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Abstract: The present study is proposing a deflection control of a fiberglass composite plate system using shape 

memory alloy (SMA) actuators. The aim of this study is to determine the optimal placement of sensor for the feedback 

smart composite plate system. Strain measurement on the composite plate was chosen as the input variable for the 

feedback system. The change in strain on the composite plate was different at all locations on the plate during deflection. 

Thus, six strain gauges were placed at three positions i.e. tip, mid and root of the plate, at angle 0° and 45° in order to 

measure the change in strain at these locations and determine which is the best location to produce accurate control of 

the plate. The performance of the plate using these input variables were compared and analyzed by conducting experi-

ments which required the plate to be deflected using the control system. In order to evaluate the performance of the 

controller under varying conditions, disturbances were also added to the experiments. The disturbances introduced were 

similar to those faced by aircraft during flight that is wind flow at varying velocities conducted in the wind tunnel. From 

the experimental results, it was found that the tip of the plate had the highest change in strain value and the control us-

ing input from the strain gauge located there produced the best performance as compared to input from strain gauges 

located at mid and root of the plate. However, in the presence of airflow, it was found that the best control performance 

was using feedback from the strain gauge located in the middle of the plate. 
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1. Introduction 

Smart and intelligent systems are fast taking over all 

aspects of our life. Automatic is no longer deemed suffi-

cient, as adaptive becomes the new requirement in cur-

rent technologies. In the aviation and aerospace indus-

tries, researchers are also geared towards this objective, 

fueled by the advancement of technology and availability 

of smart materials that make it possible to achieve this 

pursuit. One such example is the morphing wing, which 

allows wing to change its geometry through flight in 

order to produce optimum performance throughout dif-

ferent cruise conditions. Presently there are numerous 

ongoing researches on morphing wing design, which is 

deemed to be the breakthrough innovation to drive the 

future, next generation aircraft
[1,2]

. Although numerous 

conceptual design of morphing wing has been generated, 

it will take some time before we can see its application in 

a commercial flight due to lack of support from manu-

facturers and end-users as they remained unconvinced 

that the cost of its implementation outweighs the poten-

tial benefits of its implementation. 

The present study is proposing an optimal feedback 

variable for deflection control of a single cantilevered 

composite plate system for morphing wing application
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by improving its performance through better selection of 

the feedback variable and ensuring that the performance 

is robust even in the presence of disturbances such as air 

flow and vibration. Shape memory alloy (SMA) is one 

type of smart material that is suitable to be used as actu-

ators in such design due to its ability to be actuated to 

modify the shape of the structure. It is considered supe-

rior to other smart materials due to its efficiency and 

large energy storage capacity
[3]

. Shape memory alloy 

can be used in shape control due to its high recovery 

forces and large displacement
[4-6]

. Currently there are 

numerous morphing wing design that uses SMA as actu-

ators
[7,8]

. However, there are some disadvantage in using 

SMAs such as nonlinear response of the strain to input 

current and hysteresis characteristic as a result of which 

their control is inaccurate and complicated. And in the 

case of morphing wing, the use of structure that is capa-

ble of enduring the prescribed loads but at the same time 

is flexible to morph or change its shape, further compli-

cates the design solution. Due to the complexity of the 

morphing wing system, it is still unclear which input 

variable that will produce the best performance. 

Lima et. al conducted an experiment investigation 

on analysis and control the strain of flexible alumi-

num beam under external disturbances
[9]

. Here strain 

gauge was used to measure the strain of the beam and 

SMA wire was used as actuators. PI (proportion-

al-integral) controller has been used to control the strain 

of aluminum beam. In this study shaker was used to 

produce disturbance during testing. One strain gauge was 

used and placed in the middle of the beam. Under exter-

nal disturbances, it was demonstrated that the developed 

PI control system operates well. It was shown that the 

electro-dynamic shaker could be used up to some extend 

or with limitation. It was found with a lower frequency, 

the external disturbance restricted the action of the PI 

controller due to its frequency which was slightly higher. 

Bil et. al proposed a morphing wing control using SMA 

actuator 
[10]

. For this study, smart material was used and 

it is suitable candidate for adaptive airfoil design as SMA 

can be activated to alter the airfoil shape. It is light 

weight and produce large deflection and high force 

which make it perfect choice for actuator. For the deflec-

tion of wing camber SMA actuator was used by means of 

resistive heating of actuator and cooling in surrounding 

air. In this study, a wind tunnel test was performed to 

analyze the change in lift-to-drag ratio when the actuator 

is switched on and off. In the result, it shows that the 

SMA actuators were reliable as significant change in 

lift-to-drag ratio was detected when the wing morphed.  

Due to the behavior of the SMA actuator and com-

posite structure, which are affected by the disturbance 

that occurs during flight such as wind flow, it will be 

critical to ensure that the fiberglass composite plate-like 

wing system can perform effectively even in the presence 

of disturbances. The presence of these disturbances to a 

morphing wing system using SMA actuator might reduce 

the effectiveness of such system since the external envi-

ronment affects the behavior of SMA. If the control per-

formance reduces significantly, a disturbance rejection 

method needs to be added to the morphing wing system 

design. Experimental testing using wind tunnel was used 

to obtain the results of the control performance in the 

presence of disturbance. The results were analyzed to 

determine the optimal feedback variable for the smart 

composite plate system.   

2. Composite plate system using 

Proportional-Integral-Derivative 

(PID) Controller  

Prior to the experimental work, the smart composite 

design utilized finite element method in order to gauge 

the structural response actuated by the SMA. Different 

configurations were analyzed by changing the properties 

of the composite material, the position of the SMA actu-

ators within the structure and forces exerted by it on the 

structure. Placement of the actuator was critical in ob-

taining the desired plate displacement. The design objec-

tive was to produce a plate that can be displaced at least 

10 mm along the z-axis at the tip. A different combina-

tion of applied forces by the SMA actuator was analyzed. 

The analysis was repeated for different SMA actuator 

configuration. It was found that the number of SMA ac-

tuators used and orientation produced significant varia-

tion in plate displacement 
[11]

.  

An experimental test bench was designed to analyze 

the performance of a smart structure system composed of 

composite laminate plate with shape memory alloy 

(SMA) actuators placed on the surface of plate
[12]

. The 

smart composite design utilized finite element method in 

order to gauge the structural response actuated by the 

SMA. Different configurations were analyzed by chang-

ing the properties of the composite material, the position 

of the SMA actuators within the structure and forces ex-
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erted by it on the structure. Placement of the actuator was 

critical in obtaining the desired plate displacement. The 

design objective was to produce a plate that can be dis-

placed at least 10 mm along the z-axis at the tip. The 

SMA wires used in the prototype were FLEXINOL® 

wires which were precrimped with ring crimps pro-

duced by Dynalloy Inc. In order to meet the displace-

ment criterion, a wire length of 355mm was chosen since 

the SMA wires can contract 5% to 8% of their original 

dimension.  A single wire actuator has a pull force of 

1250g, so in theory, 3 wires connected mechanically in 

parallel has a total pull force of at least 37N. 

The strain gauge used for this experiment was of 

type F-35-12 T11P15W3, part no. 528 quarter-bridge 

with resistance of 120 ohms and gage factor of 1.98. It 

was mounted on the upper surface of the composite plate. 

The strain measurement was captured by LABVIEW and 

used as the input measurement to the control system. The 

SMA actuated composite schematic in shown in Figure 1. 

Six strain gauges placed on the plate surface; Tip 0⁰ , Tip 45⁰ , 

Mid 0⁰ , Mid 45⁰ , Root 0⁰  and Root 45⁰ . SMA wires were 

instilled on the plate. 

A controller was needed for the morphing of com-

posite plate to attain good tracking performance. Accu-

rate shape control was difficult not only due to the non-

linearities but also the slow cooling of the SMA actuators. 

In the morphing of plate application, the effectiveness of 

the controller is crucial. Due to the nonlinear behavior of 

the SMA, the choice of the variable to be measured and 

feedback is very significant in the development of the 

controller for an SMA actuator.  

Strain and deflection were the two parameters that 

had to be measured. The relationships between strain 

measurements at different location and the deflection are 

shown in Figure 2, where the deflection was measured at 

the free end of the plate. These data were useful in the 

development of the controller, as the strain of the com-

posite plate were used to control the deflection of the 

plate. However, during post-processing, it was important 

to have the true strain measurements in order to establish 

the change in the plate's shape. The initial results showed 

that the relationship between the plate’s deflection and 

the strain measurements in the middle and the tip of the 

plate were linear.  

 

 

Figure 1. Schematic diagram of the SMA actuators layout (top view) 
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Figure 2. Strain vs Deflection Graphs 

 

Figure 3. Feedback control system for the smart structure 
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current supply so that the actuator is cooled by the sur-

rounding air.  

In designing the best controller for this system, 

some methods were analyzed. Since the potential of us-

ing PID control for an SMA actuator has not been thor-

oughly investigated, it seems to be a good starting point. 

The PID controller is the most frequent form of feedback 

with more than 95% of the control loops in process con-

trol being of PID type, where most loops are actually PI 

control
[13]

. 

PID is easy to be implemented as it is well-known 

to all control engineers and there are many techniques to 

tune the controller, moreover through experiments or 

theoretically
[14]

. In addition, it is fairly easy to use it on a 

field programmable gate array (FPGA) which offers a 

real-time control at a high sampling rate
[15]

. Generally, 

the application of a standard PID controller is restrict-

ed by the constraint of the industrial control system
[14,15]

. 

For the morphing of plate developed here, the limitations 

are the phase transition of SMA and limiter of the heat-

ing power. The PID controller was designed and imple-

mented in the experimental setup to control the smart 

composite plate. Results from the earlier experiments 

illustrated that the smart structure system that has been 

designed performed effectively and the strain value of 

the composite structure can be controlled accurately
[12]

.  

5. Experimental setup 

The purpose of the experiment was to actively con-

trol the morphing (shape changing) of the composite 

plate actuated by the SMA actuators in the presence of 

external disturbances. Data acquisition board (DAQ) was 

used for the process of obtaining data from sensors and 

sending the data into the computer for processing
[16]

. The 

input sensor was connected to a data acquisition board 

via signal conditioning. The data acquisition 

(DAQ) board is a printed circuit board which supplies a 

multiplexer, amplification, analogue-to-digital conver-

sion, registers and control circuitry for analogue inputs in 

order for the computer to make use of the sampled digital 

signal. In the experiment, the data acquisition board used 

was NI cDAQ USB-9174, manufactured by National 

instrument. An analogue output NI USB-9263 was used 

to send signal to the power source with a range of 0-20 V 

or 0-10 A, to supply current to the SMA actuators.  

The power supply unit provided the current intensi-

ty through an analogue signal from a control program 

implemented in LABVIEW. The voltage was set between 

0V to 8V and the maximum current was 0.5A to avoid 

overheating of the SMA actuators. A sensor was used to 

detect the change in measurement which corresponded to 

the deflection of the plate when the actuator was turned 

on and provided signal as feedback to the control system. 

The signal was then compared to the target that had been 

set in the controller. The controller turned off the current 

when the actuator achieved the desired deflection and the 

SMA was cycled in endless heating/cooling cycles 

through the controller switching command on/off of the 

current in order to maintain the composite plate’s deflec-

tion.  

In the static test the plate was deflected manually by 

supplying power and the relationship between strain and 

power was established. The test was repeated to ensure 

the repeatability of the measurements. The results can be 

used to determine the required power for different strain 

measurement and it is shown in Figure 4. 
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Figure 4. Change in strain measurement of composite plate with power 

 

Figure 5. Wind tunnel experimental setup 
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The maximum available power is 75HP, with an-

ti-turbulent screen and 10 pieces of blades, overall length 

of wind tunnel is 14.5m and the overall height is 4m. 

Figure 5 shows the experimental setup of plate in the 

wind tunnel. 

The plate was placed in the wind tunnel in horizon-

tally as shown in Figure 6. The strain at different loca-

tion of the plate was varied to observe how the plate de-

flected under different wind velocities. The desired strain 

measurement was varied by an increment of 50 µstrain. 

6. Results and Discussion 

6.1 Results for experiments with feedback 

control 

The composite plate was required to deflect and 

maintain its shape by tracking 50 µstrain and 100 µstrain 

step input using input from strain gauge located at vari-

ous location of the plate. It was observed that the plate 

followed the step command closely upon heating where 

it deflected by 50 µstrain and 100 µstrain when the 

feedback system used the input obtained from the strain 

gauge located at the middle and tip of the plate as shown 

in Figure 7 and Figure 8. The composite plate failed to fol-

low the input command when the strain gauge located at the 

root of the plate was used to provide input signal to the feed-

back system. For the feedback system with inputs from strain 

gauges located at the middle of plate and 0 strain gauge located 

at the tip, the response time was very fast and reached the de-

sired strain value in less than 5s for the tracking of 50 µstrain 

step input and less than 10s for the tracking of 100 µstrain step 

input. However, the response using feedback input from the 

strain gauge located at mid plate produced larger overshoot 

compared to the response using feedback input from the 0° 

strain gauge located at the tip. The overshoot for the 50 µstrain 

step response for was 26%, 74% and 82% for the feedback 

using input from (a) Tip 0°, (b) Mid 0° and (c) Mid 45° strain 

gauges, respectively. The steady state error for all step was 0% 

for the response using feedback input from both strain gauges 

located at mid plate and the 0⁰ strain gauge located at the tip of 

the plate.  

 

 

Figure 6. Schematic diagram of wind tunnel experiment setup (Top View) 
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Figure 7. Response curve for 50 μstrain step input function using input signal from strain gauge at various locations: (a) Tip 0°, 

(b) Tip 45°, (c) Mid 0°, (d) Mid 45°, (e) Root 0°, (f) Root 45° 
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The strain and the change in strain on the composite 

plate during deflection were not equal at all location be-

cause the acting force was not equally distributed along 

the plate. Since a cantilevered plate was used the root has 

the smallest change in strain thus it was almost impossi-

ble to control using input from a strain gauge at this lo-

cation. The results show that the best response with 

minimum overshoot was obtained for the feedback using 

input from the 0° strain gauge located at the tip of the 

plate. Figure 9 shows the desired strain and the realized 

strain which corresponded to actual strain measurements 

on the surface of the composite plate; and the time histo-

ries of the critical parameters for the feedback using in-

put from the 0° strain gauge located at the tip of the plate. 

For the 50 µstrain step input, the response was fast and it 

reached the desired strain value in 2s, however this re-

sulted in a high overshoot of 26% as shown in Figure 9a. 

The temperature reached a peak of 37 °C during the con-

traction of SMA which produced the force for maximum 

deflection corresponding to 50 µstrain. For the 100 

µstrain step input, the response time was longer where it 

took almost 5s to reach the desired strain value, but this 

resulted in a lower overshoot of 20% as shown in Figure 

9b. The temperature reached a peak of 46°C during the 

contraction of SMA which produced the force for maxi-

mum deflection corresponding to 100 µstrain. For the 

strain feedback composite plate system, the average 

voltage during steady state increased as the step value 

increased. For 50 µstrain step input the voltage reached 

the maximum value of 8V and after 1 second reduced to 

2.7V during steady state. For 100 µstrain step input the 

voltage reached the maximum value of 8V and after 1 

second reduced to 3.5V during steady state. 
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Figure 9 Response curve for 50 𝜇strain and 100 μstrain step input function using input from strain gauge located at 

tip 0°: (a) and (b) actual and desired strain measurement, (c) and (d) temperature of SMA wire and (e) and (f) voltage 
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6.2 Results for experiments in the wind tun-

nel 

In the wind tunnel experiments, the smart composite 

plate was tested under different air velocities of 2m/s and 

4m/s. For the experiments conducted in the wind tunnel 

the composite plate was required to deflect and maintain 

its shape by tracking step input from 0 to 50 µstrain us-

ing the controller with input measurement from the strain 

gauges at various locations. It was observed that the plate 

followed the step command closely upon heating where 

it deflected by 50 µstrain when the feedback system used 

the input obtained from the strain gauge located at the 

middle and tip of the plate as shown in Figure 10 and 

Figure 11. The composite plate failed to follow the input 

command when the strain gauge located at the root of the 

plate was used to provide input signal to the feedback 

system.  

The step response for the plate deflection was accu-

rate with 0% steady state error when the air velocity was 

2m/s when input from the tip 0⁰, mid 0⁰ and mid 45⁰ 

strain gauge was used as shown in Figure 10a-Figure 

10c, but when the air velocity was increased to 4m/s, the 

smart composite plate system did not achieve the desired 

strain as shown in Figure 11a-Figure 11c). In the pres-

ence of 2m/s air velocity, the response time was very fast 

and the plate reached the desired strain value in less than 

5s, which resulted in a 32% overshoot shown in Figure 

10a. The smart composite plate was unable to obtain the 

desired strain value and there was no overshoot in the 

presence of 4 m/s air velocity as shown in Figure 11.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Response curve upon 50 𝜇strain step input function under 2 m/s wind flow using input signal from 

strain gauge at various locations: (a) Tip 0°, (b) Tip 45°, (c) Mid 0°, (d) Mid 45°, (e) Root 0°, (f) Root 45° 
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Figure 11. Response curve upon 50 𝜇strain step input function under 4 m/s wind flow using input signal from 

strain gauge at various locations: (a) Tip 0°, (b) Tip 45°, (c) Mid 0°, (d) Mid 45°, (e) Root 0°, (f) Root 45° 
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shows the desired strain and the realized strain which 

corresponded to actual strain measurements on the sur-

face of the composite plate; and the time histories of the 

critical parameters for the feedback using input from the 

0° strain gauge located in the middle of the plate. The 

response was fast and it reached the desired strain value 

in 2s without overshoot as shown in Figure 12a- Figure 

12b. The steady state errors for the response with 2m/s 

wind velocity was 0% and more than 10% for 4m/s wind 

velocity. It can also be observed that as the wind velocity 

increased the temperature of SMA decreased, thus the 

plate was unable to achieve the desired strain value as 

shown in Figure 12c-Figure 12d. The voltage graphs 

show the voltage signal sent out by the controller in re-

sponse to the input error. Higher voltage was required by 

the controller to deflect the plate as the wind velocity 

increased as shown in Figure 12e-Figure 12f. At 2 m/s 

wind velocity, the voltage required to deflect the plate 

was approximately 3V, and this value increased to 7V 

when the wind velocity increased to 4m/s. 

 From the results of the wind tunnel experiments, it 

is shown that the composite plate under the disturbance 

of air flow can be controlled effectively when the air 

velocity is low at 2 m/s using feedback from the strain 

gauges located at the middle and the tip of the plate. As 

the velocity of air increased, it was more difficult for the 

plate to be deflected to produce the desired strain due to 

the wind loading on the plate and the cooling of the 

SMA by the air flow. The SMA wires were exposed on 

the plate which affected its performance and caused the 

SMA temperature to decrease as the wind velocity in-

creases. As the temperature decreased the SMA was not 

able to create sufficient force to deflect the plate. In order 

to improve the performance, the SMA actuators have 

to be covered or embedded in between the layer of com-

posites. 
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Figure 12 Response curve for 50 𝜇strain step input function under 2m/s and 4m/s wind flow using input from 

strain gauge located at mid 0°: (a) and (b) actual and desired strain measurement, (c) and (d) temperature of SMA wire 

and (e) and (f) voltage signal from controller 

7. Conclusion 

Experiments have been conducted to study the ef-

fect of the different sensor placements on the perfor-

mance of SMA actuated composite plate. Another aim of 

this study was to investigate the performance of SMA 

actuated composite plate under external disturbances 

(varying air flow and vibration). In the experiments, the 

smart composite plate was required deflect and maintain 

its shape by tracking a step input of 50 µstrain, 100 

µstrain and continuous step input. After analyzing the 

performance of composite plate using the controller, it 

was tested under some external disturbances such as air 

flow. In the wind tunnel experiments, the plate was tested 

under 2m/s and 4m/s.  

The smart composite plate was able to follow the 

input command effectively when it was required to re-

duce or increase the strain on its surface. Using input 

from the strain gauge located at the tip was also possible 

to be controlled but there was some limitation. However, 

it was quite difficult to control the plate using input from 

strain gauge located at the root due to its location near 

the clamping area.  

From the results, it can be concluded that the 

placement of sensor on the plate also affected the per-

formance of the control system. The system using sensor 

placed at mid part of plate performed well, however 

when using the sensor placed at tip and root of the plate 

did not provide satisfactory performance. In the control 

experiments the percentage overshoot for mid 0⁰ was 

around 25% and for mid 45⁰, tip 0⁰, and tip 45⁰ it was 

less than 10%.  

Research investigated the optimal placement of 

strain gauge to emphasize the control performance of 

SMA actuated composite plate system. The smart com-
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posite system was also analysed in the presence of dis-

turbances such as those occurs in real flight. Placement 

of multiple sensors on the composite plate can improve 

the control performance and allow accurate morphing of 

the composite plate. In order to improve the smart com-

posite’s performance, the SMA actuator has to be em-

bedded inside the layer of composite or it may be inte-

grated with polydimethylsiloxane (PDMS) to improve 

cooling. The composite plate system may be implement-

ed on a UAV wing by placing strain gauge in the middle 

of the wing span. 
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