance increase 

at these two wavelengths during the initial phase of enzymatic oxidation. Clearly 

absorbance increase at 400 nm is consistent with the conventional quinone production. 

Notably the transient isomeric QMIA that would exhibit absorbance maximum at 485 nm 
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was either absent or non-detectable. The detection of conventional quinone and not the 

QMIA in this case was quiet surprising. But internal hydrogen bonding considerations 

and energy calculations indicate that the conventional quinone is the most stable 

compound in this case and not the isomeric quinone methide. 
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Figure 6.3: Visible spectral changes associated with the oxidation of DeNAcDopa methyl 

ester at 400 nm and 485 nm. A reaction mixture containing 0.2 mM of DeNAcDopa 

methyl ester in 50 mM sodium phosphate, pH 6.0 and 10 g of tyrosinase was incubated 

at room temperature. The spectral changes associated with oxidation of DeNAcDopa 

methyl ester was monitored continuously at 400 nm (for quinone production) and at 485 

nm (for quinone methide imine amide production).    
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            To visualize the quinone more directly and to demonstrate its transient nature, 

chemical oxidation study with sodium periodate were conducted. Admixing mole to mole 

ratio of sodium periodate and any catechol instantaneously generates the corresponding 

quinone (Sugumaran, 2000). Figure 6.4 shows the UV and visible spectral changes 

accompanying the oxidation of DeNAcDopa methyl ester with sodium periodate. From 

the inset to Figure 6.4, it is clear that the DeNAcDopa methyl ester quinone formed is 

very unstable and is rapidly decomposing to colorless products. Again, during the 

chemical oxidation of DeNAcDopa methyl ester also, no quinone methide generation was 

observed.   

 

Figure 6.4: Evidence for the formation of quinone during the sodium periodate-catalyzed 

oxidation of DeNAcDopa methyl ester. A reaction mixture containing 0.2 mM 

DeNAcDopa methyl ester and 0.2 mM sodium periodate in 50 mM sodium phosphate 

buffer, pH 6.0 (scan 1: zero time; scan 12: 110 sec). Inset: Visible spectrum of the 

transient quinone produced during the reaction (scan 1: zero time; scan 12: 90 sec). 
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          The spectral changes shown in Figures 6.1 and 6.2 were remarkably similar to 

those observed for dehydro NADA, where a dimerization reaction was shown to occur 

through a transient quinone methide intermediate. The quinone methide in this case 

undergoes facile addition reaction with the parent catechol forming benzodioxan dimers. 

Such a reaction may be unlikely in the present case, as the quinone methide was not 

observed even as the transient intermediate during the oxidation. Yet, the UV spectral 

changes given in Figure 6.1 and 6.2 indicated dimer formation and remarkably resembled 

the UV spectral changes accompanying the oxidative dimerization reaction of dehydro 

NADA.   

         RP-HPLC was carried out to characterize reaction products formed during 

tyrosinase catalyzed oxidation of DeNAcDopa methyl ester. As shown in Figure 6.5. 

HPLC analysis revealed the production of two new compounds eluting at about 8 min 

and 9.5 min respectively. The drastic decrease in the amount of the starting material and 

appearance of products with retention time at 8 and 9.5 min indicated the formation of 

oligomeric products. The UV-Vis spectrum of these compounds indicated that the 7.2 

min peak is due to starting material, the 8 min peak is due to dimeric products and 9.5 

min is due to trimeric products. The relative abundance of the products concomitant with 

the rapid disappearance of the substrate peak at 7.2 min is listed in table 6.1.   
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Figure 6.5: HPLC studies associated with the oxidation of DeNAcDopa methyl ester. A 

reaction mixture (1 ml) containing 0.25 mM of DeNAcDopa methyl ester and 10 μg 

mushroom tyrosinase in 50 mM sodium phosphate, pH 6.0 was incubated at room 

temperature and an aliquot of the reaction mixture (5 μl) was subjected to HPLC as 

outlined in materials and methods.  Peak eluted at 7.2 min is due to the starting material, 

peak at 8 min may be due to dimer and peak at 9.5 min may be due to trimer. 
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Reaction time 

(min) 

Retention 

time (min) 

Area (mAU) Product or 

Area (%) 

0 (Control) 7.2  864.02 98.5 

        20 7.2  579 90 

8.0  29.47 3.5 

35  7.2  246.5 70 

8.0  26.8 7.64 

9.51  13.12 3.7 

60  7.2  92 45.4 

8.0  25.2 12.4 

9.5  13.08 6.4 

 

Table 6.1: RP-HPLC analysis summary of the relative abundance of products 

formed during DeNAcDopa methyl ester oxidation by mushroom tyrosinase.  

        Dopa proteins are generally sticky, as a result attempts to analyze reaction mixture 

with LC-MS was unsuccessful. Direct injection mass spectral study of the reaction 

mixture from Figure 6.5 was conducted to confirm the oligomeric nature of the products. 

Figure 6.6 shows the average electrospray mass spectra of the control DeNAcDopa 

methyl ester with [M+ H
+
] 252 prominent ion.  The average electrospray mass spectrum 

of the half hour reaction mixture is shown in Figure 6.7. The peaks at 252 and 274 are 

M+1 ion and M+Na ion respectively. The peak at 523 is due to the sodiated dimer (500 



158 

 

plus 23). The peak at 525 may be the dimeric product of DeNAcdopa methyl ester that 

forms during the electrospray process. The peak at 748 is due to the oxidized trimer plus 

a proton. The peak at 770 is due to the sodiated trimeric product that is oxidized to its 

quinonoid product. The same happens with the tetrameric product also. Thus the peak at 

997 is oxidized trimer plus a proton and the peak at 1019 is the sodiated tetrameric 

product that has been oxidized to its quinonoid product. These results certainly confirm 

the oxidative dimerization and oligomerization of DeNAcDopa methyl ester by 

tyrosinase.  

 

Figure 6.6: The average electrospray mass spectrum of the control DeNAcDopa methyl ester 

and tyrosinase reaction. The m/z 252 ion corresponds to the protonated DeNAcDopa methyl ester 

monomer ion.    
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ad120308a03 #279-392 RT: 5.79-8.57 AV: 114 NL: 7.42E5
T: + c ESI Full ms [ 215.00-1700.00]

200 300 400 500 600 700 800 900 1000 1100

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 A

b
u
n
d
a
n
c
e

274.1

[M+Na]+ 786.2

[3M-6H+O+Na]+

770.2

[3M-6H+Na]+524.9

[2M+Na]+
252.0

[M+H]+

371.0
997.1

[4M-7H]+

1019.2

[4M-8H+Na]+
748.1

[3M-5H]+

1035.2

[4M-8H+O+Na]+

290.0

[M+O+Na]+

802.2

[3M-6H+2O+Na]+

523.2

[2M-2H+Na]+
365.2

1051.2

[4M-8H-2O+Na]+
337.2 539.1

[2M-2H+O+Na]+

501.1

469.1

 

Figure 6.7: The average electrospray mass spectrum of DeNAcDopa methyl ester and tyrosinase 

30 min reaction.  

       Detailed mass spectral studies of the reaction could not be conducted as outlined for 

dehydro NADA reaction. RP-HPLC-MS/MS analysis did not help us resolve and 

chromatograph different oligomers perhaps due to their sticky nature as witnessed in the 

case of tunichromes. Nevertheless, direct injection of reaction mixture into mass 

spectrometer did support the production of dimeric and oligomeric species of Dehydro 

NAc dopa methyl ester. 
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6.5 Discussion 

        The observed oxidative dimerization and oligomerization of DeNAcDopa methyl 

ester can occur by three different mechanistic routes. The first route calls for the 

intermediary formation of a two-electron oxidation product, QMIA similar to the one 

identified for the dehydro NADA (Sugumaran et al., 1992) (Figure 1.8). However, 

available experimental evidences indicate that such an intermediate is not likely to be 

formed during the initial phase of enzymatic oxidation of DeNAcDopa methyl ester. First 

of all we could not witness the transient production of quinone methide during the 

oxidation at about 480 nm. Second conventional quinone production could be observed 

both during the initial phase of enzymatic as well as chemical oxidation (Figures 6.3 and 

6.4). Finally energy considerations indicate that the quinone is more stable than the 

quinone methide in this case as opposed to dehydro NADA, where quinone methide is 

more stable than the isomeric quinone. Therefore dimerization of DeNAcDopa methyl 

ester must proceed through the transiently formed quinone intermediate (Figure 6.8). The 

transient quinone could react with the parent compound by an ionic Diels Alder type 

reaction. Although Diels Alder type additions are rare in biological systems, a couple of 

addition reactions have been show to occur via Diels Alder type condensation in recent 

years (Takao et al., 2005). The biological Diels Alder additions could occur either by a 

retro Diels Alder type addition or more likely by an ionic Diels Alder reaction. In any 

case, the quinone production will require only a Diels Alder type addition for 

dimerization and other oligomerization reactions observed in the present case.  



161 

 

        The last possibility calls for the transient production of semiquinone radicals. 

Radical coupling of the isomeric quinone methide radical with semiquinone radical and 

eventual ring closure can also produce the same dimeric and oligomeric products. 

However, semiquinone production at physiological pH employed for the current 

experiments is unlikely as they will rapidly undergo dismutation generating the two-

electron oxidation product and the parent catechol. Hence free radical mediated coupling 

seems to be rather unlikely to occur at this pH value. 

 

 

Figure 6.8: The proposed mechanism for the oxidative fate of DeNAcDopa   

 methyl ester. 
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6.6 Conclusion 

       Tyrosinase catalyzed oxidation of tyrosine residues in various proteins has been 

known to produce dopyl peptides. However, what happens to the dopyl proteins has 

remained a mystery for a long time. Earlier studies from our lab indicated its possible 

oxidation transforms to dehydrodopyl peptides (Sugumaran and Ricketts, 1995). But the 

further fate of dehydrodopyl peptides has never been reported until now. My current 

studies are aimed to fill this void in dopyl protein chemistry and shed light on possible 

route for its further transformation.  Oxidation of the model peptidyl dopa, DeNAcDopa 

methyl ester by tyrosinase generated its corresponding quinone as a transient product, 

which seemed to undergo a Diels-Alder type addition with the parent catechol, producing 

the benzodioxan adducts. This is quite contrary to the oxidation of dehydro NADA which 

has been shown to produce QMIA.  

          Although dehydro NADA and DeNAcDopa methyl ester differ simply by the 

presence of a single carboxy ester group, the oxidative transformation seems to be quite 

different. In the case of dehydro NADA, we could not observe the corresponding quinone 

at all during both enzymatic and nonenzymatic oxidation under physiological pH values. 

We witnessed the production of only quinone methide imine amide derivative as the 

primary two–electron oxidation product (Sugumaran et al., 1992).  In the case of 

DeNAcDopa methyl ester, the reverse seems to be true, namely quinone is observed as 

the transient intermediate and not the quinone methide imine amide. Quinone thus 

formed seems to undergo a novel Diels Alder addition generating dimers. A similar 
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reaction with peptidyl dehydrodopa as shown in Figure 6.9 could lead to dimer 

production that will partly account for gluing reactions witnessed with peptidyl dopa 

derivatives. 

 

 

Figure 6.9: The proposed mechanism for the oxidative fate of dopa containing peptides. 

N-acyldopamines are oxidized by phenoloxidases (A) to their corresponding quinones 

that can participate in quinone tanning reactions. Quinone isomerase (B) converts the 

quinones to quinone methides and provides them for quinone methide tanning (type D 

and E) reaction. Quinone methides are also isomerized to 1, 2-dehydro-N-acyldopamines 

by quinone methide isomerase type reaction (C). Oxidation of the dehydro compounds 

yields the quinone methide imine amides and dehydro dopyl quinones that can react with 

their side chain forming adducts and cross links (E and D reaction).   
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CHAPTER 7 

REACTIVITY OF 1,2-DEHYDRO-N-ACETYLDOPAMINE WITH N-

ACETYLCYSTEINE 

 

7.1 Chapter summary 

       1, 2-dehydro N-acetyldopamine (dehydro NADA) is an important major cuticular 

sclerotizing precursor for a vast majority of insect cuticle. It readily undergoes oxidative 

dimerization to form benzodioxan type dimers. Based on this reaction and other 

considerations, the side chain of dehydro NADA has been invoked in crosslinking and 

covalent binding to amino acid side chains of structural proteins and to the sugar residues 

of chitin fibers. This process has been named as ,-sclerotization. However direct 

evidence for the presence of side chain adducts of dehydro NADA with proteins/chitin is 

still missing. Model sclerotization studies with dehydro NADA and N-acetylcysteine 

(NAcCys) was conducted to shed light on the formation of side chain adducts of dehydro 

NADA. NAcCys is specifically chosen to represent the reactions of protein bound 

cysteine residue with dehydro NADA. Ultraviolet and visible spectral studies of reaction 

mixtures containing dehydro NADA and NAcCys in different molar ratios indicated the 

production of side chain and ring adducts of NAcCys to dehydro NADA. Liquid 

chromatography and mass spectral studies supported this contention and confirmed the 
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production of several different products. Mass spectral analysis of these products do 

support the potentials of dehydro NADA to form side chain adducts that can lead to 

colorless, but sclerotized cuticle consistent with the predictions of ,-sclerotization 

process.  

7.2 Introduction 

      Sclerotization of cuticle, a process essential for the successful survival of most 

insects, is achieved by covalent crosslinking of catecholamine derivatives such as N-

acetyldopamine (NADA) and N--alanyldopamine (NBAD) with structural proteins and 

chitin polymer (Andersen, 2010; Hopkins et al., 1982; Hopkins and Kramer 1992; 

Kerwin et al., 1999; Karlson and Sekaris, 1962, Sugumaran, 1998, 2010).  As early as 

1980, Andersen’s group (Andersen and Roepstrorff, 1981, 1982; Andersen et al., 1980) 

isolated and characterized 1, 2-dehydro-N-acetyldopamine (dehydro NADA) and its 

dimeric products from the sclerotized cuticle of locusts. They proposed that the quinone 

of dehydro NADA is somehow involved in the adduct formation reaction with cuticular 

proteins and chitin resulting in the formation of colorless cuticle (Andersen, 1989; 

Andersen and Roepstroff, 1982). Our group, however advocated an alternate reactive 

species for the production of colorless cuticle (Sugumaran 1987; Sugumaran 1988, 

Sugumaran et al., 1989). We identified quinone methides as new reactive intermediates 

of sclerotization and argued that quinone methides are the causative agents of colorless    

cuticle (Saul and Sugumaran; 1988; 1989a, b, c; 1990; Sugumaran, 1987; 1988).  

Furthermore, we indicated that dehydro NADA could arise from NADA quinone methide 
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by a simple isomerization reaction (Sugumaran, 1987; 1988). Work conducted in our 

laboratory lead to the finding that 1, 2-dehydro-N-acyldopamines are biosynthesized 

from N-acyldopamines (NADA and NBAD) by the combined action of three enzymes 

namely, phenoloxidase (both o-diphenoloxidase and laccase), quinone isomerase and 

quinone methide isomerase (Saul and Sugumaran, 1988; 1989a, b, c; 1990; Ricketts and 

Sugumaran, 1994).  Discovery of quinone isomerase and quinone methide isomerase 

interlinked enzymatically produced quinone methides with dehydro N-acyldopamines 

(Saul and Sugumaran, 1989 b, c; Sugumaran 1998; Ricketts and Sugumaran, 1994). This 

provided evidence to concretely establish that upon o-diphenoloxidase action, dehydro 

NADA generates a reactive quinone methide imine amide (QMIA) which is capable of 

reacting with nucleophiles forming side chain adducts (Sugumaran, 2000; Sugumaran et 

al., 1987; 1988; 1990; 1992; Abebe et al., 2010). The normally expected dehydro NADA 

quinone was not produced at physiological conditions. Under acidic conditions however, 

the production of dehydro NADA quinone could be witnessed; but as soon as the pH is 

raised to physiological level, rapid isomerization of dehydro NADA quinone occurred 

resulting in the production of more stable QMIA (Sugumaran, 2000). Even though QMIA 

is comparatively more stable than its quinone isomer, it is extremely reactive due to the 

presence of both quinone methide nucleus (that will exhibit rapid Michael-1,6-addition 

reaction) and a modified Schiff’s base (which will also form an adduct with 

nucleophiles). As a result, QMIA rapidly reacts even with the phenolic groups of dehydro  
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NADA forming benzodioxan type adducts (Figure 1.8). Andersen and Roepstroff (1981) 

also isolated a number of mixed dimers of dehydro NADA from insect cuticle confirming 

the generality of this reaction. It has been demonstrated that even simple 1, 2-

dihydroxybenzene can add on to QMIA forming benzodioxan adducts (Sugumaran et al., 

1987; 1988; 1990, 1992). Since dimer formation is due to the covalent addition of two 

phenolic groups of the parent catechol to the QMIA nucleus, it is reasonable to expect 

that in vivo also QMIA can react with cuticular nucleophiles producing adducts and 

crosslinks (Figure 1.8). Additional support for this proposal comes from the trapping 

experiments performed with dehydro NADA and different quinoniod traps (Sugumaran et 

al., 1990). Ultraviolet spectral studies indicated that both simple catechol and o-amino 

phenol were able to form adducts on the side chain carbon atoms of dehydro NADA, 

under oxidative conditions. Moreover, enzymatically oxidized dehydro NADA readily 

incorporated into the cuticle and formed colorless cuticle with intact o-diphenolic group 

attached to them (Sugumaran et al., 1988). However, the exact nature of linkage of 

dehydro NADA to the cuticle remains to be established by structural analysis of adducts.   

In order to characterize dehydro NADA - side chain addition products and to lend support 

for the key role played by QMIA in crosslinking process, we conducted model 

sclerotization studies with dehydro NADA and different nucleophiles representing 

protein side chains. In this chapter, I outline the reactions of one simple model 

compound, NAcCys with oxidized dehydro NADA and confirms the production of side 

chain adducts of dehydro NADA with thiol nucleophiles. 
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7.3 Materials and methods 

       Mushroom tyrosinase, sodium periodate, sodium borate, NAcCys, acetic anhydride 

and general laboratory chemicals were obtained from Sigma Chemical Co., St. Louis. 

MO.  All other chemicals were acquired from Fisher Scientific Co and/or VWR Scientific 

Co, NJ. HPLC grade solvents and ammonium formate and ammonium acetate were 

purchased from Acros, Morris Plains, NJ. HPLC grade water was purified using a Milli-

Q A-10 water purification system from Millipore, Milford, MA.  Dehydro NADA was 

synthesized as outlined in an earlier publication (Dali and Sugumaran, 1988).  

 

        Adduct formation between dehydro NADA and NAcCys was examined using a 

reaction mixture containing 0.1 mM of dehydro NADA, varying amounts of NAcCys and 

10 µg tyrosinase in 50 mM of sodium phosphate buffer, pH 6.0. The reaction was 

incubated at room temperature and its progress was monitored using UV-Vis 

spectrophotometric studies. The reaction conditions for individual experiments are 

described under the legends to the figures. The reactions were conducted in 1 ml 

spectrophotometric cuvettes (10 mm path length).  For non-enzymatic oxidation, the 

reactions were conducted in specified alkaline pH values without the use of enzyme.  

RP-HPLC analysis of dhydro NADA reaction mixture: A reaction mixture containing 

1 mM dehydro NADA, different amounts of NAcCys and 10 μg mushroom tyrosinase in 

50 mM sodium phosphate, pH 6.0 was incubated at room temperature. An aliquot of the 
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reaction mixture (5 μl) was subjected to RP-HPLC analysis on an Agilent 1100 HPLC 

series (Agilent Technologies, Santa Clara, CA) fitted with a diode array detector and 

reversed phase C18 cartridge (5 μm, 4.6 x 150 mm) using isocratic elution with 50 mM 

acetic acid containing 0.2 mM sodium octyl sulfonate in 20 % methanol at a flow rate of 

0.6 ml/min.  

Liquid Chromatography –Mass spectrometry (LC-MS):  A reaction mixture 

containing 100 µmole dehydro NADA, 10 µg mushroom tyrosinase and 100 μmole or 1 

mM of NAcCys was incubated at room temperature. After each time interval 50 μl 

aliquot was withdrawn and the reaction was arrested by adding 3 volumes of 90% 

methanol containing 2% acetic acid. The entire content was subjected to LC-MS analysis.  

RP-HPLC conditions for LC-MS: A low-flow rate Shimadzu (Kyoto, Japan) HPLC 

system fitted with a 10 cm x 1 mm ID, 3 µM particle size, C18 Betabasic column from 

Thermo Electron Corporation (Sunnyvale, CA) was used to separate products. The HPLC 

was operated at a flow rate of 35 µL/min using a linear gradient of 0 – 50% B in 40 min 

consisting of the mobile phase A = 10 mM formic acid in water and B = 10 mM formic 

acid in methanol.  

Mass spectral analysis: A Thermo Finnigan LCQ Advantage ion trap mass spectrometer 

(Sunnyvale, CA) was used to detect and characterize the products. The operating 

conditions of the ion trap mass spectrometer are: Capillary temperature 280˚C; Spray 

voltage 4.00 kV; and sheath gas 30 cm
3
/min.  Collision induced decomposition (CID) 
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was performed at a relative collision energy of 28, an isolation mass window of 2.5 amu, 

and a default activation Q and activation time of 0.025 and 30 msec respectively.  

 

7.4 Results    

            Oxidation of dehydro NADA alone by phenoloxidases produces dimeric materials 

that exhibit the same ultraviolet spectral pattern but reduced intensity (Abebe et al., 

2010). Therefore, ultraviolet spectral analysis of such a reaction will exhibit spectral 

changes that simply get reduced in intensity over time to about half the original value. 

Contrary to this expectation, ultraviolet spectral changes accompanying the oxidation of 

dehydro NADA / NAcCys reaction mixture (mole ratio 1:10) exhibited a pattern that is 

consistent with the addition of the sulfur nucleophile to the aromatic ring as evidenced by 

the appearance of a new absorbance peak at about 250 nm (Figure 7.1). The reactions of 

NAcCys with o-benzoquinone, 4-methyl quinone and N-acetyldopamine quinone rapidly 

produce 3-S-(N-acetyl)-cysteinyl catechol , 5-S-(N-acetyl)-cysteinyl- 3,4-dihydroxy 

toluene and 5-S-(N-acetyl)-cysteinyl-N-acetyldopamine, respectively, as additional 

products (Sugumaran et al., 1989). All these compounds show absorbance maxima at 250 

nm (due to the sulfur addition to the catecholic ring), in addition to the normal 280 nm 

aromatic absorption. Therefore, the 250 nm absorbing species produced during the 

reaction of dehydro NADA with NAcCys should also be a similar ring adduct. Thus the 

250 nm absorbing compound witnessed in Figure 7.1 was tentatively identified as the 

quinone adduct of dehydro NADA to NAcCys. 
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Fig  7.1: Ultraviolet spectral changes associated with the oxidation dehydro NADA in 

presence of NAcCys at 1:10 mole ratio. A reaction mixture (1 ml) containing 0.1 mM 

dehydro NADA, and 1.0 mM NAcCys and 10 µg mushroom tyrosinase in   50 mM sodium 

phosphate buffer, pH 6.0 was incubated at room temperature and the spectral changes 

accompanying the enzymatic oxidation was monitored at 60 sec intervals (scan 1: zero 

time and scan 12: 11 min). Note a steady production of 250 nm absorbing peak due to the 

ring adduct of NAcCys with dehydro NADA.  

             The base peak chromatogram depicted in Figure 7.2 shows the products of 

tyrosinase-catalyzed oxidation of dehydro NADA in the presence of NAcCys at a mole 

ratio of 1:10. The reaction was incubated for 45 min at room temperature and analyzed by 



172 

 

RP-HPLC/ ESI/MS-MS.  The mass spectrum associated with the peak at 13.4 min shows 

a parent ion at m/z 355, which represents the addition of one NAcCys to the monomer of 

dehydro NADA. The CID mass spectrum of the 355 ion (Figure 7.3) shows a dominant 

product ion at m/z 313 ion due to loss of C2H2O from the NHCOCH3 moiety and the 

minor peak at 250 due to the loss of the NHCOCH3. Other major product ions include 

m/z 337 (loss of 18), m/z 277 (loss of 78), m/z and m/z 208 (loss of 147). The absence of 

a product ion at m/z 226, [M-126]
 +

 suggests that no significant addition to the side chain 

has occurred under these conditions. 

 

 

Figure 7.2: The base peak chromatogram from the RP-HPLC/ESI/MS-MS analysis of 

tyrosinase catalyzed oxidation of dehydro NADA in the presence of NAcCys at a 1:10 

mole ratio. The marked retention time indicates the location of the product. 
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Figure 7.3:  The CID mass spectrum of the product eluting at 13.4 min (see Figure 7.2 

for details). 

            However, when the reaction stoichiometry was altered to 1: 1 level, an 

entirely different UV spectral pattern accompanied the oxidation of dehydro NADA and 

NAcCys mixture was obtained. Figure 7.4 shows the UV spectral changes associated 

with the oxidation of dehydro NADA in presence of equimolar amount of NAcCys. 

Initially there does appear a peak at 250 nm begins to develop but as the reaction progress 

the absorbance across the range of wavelengths 230-350 nm decrease steadily. This 

observation was puzzling at first and hence additional experiments were carried out with 

RP-HPLC coupled with a diode array spectrophotometer.   
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Figure 7.4: Ultraviolet spectral changes associated with the oxidation dehydro NADA in 

presence of  NAcCys at 1:1 mole ratio. A reaction mixture (1 ml) containing 0.1 mM 

dehydro NADA, and 0.1 mM NAcCys and 10 µg mushroom tyrosinase  in 50 mM sodium 

phosphate buffer, pH 6.0 was incubated at room temperature and the spectral changes 

accompanying the enzymatic oxidation were monitored at 60 sec intervals (scan 1: 0 

time; scan 12: 11 min). Note absence of a 250 nm absorbing peak due to the ring adduct 

of NAcCys with dehydro NADA. 

 

   RP-HPLC analysis of a reaction mixture containing 1:1 mole ratio of dehydro 

NADA – NAcCys indicated the formation of three peaks eluting at 5.9 min, 6.7 min and 

11.3 min (Figure 7.5). The ultraviolet absorbance spectra of these three peaks are shown 

in Figure 7.6. The ultraviolet absorbance spectrum of peaks marked B and C (eluting at 
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6.7 min and 11.3 min respectively) possessed absorbance maximum at both 250 nm and 

280 nm consistent with the production of ring adduct of NAcCys. The product peak A 

eluting at 5.9 min on the other hand, exhibited only 280 nm absorbance suggesting that it 

might be a compound formed from the addition of NAcCys to the side chain of dehydro 

NADA.   

        

Figure 7.5: RP-HPLC analysis of dehydro NADA - NAcCys (1:1) reaction mixture. A 

reaction mixture (1 ml) containing 0.1 mM of dehydro NADA, 0.1 mM of NAcCys  and 10 

µg mushroom tyrosinase in 50 mM sodium phosphate, pH 6.0 was incubated at room 

temperature. An aliquot of the reaction mixture (5 µl) was subjected to HPLC analysis as 

outlined in materials and methods. The solid line represents the 0 min (control) reaction; 

the broken line represents the 45 min reaction. The peaks marked A, B and C represent 

products eluting at 5.9 min, 6.7 min and 11.3 min respectively. 
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Figure 7.6:  Ultraviolet absorbance spectrum of the three products isolated from dehydro 

NADA –NAcCys (1:1) reaction. A - UV spectrum of product eluting at 5.9 min (Figure 

7.5), B s UV spectrum of product eluting at 6.7 min (Figure 7.5) and C - UV spectrum of 

product eluting at 11.3 min (Figure 7.5).   

  

            In an effort to gather more conclusive evidence, RP-HPLC analysis coupled with 

electrospray ionization tandem mass spectrometry (ESI/MS-MS) was conducted on the 

reaction mixture containing equimolar amounts of dehydro NADA and NAcCys (1:1) in 

the presence of tyrosinase. Figure 7.7 shows the base peak chromatogram of products 

formed. The average mass spectra associated with the initial three peaks between 20.4 

and 22.4 min give a parent ion at m/z 546 (Figure 7.8 top), which corresponds to a set of 
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protonated dehydro NADA dimeric compounds with one NAcCys attached. As seen from 

Figure 7.7 the mono adduct is not the dominant product.  The mass spectra associated 

with the next set of peaks at about 24.7 and 27.6 min give a parent ion at m/z 707 (Figure 

7.8 middle) which corresponds to a set of protonated dimeric products with two NAcCys 

attached. The last peak intensly observed at 29.4 min (Figure 7.8 bottom) gives a parent 

ion at m/z 868 which corresponds to three NAcCys addition to one dehydro NADA 

dimer. 

 

Figure 7.7: The Base Peak Chromatogram of the RP-HPLC/ESI/MS-MS analysis of 

Dehydro NADA and NAcCys 1:1 ratio. The mass spectra associated with the initial peaks 

20.4 and 22.24 min are due to one NAcCys addition to dehydro NADA dimer. The mass 

spectra associated with the next sets of peaks at 24.69 min and 27.55 min are due to two 

NAcCys addition to dehydro NADA dimer. The mass spectra associated with 29.51 min is 

due to three NAcCys addition to the dehydro NADA dimer. 
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Fig 7.8: The ion chromatogram of the products produced during the reaction of dehydro 

NADA with NAcCys (1:1 mole ratio). 

             

Fig 7.9: The CID mass spectrum of the products produced during the reaction of dehydro 

NADA with NAcCys (1:1 mole ratio). 
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         Collision induced decomposition (CID) spectra were obtained for each of the three 

parent ions to shed some light on the structural features and to distinguish between side 

chain addition and ring addition on the basis of product ion formation. The top panel of 

Figure 7.9 shows the average CID mass spectrum of the m/z 546 parent ion, which again 

corresponds to the protonated dehydro NADA dimeric species with one NAcCys 

attached. It shows a dominant product ion at m/z 353, corresponding to the loss of the 

monomeric moiety (193, protonated QMIA ion), which is a logical decomposition 

product of the protonated dimer. The product ions at m/z 487 and 428 correspond to the 

loss of one and two NHCOCH3 groups, respectively. The middle panel of Figure 7.9 

shows the average CID spectrum of the m/z 707 parent ion, which corresponds to the 

proton-bound dimer of dehydro-NADA with two NAcCys attached. The CID spectra of 

the m/z 707 parent ion shows dominant product ions at m/z 648, corresponding to the loss 

of the monomeric moiety with an attached NAcCys adduct. There is a product ion of 

moderate intensity at m/z 578 [M-129]
 +

 that corresponds to the loss of NAcCys.  

       The bottom panel of Figure 7.9 shows average CID spectrum of the m/z 868 parent 

ion which corresponds to the proton-bound dimer of dehydro NADA with three NAcCys 

attached. The base peak is the m/z 739, which is [M-129] +, corresponding to the loss of 

NAcCys moiety from cleavage at the S (-C5H7O3N). This provides very strong 

supporting evidence that one of the three NAcCys is adding to the side chain of dehydro 

NADA, as opposed to the ring.  The m/z 355 ion correspond to the loss of the monomer 

moiety with an attached NAcCys adduct and m/z 516 ion corresponds to the loss of 
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monomer moiety with two attached NAcCys adduct. Other major product ions include 

m/z 850 (loss of 18), m/z 809 (loss of 59), m/z 680 (loss of 178), m/z 651 (loss of 210) 

and m/z 386 (loss of 482).  

           Careful inspection of the bottom two product ions in the CID spectra illustrated in 

Figure 7.9 shows certain similarities. These are a) the common loss of 129, b) the 

products ion at  353/355 and c) the mass difference between each molecular ion is 161. 

These similarities are consistent with the presence of both side chain and ring addition.     

Figure 7.10 shows the average CID spectrum of the m/z 707 product obtained for the 

minor isomeric species eluting between the two more abundant peaks in the 

chromatogram (26.0 to 27.0 min- top panel, Figure 7.10). The [M-129] + product ion is 

the base peak in this spectrum, where as it is only a minor peak in the CID spectra of the 

more abundant species eluting at 24.8 and 27.6 min. These results suggest that although 

the ring adduct appears to form more readily, the side chain adduct also occurs to a 

certain extent.  
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Figure 7.10: The average CID mass spectrum (bottom panel) of the m/z 707 product ion 

obtained from the isomeric species eluting between 25 min and 27 min (top panel). 

             Since dehydro NADA is also well known for its instability and sensitivity to 

oxidation even under mild alkaline conditions (Sugumaran et al., 1988), nonenzymatic 

oxidation of dehydro NADA in the presence of NAcCys was examined. The base peak 

chromatogram depicted in Figure 7.11 shows the products of the nonenzymatic oxidation 

of dehydro NADA in the presence of a 1:10 mole excess NAcCys after a long-term 

incubation as analyzed by RP-HPLC/ESI/MS-MS.  The mass spectrum associated with 

the less abundant peak at 18.2 min shows a parent ion at m/z 377, which represents  
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products formed from the mono addition of NAcCys to the monomer of dehydro NADA. 

The m/z 377 peak is its sodiated parent. The peak at 18. 9 min shows a parent ion at m/z 

538, which represents products formed from the addition of two NAcCys to the 

monomeric dehydro NADA. 

 

        

Figure 7.11: The base peak and ion chromatogram from the RP-HPLC/ESI/MS-MS 

analysis of dehydro NADA and NAcCys nonenzymatic reaction mixture. The marked 

retention times indicate the location of the products. 

       The CID spectrum of the m/z 377 ion shown in the top panel of Figure 7.12 contains 

a dominant peak at m/z 246, which may correspond to the dissociation of the S-C bond 

on the NAcCys moiety (loss of 131). The minor peak 317.7 corresponds to the loss of  
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NHCOCH3. The major product ions include m/z 151.8 (loss of 225), m/z 289 (loss of 88), 

m/z 335 (loss of 42), m/z 359 (loss of 18) and m/z 386 (loss of 482). The CID spectrum 

of the m/z 538 ion is shown in the bottom panel of Figure 7.12. It contains a dominant 

peak at m/z 409 [M-129] +, which as described above, likely corresponds to the 

dissociation of the S-C bond on the NAcCys moiety. Other major product ions include 

m/z 478 (loss of 78), m/z 496 (loss of 43) and m/z 280 (loss of 258). This CID spectrum 

seems to suggest that side chain addition to the monomeric dehydro NADA species is 

occurring under non enzymatic oxidative conditions.  

        The products of the non-enzymatic oxidation of dehydro NADA in the presence of 

NAcCys at 1:1 mole ratio after long term incubation were investigated under the same 

condition as described above. The results were very similar to the results published 

earlier on the enzymatic oxidation of dehydro NADA (Abebe et al., 2010). Dimeric and 

trimeric species of dehydro NADA were evident in the chromatogram but there was no 

evidence of any NAcCys addition to either the dehydro NADA monomeric or polymeric 

species. 



184 

 

 

Figure 7.12:  The CID mass spectrum of the products produced during the nonenzymatic 

reaction of dehydro NADA with NAcCys at alkaline pH. 

 

 

 

 

 

 

 

CID Spectrum of m/z 377 

CID spectrum of m/z 538 
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Figure 7.13: Structures of possible products of dehydro NADA: NAcCys (1:1 mole ratio) 

reaction. 

Triple addition to dimer  

Di-addition to dimer  
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7.5 Discussion 

The results presented in this study can be summarized as follows. Under 1:10 

stoichiometric conditions, tyrosinase catalyzed oxidation of dehydro NADA/NAcCys 

mixture, produces a ring adduct of NAcCys to dehydro NADA as the major product 

(marked ring adduct in Figures 7.14 and 7.15). This result is consistent with the 

preliminary studies reported earlier from our laboratory on the addition of NAcCys to 

dehydro NADA (Sugumaran et al., 1990). It is not clear why thiol is adding to the ring in 

preference to the side chain, while the phenolic OH group readily adds on to the side 

chain under the same conditions. Also at present the exact ring carbon atom to which the 

NAcCys is attached cannot be specified. The abnormal addition of thiol to the quinonoid 

nucleus is not surprising, as previous studies have shown that thiols addition to quinones 

do not follow typical nucleophilic Michael -1,4-addition. In relation to eumelanin 

production in animals, the reaction of cysteine with a number of catecholic compounds 

has been investigated by a number of workers. For instance, Ito and Prota (1977) 

witnessed that the reaction of cysteine with dopa under oxidative conditions generated 5-

cysteinyldopa and 3-cysteinyldopa. This was contrary to the normal expectation of a 

nucleophilic addition to a quinone, which in general leads to the production of Michael-

1,4-adducts as opposed to 1,3- or 1,5-adducts. Perhaps thiols interact with the quinonoid 

nucleus much differently than typical nucleophiles. The thiol addition also shows another 

difference. An external nucleophilic addition to quinone is naturally expected to be 

slower than any possible internal Michael-1, 4-addition reaction.  Thus for example, the 
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internal reactivity of a suitably positioned amino group in dopaquinone is expected to be 

far greater than any external nucleophilic addition.  On the other hand, cysteine addition 

to dopaquinone occurs in preference to the internal reactivity of dopaquinone (Ito and 

Prota, 1977). Thus sulfur addition to quinones seems to be operating by a different 

mechanism than the conventional Michael -1, 4-addition reaction. Although cysteinyl 

radical addition has been suggested as alternate reactive species associated with such 

reactions, the exact mechanism by which sulfur nucleophiles exhibit fast as well as 

abnormal reactivity still remains to be elucidated (Sugumaran 1998; 2010).  Finally, at 

the pH values employed in enzymatic oxidation, the QMIA is the predominant species 

compared to dehydro NADA quinone (Sugumaran 2000). Yet, cysteine seems to trap the 

quinone far more efficiently than the QMIA thus accounting for the predominant quinone 

adduct.    

          At 1:1 stoichiometric conditions, tyrosinase catalyzed oxidation of dehydro 

NADA/NAcCys generated a number of products, all belong to the dehydro NADA dimer 

family. The monomeric thiol adduct observed under 1:10 stoichiometry could not be seen 

at all under 1:1 stoichiometric conditions. Nor one could see any unsubstituted dimer of 

dehydro NADA.  Of the three products characterized by the mass spectrometry, the one 

with m/z 546, corresponds to the ring adduct of NAcCys to dehydro NADA dimer. This 

adduct is perhaps formed by the addition of NAcCys dehydro NADA ring adduct to 

QMIA. The majority of the second compound with parent ion at m/z 707 corresponds to a 

di-adduct of NAcCys to dehydro NADA dimer. Most likely, it is generated by the 
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addition of QMIA of mono NAcCys-dehydro NADA adduct to NAcCys-dehydro NADA 

ring adduct. While this is the major product, there is compelling evidence from the 

fragmentation pattern of other parent ions and their elution profile for the presence of 

other isomeric products that seem to have at least one (or even two) NAcCys attached to 

the side chain of dehydro NADA. Compared to the ring adduct, the side chain adduct 

formation seems to occur at a minimal level only.  The last compound with parent ion at 

m/z 868 corresponds to a tri–adduct of NAcCys to dimeric dehydro NADA (one possible 

structure shown in Figure 7.14). This compound gives compelling arguments for the side 

chain participation in adduct formation with NAcCys. From the CID mass spectrum, it is 

clear that at least one NAcCys group is linked to the side chain of dehydro NADA dimer 

in this molecule thereby providing first concrete proof for the participation of dehydro 

NADA side chain in nucleophilic addition reactions with thiol.  

       Finally the results of nonenzymatic oxidation of dehydro NADA in presence of 

NAcCys provides further proof for the dehydro NADA side chain participation in adduct 

formation. Nonenzymatic oxidation of dehydro NADA even at mild alkaline condition 

will generate its corresponding semiquinone as the primary product (Figure. 7.16). If 

thiol traps this semiquinone radical at the side chain, one would predominantly get the 

side chain adduct. On the other hand, if it traps through the ring, one would get a ring 

adduct. However, semiquinones are notoriously unstable and they tend to undergo rapid 

dismutation to generate the parent catechol and quinonoid species (Nakamura 1960).  

Since quinone to quinone methide isomerization is a base catalyzed reaction (Bolton et 
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al., 1996, Sugumaran, 2000), and the reaction conditions are alkaline, it is expected that 

QMIA would be the most predominant oxidation species present under these conditions. 

Therefore, one would expect the efficient trapping of QMIA by the nucleophile, to 

generate the side chain adduct as the majority of the product. Accordingly, the 

nonenzymatic oxidation of dehydro NADA/NAcCys under mild alkaline conditions 

seems to give predominantly the side chain adduct. This is irrespective of the fact that the 

reaction involves one electron oxidation product or two-electron oxidation product. If 

semiquinone is the reactive species directly forming the adduct, it seems to generate 

predominantly the side chain adduct attesting that the side chain radical is the dominant 

reactive species. In any case, the results of nonenzymatic oxidation very strongly 

supports the major production of side chain adduct thus providing concrete evidence for 

the participation of dehydro NADA side chain in adduct formation with nucleophiles 

such as thiols that are available on proteins. Thus not only phenolic groups but also thiol 

groups can add to the side chain of dehydro NADA generating side chain adducts in 

insect cuticle and supporting the operation of ,-sclerotization.   
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Figure 7.14: Proposed mechanism for tyrosinase catalyzed oxidation of dehydro NADA 

in the presence of NAcCys.  
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Figure 7.15: Proposed mechanism for ring adduct formation during tyrosinase catalyzed 

oxidation of dehydro NADA in the pressence of NAcCys (1: 10 mole ratio). Dehydro 

NADA upon enzymatic oxidation produces QMIA. The quinone may be formed as a 

transient intermediate. NAcCys traps the quinone as ring adduct.  
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Figure 7.16:  Proposed mechanism for nonenzymatic oxidation of dehydro NADA in the 

presence of NAcCys. Dehydro NADA upon n   onenzymatic oxidation produces 

semiquinone radicals that can form adduct with NAcCys. Semiquinone can also undergo 

dismutation to produce parent dehydro NADA and QMIA. Addition of NAcCys to QMIA 

under this mild alkaline condition can produce the side chain adduct as the sole product. 
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7.6 Conclusion 

 Preliminary studies from our laboratory indicated that NAcCys is reacting 

rapidly and forming a ring adduct with dehydro NADA (Sugumaran et al., 1990).  

However, at that time, no detailed study was carried out and the product analysis was 

based on the similarity of the UV spectrum of dehydro NADA/ NAcCys adduct with 

those of cysteine adducts of a few well known quinones. In order to assess the production 

of side chain adduct, I conducted a detailed study on the reaction of dehydro NADA with 

NAcCys. My results indeed support the production of not only dehydro NADA ring 

adducts of NAcCys, but also the side chain adducts. The major products formed during 

the enzymatic oxidation dehydro NADA with NAcCys are the ring adducts.  However, 

there is evidence from the mass spectral data presented in this chapter, that side chain 

adducts of dehydro NADA with NAcCys are also produced in the reaction albeit at a 

lower level. Interestingly the reaction of dehydro NADA with NAcCys at mild alkaline 

pH values provided convincing evidence for the production of side chain adducts of 

dehydro NADA with NAcCys. Therefore, such adduct formation in biological system is 

also highly likely. Another interesting observation about the side chain adduct is the 

regeneration of the dehydro NADA nucleus in the product. The retention of the double 

bond in the side chain is quite unexpected and could be explained by the mechanism 

shown in Figure 7. 17.  As outlined in earlier chapters, dehydro NADA dimerization calls 

for the addition of two nucleophiles to the side chain of QMIA resulting in the production 

of a dimer with one saturated side chain (top line in Figure). Addition of NAcCys 
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described in this chapter on the other hand reveals the presence of an adduct which 

retains its side chain desaturation as shown in the figure. 7.17. Reoxidation of this adduct 

and coupling of another molecule of NAcCys at the -carbon atom would again produce 

the di adduct with the retention of the double bond. Note that this reaction is different 

from the benzodioxan adduct formation that leads to solely the side chain saturation on 

the dehydro NADA nucleus where addition is taking place. Nevertheless, these new 

reactions will also lead to adduct and crosslink formation in cuticle.    

                

Figure. 7.17 Mechanism for the production of side chain adduct of dehydro NADA with 

NAcCys. The QMIA formed at alkaline pH, adds onto the NAcCys with the retention of 

double bond on its side chain. A similar mechanism can produce the same product from 

NAcCys and the semiquinone. Reoxidation and a second coupling will generate the bi-

adduct. Note the difference between the crosslink 1 and crosslink 2 arising from these 

two different pathways.     
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CHAPTER 8 

INCORPORATION OF 1, 2-DEHYDRO-N-ACETYL DOPAMINE INTO INSECT 

CUTICLE AND ITS FATE DURING HYDROLYSIS 

  

8.1 Chapter summary 

         In this chapter the mode of incorporation of dehydro NADA into cuticle undergoing 

sclerotization and the mechanism by which arterenone is released from sclerotized cuticle 

is investigated using β-deuterated dehydro NADA. Incubation of unsclerotized S. bullata 

larval cuticle with dehydro NADA resulted in the incorporation of the bulk of dehydro 

NADA into the cuticular matrix. Whatever remained unbound, turned out to be dehydro 

NADA dimeric products that are formed by the coupling of dehydro NADA to QMIA in 

the reaction mixture. Acid hydrolysis of dehydro NADA treated cuticle released a 

mixture of ketocatecholic compounds mainly consisting of arterenone (and N-

acetylarterenone). Arterenone (2-amino-3’, 4’-dihydroxy acetophenone) has been shown 

to be an important hydrolytic product generated from lightly colored sclerotized cuticle 

that uses N-acyldopamine derivatives for crosslinking reactions. However, the 



196 

 

mechanism of generation of arterenone which has two protons on the α-carbon and no 

proton on the β-carbon atom from dehydro NADA cross links that have one proton each 

on these two side chain carbons remained elusive. Examination of the structure of 

hydrolyzed products suggests that a proton migration from β-carbon to α-carbon during 

hydrolysis is a likely route for arterenone production. Therefore β-deuterated dehydro 

NADA was synthesized and used to examine the mechanism of arterenone production. 

Analysis of the hydrolysis products obtained from β-deuterated dehydro NADA treated 

cuticle confirms the migration of deuterium from β-position to α-position. The results 

support the hypothesis that dehydro NADA, which is bound through its side chain carbon 

atoms, upon acid hydrolysis allows the migration of proton from β-carbon to the α-carbon 

by hydride shift generating arterenone and related products.  

 

8.2 Introduction 

       Sclerotization of insect cuticle is achieved by covalent crosslinking of sclerotizing 

agents generated from sclerotizing precursors such as N-acetyldopamine (NADA) and N-

β-alanyl dopamine (NBAD) to cuticular proteins and chitin (Andersen 2010, Kramer and 

Hopkins, 1987; Sugumaran, 1998, 2010). Acid hydrolysis of sclerotized cuticle produced 

a variety of catecholic compounds. Structural analyses of these compounds have paved 

ways to formulate different theories of cuticular hardening. Arterenone and ketocatechol 

are two important hydrolytic products generated from lightly colored sclerotized cuticle 

that use N-acyldopamine derivatives as sclerotizing precursors for crosslinking reactions. 
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The structures of these two related compounds are shown in Figure 8.1. Since un-

sclerotized cuticle does not have any extractable amount of arterenone, it is generally 

agreed that arterenone and related compounds arise during the hydrolysis of crosslinks 

derived from the reaction of dehydro NADA with structural proteins and/or chitin. 

However, the mechanism of generation of arterenone which has two protons on the α-

carbon and no proton on the β-carbon atom from dehydro NADA cross links that have 

one proton each on the two side chain carbons remained unclear. If the β-carbon of N-

acyldopamines is linked to two nucleophile substituents, upon acid hydrolysis, they could 

produce arterenone. But this calls for two cycles of combined operation of phenoloxidase 

and quinone isomerase pair on N-acyldopamines. In the first cycle of operation, these two 

enzymes will produce N-acyldopamine quinone methide, which forms an adduct with a  

cuticular nucleophile. This cuticle bound adduct upon a second cycle of oxidation and 

isomerization by phenoloxidase and quinone methide pair, will produce another quinone 

methide that generates an adduct with cuticular nucleophile resulting in two nucleophilic 

substitution at the β-carbon. Although phenoloxidases are quite capable of acting on a 

variety of catecholamine derivatives, both free and peptide bound, currently there is no 

evidence for such wide substrate specificity of quinone isomerase there by ruling out the 

second cycle of operation. Alternatively, N-acetylarterenone can be produced in cuticle 

by a different mechanism without the involvement of cuticular cross links. The combined 

action of phenoloxidase quinone isomerase pair on N-acetyldopamine will initially 

produce N-acetyldopamine quinone methide. This quinone methide rather than 

undergoing addition reaction with cuticular nucleophiles, forms an adduct with water in 



198 

 

the surrounding resulting in the production of N-acetylnorepinephrine. Further action of 

phenoloxidase-quinone isomerase pair on N-acetylnorepinephrine will produce the N-

acetylnorepinephrine quinone methide, which will undergo rapid intramolecular 

isomerization to produce N-acetylarterenone. This possibility has been shown to occur in 

the case of N-acetyldopamine as exemplified in Figure 8.2 (Saul and Sugumaran, 1990b). 

N-acetylarterenone thus formed may remain in the cuticle and upon acid hydrolysis of the 

cuticle may produce arterenone as the product. However, this route cannot explain the 

generation of ketocatechol from N-acetyldopamine that is covalently bound to the cuticle. 

 

        

Figure 8.1: Structure of arterenone and ketocatechol. 



199 

 

         

 

Figure 8.2: Route I for the formation of N-acetylarterenone. Phenoloxidase (A) will 

convert N-acetyldopamine to its corresponding quinone. Quinone isomerase (B) converts 

N-acetyldopamine quinone to its quinone methide isomer. Quinone methide isomer 

nonenzymatically (C) reacts with water forming N-acetylnorepinephrine. Further 

oxidation of N-acetylnorepinephrine to its quinone by phenoloxidases and conversion of 

this quinone by quinone isomerase produces a transient quinone methide, which 

undergoes intramolecular rearrangement generating N-acetylarterenone.   

          A more plausible route for the production of arterenone (and ketocatechol) is by 

the hydrolysis of dehydro NADA bound to cuticle as shown in Figure 8.3. This has been 
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shown to be the case with cuticle treated with dehydro NADA (Sugumaran et al., 1988a). 

But the question that remains is how dehydro NADA that is bound to cuticle with both its 

side chain carbons possessing one hydrogen atom each able to generate arterenone (and 

ketocatechol) which has two hydrogen atoms attached to the α-carbon and no hydrogen 

on the β-carbon atom in the product? A hydrolysis induced hydride shift from the β-

carbon to the α-position would account for this result. However, this hypothesis has not 

been verified so far. The mechanism of this transformation was investigated using 

specifically labeled β-deuterated dehydro NADA and Sarcophaga bullata cuticle 

undergoing larval puparial transformation. Incubation of dehydro NADA with cuticle 

produced both dimeric products and cuticle bound dehydro NADA. Hydrolysis of 

dehydro NADA treated cuticle as well as soluble dehydro NADA dimer obtained from 

the reaction, generated arterenone as the major product. Liquid chromatography-mass 

spectrometric analysis of this arterenone revealed the retention of deuterium from β-

position of dehydro NADA to the α-carbon atom of arterenone. Interestingly dehydro 

NADA also generated arterenone as a hydrolytic product more so under aerobic condition 

rather than the anaerobic condition used for protein hydrolysis. Analysis of the arterenone 

generated from dehydro NADA under aerobic hydrolysis also revealed the migration of 

proton from β-position to the α-position.  
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Figure 8.3: Route II for the formation of N-acetylarterenone. Enzymatic oxidation of 

dehydro NADA generates QMIA that reacts with the cuticle forming adducts/crosslinks. 

QMIA also reacts with the parent compound forming dimers. The crosslinks and/or dimer 

upon mild acid hydrolysis produce N-acetylarterenone.  

 

8.3 Materials and methods 

          Sodium borodeuteride, dimethyl sulfoxide, deuterated water, and other chemicals 

were obtained from Sigma Chemical Co. St Louis MO. Dehydro NADA was synthesized 

as outlined earlier (Dali and Sugumaran, 1988). Synthesis of β-deuterated dehydro 

NADA was achieved by the reactions outlined in Figure 8.4. The following protocol 
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summarizes its synthesis. Sodium borodeuteride (0.9 gm) was slowly added to a solution 

of 3.2 gm of arterenone in 20 ml of D2O over a period of half an hour with constant 

stirring. The contents were left for an additional 2 hr at room temperature. At the end of 

this period, the reaction mixture was acidified with acetic acid, filtered and lyophilized. 

The crude β-deuterated norepinephrine was dissolved in 10 ml of triethylamine and 

heated to 110 ºC for 1 hr with 40 ml of acetic anhydride. The reaction mixture was 

poured on ice and extracted with ethyl acetate. Work up of ethyl acetate layers gave β-

deuterated tetraacetylnorepinephrine in 90% yield. A mixture of 

tetraacetylnorepinephrine (4.0 gm) and anhydrous potassium carbonate (2 gm) in 30 ml 

of dimethyl sulfoxide was heated under nitrogen at 110 ºC for 2 hr. At the end, the 

reaction mixture was poured over ice and β-deuterated dehydro NADA was purified as 

outlined in earlier publication (Dali and Sugumaran, 1988). The 
1
H spectra of control 

dehydro NADA and deuterated dehydro NADA were obtained using a 300 MHz Varian 

NMR spectrometer in dimethyl sulfoxide-d6. The residual solvent signals served as the 

internal standard. The temperature was set at 25 ºC (accuracy ± 1 ºC) and controlled by 

the Varian control unit.  
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Figure 8.4: Scheme for the synthesis of β-deuterated dehydro NADA. Arterenone is 

reduced with sodium borodeuteride water. The resultant β-deuterated norepinephrine 

was acetylated with acetic anhydride to produce tetra acetyl norepinephrine. Treatment 

of tetra acetyl norepinephrine with potassium carbonate in dimethyl sulfoxide produced 

the required β-deuterated dehydro NADA. 

          

         S. bullata larvae were obtained from commercial supplier (Carolina Biological 

Supply Company, Burlington, North Carolina). Larvae of S. bullata were raised on a dog 

food diet. Last instar larval cuticle was homogenized in ice cold water with a blender at 

half maximum speed. The contents were passed through a 100 µm sieve and re-

homogenized. The process was repeated until the cuticle became translucent at which 

point the cuticle sheaths were recovered by sieving the homogenate through cheesecloth. 

After washing with water, the cuticle was suspended in 50 mM sodium phosphate buffer, 
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pH 6.0 for 30 min and filtered. The cleaned cuticle was washed with water extensively 

and used for all biochemical studies.  

Processing of dehydro NADA treated cuticle: The reaction of dehydro NADA with 

cuticle was monitored by following the disappearance of dehydro NADA in the solution 

using Arnow’s reagent (Arnow, 1937). A typical reaction mixture containing 0.1-0.5 mM 

dehydro NADA, appropriate amounts of the cuticle in 50 mM sodium phosphate buffer, 

pH 6.0 was incubated at room temperature and at different time intervals the amounts of 

catechol remaining in the reaction was estimated by withdrawing aliquots from the 

reaction mixture and incubating it with Arnow’s reagent (sodium nitrite-sodium 

molybdate). Arnow’s reagent forms a bright red color upon reacting with catechols, 

which is used to quantify the catechols remaining in solution.  

Processing of β-deuterated dehydro NADA treated cuticle:  Washed, cleaned, and air 

dried wandering stage S. bullata larval cuticle (250 mg) was incubated with 2 mg of β-

deuterated dehydro NADA for three hr in 3 ml of 50 mM sodium phosphate buffer, pH 

6.0. Binding of the β-deuterated dehydro NADA to the cuticle was monitored every 15 

min by Arnow’s assay. At the end of the incubation period, cuticle was washed 

extensively with sodium phosphate buffer, pH 6.0 followed by water and methanol. The 

cuticle was air dried and hydrolyzed with 2 ml of 1 N HCl at 108 ºC for 24 hr. The 

hydrolyzed cuticle was lyophilized, and the fluffy powder was extracted with 1.5 ml of 

methanol. The methanol layer was subjected to RP-HPLC-MS analysis. The same 

procedure was used for the reaction of protium form of dehydro NADA with cuticle.  
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Processing of dimeric and monomeric dehydro NADA: The dimer formed during the 

oxidation of dehydro NADA with tyrosinase was chromatographed on Biogel P-2 column 

using 0.2 M acetic acid as the eluent. Fractions of two ml were collected and the fractions 

containing the dimeric compound were isolated, pooled and lyophilized. The dimer was 

also hydrolyzed with 1N HCl for 24 hr at 108 ºC. The hydrolyzate was concentrated by 

lyophilization. The soluble catechols from this mixture were isolated by extraction with 

methanol and subjected to RP-HPLC-MS analysis. Dehydro NADA, both the protium 

form and the deuterated form was also hydrolyzed the same way as the dimer and used 

for product analysis.  

RP-HPLC conditions for hydrolysis product: An aliquot of lyophilized and methanol 

resuspended (5 μl) hydrolyzed product was analyzed using reversed phase-high 

performance liquid chromatography (RP-HPLC) with isocratic elution (50 mM acetic 

acid containing 0.2 mM sodium octyl sulfonate in 20% methanol) at a flow rate of 0.6 

ml/min on a C18 cartridge column (Agilent Technologies, 5 μm, 4.6 x 150 mm). The 

instrument was equipped with diode array spectrophotometer to detect the UV spectrum 

of the eluting compounds.  

RP-HPLC-MS: Reversed phase HPLC-MS was performed on an Agilent 6130 

quadrupole mass spectrophotometer fitted with Agilent 1200 HPLC system. The 

operating conditions were: Atmospheric Pressure Chemical Ionization (APCI) positive 

mode, capillary voltage 3kV, corona current 15 µA, drying gas temperature 250 ºC, 

nitrogen gas flow 12 l/min, and nebulizer pressure was 35 psi. M/Z ratio of 50 to 500 was 
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recorded during HPLC/APCI/MS run. The RP-HPLC conditions were: Agilent 1200 

fitted with Agilent G1329A auto sampler, Waters Symmetry C18 columns, 4.6 x 50 mm, 5 

µm was used to separate products. The HPLC was operated at a flow rate of 0.7 ml/mi 

using mobile phase A (water) and mobile phase B (methanol) both with 0.01%  

trifluoroacetic acid with gradient elution 0 min 75% B, 4 min 100% B, 6 min 100% B, 

6.01-7 min 75% B and 7 min stop, and the injection volume was 4 µl.  

 

8.4 Results 

Experiments carried out with protium form of dehydro NADA:  Incubation of 

dehydro NADA with larval cuticle isolated at the wandering stages of S. bullata, resulted 

in the rapid covalent binding of dehydro NADA to the cuticle. As shown in Figure 8.5 

this binding caused a rapid reduction in the amounts of Arnow’s positive catechols in the 

reaction mixture. Part of dehydro NADA got bound to the cuticle and portion remained in 

solution. RP-HPLC analysis of the reaction indicated that even this small portion is due 

to the presence of dimeric dehydro NADA and not due to starting compound, dehydro 

NADA itself. Figure 8.6 for example shows the RP-HPLC analysis of a time course 

reaction. At the initial phase, bulk of dehydro NADA remained in the solution, as time 

passed, more and more dimeric compounds accumulated in the medium and at the end of 

about 45 min only dimeric compounds were present and almost no dehydro NADA could 

be observed in the supernatant. 
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Figure 8.5: Time course of disappearance of dehydro NADA from solution during 

incubation of dehydro NADA with cuticle. The consumption of dehydro NADA from the 

reaction was monitored by Arnow’s reaction for catechol. The dehydro NADA  

disappeared from the solution actually got bound to the cuticle.  
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Figure 8.6: RP-HPLC analysis of dehydro NADA - cuticle reaction. Aliquots of the 

reaction mixture outlined in Figure-8.5 were subjected to RP-HPLC analysis at different 

time intervals. Note the rapid disappearance of dehydro NADA (11 min peak) and the 

production of dimeric peak at about 15 min. Solid line - zero time reaction, dotted line - 

15 min reaction, and Dash line - 30 min reaction. Inset: Ultraviolet absorbance spectrum 

of the peak eluting at 14.3 min corresponding to dehydro NADA dimer. 

      To characterize the nature of dehydro NADA that is bound to the cuticle, cuticle 

treated with dehydro NADA was hydrolyzed with 1N HCl at 108 ºC for 24 hr and the 

cuticular hydrolyzate was analyzed on RP-HPLC (Figure 8.7). The peak eluting at 8.18 

min (marked as B) was identified as arterenone based on the elution profile, retention 

time and its ultraviolet absorbance spectrum. Native cuticle that was not treated with 

dehydro NADA, did not produce this peak at all; there by confirming that arterenone is 

arising from the cuticle bound dehydro NADA during acid hydrolysis. Among the other 
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compounds chromatographed, ketocatechol could be identified as a minor product 

(marked peak A in Figure 8.7) by its characteristic elution profile and ultraviolet 

absorbance spectrum. Again, it was a minor product and no further attempt was made to 

study this compound.     

        

Figure 8.7:  RP-HPLC analysis of cuticular hydrolyzates treated with dehydro NADA: 

The cuticular hydrolyzate was subjected to RP-HPLC analysis as outlined in materials 

and methods. Peak A with retention time of 4.8 min corresponds to ketocatechol and the 

peak eluting at 8.18 min marked B is due to arterenone. Inset: Ultraviolet absorbance 

spectrum of A: ketocatechol and B: arterenone.  

Experiments carried out with deuterated dehydro NADA: To investigate the 

mechanism of arterenone production from cuticle, β-deuterated dehydro NADA was 
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synthesized as outlined in the materials and methods section. The NMR spectrum of the 

synthetic product obtained by this procedure is shown in Figure 8. 8 (bottom). For 

comparison, the NMR spectrum of the unlabeled dehydro NADA is shown in the same 

figure (Figure 8.8 top). The doublet at δ 5.95 and 5.90 is due to β-hydrogen atom and the 

multiplet at δ 7.1 is due to the α-hydrogen atom of dehydro NADA. The three aromatic 

ring protons are observed as the broad multiplet centered around δ 6.6. The two phenolic 

protons are observed at δ 8.9 as a broad singlet peak and the NH proton is observed as a 

doublet at about δ 10. In the β-deuterated compound the proton signal due to β-proton is 

nearly missing and the adjacent proton on the side chain is no longer exhibiting a 

multiple band. Rather it shows as a doublet confirming the replacement of protium form 

with deuterium at the β-position. The NMR spectrum also confirmed the presence of  > 

99% deuterium in the β-position of dehydro NADA. Thus, the NMR studies clearly 

confirmed the synthesis of β-deuterated dehydro NADA by the protocol outlined in 

Figure 8. 4.  
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Figure 8.8: NMR spectrum of control dehydro NADA (Top panel) and β-deuterated 

dehydro NADA (bottom panel) in dimethyl sulfoxide-d6. 

        Deuterated dehydro NADA readily served as the substrate for phenoloxidase and its 

oxidation resulted in the production of dimers. The dimeric product arising from the 

oxidation of both protium and deuterated dehydro NADA were isolated and hydrolyzed 
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with 1 N HCl for 24 hr at 108 ºC. The hydrolyzate was lyophilized and contents were      

analyzed by RP-HPLC-MS. Figure 8.9 shows HPLC-MS analysis of hydrolyzates of 

protium form of dehydro NADA dimer. A prominent peak observed at 0.77 min is due to 

arterenone. Its mass spectrum accordingly exhibited the M+1 ion at 168 mass unit (Figure 

8.9 top panel). Analysis of the hydrolyzate of β-deuterated dehydro NADA dimer is 

shown in Figure 8.10.  As expected, this compound also produced the 0.77 min peak 

corresponding to arterenone. However, the mass spectral analysis revealed that 

arterenone generated from β-deuterated dehydro NADA dimer had one mass unit higher 

than that of the control arterenone. It exhibited a M+1 ion at 169 mass unit rather than 

168 (Figure 8.10 top panel).   

 

 

 

 

 

Figure 8.9: HPLC-MS analysis of dehydro NADA dimer hydrolyzate. Bottom: RP-HPLC 

analysis of dimer hydrolyzate; 0.77 min peak is due to arterenone. Top: Mass spectra of 

the above run. Note the prominent M+1 peak at 168 corresponds to the protonated 

arterenone.  
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Figure 8.10: HPLC-MS analysis of β-deuterated dehydro NADA dimer hydrolyzates. 

Bottom: RP- HPLC analysis of labeled dimer hydrolyzate; 0.77 min peak is due to 

arterenone. Top: mass spectra of the above run. Note the prominent M+1 peak at 169 

instead of 168 for the arterenone.  

      Similar results were obtained with cuticular reactions also. Figure 8.11 shows the 

HPLC-MS analysis of protium form of dehydro NADA treated cuticle hydrolyzate. The 

prominent peak eluting at 0.77 min is due to arterenone, which is exhibited typical M+1 

ion at 168 mass unit. On the other hand, the cuticle treated with β-deuterated dehydro 

NADA upon acid hydrolysis released arterenone, which exhibited a M+1 ion at 169 mass 

unit (Figure 8.12). This is possible only if the deuterium has migrated from β-position to 

the α-position. Cuticular hydrolyzates also exhibited the presence of N-acetylarterenone 

m/

z 

mi

n 
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as one of the product (Figures 8.11 and 8.12). Mass analysis of this product revealed that 

the N-acetylarterenone (from the protium form of dehydro NADA treated cuticle) 

exhibiting a M+1 ion at 210.1 mass units while that from deuterated dehydro NADA 

treated cuticle exhibited an increase mass of one unit at 211.1. Thus the results clearly 

indicate that both dimer and the dehydro NADA that is bound to cuticle upon mild acid 

hydrolysis generate arterenone that retains the proton from the β-position by transferring 

to the α-position.    

       

Figure 8.11: RP-HPLC-MS analysis of cuticular hydrolyzate treated with dehydro 

NADA. Bottom: HPLC analysis of cuticular hydrolyzate treated with dehydro NADA; 

0.77 min peak is due to arterenone and 1.39 min peak is due to N-acetylarterenone. Top: 

Mass spectra of the above run. Note the prominent M+1 peak at 168 corresponding 

arterenone and the peak at 210.2 is due to N-acetylarterenone. 
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Figure 8.12: RP-HPLC-MS analysis of cuticular hydrolyzates treated with β-deuterated 

dehydro NADA.  Bottom: RP-HPLC analysis of cuticular hydrolyzates treated with 

labeled dehydro NADA; 0.77 min peak due to arterenone and the peak at 1.35 min is due 

to N-acetylarterenone. Top: Mass spectra of the above run. Note the prominent M+1 peak 

at 169 instead of 168 for arterenone. Similarly note the peak at 211.1 mass units instead 

of 210 mass unit for N-acetylarterenone.  

Hydrolysis of free dehydro NADA: I suspected that even dehydro NADA could 

generate arterenone upon acid hydrolysis.  Therefore, I tested the ability of dehydro 

NADA to generate arterenone after acid hydrolysis. Based on its amide nature, one can 

predict that dehydro NADA will undergo simple hydrolytic fission at the amide bond 
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generating the enamine and acetic acid. The enamine being unstable would undergo rapid 

rearrangement and hydrolysis producing 3, 4-dihydroxyphenylacetaldehyde and ammonia 

(Sugumaran, 2010). Figure 8.13 shows the RP-HPLC analysis of hydrolytic products of 

dehydro NADA obtained under anaerobic conditions. The major peak was identified 

tentatively as 3, 4-dihydroxyphenylacetaldehyde based on its simple ultraviolet 

absorbance spectrum (280 nm peak). The minor peak was identified as arterenone based 

on its elution profile and ultraviolet absorbance spectrum. The above results were 

obtained when the hydrolysis was conducted under anaerobic condition that is routinely 

used for protein hydrolysis. Different results, however were obtained when the hydrolysis 

reaction was performed in the presence of oxygen. Figure 8.14 shows the RP-HPLC 

analysis of the hydrolytic products of dehydro NADA in the presence of oxygen. The 

major peak eluting at 8 min (peak marked B) was identified as arterenone based on its 

elution profile and ultraviolet absorbance spectrum. Two minor products seems to arise 

during the hydrolysis of dehydro NADA. The peak eluting at about 12 min marked peak 

C, exhibited a simple UV spectrum with absorbance maximum at about 280 nm with no 

shoulder at 320 nm compared to the previously obtained 3,4-dihydroxyphenyl 

acetaldehyde.  The other peak was not identified. The production of arterenone as the 

major product in this case was puzzling. Therefore, the mechanism of arterenone 

production from β-deuterated dehydro NADA was studied. Figure 8.15 and 8.16 shows 

the RP-HPLC-MS analysis of hydrolytic products arising from the protium form of 

dehydro NADA and β-deuterated dehydro NADA respectively. The protium form  
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produced arterenone with its normally expected M+1 ion at 168 mass units (Figure 8.15 

top panel). While β-deuterated dehydro NADA produced arterenone that exhibited the 

mass unit of 169 confirming the production of the labeled arterenone at the α-position 

(Figure 8.16 top panel). The strict requirement of oxygen for the production of arterenone 

indicates that most likely dehydro NADA is first oxidized to QMIA and is subsequently 

hydrolyzed to generate arterenone. 

 

Figure 8.13: RP-HPLC analysis of hydrolysis products arising from dehydro NADA 

under anaerobic conditions. The hydrolysis of dehydro NADA was carried out as 

outlined in materials and methods section and the hydrolytic products were analyzed by  

RP-HPLC. The peak marked A is due to arterenone. The peak marked B exhibited a 

simple 280 nm absorbance (inset to figure) and may correspond to 3, 4-dihydroxyphenyl 

acetaldehyde.  
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Figure 8.14: RP-HPLC analysis of hydrolysis products arising from dehydro NADA 

under aerobic conditions. The hydrolysis of dehydro NADA was carried out as outlined 

in materials and methods section and the hydrolytic products were analyzed by RP-

HPLC. The peak marked B is due to arterenone. The peak marked C exhibited a simple 

280 nm absorbance and may correspond to 3, 4-dihydroxyphenylacetaldehyde. Inset: 

Ultraviolet absorbance spectrum of arterenone (B); and the peak marked C.  
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Figure 8.15:  RP-HPLC-MS analysis of dehydro NADA hydrolyzate. Bottom: RP-HPLC 

analysis of dehydro NADA hydrolyzate; 0.77 min peak is due to arterenone. Top: Mass 

spectra of the above run. Note the prominent M+1 peak at 168 correspond to arterenone.   
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Figure 8.16: RP-HPLC-MS analysis β-deuterated dehydro NADA hydrolyzate. Bottom: 

HPLC analysis of labeled dehydro NADA hydrolyzate; 0.77 min peak is due to 

arterenone. Top: Mass spectra of the above run. Note the prominent M+1 peak    

 at 169 instead of 168 for the arterenone.  
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8.5 Discussion 

            The results presented in this chapter confirm the occurrence of the second route 

for the production of arterenone in cuticular hydrolyzates (Figure 8.2). As stated in the 

introduction, arterenone could arise from N-acetylarterenone by two cycles of operation 

of phenoloxidase –quinone isomerase action on N-acetyldopamine. In the first cycle, N-

acetylnorepinephrine is formed. When the phenoloxidase –quinone isomerase acts on this 

compound in the second cycle N-acetylarterenone is produced. In general compounds 

possessing carbonyl group attached to the catecholic ring serve as poor substrate for 

phenoloxidase (Saul and Sugumaran, 1990b). Hence N-acetylarterenone could 

accumulate in the cuticle as an end product. This is certainly the case with soluble 

reaction of N-acetyldopamine with phenoloxidase-quinone isomerase pair (Saul and 

Sugumaran, 1990a). Such reaction in cuticle will produce N-acetylarterenone that may 

not be accessible to nondestructive extraction agents. However, during acid hydrolysis, it 

could be hydrolyzed to produce arterenone as the end product.  

 The second and more plausible route for arterenone production is the liberation 

from dehydro NADA that is bound to cuticle by a hydrolytic mechanism involving 

hydride shift presented in this section. This mechanism is presented in Figure 8.17. 

Incubation of cuticle with β-deuterated dehydro NADA results in the oxidation of 

dehydro NADA to its QMIA and eventual binding of QMIA to the cuticle as shown in 

the Figure 8.17. QMIA will also bind to the parent compound, dehydro NADA forming  
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dimers and other oligomers (Abebe et al., 2010). During acid hydrolysis, both the dimer 

and the cuticle bound dehydro NADA could generate a transient positive charge on the α-

position that assist the migration of proton from the β-position of bound dehydro NADA 

to the α-position. This will also be assisted by the conversion of secondary alcoholic 

group to keto group. Such a rearrangement eventually results in the production of N-

acetylarterenone. It is important to note that mild acid hydrolysis of sclerotized cuticle 

releases N-acetylarterenone as one of the hydrolytic products. Further hydrolysis of N-

acetylarterenone will generate arterenone that retains the proton from the β-position of 

dehydro NADA, now at the α-position. The liberation of arterenone during the hydrolysis 

of free dehydro NADA seems to be supported by oxygen. Initial oxidation of dehydro 

NADA to its QMIA and subsequent hydrolysis of the QMIA could produce the same 

positively charged ion that is depicted in Figure 8.17. The final migration of proton from 

β-position to the α-position would then generate N-acetylarterenone and eventually 

arterenone from dehydro NADA during its hydrolysis also.  
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Figure 8.17: Proposed mechanism for hydrolysis of deuterated dehydro NADA. Cuticular 

enzymes oxidize dehydro NADA to its QMIA which binds to the cuticle or forms dimeric     

(and other oligomeric) products with dehydro NADA. These adducts and crosslinks upon 

acid hydrolysis produce a positively charged ion that generates N-acetylarterenone with 

the migration of the proton from the β-position to the α-position. Hydrolysis of N-

acetylarterenone produces arterenone. Hydrolysis of dehydro NADA will also produce 

the same positively charged ion that generates N-acetylarterenone with the migration of 

the proton from the β-position to the α-position. Thus, dehydro NADA hydrolysis will also 

produce arterenone as the end product. 
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         8.6 Conclusion 

           Arterenone is a major hydrolytic product of sclerotized insect cuticle. It is believed 

to originate from dehydro NADA bound covalently to cuticle through its side chain. 

However, the mechanism arterenone production in cuticular hydrolyzates remained a 

mystery for over three decades. Although its structure was useful in formulating theories 

of β-sclerotization, the actual mechanism by which it is produced from sclerotized cuticle 

remained elusive. Since the discovery of dehydro NADA, it has been proposed that the 

cuticle bound dehydro NADA could be the hydrolytic precursor for arterenone. 

Accordingly earlier studies revealed that cuticle treated with dehydro NADA, upon acid 

hydrolysis produced arterenone as the primary product (Sugumaran et al., 1988). To 

investigate the mechanistic origin of arterenone, β-deuterated dehydro NADA was 

synthesized and used to investigate its mode of binding to cuticle and the mechanism of 

liberation of arterenone.  Results presented in this chapter confirm that arterenone is 

produced from dehydro NADA bound cuticle through an unusual migration of proton 

from the β-position to the α-position accounting for the generation of β-carbonyl group in 

the arterenone.  A similar mechanism could explain the production of ketocatechol also. 

But due to the low amounts of ketocatechol produced in the reaction mixture, we could 

not test this hypothesis. Nevertheless, close structural similarity suggests that the same 

mechanism must be involved in ketocatechol production also. The results of this study 

have been published already (Sugumaran et al., 2013).  
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FUTURE PERSPECTIVE 

 

                The research described in the previous chapters is the outcome of my initial 

studies with the dehydrodopamine/dehydrodopa compounds.  But numerous aspects 

related to the biochemistry of these novel compounds are yet to be unraveled. In the case 

of dehydro NADA itself, in spite of all the detailed reaction chemistry of this compound, 

the actual biosynthetic aspect in insects remains largely unexplored. Our laboratory first 

reported the purification and characterization of N-acetyldopamine quinone isomerase 

from the hemolymph of Sarcophaga bullata nearly 23 years ago (Saul and Sugumaran 

1990). Even after the determination of the entire genome sequence of three insects (fruit 

flies, mosquitoes and silkworm), the molecular biological aspects of this important 

enzyme remain still in dark. I tried to varying degree unsuccessfully to characterize the 

genomic sequence of quinone isomerase from Sarcophaga bullata. Definitely future 

studies are needed on this enzyme to understand its role in sclerotization as well as 

immune response of insects. The next enzyme involved in the biosynthesis of dehydro 

NADA is N-acetyldopamine quinone methide isomerase. This enzyme uses transiently 

produced N-acetyldopamine quinone methide that has been difficult to make in test tube 

chemically. As a result characterization of this enzyme itself has been very difficult. 

Using coupled assays, it was discovered in 1989 by our group (Saul and Sugumaran 

1989). But purification and characterization of this enzyme has been extremely difficult  

due to the unavailability of substrate. However, it appears that these two isomerases are 

found to be present as an enzyme complex with phenoloxidases in the cuticle of at least 
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in Sarcophaga bullata, so using modern proteomic approaches, it is possible to 

characterize the isomerases in future.  

In relation to dehydro NADA biosynthesis, it is important to draw particular 

attention to the proposal made by Andersen and Roepstroff (1982). These authors 

proposed the presence of a specific NADA side chain desaturase that might work like 

succinate dehydrogenase complex and introduce a double bond in the side chain of 

NADA. To this date, no one has isolated such a complex to prove its existence. However, 

these authors also reported that inhibitors of phenoloxidase inhibit this putative 

desaturase. Our group has questioned the presence of this desaturase and explained the 

observed inhibition by phenoloxidase inhibitors, to the actual participation of 

phenoloxidase in initiating the sequence of reactions that lead to the biosynthesis of 

dehydro NADA by the three component enzyme system.  Andersen’s group, however 

without providing any proof for its existence, claims that it is present in locust cuticle. It 

would be interesting to settle this dispute once in for all by proving (or disproving) the 

presence of this enzyme. 

Another unresolved aspect in the biosynthesis of dehydro NADA is the role of 

phenoloxidases in generating quinone methides in cuticle.  Initially our group proposed 

that NADA quinone methide could arise by a phenoloxidase action. Phenoloxidases 

perform oxidation of catechols at 1,4-postion. The insect phenoloxidases could similarly 

perform oxidation of NADA at 1,6-position generating directly quinone methide. 

However, we abandoned this proposal in favor of the phenoloxidase- quinone isomerase 
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pair working together to generate quinone methides in insect cuticle after the discovery of 

quinone isomerase in 1990.  However, both Kramer’s group and Andersen’s group insist 

on phenoloxidase-catalyzed production of quinone methides in insect cuticle (Andersen 

2010). They specifically quote that Manduca laccase could convert as much as 44% of 

NBAD provided to the enzyme into N-β-alanylnorepinephrine, which is the water adduct 

of NBAD quinone methide (Thomas et al., 1989: Andersen 2010). However, we 

attributed such conversion to possible contamination by quinone isomerase. Since 

quinone isomerase readily forms complex with phenoloxidases, it is possible that their 

laccase preparation possessed quinone isomerase and that is why they were able to 

witness the production of high concentrations of N-β-alanylnorepinephrine.  Since 

several laccase clones are now available, it would be possible to verify this and settle the 

role of oxidases and isomerases in generating quinone methides in cuticle. Finally, the 

molecular biological tools will be very valuable to establish the importance of the 

isomerases in cuticular hardening as well as other processes such as wound healing and 

immune responses in insects. Such studies could eventually lead to novel insecticides, 

which will be environmentally friendly with no or minimum side effects to humans and 

other animals.  

As far as the chemistry of the sclerotization process, not all adducts and crosslinks 

present in the cuticle are characterized. Several adducts and crosslinks especially those 

involving dehydro NADA are yet to be discovered.  Even with quinone and quinone 

methide adducts, only the reactions of histidine and to certain extent, lysine has been 
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characterized. The reactivities of other nucleophiles such as hydroxyl groups and 

carboxyl groups remain largely unexplored.  Thus, it would be worthwhile to investigate 

the potential of oxygen nucleophiles in participation of sclerotization. Oxygen 

nucleophiles are present in excess of 30 % in cuticualr proteins, while both nitrogen and 

sulfur nucleohiles have combined average of less than 5 % of the cuticular proteins 

(Andersen et al., 1995). This suggests that amino acids other than histidine, lysine, 

methionine and cysteine may be playing a role in the crosslinking process. Because of the 

unique chemical reactivity, quinonoid compounds generated from dehydro NADA, could 

play a vital role in crosslinking oxygen nucleophiles in cuticle.  Theoretically oxygen 

nucleophiles can form adducts and crosslinks (Sugumaran 1988, 1998), but it has not 

been demonstrated unequivocally.   

             The entire biochemistry of dehydrodopyl compounds of marine organisms 

remains to be investigated.  Marine organisms provide a plethora of dehydrodopyl 

compounds with a vast array of biological activities (Sugumaran and Robinson, 2010).                  

Biosynthetic and chemical synthetic studies of these compounds will provide new 

pharmaceuticals as well as biomaterials. For instance, the byssal thread protein in mussels 

is being investigated for potential use in gluing tooth, bones and other biomaterials under 

water. Unraveling the molecular mechanism of crosslinking process could lead to newer, 

simpler and more efficient crosslinkers for future use.  
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