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IFOCUS: A FRAMEWORK FOR NON-INTRUSIVE ASSESSMENT OF STUDENT 

ATTENTION LEVEL IN CLASSROOMS 

by 

NARAYANAN VELIYATH 

(Under the Direction of Pradipta De) 

ABSTRACT 

The process of learning is not merely determined by what the instructor teaches, but also by 

how the student receives that information. An attentive student will naturally be more open 

to obtaining knowledge than a bored or frustrated student. In recent years, tools such as 

skin temperature measurements and body posture calculations have been developed for the 

purpose of determining a student’s affect, or emotional state of mind. However, measuring 

eye-gaze data is particularly noteworthy in that it can collect measurements non-intrusively, 

while also being relatively simple to set up and use. This paper details how data obtained 

from such an eye-tracker can be used to predict a student’s attention as a measure of affect 

over the course of a class. From this research, an accuracy of 77% was achieved using  

the Extreme Gradient Boosting technique of machine learning. The outcome indicates that 

eye-gaze can be indeed used as a basis for constructing a predictive model. 

INDEX WORDS: Affect, Eye-tracking, Machine learning, Attention, Education 
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CHAPTER 1 

INTRODUCTION 

This chapter will cover the background behind the research conducted for this thesis. 

It will briefly clarify the history and relevance of the field, and explain why it is of growing 

importance. It will also introduce how this problem has been researched and studied by 

others. Finally, the contributions of this research will be explained. 

 
1.1 Motivation 

 
The process of education has remained relatively unchanged for thousands of years. A 

teacher would stand in front of a group of students and narrate about a subject. The students 

in turn were expect to sit patiently and absorb the information. It was an exchange designed 

to be both simple and effective. In more recent years however, this once standard process 

has begun to undergo change. It has become more apparent that it is just as important to 

understand how a student learns as much as what they learn. 

Bloom’s Taxonomy is a set of models used to deal with three domains of learning: 

Cognitive, psychomotor, and affective. The cognitive domain deals with knowledge-based 

training. Psychomotor skills on the other hand, tend to be more physical or action based. 

The final model set, and the focus of this research, is the affective model. Affect is a  

term with origins in psychology, referring to a being’s emotions, motivations, and interests. 

Affective learning is learning that considers these points in addition to the material being 

studied. While normal education tends to focus on merely what is being taught, affective 

learning additionally chooses to tackle the issue of how is the student receiving it?. 

This can be considered especially critical because interest is a vital part of learning. An 

engaged student will not only be more open to gaining knowledge, but is much more likely 

to retain that information as well. However, this task can be especially challenging because 

gauging emotions is not a straightforward task. There is no single guide for determining 



9 
 

a person’s emotional state of mind. While some types of affect have clear and obvious 

signals, other affective states may have indicators that differ from person to person. For 

example, a student resting their head on an arm could be bored, or might simply be used 

paying attention in that position. Despite having the same physical posture, the affect and 

meaning behind the action differs greatly. 

As there is no standard method for definitively stating a student’s affect, many ap- 

proaches have been developed to offer potential solutions. Some methods involve a through 

overview of subjects, taking in measurements such as skin conductive response, body tem- 

perature and brainwave readings. These intrusive measures can often be uncomfortable for 

the user, which in turn can lead to errors in the collected data. Additionally, they often 

require more physical setup, adding an additional cost to be considered. 

As a result, other researchers have turned toward less-intrusive approaches instead. 

These methods of collection require less active thought from the user, and can still generate 

valuable results. Body posture analysis, facial analysis, and gaze collection are example of 

such methods. The chief purpose of these nonintrusive methods is to reduce any bias or 

errors that may be caused due to discomfort or awareness of the experimental setup. While 

eye-tracking technology is not a recent innovation, it has become more and more common 

as a tool in the study of measuring affect. 

Eye tracking technology has become increasingly a staple in many virtual reality soft- 

ware, and many computer games have also begun incorporating it. The intent is that by 

reading and reacting to the users gaze, the user will be able to enjoy a more seamless ex- 

perience. For research purposes, this intent and reasoning remains largely the same. By 

allowing the user to act freely, data can be collected from them without hindering them or 

causing discomfort. The research conducted here focuses on gaze data obtained through an 

eyetracker. 

Gaze data refers to the points in space where a user’s vision is focused. Gaze data is 
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significant in that it has the potential to yield accurate predictions about a user’s attention. 

Perhaps just as importantly, this method is also based around the notion of being almost 

completely non-intrusive. Furthermore, there is relatively little effort required in setting 

up such an eyetracker,  allowing for relative ease of use.  This allows the technology to  

be readily deployed without significantly impacting any subjects involved in the research. 

While there are other means of obtaining gaze data, some of them fall into the intrusive 

collection category. 

 
1.2 Contribution 

 
There were three main outcomes to this research. The first outcome was that data was 

collected from students in a classroom setting. This was done in order to find students’ 

attention, as well as to gather information that would assist in later predicting that atten- 

tion. The tool around which this step, and the research as a whole, is focused is the Tobii 

Eyetracker. Collecting gaze data through this eye tracker is key in that it allows for a non- 

intrusive approach. Just as importantly, data obtained in this manner can be more easily 

understood by both the researchers and professors. 

The next outcome involved parsing through the collected data. This allowed us to not 

only view the data that was gathered, but to also transform it into features appropriate for 

machine learning. This was done by creating software that would not only combine all 

the data from the various students, but that would also ensure that the data was free from 

errors. Once the data was cleaned and adjusted, it was then analyzed to find any trends 

and discrepancies. Finally, the data was transformed into features and collated into a single 

dataset. This put the information in a manner suitable for machine learning, which was the 

final step. 

The last outcome reached made use of the data collected to create a predictive model 

of students’ attention in a classroom setting. These models represented predictions of a 
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student’s attention, based on the features given. Models were initially developed on a 

personal level, though later transitioned to an aggregate approach. A peak accuracy of 77% 

was achieved, which exceeded the results given by a base model. This indicates that it is 

indeed possible to create accurate predictions of a students attention through information 

gained from an eyetracker. This demonstrates not only the effectiveness of the models 

created, but of the experimental setup as a whole. 

 

Figure 1.1: Tobii 4c Eyetracker. 
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CHAPTER 2 

LITERATURE REVIEW 

While the research done here focuses on measuring affect through an eyetracker, there 

are a myriad of other options that have been explored as well. The study of measuring 

affect has been conducted in areas ranging from standard classrooms to online courses. 

This chapter will outline some of the other research done in these areas through various 

means. 

 
2.1 Measuring Affect in Lecture-Based Environments 

 
Lecture-based environments is the term used to refer to a typical classroom setup. In 

these scenarios, a professor will stand at the front of the classroom and speak to students, 

often with the aid of presentations. Students generally do not have  access to computers  

or other personal devices in these setups, and are expected to pay attention solely to the 

instructor and presentation. 

In 2005, researchers Slykhuis, Wiebe, and Annetta used a head-mounted eyetracker 

to capture the gaze data of participants viewing PowerPoint slides (Slykhuis, 2005). Their 

goal was to determine what parts of the slide drew the most and least attention, so that in- 

structors could develop their content appropriately. Their results revealed that photographs 

and pictures were generally viewed more often than plain text. However, if the instructor 

began narration, the focus would then shift to the appropriate text. 

A similar experiment was conducted in 2012 by Rosengrant et al (Rosengrant, 2012). 

This setup used Tobii Glasses to track student attention during a lecture. Their findings 

showed that students tended to pay more attention to the PowerPoint slides rather than the 

professor. They also noted that students were more likely to perform off-task behaviors if a 

slide was present. 

Bunce et al. chose to use a simpler and more straightforward means of attempting to 
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measure attention (Bunce, 2010). Students in these classrooms would use clickers, small 

handheld devices with 3 buttons, to indicate when they felt their mind was wandering. Each 

button represented a different span of time, being less than 1 minute, 1 to 5 minutes, and 

more than 5 minutes. The results from this experiment indicated that attention patterns 

occurred cyclically rather than linearly. Previously, one of the theories in education held 

that attention fell steadily through a class, which these results refuted. It should be noted, 

however, that the reports generated by the students are inherently prone to bias, and may 

not be perfectly reliable. 

While some researchers choose to use easier modalities, others use more complex 

methods in the hopes of obtaining better results. For example, EEG signals, which refers 

to the brain’s electrical activity, can be obtained from a headset. Szafir used this setup to 

determine a student’s attention during interaction with a robotic instructor (Szafir, 2012). 

The instructor would narrate a story to the students, and could also change its volume and 

become more animated if it detected the attention level was too low. Afterwards, the par- 

ticipants were asked questions based on the story told. It was found that participants with a 

responsive instructor did indeed hold better attention and story recall than participants who 

did not. This is particularly vital as it demonstrates the effectiveness of real-time feedback 

in assisting students during a class. 

Narrative film watching during a class was also explored to see if mind wandering 

could be detected (Mills, 2016). For this research, students watching a film would self- 

report when they felt their mind was not on the movie. Additionally, their eye movements 

were tracked while watching the film. While mind wandering was able to be reliably cap- 

tured, it was also found that the local context of the film itself was much more critical in 

determining gaze patterns compared to reading static text. 

Smartwatches are one of the most recent advances in technology. They have also been 

used as tools to model student’s attention (Zhu, 2017). A single smartwatch device can 
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yield data from not only an accelerometer and gyroscope, but also the heart rate of the 

wearer. In the experiment where this was used, a strong correlation was found between the 

features extracted from the gyroscope and the wearer’s attention level. In simpler terms, 

there were strong links between a user’s hand movements and how attentive they were 

feeling. 

Body movements have seen considerable use as features for predicting affect. Even 

just the movement of students’ heads was used as the primary feature for an experiment 

(Raca,  2015).  Raca et al.  used cameras in a classroom to capture the head movements  

of multiple students simultaneously. Using an in-class survey to obtain the ground truth, 

their goal was to model and predict attention using the head motion data. Unfortunately, 

they found that head motion alone was not sufficient enough data to be used as a predictor 

of attention. However, they did find correlation between a student’s changing states of 

attention and head movement. They also noted that social cues may also have a significant 

impact, but were not considered for their research. 
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Table 2.1: Lecture-Based Environments 

 

Paper Main Author Conference Year Modality Type of Affect Features 

Following Student Gaze 

Patterns in Physical Sci- 

ence Lectures 

David Rosen- 

grant 

AIP con- 

ference 

proceedings 

2012 Tobii 

glasses 

Attention Areas of inter- 

est 

Eye-Tracking Students’ 

Attention to PowerPoint 

Photographs in a Science 

Education Setting 

David A. 

Slykhuis 

Cognition, 

Technology, 

and Work 

2013 ASL 

model 501 

eyetracker 

Attention Fixations, sac- 

cades, areas of 

interest 

How long can students pay 

attention in class? A study 

of student attention decline 

using clickers. 

Diane M. 

Bunce 

Journal of 

Chemical 

Education 

2010 Clickers Attention Button presses 

Pay attention!: designing 

adaptive agents that mon- 

itor and improve user en- 

gagement. 

Daniel Szafir SIGCHI 2012 EEG head- 

set 

Attention EEG data 

Modeling and detecting 

student attention and in- 

terest level using wearable 

computers. 

Ziwei Zhu BSN 2017 Moto 360 

smart- 

watches 

Attention, inter- 

est 

Hand motions, 

PPG data 

Translating head motion 

into attention-towards pro- 

cessing of students body- 

language. 

Mirko Raca EDM 2015 Cameras Attention Head travel 

Automatic gaze-based de- 

tection of mind wandering 

during narrative film com- 

prehension. 

Caitlin Mills EDM 2016 Tobii 

TX 300 

eyetracker 

Mind wander- 

ing 

Fixations, sac- 

cades, pupil di- 

ameter 

 
2.2 Measuring Affect in Intelligent Tutoring Systems 

 
Intelligent Tutoring Systems, or ITS, refers to computer programs used to assist in 

the education of students. These systems are notable in that they are designed to give 
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immediate and often personalized feedback to their user. This allows the student to improve 

their quality of learning, even without access to a human tutor or teacher. 

Arroyo et al. used multiple sensors to measure a student’s affective states while work- 

ing with an ITS (Arroyo, 2009). Tools used included cameras, pressure-sensitive computer 

mice, posture analysis chair, and conductance bracelets. The affective states being mea- 

sured were interest, excitement, confidence, and frustration Their results found that tutoring 

systems that made use of the data from the trackers were able to respond better to emotional 

states that systems that did not. Of particular note was the revelation that affective states 

were best predicted by the success and progress of the previous problem, rather than the 

current one. 

Sensorless measurement of affect has also been explored. ITS generate log files of 

users’ activity, and these log files can be analyzed to reveal affective states at various times. 

In 2012, Baker’s team used these log files to predict engagement, confusion, frustration, 

and boredom of students (Baker, 2012). To obtain the ground truth, a form of BROMP was 

used. BROMP is a process that involves having observers monitor students as they work, 

and periodically note down their perceived affect. This research found that confusion and 

frustration were not only uncommon but were also fairly easy to detect. On the other hand, 

boredom and engagement were trickier to distinguish. This lends credence to the idea that 

negative affective traits can be more apparent than neutral or positive ones. 

Jaques attempted to use eyetracking to predict affects in the MetaTutor ITS (Jaques, 

2014). Using features such as fixations, saccades, and areas of interest, his team focused 

on predicting the emotions of boredom and curiosity. They were not only effective in being 

able to distinguish between the two emotions successfully, they were also able to correlate 

certain eye patterns to the affective states as well. Curious students tended to have more 

fixations and direct saccades, while bored students had more erratic eye patterns. 

The MetaTutor ITS was also used for another experiment by Harley et all in 2015 
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(Harley,  2015).  While Jaques focused solely on eyetracking,  Harley instead made use  

of facial recognition, webcameras, and an electrodermal activation sensor. This research 

focused on a wider range of emotions as well, measuring for over 10 different affective 

states. Results indicated that the facial analysis had the strongest correlation with the self- 

reported scores. It was also noted that the EDA sensor had a generally weak agreement 

with the self-reported scores, meaning it was not as strong a feature as expected. 
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Table 2.2: Intelligent Tutoring Systems 

 
Paper Main Author Conference Year Modality Type of Affect Features 

Eye-tracking for 

user modeling in 

exploratory learning 

environments: An 

empirical evaluation. 

Cristina Conati Knowledge-Based Systems 2007 Head-mounted 

eyetracker 

Attention Pupil diame- 

ter 

Emotion sensors go to 

school. 

Ivon Arroyo AIED 2009 Pressure mouse, 

posture analysis 

chair, camera, 

conductance 

bracelet 

Confidence, 

frustration, excite- 

ment, interest 

Posture, 

facial ex- 

pression, 

skin conduc- 

tance 

Towards Sensor-Free 

Affect Detection 

in Cognitive Tutor 

Algebra. 

Ryan d‘Baker EDM 2012 Log files Boredom, confu- 

sion, frustration 

Log file data 

Predicting affect from 

gaze data during inter- 

action with an intelli- 

gent tutoring system. 

Natasha Jaques IEEE ITS 2014 Tobii T60 eye- 

tracker 

Boredom, curios- 

ity 

Fixations, 

saccades 

A multi-componential 

analysis of emotions 

during complex learn- 

ing with an intelligent 

multi-agent system. 

Jason Harley Computers in Human Behavior 2015 EDA skin sensor, 

camera 

Various EDA activa- 

tion, facial 

expressions 

Automatic detection 

of learner’s affect 

from gross body 

language. 

Sidney D‘Mello Applied Artificial Intelligence 2009 Body pressure, 

camera 

Various Facial ex- 

pressions, 

posture 

patterns 

Modeling and under- 

standing students’ off- 

task behavior in in- 

telligent tutoring sys- 

tems. 

Ryan d‘Baker SIGCHI 2007 Log files Attention Log file data 

Eliciting motivation 

knowledge from log 

files towards moti- 

vation diagnosis for 

adaptive systems. 

Mihaela Cocea UMAP 2007 Log files Motivation, atten- 

tion 

Log file data 



19 
 

2.3 Measuring Affect in Online Courses 

 
Massively Open Online Courses, or MOOCS, have grown in popularity in recent 

years. These courses tend to primarily take the form of videos and are available only  

over the Internet. They enable users to not only learn the material at their own pace, but 

also at their leisure as well. While measuring affect through MOOCs is certainly more of a 

challenge than in a typical classroom, it is by no means an impossibility. 

Sharma et all developed a tool for MOOCs that would notify a student if it felt their 

attention level was too low (Sharma, 2016). Eye-tracking was used to determine if a stu- 

dent’s attention level was appropriate compared to a standard level determined before. If 

the user’s attention dropped below the threshold, the tool would notify the user as to where 

their attention on the screen should be. Results showed that the number of feedbacks re- 

quired dropped near the end of the video, showing the effectiveness of the tool. This tool 

allows for instructors to not only gain an understanding of how users pay attention to the 

video, but helps students to ensure they are paying attention to the appropriate sections as 

well. 

Sharma also conducted similar research earlier in 2014 (Sharma, 2014). This research 

was designed to find the effectiveness of attention on learning in MOOCs through the use 

of eyetracking. SMI RED eyetrackers were used to record participant’s gaze while they 

watched MOOC videos. Additionally, students were divided into categories based on pre- 

and post-test performance. The features gathered included area of interest misses, fixations, 

and backtracks. It was found that good learners had less AOI misses, longer fixations,  

and more backtracks. This indicates that certain features can be used to not only predict 

attention, but can lead into determine how well a student may do in the class. This in turn 

could lead to developments in intervention strategies, allowing professors or systems to 

step in automatically if a student is struggling. 

MOOCs have also begun to see use through mobile devices. As such, tools are be- 
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ginning to be developed for use in this particular area as well. A mobile application was 

in fact created in 2015 to not only assist students in watching MOOC videos, but to also 

predict their attention (Pham, 2015). AttentiveLearner, as the application was called, would 

pause the video if the phone’s camera lens was not covered by a finger. Additionally, the 

camera was used to capture PPG, or heart rate, to use as a feature. The application would 

also notify the user if it felt their attention had fallen too low for over a few minutes. The 

models generated were able to predict whether a student was inattentive at a certain period 

of time. 

Engagement is also a critical affective aspect of MOOCs. Similar to attention,  it is  

a measure of how invested in an activity a user is. In 2014, Guo et al conducted a study 

on determining how video content and setup affects user’s engagement (Guo, 2014). Their 

goal was to determine if how a video was set up was as important to engagement as what 

was actually taught. To test this, they took data from multiple MOOC courses, including 

video start and end times, number of times paused, actual video duration, and whether or 

not post-video questions were attempted. Engagement was measured through the video 

watched time as well as problem attempts. Their results indicated that shorter videos held 

more engagement, that videos with heads visible were more engaging than videos without, 

and that speaking rate also affected engagement. These results show that even in videos, 

people will focus on how a material is presented just as much as what as being presented. 
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Table 2.3: MOOCs 

 
Paper Main Author Conference Year Modality Type of Affect Features 

How students learn using 

MOOCs: An eye-tracking 

insight. 

Kshitij Sharma N/A 2014 SMI RED 250 eyetrackers Attention Points of attention, backtracks 

A gaze-based learning an- 

alytics model: in-video 

visual feedback to im- 

prove learner’s attention 

in MOOCs. 

Kshitij Sharma LAK 2016 Eyetrackers Attention Gaze location 

AttentiveLearner: im- 

proving mobile MOOC 

learning via implicit heart 

rate tracking. 

Phuong Pham AIED 2015 Mobile phone Mind wandering PPG data 

How video production af- 

fects student engagement: 

An empirical study of 

MOOC videos. 

Phillip Guo L@S 2014 MOOC videos Engagement Video length, video content 

Examining the relations 

among student motiva- 

tion, engagement, and re- 

tention in a MOOC: A 

structural equation mod- 

eling approach. 

Yao Xiong Global Education 

Review 

2015 MOOC course Engagement, motivation Course analysis 

Student Emotion, Co- 

occurrence, and Dropout 

in a MOOC Context. 

John Dillon EDM 2016 MOOC course Various Course analysis 

The role of students’ mo- 

tivation and participation 

in predicting performance 

in a MOOC. 

P.G. de Barba Journal of Computer 

Assisted Learning 

2016 MOOC course Motivation Course analysis 

Applying learning analyt- 

ics for improving students 

engagement and learning 

outcomes in an MOOCs 

enabled collaborative pro- 

gramming course. 

Owen Lu Interactive Learning 

Environments 

2017 MOOC course Engagement Course analysis 
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2.4 Measuring Affect in Electronic Learning Environments 

 
The last area to be introduced is electronic learning environments. These tend to be 

research and experiments that do not fit into the other categories. The only requirement for 

being included in this group is that research must be conducted through a computer. As a 

result, this category encompasses the largest amount of research. 

In 2008, Bulger developed a Classroom Behavioral Analysis System software to mea- 

sure student engagement during class computer sessions (Bulger, 2008). The goal of this 

research was not to predict or model engagement, but to measure engagement in a com- 

puter class. Engagement was defined by determining on-task vs off-task actions. On-task 

actions included using the appropriate learning materials or related materials, while off- 

task actions were anything that was deemed not relevant to the given learning objective. 

This experiment found that engagement was higher as a whole in a class that performed an 

interactive exercise compared to a class that was lectured to. While this result may seem 

apparent in hindsight, it does confirm the idea that students who are actively participating 

will be more attentive and focused than students simply sitting and listening. 

Detecting mind wandering during computerized reading is also another avenue com- 

monly pursued. Uzzaman et al in 2011 and Bixler et al in 2016 both performed similar 

experiments in this area (Bixler, 2016) (Uzzaman, 2011). Both used eyetrackers to ob- 

tain eye gaze movements, and use those gaze patterns as features to predict mind wander- 

ing. Common features extracted were fixations, saccades, blink duration, and pupil size. 

While they did find similar results, there were some key differences. Uzzaman utilized 

self-reports at periodic intervals during the reading. She found strong correlation between 

certain gaze patterns and the mind wandering reports. On the other hand, Bixler focused 

more on context-based features involving the text itself. His results showed a link between 

mind wandering and these features. These experiments show that even minute changes in 

an otherwise similar setup can lead to different conclusions being reached. 
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Research into this area has not just been conducted in the civilian sector, but also 

from a military standpoint as well. In 2011, a framework was proposed for using low  

cost sensors to assist in training of military trainees (Carroll, 2011). Sensors used in the 

framework included motion detectors, heart rate monitors, chair pressure sensors, EEG, 

and eye-trackers. Measured affective states were anger, frustration, boredom, attention, 

and engagement. The purpose of this framework was to allow for not just better training, 

but more efficient training as well. 

Sensorless approaches have also seen use in this field as well. Keystroke analysis 

refers to data received from a user’s use of keyboard. Features extracted can include paus- 

ing behavior, backspace usage, keystroke timing, and relative timing. Bixler et al used this 

form of analysis to measure boredom, engagement, and neutral affective states for students 

performing a writing task (Bixler, 2013). The models generated were successful in classi- 

fying boredom vs engagement, but had more difficulty in classifying boredom vs neutral 

affects. 

Another sensorless approach was conducted more recently in 2018. Munshi and his 

team used log files to predict the affective states of students working in an electronic learn- 

ing environment (Munshi, 2018). One of the key goals in this research was to determine 

if there was any significant difference in affective states between strong and weaker learn- 

ers. More specifically, the states measured were boredom, confusion, delight, engagement, 

frustration, and other. To obtain the ground truth for these affects, BROMP was utilized. 

They were able to not only find significant correlation between certain affective states and 

actions taken in prior problems, but were also able to link specific states to Hi and Low 

learners. The Hi group tended to have more delight values, while the Low group was found 

to have more boredom instead. 

Even computer games have been used as tools for research in this area. Bosch et al 

used a physics-based educational computer game as the setting to gather affect of students 
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(Bosch,  2015).  The goal of such a setup was to collect affect in a manner that would  

feel natural and unlike a controlled lab environment. Webcameras were used to collect 

facial features, and BROMP was used to obtain the ground truth. The affective states 

being measured for this research were boredom, confusion, frustration, engagement, and 

delight. The classifiers had some difficulty in predicting a 5-affect model. Put more simply, 

the models had low accuracy when trying to distinguish each affective state individually. 

However, much better results were achieved when affects were predicted one at a time, 

such as boredom vs others. 

In 2015, researcher Park and her team designed an experiment to test the effective- 

ness of positive emotional feedback through anthropomorphisms on students (Park, 2015). 

An anthropormorphism is a cartoon-like character with deliberately exaggerated facial fea- 

tures. The facial features would change in response to the student’s affective state. Eye 

gaze data was collected with the Tobii Eyetracker TX300, and features used included fix- 

ations/saccades, fixation duration and Areas of Interest. It was found that students who 

reported more positive affects had better learning outcomes. However, it was also noted 

that anthropomorphisms did not have an effect on a student’s affective state or learning, 

except where a student had a strong emotional state pre-learning. 
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Table 2.4: Electronic Learning Environments 

 
Paper Main Author Conference Year Modality Type of Affect Features 

Measuring learner 

engagement in 

computer-equipped 

college classrooms. 

Monica Bulger 
 

2008 Specialized soft- 

ware 

Engagement Applications used 

Automatic gaze- 

based user- 

independent de- 

tection of mind 

wandering dur- 

ing computerized 

reading. 

Robert Bixler UMUAI 2016 Tobbi TX300 

eyetracker 

Mind wandering Fixations, sac- 

cades, pupil 

diameter 

The eyes know what 

you are thinking: eye 

movements as an ob- 

jective measure of 

mind wandering. 

Sarah Uzzaman Conscioussness 

and Cognition 

2011 Eyelink 1000 

tracker 

Mind wandering Fixations, sac- 

cades, pupil 

diameter 

Detecting boredom 

and engagement 

during writing with 

keystroke analysis, 

task appraisals, and 

stable traits. 

Robert Bixler IUI 2013 Keystroke logger Engagement, boredom Keystroke features 

Modeling Learners’ 

Cognitive and Affec- 

tive States to Scaf- 

fold SRL in Open- 

Ended Learning En- 

vironments. 

Anabil Munshi UMAP 2018 Log files Boredom, delight Log file data 

Automatic detection 

of learning-centered 

affective states in the 

wild. 

Nigel Bosch IUI 2015 Webcam Various Facial expressions 

Modeling trainee af- 

fective and cognitive 

state using low cost 

sensors. 

Meredith Carroll I/ITSEC 2011 Multiple sensors Various Gaze data, PPG, 

posture analysis 

Emotional e- 

learning through 

eye tracking. 

Marco Porta EDUCON 2012 Tobii 1750 eye- 

tracker 

Various Fixations, pupil di- 

lation 
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2.5 Research Comparison 

 
While many of these works do achieve remarkable results, they also tend to have draw- 

backs as well. For example, while the research done through intelligent tutoring systems 

is beneficial in that scope, it also has limited use outside of that range. ITS have a very 

specific domain that they are equipped to teach and respond to. As a result, it can be dif- 

ficult to take results from that domain and apply it elsewhere. MOOCs are able to receive 

data from hundreds, if not thousands, of individuals simultaneously. Unfortunately, due to 

the very nature of the distance-based learning, it is impossible to receive direct affective 

measurements from the majority of the individuals. This means that most measurement 

methods must rely on techniques such as self-reported surveys, or analysis of automati- 

cally generated log files. This implementations tend to have intrinsic faults that can make 

the data collected unreliable. 

Additionally, many of the intrusive methods employed would not be feasible to im- 

plement in a real-world classroom settings. Head-mounted cameras would disturb not only 

the students wearing it, but most likely also surrounding students and the professor as well. 

Skin conductance sensors, while effective in their ability to obtain readings from users, also 

tend to require additional wires and implements. Even modalities such as heart rate mon- 

itors, which can appear in a form as simple as a that of a bracelet, have their flaws. Data 

obtained from devices such as these are not readily understandable. They must be parsed 

and adjusted to become more readable, which adds an extra layer of work and complexity. 

Ideally, research should be conducted in a manner that allows the students to act as 

freely and naturally as possible, allowing for the best data to be received. In turn, the data 

received should be effective in what it conveys without being overly complex. The lecture- 

based environments tended to be have experiments most similar to those that one would 

expect in a natural educational setting. Additionally, eyetracking technology allows for the 

collection of data from a student without being intrusive. The combination of these two 
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factors allows for data collection that is both non-intrusive and straightforward to under- 

stand. 
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CHAPTER 3 

METHODOLOGY 

This chapter will cover the basic experimental design as well as the details of the 

experiments conducted for this research. The experimental design consists of three main 

steps, each of which will be briefly introduced. The first stage,  which is comprised of  

the physical setup as well as the software setup of the experiments, will also be expanded 

on. The physical setup of the experiment, which includes information about the participants 

and the classroom, will be explained. A general description and clarification of the software 

used during the data collection process will also be provided. Lastly, the actions undertaken 

by the volunteers during the experiment will be explained. 

 
3.1 Experimental Design 

 
There are three main stages to this research. The collection phase, the pre-processing 

or analysis phase, and the model construction phase. Each phase occurs sequentially, as the 

succeeding step requires the results of the former one. The data gathered from the collection 

phase passes to the analysis phase. From the analysis phase, the extracted features are sent 

to the machine learning stage. The results of the machine learning phase are the final 

outcome of the experiment. 

Figure 3.1: Experiment design 
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The collection phase is the stage where the data was collected from the student vol- 

unteers. This is the first stage of the experiment. There are two main components for this 

phase. The first is the physical setup. This is the aspect of the experiment that deals with 

the volunteers, hardware setup, and classroom layout. The second is the software portion, 

which outlines what data was collected, how it was collected, and how the volunteers gave 

the information. After sufficient data has been collected, it is then sent to the pre-processing 

stage for analysis and feature extraction. 

From the collection phase the data moves to the pre-processing phase. First, the data 

is analyzed. This yields information such as the number of classes a student attended, or 

the total number of self-reports generated. This enables us to gain insight into the general 

state of the class as well as individual students.  For example,  if multiple students have   

a low number of self-reports on a given day, that indicates that there could be something 

happening that is affecting a wide range of students. This additionally has the benefit of 

allowing outliers to be more easily noticeable. As extreme outliers could be detrimental 

to the accuracy of the generated models, catching them at this step leads to their removal 

before the data is turned into features. After all outliers have been identified and removed, 

the data is processed into features for machine learning. This places the data into pre- 

determined classes for easier comparisons. Finally, the data is stored in a single data set 

and is ready to be tested on. 

The final stage is the model construction phase. This step is where machine learning 

algorithms are run on the dataset produced by the analysis stage. Different algorithms are 

used to create the models in order to test a variety of approaches. Models are also trained 

and tested with different parameters to find the best accuracy. Once the best accuracy has 

been believed to be found, the results are saved and reported. This concludes one round of 

the experiment. From here, the experiment resets from the first step and the process begins 

anew. 
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3.2 Physical Setup 

 
The participants were volunteers from classes in the field of mechanical engineering. 

As the experiment was run over two semesters, two separate classes were chosen for testing. 

The first semester had 12 volunteers in a freshman class of 30. This class met twice a week 

for 90 minutes each. The second semester has 10 volunteers in a junior class of 25. Out of 

these 10 volunteers, 6 were male and 4 were female. Unlike the first class, the second class 

only met once a week, which did limit the data being collected. The professor of the classes 

had no knowledge of which students were participating in the research, which prevented 

potential bias. Volunteers signed consent forms and were aware of the purpose and general 

methodology of the research. 

 
Figure 3.2: Classroom Setup 

 

The classroom was set up in the style of a computer lab. This setup is notably different 

from a standard classroom in that all students are provided with desktop computers at their 

desks. In this environment, a professor stands at the front of the classroom, and lectures to 

the students, often with the aid of PowerPoints or a whiteboard. Meanwhile, students sit 

at their desks with computers in front of them. They are able to use the computers freely, 
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and also had the option of using physical notebooks and other tools as needed. This setup 

allows students to either pay attention to a lecture by directly looking at the instructor, or 

by following allowing with provided material on their computer. In the classroom used, 

there were 6 computers per row, and 6 rows in total. Eyetrackers were only installed on 

computers in the first 4 rows. 

Eyetrackers were physically secured to the base of each computer monitor and were 

secured via boltclamps. Each eyetracker was carefully placed so as to not impede nor overly 

distract any users. No students reported any negative effects from the eyetracker devices 

during the course of the experiment. All efforts were made to ensure that the eyetrackers 

did not disrupt the normal classroom process. This is particularly vital, as minimizing 

intrusion was a key aspect of the research 

 
3.3 Software Setup 

 
For this research, software was implemented to collect, store, and parse through the 

information collected. The eyegaze coordinates, local timestamp, foreground application 

name, foreground application coordinates, and ground truth, or self-reported scores, were 

all gathered and saved to a single text file. This text file was in turn stored on a private 

server, which was unable to be accessed by any individuals outside of the researchers. 

Each text file corresponded to a single student on a given class day. 

Eyegaze data was obtained from the Tobii eyetrackers. This data was received in the 

form of 2 coordinates. The coordinates represented the pixel location of the eyes on the 

computer screen, beginning with (0,0) on the top left and going to the maximum width and 

height on the bottom right. The gaze location had a margin of error no larger than the size 

of a quarter. The accuracy of the gaze location was further improved by calibrating the 

devices to the user’s eyes. 

The local timestamp, foreground application name, and foreground application coor- 
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dinates were obtained directly from the student’s computer. This was done through the use 

of Microsoft APIs. The data collected from these sources occurred in the background and 

without user intervention or detection. Along with the eyegaze data, this type of informa- 

tion collection is referred to as passive data collection. 

To collect the ground truth from the students, a pop-up GUI was generated. This 

popup can be seen in Figure 3.3. Every five minutes, this pop-up would appear at the top 

left of the computer screen with a Likert Scale on it. After the Record button is pressed, or 

1 minute has elapsed, the popup would disappear. This is known as active data collection, 

as it requires user participation. For the first semester, the scale went from 1-5. For the 

second semester, the scale was updated to go from 1-10. In both semesters, a 0 or No 

Response option was included. 

 

Figure 3.3: Survey Popup 

 

The software additionally performed a check on the user as they logged into the com- 

puter. This was done to not only ensure security, but to also make sure that only the nec- 

essary data was collected. There were two conditions checked: If the user was in a given 

list of volunteers; Or if the time/date was appropriate for the correct class periods. If either 

of these conditions were not met, the software would immediately shut down, and no in- 

formation would be collected. As the eye-tracker also shut down with the software, it also 

help prevent the setup from impacting students outside the experiment. 
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On the first day, volunteers calibrated the software to match their eyes. This was done 

to ensure that the eyetrackers would match to a specific user, which would increase the 

accuracy of the gaze collection. Further calibrations were optional. The students were 

told that every five minutes, a survey would pop up on their screen. They should ideally 

respond to the survey based on the question asked at the beginning of the experiment. The 

question asked to the first group of volunteers was “How attentive are you feeling right 

now?” For the second semester of research, this question was changed to “How engaging 

was the previous 5 minutes of class?” 
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CHAPTER 4 

DATA PROCESSING 

This chapter will go over the data gathered from the collection stage. The first sec- 

tion will cover the analysis of the raw data. This involves results such as the number of 

responses given, total number of days, and most common scores. The second section will 

outline the feature extraction process. It will detail the significance of each type of infor- 

mation in relation to predicting attention. It will also note how these data were transformed 

into features suitable for machine learning. 

 
4.1 Data Analysis 

 
For the first semester, a total of 115 text files were gathered over 11 days. However, 20 

of those files had corrupt or unreadable information, leaving them unusable. This resulted 

in a final total of 95 text files. Of the 12 students that began the experiment, 2 of them left 

the class before data collection began. Additionally,  1 of the remaining 10 students had  

a software error, and did not receive any survey popups throughout the experiment. As a 

result, data for only 9 students was obtained for the first semester. Figure 4.1 below shows 

the distribution of self-reported scores per student for the first semester. 

A total of 684 self-reports were received, not including reports marked as 0. The score 

of 5 occurred the most often, appearing 328 times. This makes it the most common score 

by a large margin, being 48% of all scores. In comparison, the next highest score of 3 was 

only selected 159 times, being 23% of the total makeup. The least common response was 

1, which was picked a mere 20 times and had a rate of approximately 3%. 

Another key observation was the distribution of responses per volunteer. Students in 

this class tended to focus on 1 or 2 responses. For instance, student 8 answered 3 a great 

majority of the time. However, this individual only answered 5 and 0 otherwise. This leads 

to a large skew in datasets created, which can cause problems during the machine learning 
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Figure 4.1: First Semester Scores Per Student 

 

phase. 

Two key outliers can be quickly identified from this group. Compared to the other 

volunteers, students 1 and 2 had a considerable number of survey responses. Unfortunately, 

the exact reasons for this discrepancy remain unknown. The most likely event is that a bug 

or error caused the popup survey to appear much more often for these individuals compared 

to the other students. However no factor was found that could cause this incident on only 

select machines. While attendance of the students was also considered, it was determined 

that it would not be able to affect the data to such a degree. The results of these 2 students 

were kept for the final dataset, as otherwise the amount of data collected would be much 

more limited. 

As the second semester met fewer times per week, the amount of data collected is 

less compared to the first semester. 44 files were recorded over 6 days of class. While 
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all 10 initial volunteers did remain in the class, one of them did not have sufficient survey 

responses recorded, and was removed from the data set. As a result, the final count led to 

41 files were generated by 9 students. 

 

 
Figure 4.2: Second Semester Scores Per Student 

 

Discounting No Response answers, 225 responses were recorded. Out of these re- 

sponses, 10 was selected most often at 110 times. This is a rate of 49%, which is similar to 

the response rate of 5 in the previous experiment. For this experiment, the majority of the 

other responses appeared at a rate similar to each other. Most scores were selected between 

11 and 27 times. The lowest responses selected were 3 and 7, occurring only 9 times each. 

During this experiment, there was a much more varied distribution of scores per stu- 

dent. Although there was still a large focus on 10 responses, each student also had a 

respectable number of other responses as well. This may be because the wider scale of 

1-10 allows for more natural responses compared to the 1-5 scale used before. The change 
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in question being asked may have also had an impact, as the question was designed to be 

less personal. 

It should be noted that student 9 acted as an interesting outlier. This individual, with 

the exception of No Response, only selected 10 as a response. While this behavior is 

unusual, it alone cannot be considered as grounds for removal. Without outside knowledge 

of this student, it might indeed be possible that he/she truly found the class to be completely 

engaging. As such, this student’s data was not remove from the dataset. 

 
4.2 Feature Processing 

 
The eyegaze coordinates, local timestamp, foreground application name, foreground 

application coordinates, and ground truth, or self-reported scores were collected. Before 

being fed into machine learning, these values were processed into simpler features. Feature 

processing is necessary because the open nature of experiment meant that features such as 

Applications used would have an extremely large scope, making comparisons difficult. 

Features were processed into predefined classes to allow for smoother comparisons. 

The eye-gaze coordinates were originally stored as pixel values based on the screen 

width and height. However, as computer screens can be over 1000 pixels wide, it would be 

unfeasible to compare those exact values. To rectify this issue, the gaze coordinates were 

grouped into one of four categories to indicate which quadrant of the screen the student 

was looking at, This was done in order to determine if there was any correlation between 

gaze coordinates and attention. The first quadrant was located at the top left, and went 

counterclockwise, with the fourth and last quadrant situated at the top right. 

The foreground application names were also processed. In this case, these values were 

adjusted to become binary, meaning they could only be 0 or 1. From the data collected, cer- 

tain websites and applications were noted to be pertinent to school or educational matters. 

These would be websites such as the class page, PowerPoint slides, and the calculator ap- 
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plication. These were labeled as relevant applications as they were deemed to be important 

to the class. All other applications and sites were labeled as irrelevant applications. These 

types of websites included news websites, sports based websites, and video-watching web- 

sites. While there was an initial irrelevant list, it was quickly discovered that the number 

of non-relevant applications greatly outpaced the number of relevant ones due to the open 

nature of the computer network. As such, it would be impossible to list every possible 

exception, creating the need to adjust the lists into a binary feature. However, there should 

still remain a strong link between low attention and irrelevant applications. 

The applications marked as relevant were documented through manual input. This 

was achieved by having a separate program run through a list containing the unique web- 

sites and applications visited by each student, and tallying the number of occurrences per 

application. The resulting lists were then aggregated and then sorted by number of occur- 

rences. The final list was reviewed by hand, and applications deemed to be most relevant 

to the classroom were inserted into the relevant list. 

The area of the foreground application was also transformed into a feature. The ap- 

plication coordinates received from each user’s computer held the top left and bottom right 

pixel coordinates. From these values, the area of the application being viewed was able 

to be calculated. It was believed that this held relevance as there could be a correlation 

between having multiple windows open and attention. With two windows being open side- 

by-side, for example, each window would have a small area than a single full size window. 

The time stamp was written into the text file as UNIX time. UNIX time is the time 

elapsed in seconds, or milliseconds for this experiment, since 00:00 1 Jan, 1970. These 

UNIX values were then converted into local datetime values. The first value when the user 

first logged in and the software began collecting information was recorded. The time values 

where the pop-up appeared were also recorded, and the approximate minutes since the log 

in time was calculated. The difference in minutes was the actual value used for testing. 
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This difference acts as a relative measure of time elapsed for each user. In a classroom, one 

would expect that the periods of high and low attentions would be similar for all students, 

or at least the majority of them. 

 

 
Figure 4.3: Second Semester Scores as Percentages per Student 

 

The last features to be extracted were the self-reported scores themselves. During the 

first semester of research, the scores were not altered, and were entered into the dataset as 

is. However, this approach was changed for the second semester. The vital point being 

predicted was whether or not the student was attentive or not attentive. The score is a 

means to find that answer, but the value itself is not a critical component of it. As a result, 

the students’ scores for the second semester of research were transformed to become binary 

values. Scores of 1-5 were turned into 0, or low attention. High attention was marked as  

a 1, and was given by reports of 6-10. Figure 4.3 shows how these scores look after being 

transformed. This figure represents the scores in terms of percent, to show the distribution 
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of scores across Low, High, and No Response. Each student, with the exception of student 

9, has atleast some responses in both Low and High categories. This allows for more 

accurate and reliable predictions to be made in the machine learning phase. 
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CHAPTER 5 

RESULTS 

This chapter will go over the machine learning phase. This is the phase that takes  

the dataset created from the previous step and attempts to makes predictions on the data. 

The first section will explain the machine learning methods used. The algorithms and tech- 

niques used to generate models will be elaborated on. The metrics used to test the models 

will also be explained The second section covers the results of the models themselves. The 

relevant features will also be examined, as well as any other unique tests performed. Finally 

the best results received will be compared against other contemporary works. 

 
5.1 Models and Metrics Used 

 
Six machine learning models were used over the course of this research: Decision 

Trees (DT), Random Forest (RF), Support Vector Machines (SVM), Naive Bayes (NB), 

Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGB). DTs, RFs, NB, 

and SVM were used for the first research experiment. For the dataset originating from the 

second semester RF, SVM, Adaboost, and XGB were implemented instead. This change 

was implemented as it was believed that the new algorithms would be able to provide better 

and more reliable results than the ones replaced. 

Decision trees are one of the simplest classifiers available in machine learning. In this 

classifier, each feature is tested to lead to a unique outcome. For example, a combination 

of ‘cloudy,’ ‘wet,’ and ‘warm’ could mean rainy weather, while the choices of ‘cloudy,’ 

‘wet,’ and ‘cold’ would instead indicate snow. A decision tree is named as such because 

the various choices branch out, creating a model that indeed looks like a tree. 

Random forests are an extension of the decision tree algorithm.  They are created   

by taking a multitude of decision trees, running them, and then taking the mean of their 

results. This is done primarily to combat overfitting, which decision trees can be prone 
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to. Overfitting occurs when a model is created that specifically matches the given dataset. 

While this leads to high accuracy for that dataset, the same model would also fail if given 

new data. 

Naive Bayes was another classifier used for the first dataset. This model performs 

classification through analysis of the features, then determining the most likely probability 

from that analysis. A fruit that is red and round would be classified as an apple, while a 

long yellow fruit would instead be identified as a banana. While this method is simple and 

effective, it does have a critical weakness. The NB model assumes that all features are 

independent of each other when performing classification. However, for this research, it is 

unlikely for this to be true. This is one of the main reasons this algorithm was not used as 

the research progressed. 

Support Vector Machines are not as easy to explain as the previous models, but also 

tend to have better results. At their core, an SVM simply tries to create a line that separates 

all classes from each other neatly. It aims to find the best divide, so that the gap between the 

classes are as large as possible. SVM performs best with binary classifications, although it 

is capable of handling multiclass problems as well. 

Adaboost and XGBoost both belong to the ensemble methods of machine learning. 

Ensemble methods are more advanced algorithms, used to improve on the results of other 

models. Adaboost and XGBoost belong to the bagging subset of ensemble methods, which 

have the effect of reducing innate bias in models. These techniques were chosen because 

they were simple enough to readily understood, while also having the ability to handle 

complex data. Adaboost manipulates the weights of weak learning models to allow them 

to become strong learning models. It does this over multiple trials, and settles on the model 

that ends up with the best fit. Gradient boosting works on a similar principle, although  

the details vary significantly. Gradient boosting attempts to minimize loss, which is the 

difference between the expected and predicted values. It will update predictions to improve 
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performance until the loss function is as minimal as possible. XGB is an extension of 

gradient boosting which can reach the minimal loss more quickly than the normal version. 

The use of neural networks was also considered. A neural network is an advanced 

framework often containing multiple different algorithms. Inspired by the neural activity 

in a brain, such artificial neural networks are known for being able to handle extremely 

complex data. However, neural networks work best when they are fed a large amount of 

data. As that amount of data was unavailable at the time, neural networks were not chosen 

as a viable option. 

For this problem, there were a few metrics used to test for success. This allowed for 

the solution to be examined thoroughly. The first and most fundamental metric used was 

accuracy. Accuracy is the simplest and most straightforward way of judging a model’s 

effectiveness. It is simply a measure of the number of correct responses over the number of 

total responses. It is typically judged on a scale from 0 - 1.0, where 0 is a complete failure 

and 1.0 is a total success. 

Accuracy = 
CorrectResponses 

TotalResponses 

AUCROC was also used as a testing metric for the second dataset. Standing for Area 

Under Curve for Receiver Operating Characteristic, AUCROC is used to determine how 

well a classifier can determine between positives and negatives. When a binary prediction 

is made, all outcomes can be placed into one of four categories. True positives occur when 

both the prediction and actual value are positive. On the other hand, true negatives are 

denoted when the predicted valued and actual value are both negative. If a prediction is 

negative but the actual value is positive, it is known as a false negative. Lastly, a false posi- 

tive happens when the actual value is negative but the expected value is positive. AUCROC 

was chosen because it is known to be better at handling imbalanced datasets. 

The metrics of precision, recall, and F-score were also used to aid in the analysis for 

the second semester’s data. Precision is the ability of a model to identify true positives cor- 
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rectly. More exactly, precision checks the number of predictions that are actually correct, 

or positive, over all predicted positives. Recall, on the other hand, is used to determine how 

many true positives were found correctly. It can be calculated be taking the number of true 

positives over all actually positive values. F-score is a combination of precision and recall, 

and is used to get a quicker overview of both. These metrics were used as they also provide 

valuable insight into imbalanced datasets. They also offer an additional way to compare 

the results of various models. These metrics were only used for the second dataset. 

Precision = 
TruePositive 

TruePositive + FalsePositive 

 

Recall = 
TruePositive 

TruePositive + FalseNegative 

 
5.2 Results 

 

5.2.1 Machine learning results 

 
For the first dataset,  models were built with both personalized and aggregate data.  

A personalized model meant the predictions were built around a dataset from only one 

student. An aggregate model on the other hand takes in data from all of the volunteers and 

makes predictions based off of that. The second semester’s dataset only took an aggregate 

approach, for reasons explained below. 

Table 5.1 below shows the results of the personal models created during the first 

semester. At first glance, the results of the table would seem fantastic. Most of the re- 

sults are fairly strong and would mean the classifiers worked well. However, a look at each 

students score distribution reveals the critical flaw in this approach. Most students tend to 

have an extreme imbalance in their score distribution. This in turn causes problems for 

measuring accuracy, as models can have trouble with imbalanced datasets. This suspicion 

was reinforced when examining the aggregate model of the same dataset. 
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Table 5.1: First Semester Results for Personalized Models 

 

Student DT NB RF SVM 

S1 .49 .57 .48 .49 

S2 .84 .97 .86 .93 

S3 .78 .87 .83 .87 

S4 .93 .93 .93 N/A 

S5 .8 .73 .8 .63 

S6 1.0 1.0 1.0 N/A 

S7 .82 .72 .77 .48 

S8 .87 .99 .86 .97 

S9 .88 .66 .84 .63 

 
Table 5.2: First Semester Accuracy Results for Aggregate Models 

 

Aggregate DT NB RF SVM 

Accuracy .46 .48 .46 N/A 

 
As can be seen in Table 5.2, even the aggregate models have very poor results. Even 

compared to a base model’s accuracy of .36, the accuracy of the aggregate models do not 

even exceed 50%. This is a clear indicator that the dataset has critical and intrinsic issues. 

As a result, it was deemed that the first semester’s data could not be properly reported. It 

was determined that this data should instead be treated as a trial period, and used instead to 

ensure no bugs or errors would occur in the next experiment. 

For the second semester, only an aggregate approach was taken. This was done not 

only to combat some of the issues in the first dataset, but also because it was believed that 

that an aggregate approach would allow for easier feedback to the instructor. Additionally, 

models created from the second dataset used binary classifiers rather than multiclass ones. 
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Rather than trying to predict each and every score, the classifiers would instead predict if 

the attention was high (6-10) or low (1-5). Furthermore, 2 of the previous machine learning 

algorithms were replaced. Adaboost and XGB were used in place of NB and DT. It was 

found that NB and DT tended to have weaker results, and so more complex algorithms 

were selected in the hopes that better accuracy could be achieved. Table 5.3 below shows 

the best results of these models. 

Table 5.3: Second Semester Accuracy Results for Aggregate Models 

 

Aggregate RF SVM Adaboost XGB 

Accuracy .69 .73 .63 .77 

 

For the second semester, a peak accuracy of .77 was achieved by Extreme Gradient 

Boosting. On the other hand, the base model only achieved an average accuracy of .52. 

This is a good indicator that a machine learning model is much more useful than a simple 

base model. Perhaps just as importantly, it shows a marked difference from the results 

generated from the first semester. A proper and clean dataset allowed for better results to 

be produced. 

Table 5.4: Second Semester AUCROC Results for Aggregate Models 

 

Aggregate RF SVM Adaboost XGB 

AUCROC .61 .72 .64 .74 

 
The AUCROC as well as the precision, recall, and F score supports these findings. 

Tables 5.4 and 5.5 show the best results for each respective value. For AUCROC, XGB once 

again tended to have the best results. Accuracy measures the effectiveness of a classifier at a 

certain threshold, while AUCROC instead considers the effectiveness across all thresholds. 

This means that overall, XGB can be considered to be the strongest classifier of the 4 



47 
 

chosen. 
 

Table 5.5: Precision, Recall and F-Score for each Model 

 

Classifier Precision Recall F-Score 

Random Forest .72 .73 .63 

SVM .78 .975 .87 

Ada .72 .58 .64 

XGB .78 1.0 .88 

 

Once Extreme Gradient Boosting was identified as the best classifier out of the four, 

parameter tweaking was done to attempt to improve its results. These parameters included 

the learning objective, learning rate, and base score. The parameter that yielded the most 

difference was the learning rate. Learning rate refers to the extent of which the weights  

in a loss gradient function are adjusted. It allows for tuning of the model without needing 

to adjust any classes or features. However, manipulating the learning rate is not an action 

without fail. Selecting a learning rate that is too low can result in the gradient descent being 

slow, taking greater time to find the best accuracy. On the other hand, too high a learning 

rate can fail to find the best accuracy at all. The graph in Figure 5.1 below shows how the 

accuracy of the XGB classifier improved as the learning rate was decreased. The accuracy 

peaked at approximately 77%, with a learning rate of .01. Adjusting this parameter alone 

allowed for an accuracy increase of approximately 4 percent. 

 
5.2.2 Relevant features 

 
Feature importance was also calculated as part of this research. Feature importance 

is defined as the impact each feature had on the models’ predictions. Figure 5.2 shows a 

pie chart representing the relative importance of each feature. The feature importance was 
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Figure 5.1: Accuracy of XGB Model with Adjustments to Learning Parameter 

 

drawn from the XGB model. As this model had the best results, the features used to make 

it held greater significance As the figure indicates, timestamps were the most important 

feature by a decent margin, holding a little under 50% of the importance. This is in line 

with previous assumptions, as in a classroom setting one would expect many students to 

have the roughly the same affect at the same times. On the other hand, relevant applications 

were not as useful as initially thought, being only 9 percent of the total importance. This is 

most likely due to extreme variance in what each person was looking at, allowing for little 

correlation between a self-reported score and what they were looking at during that time. 

The gaze location was the second best feature, having an importance of .31. This 

illustrates that gaze features do hold a not-insignificant amount of importance, and do help 

greatly in predicting attention. While it might not be the best predictor on its own, it can 

help to supplement other features to produce a better model. The last feature was the 

application area which held an importance of 14%. While having more of an impact than 

the application type, it was not nearly as vital as the gaze location or timestamp. 
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Figure 5.2: Relative Feature Importance 
 

5.2.3 Other tests 

 
In both semesters, a large number of the responses received were marked as 0, or No 

Response. Additional models were created used the second semester’s data purely for test- 

ing an alternate theory. For these models, the category of 0/No Response, was combined 

into the 6-10/High Attention category. This was done under the assumption that students 

who responded 0 were in fact paying attention, and were responding as such merely to 

get the survey out of the way. It should be stressed that these models are inherently less 

reliable, as they are based off a premise that cannot be tested or is fully satisfactory. 

Table 5.6: Results of Alternate Hypothesis accepting 0 as High Attention 

 

Aggregate RF SVM Adaboost XGB 

Accuracy .73 .77 .74 .81 

 
As Table 5.6 shows, the accuracy does increase with this change. XGB remains the 
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strongest classifier for accuracy, achieving an accuracy of over 80%. As previously men- 

tioned, these results exist only for theoretical testing. Due to the initial assumption made 

when creating these models, the results cannot be claimed to be trustworthy as a predictor. 

However, this alternate result does open up possibilities for future research. For example, 

if one could identify the reasoning behind a No Response answer, then that could lead to 

more accurate predictions overall. 
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CHAPTER 6 

LIMITATIONS 

While this research did achieve the results it was aiming for, there were some con- 

siderable limitations that complicated the experiment. Perhaps the single greatest problem 

encountered is that there is no way to ensure the ground truth received is 100% accurate. 

It is entirely possible for students to give false reports out of factors such as boredom or 

malicious intent. As a result, there is not guaranteed way of knowing from the self-reported 

scores what a student’s real attention level is. As such, all values generated by students must 

be taken at face value. A possible solution would be to use BROMP, which is a protocol for 

collecting student engagement. BROMP typically works by having independent observers 

watch each participant, and note down their apparent affect at certain intervals. While this 

can offer an unbiased ground truth, it might also affect the classroom proceedings, and 

would be trickier to implement. 

The availability of student volunteers is also a limit. Only certain students will be 

naturally inclined to volunteer in the first place. For instance, it is unlikely that a student 

doing poorly in the class would be interested in this experiment. This in turn can cause a 

skew in the data received. In addition to the ground truths being received, features such  

as Relevant Applications would also be impacted. This issue can be best negated through 

increased number of trials. As the size of the dataset grows, the influence of each individual 

student would decrease. 

Unfortunately, the Hawthorne Effect cannot ever be mitigated.  This effect is used  

to describe the phenomena where a subject in an experiment will change their behavior, 

consciously or not, simply due to being aware of the experiment. Without knowledge of  

a student’s behavior outside of the experiment, it is virtually impossible to counter this 

problem. The nature of a non-intrusive approach means that this problem is as mitigated as 

much as possible. Additionally, the experiment setup can be adjusted to feel less personal 
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to the users. One such solution already implemented was an alteration to the question being 

asked for the self-report. By making the question less personal and more about the class, 

more reliable ground truths can be generated. 

Due to being set in an active college classroom, this experiment was also influenced 

by students outside of the research. It was found that students in other classes would  

often move or tamper with the eyetrackers. While the boltclamps prevented theft of the 

eyetrackers, there was no method to prevent them from being moved. These adjustments 

in turn can cause the eyetracker to return incorrect data or even cease operation. While 

the eyetrackers were constantly readjusted by the researchers to return them to their proper 

state as best as possible, this only acts as a temporary cure to the problem. Unfortunately, 

there does not appear to be a permanent solution to this issue due to the very nature of the 

setup. It is not possible to monitor and catch all students who tamper with the equipment. 
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CHAPTER 7 

CONCLUSION 

7.1 Conclusion 

 
The findings of this research do indeed show that eye gaze data is a useful feature for 

predicting attention. With a peak accuracy of approximately 77%, the machine learning 

models exceed a simple baseline model which can only produce an accuracy of 52%. This 

is fairly in-line with other current works, as the process of machine learning is not a simple 

one. While gaze data might not necessarily be the best predictor on its own, it is able to 

work with other features to achieve a reliable level of accuracy. An aggregate model was 

able to be developed that can easily be returned to and understood by an instructor. While 

the model may not be able to be created in real time, it stills offers an additional tool for 

any educator to use. Such a model allows them to look back on a class and determine when 

and how affect began to change drastically, in turn giving the professor the option to change 

future classes in response. 

 
7.2 Future Research Directions 

 
There are certainly many avenues that can be taken to further this research. Perhaps the 

most important, and straightforward, option to take is to add more features. For example, 

the ability to track and record the professor’s behavior would be an excellent feature to 

include. Such actions would certainly have a great, if not the largest, impact on a student’s 

attention. Additionally, software can be developed to to automatically notify the student 

if a sufficient amount of time is detected as ‘Not attentive’. While this would be a more 

intrusive approach than the current research, it could also lead to better learning gains for 

the involved students. Just as students learn from their instructors to gain more knowledge, 

so too can this research help educators to better understand and help their students. 



54 
 

 

REFERENCES 

 

 
 

[1] Nye, Benjamin, et al. Analyzing learner affect in a scenario-based intelligent tutor- 

ing system. International Conference on Artificial Intelligence in Education. Springer, 

Cham, 2017. 

[2] Munshi, Anabil, et al. Modeling Learners’ Cognitive and Affective States to Scaffold 

SRL in Open-Ended Learning Environments. Proceedings of the 26th Conference on 

User Modeling, Adaptation and Personalization. ACM, 2018. 

[3] Slykhuis, David A., Eric N. Wiebe, and Len A. Annetta. Eye-tracking students’ at- 

tention to PowerPoint photographs in a science education setting. Journal of Science 

Education and Technology 14.5-6 (2005): 509-520. 

[4] Conati, Cristina, and Christina Merten. Eye-tracking for user modeling in exploratory 

learning environments: An empirical evaluation. Knowledge-Based Systems 20.6 

(2007): 557-574. 

[5] Raca, Mirko, Lukasz Kidzinski, and Pierre Dillenbourg. Translating head motion into 

attention-towards processing of students body-language. Proceedings of the 8th Inter- 

national Conference on Educational Data Mining. No. CONF. 2015. 

[6] Bunce, Diane M., Elizabeth A. Flens, and Kelly Y. Neiles. How long can students 

pay attention in class? A study of student attention decline using clickers. Journal of 

Chemical Education 87.12 (2010): 1438-1443. 

[7] d Baker, Ryan SJ, et al. Towards Sensor-Free Affect Detection in Cognitive Tutor Al- 

gebra. International Educational Data Mining Society (2012). 



55 
 

[8] Lu, Owen HT, et al. Applying learning analytics for improving students engagement 

and learning outcomes in an MOOCs enabled collaborative programming course. In- 

teractive Learning Environments 25.2 (2017): 220-234. 

[9] Hutt, Stephen, et al. The Eyes Have It: Gaze-based Detection of Mind Wandering 

during Learning with an Intelligent Tutoring System. EDM. 2016. 

[10] Park, Babette, et al. Emotional design and positive emotions in multimedia learning: 

An eyetracking study on the use of anthropomorphisms. Computers Education 86 

(2015): 30-42. 

[11] D’Mello, Sidney, and Art Graesser. Automatic detection of learner’s affect from gross 

body language. Applied Artificial Intelligence 23.2 (2009): 123-150. 

[12] Harley, Jason M., et al. A multi-componential analysis of emotions during complex 

learning with an intelligent multi-agent system. Computers in Human Behavior 48 

(2015): 615-625. 

[13] Baker, Ryan SJd. Modeling and understanding students’ off-task behavior in intel- 

ligent tutoring systems. Proceedings of the SIGCHI conference on Human factors in 

computing systems. ACM, 2007. 

[14] Bixler, Robert, and Sidney D’Mello. Detecting boredom and engagement during writ- 

ing with keystroke analysis, task appraisals, and stable traits. Proceedings of the 2013 

international conference on Intelligent user interfaces. ACM, 2013. 

[15] Cocea, Mihaela, and Stephan Weibelzahl. Eliciting motivation knowledge from log 

files towards motivation diagnosis for Adaptive Systems. International Conference on 

User Modeling. Springer, Berlin, Heidelberg, 2007. 



56 
 

[16] Whitehill, Jacob, Marian Bartlett, and Javier Movellan. Automatic facial expression 

recognition for intelligent tutoring systems. 2008 IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition Workshops. IEEE, 2008. 

[17] Mcquiggan, Scott W., Bradford W. Mott, and James C. Lester. Modeling self-efficacy 

in intelligent tutoring systems: An inductive approach. User modeling and user- 

adapted interaction 18.1-2 (2008): 81-123. 

[18] Jaques, Natasha, et al. Predicting affect from gaze data during interaction with an 

intelligent tutoring system. International conference on intelligent tutoring systems. 

Springer, Cham, 2014. 

[19] Wang, Hua, Mark Chignell, and Mitsuru Ishizuka. Empathic tutoring software agents 

using real-time eye tracking. Proceedings of the 2006 symposium on Eye tracking 

research applications. ACM, 2006. 

[20] Bulger, Monica E., et al. Measuring learner engagement in computer-equipped col- 

lege classrooms. Journal of Educational Multimedia and Hypermedia 17.2 (2008): 

129-143. 

[21] Arroyo, Ivon, et al. Emotion sensors go to school. AIED. Vol. 200. 2009. 

 
[22] Szafir, Daniel, and Bilge Mutlu. Pay attention!: designing adaptive agents that mon- 

itor and improve user engagement. Proceedings of the SIGCHI conference on human 

factors in computing systems. ACM, 2012. 

[23] Uzzaman, Sarah, and Steve Joordens. The eyes know what you are thinking: eye move- 

ments as an objective measure of mind wandering. Consciousness and cognition 20.4 

(2011): 1882-1886. 



57 
 

[24] Carroll, Meredith, et al. Modeling trainee affective and cognitive state using low cost 

sensors. Proceedings of the Interservice/Industry Training, Simulation, and Education 

Conference (I/ITSEC). 2011. 

[25] Porta, Marco, Stefania Ricotti, and Calet Jimenez Perez. Emotional e-learning 

through eye tracking.”Proceedings of the 2012 IEEE Global Engineering Education 

Conference (EDUCON). IEEE, 2012. 

[26] Grafsgaard, Joseph, et al. Predicting learning and affect from multimodal data 

streams in task-oriented tutorial dialogue. Educational Data Mining 2014. 2014. 

[27] Busjahn, Teresa, et al. Eye tracking in computing education. Proceedings of the tenth 

annual conference on International computing education research. ACM, 2014. 

[28] Bixler, Robert, and Sidney DMello. Automatic gaze-based user-independent detection 

of mind wandering during computerized reading. User Modeling and User-Adapted 

Interaction 26.1 (2016): 33-68. 

[29] Afzal, Shazia, and Peter Robinson. Modelling affect in learning environments- 

motivation and methods. 2010 10th IEEE International Conference on Advanced 

Learning Technologies. IEEE, 2010. 

[30] Grafsgaard, Joseph, et al. Automatically recognizing facial expression: Predicting 

engagement and frustration. Educational Data Mining 2013. 2013. 

[31] Bosch, Nigel, et al. Automatic detection of learning-centered affective states in the 

wild. Proceedings of the 20th international conference on intelligent user interfaces. 

ACM, 2015. 

[32] Zhu, Ziwei, Sebastian Ober, and Roozbeh Jafari. Modeling and detecting student at- 



58 
 

tention and interest level using wearable computers. 2017 IEEE 14th International 

Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2017. 

[33] Sharma, Kshitij, Patrick Jermann, and Pierre Dillenbourg. How students learn using 

MOOCs: An eye-tracking insight. No. CONF. 2014. 

[34] Sharma, Kshitij, et al. A gaze-based learning analytics model: in-video visual feed- 

back to improve learner’s attention in MOOCs. Proceedings of the Sixth International 

Conference on Learning Analytics Knowledge. ACM, 2016. 

[35] Dillon, John, et al. Student affect during learning with a MOOC. Proceedings of the 

Sixth International Conference on Learning Analytics Knowledge. ACM, 2016. 

[36] Pham, Phuong, and Jingtao Wang. AttentiveLearner: improving mobile MOOC learn- 

ing via implicit heart rate tracking. International Conference on Artificial Intelligence 

in Education. Springer, Cham, 2015. 

[37] Guo, Philip J., Juho Kim, and Rob Rubin. How video production affects student en- 

gagement: An empirical study of MOOC videos Proceedings of the first ACM confer- 

ence on Learning@ scale conference. ACM, 2014. 

[38] Xiong, Yao, et al. Examining the relations among student motivation, engagement, 

and retention in a MOOC: A structural equation modeling approach. Global Educa- 

tion Review 2.3 (2015). 

[39] Rosengrant, David, et al. Following student gaze patterns in physical science lectures. 

AIP Conference Proceedings. Vol. 1413. No. 1. AIP, 2012. 

 
[40] Chen, ChihMing, JungYing Wang, and ChihMing Yu. Assessing the attention levels of 

students by using a novel attention aware system based on brainwave signals. British 

Journal of Educational Technology 48.2 (2017): 348-369. 



59 
 

[41] Dillon, John, et al. Student Emotion, Co-occurrence, and Dropout in a MOOC Con- 

text. EDM. 2016. 

[42] De Barba, P. G., Gregor E. Kennedy, and M. D. Ainley. The role of students’ moti- 

vation and participation in predicting performance in a MOOC. Journal of Computer 

Assisted Learning 32.3 (2016): 218-231. 

[43] Mills, Caitlin, et al. Automatic gaze-based detection of mind wandering during nar- 

rative film comprehension. EDM 16 (2016): 30-37. 

[44] McCambridge, Jim, John Witton, and Diana R. Elbourne. Systematic review of the 

Hawthorne effect: new concepts are needed to study research participation effects. 

Journal of clinical epidemiology 67.3 (2014): 267-277. 

[45] Azevedo, Roger, et al. MetaTutor: A MetaCognitive tool for enhancing self-regulated 

learning. 2009 AAAI Fall Symposium Series. 2009. 

[46] D’Mello, Sidney, et al. Gaze tutor: A gaze-reactive intelligent tutoring system. Inter- 

national Journal of human-computer studies 70.5 (2012): 377-398. 

[47] Zaletelj, Janez, and Andrej Koir. Predicting students attention in the classroom from 

Kinect facial and body features. EURASIP Journal on Image and Video Processing 

2017.1 (2017): 80. 

[48] Smallwood, Jonathan, Daniel J. Fishman, and Jonathan W. Schooler. Counting the 

cost of an absent mind: Mind wandering as an underrecognized influence on educa- 

tional performance. Psychonomic bulletin review 14.2 (2007): 230-236. 



60 

APPENDIX 

Purchase and Licensing 

The eyetracker model used for this research is a Tobii Eyetracker 4c. The device and 

information about the device can be located at 

https://gaming.tobii.com/product/tobii-eye-tracker-4c/. 

For research purposes, a license for the device must also be purchased. This license 

is necessary to retrieve eye-gaze data from the eye-tracking advice. Information on the 

license can be found at 

https://help.tobii.com/hc/en-us/articles/210251205-Can-I-use-a-Tobii-Eye-Tracker-for- 

research-purposes- 

Tobii Eyetracker Software Installation Process 

1. Download the Tobii Core Software. Software can be located at

https://gaming.tobii.com/getstarted/

2. The download will appear under the name ‘Tobii Eye Tracking Core v2.13.4.7864

x86’, with the version number dependent on the most current version. Once the

download has completed, click the file to run the installation process for the Tobii

Core Software.

3. Complete the installation process for the Tobii Core Software.

4. Plug in the Tobii Eyetracker into a USB port on the computer. The Tobii Core Soft- 

ware should automatically detect the new device and update drivers as necessary.

5. Download the Tobii Pro EyeTracker Manager. This software can be located at

https://www.tobiipro.com/product-listing/eye-tracker-manager/

http://www.tobiipro.com/product-listing/eye-tracker-manager/
http://www.tobiipro.com/product-listing/eye-tracker-manager/
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6. The download will appear under the name ‘Tobii.Pro.Eye.Tracker.Manager.Windows- 

AMD64-1.12.1’. Once the download has completed, click the file to run the installa- 

tion process for the Tobii Pro EyeTracker Manager. 

7. . Complete the installation process for the Tobii Pro EyeTracker Manager. Once the 

process is complete, click the Manager icon to open up the application. 

8. Through the EyeTracker Manager, attach the license to the connected Tobii Eye- 

tracker. 

9. The Eyetracker installation process is now complete. 
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