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CRAIG INTERPOLATION FOR NETWORKS OF
SENTENCES

H. JEROME KEISLER AND JEFFREY M. KEISLER

Abstract. The Craig Interpolation Theorem can be viewed as
saying that in first order logic, two agents who can only commu-
nicate in their common language can cooperate in building proofs.
We obtain generalizations of the Craig Interpolation Theorem for
finite sets of agents with the following properties. (1) The agents
are vertices of a directed graph. (2) The agents have knowledge
bases with overlapping signatures. (3) The agents can only commu-
nicate by sending to neighboring agents sentences that they know
and that are in the common language of the two agents.

1. Introduction

We may formulate the Craig Interpolation theorem in the following
way to describe a pair of agents who can cooperate in building proofs.1.

Fact 1.1. (Craig [10] (1957)) In first order logic, suppose we have
two signatures L(x), L(y) and corresponding knowledge bases K(x) ⊆
[L(y)], K(y) ⊆ [L(y)]. For any sentence D ∈ [L(y)] that is provable
from the combined knowledge base K(x) ∪K(y), there is a sentence C
in the common language [L(x) ∩ L(y)] such that C is provable from
K(x), and D is provable from K(y) and C.

In this paper we consider what happens when there are more than
two agents. Our setup is motivated by the example of an organization
with finitely many agents (perhaps individuals, departments, groups of
people, or programs) who are identified with the vertices of a directed
graph. The agents have different but overlapping signatures (or vo-
cabularies), and can only communicate in the restricted way described
below.

We assume that the directed graph has least one agent d, called a
decider, such that for every other agent x there is at least one path
from x to d. There are no edges from an agent to itself, but cycles
are allowed. Each agent x has a signature L(x) and a knowledge base

Date: February 10, 2012.
1Unexplained terms will be defined later in this paper
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2 H. JEROME KEISLER AND JEFFREY M. KEISLER

K(x) ⊆ [L(x)]. We say that a sentence D in a decider’s language [L(d)]
is provable if it is provable from the union of all the knowledge bases.

The agents can only communicate in the following restricted way:
For each directed edge (x, y) in the graph, agent x can report to agent
y a sentence that is in the common language of x and y and is provable
from x’s knowledge base and sentences that have been reported to x.
We say that the sentence D is report provable at a decider d if after
finitely many of these restricted communications, d can prove D from
its own knowledge base and sentences that have been reported to d. It
is clear that every report provable sentence is provable from the union.

By a pointed graph we will mean a directed graph with at least
one decider. Let us fix a pointed graph, and fix a signature for each
agent, but leave the knowledge bases unspecified. We will call this a
signature network S. When we also give each agent a knowledge
base, we obtain a knowledge base K over S. We say that a signature
network S is report complete if for every knowledge base over S and
every decider d, every sentence in d’s language that is provable is report
provable at d. So for a given signature network, report completeness is
a guarantee that for every knowledge base and decider, every provable
sentence is report provable. Report completeness is the central notion
in this paper.

Craig’s Theorem says that every signature network with just two
agents is report complete. For this reason, we view report completeness
as a natural generalization of Craig interpolation to a setting where we
have a network of sentences. Our title is meant to convey this circle of
ideas as briefly as possible.

The following examples illustrate some of the things that can happen.

Example 1.2. S is a signature network with exactly one decider d. K
is a knowledge base over S.
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{B ∨ C}
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{C ⇒ A}

{A⇒ D}

S K

It is easy to see that the sentence D is provable from the combined
knowledge bases of the four agents in K. But D is not report provable
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in K, so the signature network S is not report complete. The agent
x can’t report anything (except logically valid sentences) to y because
the symbol C is not in y’s signature. Similarly, x can’t anything to z,
y can’t report anything to d, and z can’t report anything to d.

Example 1.3. In this example we change S to R by adding the symbol
C to the upper two signatures, but keep the same knowledge bases.
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L(z) = {A,C}
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Now the sentence D is report provable. In fact, as we will see later,
for every knowledge base network over R, every provable sentence is
report provable, so R is report complete.

Agent x still can’t report anything to z. But x can report the sen-
tence B ∨ C to y, and z can report the sentence C ⇒ A to d. Then
y can prove the sentence A ∨ C and report it to d, and finally, d can
prove the sentence D.

Example 1.4. S is a signature network in which every agent is a
decider. K is a knowledge base over S.
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{A⇔ B} {B ⇔ C}

{¬(A⇔ C)}

S K

The reader can check that the false sentence ⊥ is provable in K, but
at each decider, ⊥ is not report provable in K. So at each decider, S
is not report complete.

Example 1.5. Change the signature network S in Example 1.4 to R
by replacing any one of the signatures by {A,B,C}. We will see that
R is report complete.
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An important property for a signature network is the Peak Prop-
erty, that for each set σ of symbols, the subgraph consisting of those
agents whose signature contains σ has a decider. We show in Theo-
rem 3.5 that the Peak Property is a necessary condition for a signature
network to be report complete. For a signature network on a tree, the
Peak Property is equivalent to the running intersection property in the
literature (e.g. see [2], [9], [11]), but these properties are different on
arbitrary signature networks. Each of the examples above has the Peak
Property.

Amir and McIlraith [2] generalized Craig’s Theorem to trees of agents.
Let us state their result in our setting. By a signature tree we mean
a signature network with the Peak Property whose graph is a directed
tree. Note that a directed tree has a unique decider.

Fact 1.6. ([2]) Every signature tree is report complete.

This gives a sufficient condition for report completeness. In the ter-
minology of [2], it says that the forward message-passing algorithm
is complete. An easy consequence of Fact 1.6 is that every signature
network that contains a signature tree with the same agents and sig-
natures is report complete. For instance, in Example 1.3, R contains
the signature tree obtained by removing the bottom edge, and thus
is report complete. Similarly, 1n Example 1.5, R contains a signature
tree and is report complete.

In Theorem 4.3 we obtain a converse to Fact 1.6: A pointed graph
has no weak cycles if and only if every signature network on the graph
that has the Peak Property is report complete.

We introduce two other conditions and prove that on every pointed
graph, these conditions are also necessary for report completeness.
These are the Twin Peaks Property (which implies the Peak Prop-
erty), and the Linked Chain Property.

The Twin Peaks Property is hard to state in general, but in the case
of a directed acyclic graph it is equivalent to the property that every
agent x with parents has a dominant parent– a parent whose signa-
ture contains every symbol that belongs to the signatures of x and some
parent of x. In Theorem 6.6 we show that for signature networks on a
directed acyclic graph, the Twin Peaks Property, report completeness,
and containing a signature tree are equivalent. For instance, the sig-
nature networks in Examples 1.2 and 1.3 have directed acyclic graphs.
The network in 1.3 has the Twin Peaks Property, but the network in
1.2 does not.

The simplest case of the Linked Chain Property says that for any
three disjoint sets of symbols, if each pair is within the signature of
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some agent, then so are all three. In Example 1.4, the graph has a
directed cycle; S has the Twin Peaks Property but does not have the
Linked Chain Property. But in Example 1.5, R does have the Linked
Chain Property.

Theorem 9.7 says that for signature networks on a connected graph,2

report completeness, having both the Peak Property and Linked Chain
Property, and containing a signature tree are equivalent. Its proof
uses two other results, Theorems 7.4 and 9.5. Theorem 7.4 shows that
every signature network is report complete at a decider whose signature
contains every symbol that occurs in the signature of more than one
agent. Theorem 9.5 is a decomposition result that is of interest in its
own right and may have other applications where one needs to break a
large network into smaller pieces.

Example 4.2 shows that there are signature networks that are report
complete but do not contain a signature tree. Example 8.4 shows that
there are signature networks that have both the Twin Peaks Property
and the Linked Chain Property but are still not report complete. In
the last section we will list some questions that remain open.

This work is related to but has a different focus than the paper [2]
of Amir and McIlraith. The aim of that paper is to develop partition-
based reasoning as a method for creating efficient algorithms for auto-
mated reasoning. They consider how signatures might be chosen with
that aim in mind, rather than being given in advance. For an arbitrary
graph, they give an algorithm that simultaneously removes edges and
enlarges signatures to form a signature tree. By contrast, our results
say when it is possible to cut a signature network down to a signature
tree by keeping the signatures the same and only removing edges.

This work is also related the area of peer-to-peer networks, where
again the main focus has been to find efficient algorithms for automated
reasoning in a decentralized setting. The paper Adjiman et. al. [1]
gives an algorithm and proves a completeness theorem for propositional
resolution proofs in peer-to-peer networks. In effect, that system allows
agents to avoid the Linked Chain Property by making queries that they
cannot prove. This leads to a very different completeness result that
requires only the Peak Property on an arbitrary connected graph.

Our aim is to determine when it is possible, as in the Craig Interpo-
lation case, to have report completeness where the signatures are given
in advance and the agents can only report sentences they know. This

2By a connected graph we mean a graph with a symmetric edge relation such
that any two vertices are connected by a path.
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is a natural problem from mathematical logic which has intrinsic inter-
est in its own right. There are also situations where one might expect
agents to act in this way. One example is a decentralized organization
where established departments report their findings to others and have
vocabularies that cannot easily be changed.

For surveys of Craig interpolation and its uses see van Bentham [5],
Feferman [14], McMillan [18], Renardel de Lavalette [21].

Prerequisites: We assume familiarity with the notions of sentence
and proof in first order logic with equality. For background see Ender-
ton [12], Chang and Keisler [8].

The notation K ` B means that the sentence B is provable from the
set of sentences K, and ` B means that B is provable. A signature (or
vocabulary) is a set L of constant, relation, or function symbols, and
the language of L is the set [L] of first order sentences built from L. A
knowledge base, or theory, in L is a subset of [L]. First order logic
is formulated so that the true sentence > and false sentence ⊥ belong
to [L] for every signature L. To avoid certain trivial exceptions, if there
are constant symbols we will also require that there is a distinguished
constant symbol 0 that can be used in every [L] (this is needed in
Definition 3.3). The symbols ⊥,>,=, 0 do not count as part of the
signatures. A set of sentences K is consistent if it is not the case that
K ` ⊥. We use B ⇒ D as an abbreviation for ¬B ∨ D. We will use
script capital letters for sets of sentences, and blackboard bold letters
for networks.

The only properties of first order logic that we use in this paper are:

• for each signature L, [L] is closed under the connectives ∧,∨,¬
and contains >,⊥;
• all propositional tautologies are provable;
• (Deduction) K ` B ⇒ D if and only if K ∪ {B} ` D;
• (Compactness) a set of sentences K is consistent if and only if

every finite subset of K is consistent;
• (Craig Interpolation) if B ∈ [L1], D ∈ [L2], and B ` D, then

there exists C ∈ [L1 ∩ L2] such that B ` C and C ` D.

Thus all of our results also hold for any other logic that has these
properties. Some examples of such logics are propositional logic, first
order logic without quantifiers, first order formulas (with free vari-
ables), many-sorted first order logic (e.g. Feferman [13]), and various
modal logics (e.g. Bilkova [6]).

For other logics, interpolation theorems have been obtained with re-
strictions. These include infinitary logic (Barwise and van Bentham
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[4]), intuitionistic logic (Gabbay [15]), and logic with probability quan-
tifiers (Hoover [16]). There are many interpolation results for fragments
of first order logic (for example Carbone [7], Lyndon [17], Otto [19],
Popescu et. al. [20], Rodenberg [22]). We leave open the problem of
generalizing all these results to networks of sentences.

2. Report Completeness

In this section we formally define the notions of signature network
and report completeness. We first review some terminology about di-
rected graphs.

By a (simple) directed graph (V,E) we mean a non-empty finite
set V of vertices, and a set E ⊆ V × V of edges (or arcs) (x, y) such
that x 6= y. (We do not allow more than one edge from a vertex x
to a vertex y, we do not allow edges from a vertex to itself, and we
distinguish between the pair (x, y) and the pair (y, x).) A (directed)
path of length n from x to y is a sequence (x0, . . . , xn) of vertices
such that x0 = x, xn = y, and for each i < n, (xi, xi+1) ∈ E. (In
particular, for each vertex x, (x) is a path of length 0 from x to itself.)
A directed cycle of length n is a sequence (x0, . . . , xn−1, xn) of vertices
such that x0, . . . , xn−1 is a directed path, xn = x0, and (xn−1, xn) ∈ E.
A directed acyclic graph is a directed graph with no directed cycles.

Definition 2.1. In a directed graph, by a decider we mean a vertex d
such that for every other vertex x, there is at least one path from x to
d. By a pointed graph we mean a directed graph (V,E) with at least
one decider.

Lemma 2.2. For each directed graph (V,E), the following are equiva-
lent:

(i) (V,E) is pointed;
(ii) For every pair of vertices x, y ∈ V there exists a vertex z ∈ V , a

path form x to z, and a path from y to z.

Proof. It is clear that (i) implies (ii). Assume (ii), and let V = {x0, . . . , xn}.
Let y0 = x0 and inductively take ym+1 to be a vertex such that there
is a path from ym to ym+1 and a path from xm+1 to ym+1. Then yn is
a decider for (V,E), so (V,E) is pointed. �

Remark 2.3. Let (V,E) be a directed graph and let x ∈ V . Let (U, F )
be the graph

U = {y ∈ V : there is a path from y to x}, F = E ∩ U × U.
Then (U, F ) is a pointed graph and x is a decider for (U, F ). If x is
already a decider for (V,E) then U = V .
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Hereafter we will always assume that (V,E) is a pointed graph, and
that d is a decider for (V,E). This will cause no loss in generality and
will allow us to avoid exceptional cases in the statements of results.

A source is a vertex x such that there are no edges (y, x) ∈ E, and
a sink is a vertex x such that there are no edges (x, y) ∈ E. Note that
a pointed graph has at most one sink, and if there is a sink then it is
the unique decider. In particular, a pointed directed acyclic graph has
a unique sink and decider d. On the other hand, if there are no sinks
then there must be more than one decider, and every decider must be
on a directed cycle.

By a tree we will mean a pointed directed acyclic graph such that
for every vertex x 6= d there is a unique edge (x, y) ∈ E. It follows that
for every vertex x there is a unique path from x to d.

We will now attach signatures and knowledge bases to the vertices
of pointed graphs. From now on we will call the vertices agents.

Definition 2.4. A signature network on (V,E) is an object

S = (V,E, L(·))
where (V,E) is a pointed directed graph with a labeling L(·) that assigns
a signature L(x) to each agent x ∈ V . We let L(V ) =

⋃
x∈V L(x), and

call the set L(V ) the combined signature.
Given a signature network S = (V,E, L(·)), a knowledge base

(over S) is an object

K = (V,E, L(·),K(·))
where K(·) is a labeling that assigns a knowledge base K(x) ⊆ [L(x)] to
each agent x ∈ V . For each set U ⊆ V we write K(U) =

⋃
x∈U K(x),

and we call the set K(V ) the combined knowledge base.

Note that in the above definition, each symbol that occurs in a sen-
tence of K(x) must belong to L(x), but we allow the possibility that
L(x) also has additional symbols.

We now formalize the notion of report provability.

Definition 2.5. Let

K = (V,E, L(·),K(·))
be a knowledge base over a signature network S. A sentence C is 0-
reportable in K along an edge (x, y) if

C ∈ [L(x) ∩ L(y)] and K(x) ` C.
C is (n+ 1)-reportable in K along an edge (x, y) if

C ∈ [L(x) ∩ L(y)] and K(x) ∪ R ` C,
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where R is a set of sentences each of which is n-reportable along some
edge (z, a).

The word “reportable” means n-reportable for some n”, and “re-
portable to y” means “reportable along (x, y) for some x”.

Given a decider d for S, a sentence D ∈ [L(d)] is report provable
in K at d if D is provable from K(d) and a set R of sentences each of
which is reportable to d in K.

Verbally, at each stage, for each edge (x, y), agent x can report to
agent y a sentence C in their common language, where C is provable
from the knowledge base K(x) and sentences reported to x at earlier
stages. Finally, D is provable from the knowledge base K(d) and sen-
tences reported to d. Thus the sentence D is established using only
proofs within the languages [L(x)] of single agents x, and communica-
tions along edges (x, y) in common language [L(x) ∩ L(y)].

Example 1.2 give a sentence that is provable but not report provable.
Let us check that report provability implies provability.

Lemma 2.6. Suppose d is a decider and a sentence D ∈ [L(d)] is
report provable in a knowledge base K on a signature network S. Then
D is provable from the combined knowledge base, K(V ) ` D.

Proof. The following can be proved by induction on n:
(1) For every agent y, every sentence that is n-reportable to y is

provable from K(U), where U is the set of all agents z such that there
is a path from z to y.

Then for some n, D is provable from K(d) and a set of sentences in
K(V ). �

Definition 2.7. Let S be a signature network and d a decider in S.
A knowledge base on a signature network is report complete at d if
every sentence D ∈ [L(d)] that is provable from the combined knowledge
base K(V ) is report provable in K at d. A signature network S is
report complete at d if every knowledge base on S is report complete
at d. S is report complete if S is report complete at every decider
d.

The Craig Interpolation Theorem shows that every signature net-
work on a pointed graph with two agents is report complete. Here
is an easy converse result showing that on every pointed graph with
more than two agents, there is a signature network that is not report
complete.

Theorem 2.8. Let (V,E) be a pointed graph. The following are equiv-
alent:
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(i) Every signature network on (V,E) is report complete.
(ii) V has cardinality ≤ 2.

Proof. Craig’s Theorem (Fact 1.1) gives (ii) ⇒ (i).
For (i) ⇒ (ii), consider a signature network S with at least three

agents x, y, z with

L(x) = {A,B}, K(x) = {A⇒ B},
L(y) = {B,C}, K(y) = {B ⇒ C},
L(z) = {C,A}, K(z) = {¬[C ⇒ A]},

and with all other signatures and knowledge bases empty. The false
sentence ⊥ is provable from the combined knowledge base K(V ). How-
ever, every sentence that is reportable to an agent is equivalent to the
true sentence >. Therefore ⊥ is nowhere report provable, and S is not
report complete. �

The next lemma gives a slightly simpler equivalent formulation of
report completeness.

Definition 2.9. A knowledge base K on a signature network is report
inconsistent at a decider d if the sentence ⊥ is report provable in K
at d.

Lemma 2.10. For each signature network S, and each decider d in S,
the following are equivalent:

(i) S is report complete;
(ii) For every knowledge base K over S such that the combined

knowledge base K(V ) is inconsistent, K is report inconsistent
at d.

Proof. Given a knowledge base K over S and a sentence D ∈ [L(d)], let
K′ be the new knowledge base over S formed by adding the sentence
¬D to K(d). Note that D is provable from K(V ) if and only if K′(V )
is inconsistent, and D is report provable in K at d if and only if K′ is
report inconsistent at d. �

We observe that if condition (ii) in Lemma 2.10 holds for some de-
cider, it holds for every decider. So we have:

Corollary 2.11. A signature network is report complete at some de-
cider if and only if it is report complete at every decider.
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3. The Peak Property

In this section we formally define the Peak Property, and show every
report complete signature network has the Peak Property.

Definition 3.1. We call a subset P of V a peak if either P is empty,
or P is non-empty and the subgraph (P,E∩(V ×V )) is a pointed graph.

By Lemma 2.2, P is a peak if and only if for each x, y ∈ P there
exists z ∈ P such that P contains a path from x to z and a path from
y to z.

For example every singleton {x} in V is a peak, every path from an
agent x to an agent y is a peak, and every cycle is a peak. In general,
a peak P ⊆ V looks like one of the peaks in a mountain range. In the
following diagram, the set of agents represented by black circles is a
peak.
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Definition 3.2. Let

S = (V,E, L(·))

be a signature network. For each finite set σ of symbols in the combined
signature L(V ), let V [σ] = {x ∈ V : σ ⊆ L(x)} be the set of agents
x ∈ V whose signature contains σ.

We say that S has the Peak Property if V [σ] is a peak for each σ.

Note that by Lemma 2.2, S has the Peak Property if and only if for
every pair of agents x, y there exists an agent z such that V [L(x)∩L(y)]
contains a path from x to z and a path from y to z.

As we mentioned in the Introduction, on a tree the Peak Property is
equivalent to the running intersection property. The next figure gives a
conceptual picture of a signature network with the Peak Property. The
triangles represent sets of the form V [σ] where σ is a set of symbols.
Each V [σ] looks like a mountain peak.
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The Peak Property
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We now introduce some special sentences that will be useful in prov-
ing necessary conditions for report completeness.

Definition 3.3. For each symbol S, let Ŝ be a sentence whose only

non-logical symbol is S (i.e. Ŝ ∈ [{S}]) such that both Ŝ and ¬Ŝ are
consistent.

For every finite non-empty set σ of symbols, Let Ev(σ) be the sen-

tence that says that the number of S ∈ σ such that Ŝ holds is even.

For example, if S is a binary relation symbol, we can take Ŝ to be

∀xS(x, x). If S is the constant symbol c, we can take Ŝ to be c = 0.
This is the place where we need the convention that if there are constant
symbols, then the distinguished constant 0 belongs to every signature.

Lemma 3.4. Let σ be a finite non-empty set of symbols, and let A be
a sentence in which at least one symbol S ∈ σ does not occur. If either
Ev(σ) ` A or (¬Ev(σ)) ` A, then ` A.

Proof. Suppose S ∈ σ but S does not occur in A. Also suppose that not
` A. Then Ev(σ) is not provable from ¬A, because any model of ¬A in
which Ev(σ) holds can be converted to a model of ¬A in which Ev(σ)
fails by changing the interpretation of S and leaving everything else
alone. Therefore A is not provable from ¬Ev(σ). A similar argument
shows that A is not provable from Ev(σ). �

The next theorem shows that the Peak Property is necessary for
report completeness.

Theorem 3.5. Every signature network that is report complete has the
Peak Property.

Proof. Let S be a signature network that does not have the Peak Prop-
erty. Then there is a finite set σ of symbols and two agents x, y such
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that V [σ] contains x and y but there is no agent z such that V [σ]
contains a path from x to z and a path from y to z.

Now let K be the knowledge base over S such that

K(x) = {Ev(σ)}, K(y) = {¬Ev(σ)},

and K(z) = {>} for every other agent z. Then the sentence ⊥ is
provable from K(V ) and belongs to [L(d)]. Let U(x) be the set of all
agents z ∈ V [σ] such that V [σ] contains a path from x to z, and let
U(y) be the corresponding set for y. Then U(x) ∩ U(y) = ∅.

Using Lemma 3.4, one can see by induction that for each n, each
agent z, and each sentence C, if C is n-reportable to z then either:

• ` C;
• each symbol in σ occurs in C, Ev(σ) ` C, and z ∈ U(x);
• or each symbol in σ occurs in C, (¬Ev(σ)) ` C, and z ∈ U(y).

In all cases, the false sentence ⊥ is never reportable to an agent. There-
fore ⊥ is not report provable in K. �

Example 1.3 gives a report complete signature network with the Peak
Property. Example 1.2 gives a signature network that has the Peak
Property but is not report complete. So the Peak Property is not
sufficient for report completeness. The following two examples are
signature networks that do not have the Peak Property, and hence
by Theorem 3.5, are not report complete.

Example 3.6. (Peak Property fails, S is not report complete).
The directed edges and signatures are as shown:

{B,C} −→ {B,D} ←− {C,D}.

The Peak Property fails because the set V [{C}] is not a peak.

Example 3.7. (Peak Property fails, S is not report complete).
The directed edges and signatures are as shown:

{B,C} −→ {C,D} −→ {B,D}.

The Peak Property fails because the set V [{B}] is not a peak.

Theorem 3.5 shows that if the Peak Property fails for a signature
network S, then S is not report complete, so there exists a knowledge
base over S that is not report complete. However, for every signature
network S there also exist knowledge bases over S that are report
complete. A trivial example is the knowledge base where every agent
has knowledge base {>}. Here is another example.
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Example 3.8. (Peak Property fails, K is report complete).
The directed graph and signatures are the same as in Example 3.6,

and the knowledge bases are:

{C ⇒ B} −→ {B ∨D} ←− {C ⇒ D}.
As before, V [{C}] is not a peak. But any sentence in the language of
{B,D} that is provable from K(V ) is already provable from B ∨D, so
this knowledge base is report complete.

4. Signature Trees

By a signature tree we will mean a signature network with the
Peak Property that is on a tree. It is easily seen that in a tree (V,E),
the intersection of two peaks is again a peak. It follows that on a tree,
the Peak Property holds if and only if V [σ] is a peak for every singleton
σ.

In the Introduction we stated the following result of [2], which is the
starting point for this work:

Fact 1.6 (restated). ([2]) Every signature tree is report complete.

For the convenience of the reader, and because the terminology in
the paper [2] is quite different from ours, we give a proof of this result
in the Appendix.

As in the Introduction, we say that a signature network S contains
a signature network T if S and T have the same agents and signatures,
and the directed graph of T can be obtained from the directed graph of
S by removing edges. Fact 1.6 immediately gives a sufficient condition
for any signature network to be report complete.

Corollary 4.1. If S is a signature network and S contains a signature
tree T, then S is report complete.

Proof. Let K be a knowledge base over S, and H be the knowledge
base over T obtained by removing edges and leaving everything else
unchanged. By Fact 1.6, T is report complete. It is clear that for every
agent x, every sentence reportable to x in H is also reportable to x in
K, and it follows that S is also report complete. �

Intuitively, a signature network S contains a signature tree T with
decider d if there is a way of assigning to each agent x 6= d an “immedi-
ate supervisor” s(x) such that (x, s(x)) ∈ E and, for every knowledge
base K over S, every provable sentence can be proved by d from its
knowledge base and sentences reportable to d in K when agents can
only report sentences to their immediate supervisors.
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The following example shows that the converse of Corollary 4.1 fails;
there are report complete signature networks that do not contain a
signature tree.

Convention: Throughout this paper, plain lines in a figure will always
indicate edges in both directions.

Example 4.2. A universal tree-blocker: This signature network S is
report complete, and every agent is a decider, but S does not contain
a signature tree.

6 6

e e e e e

e e e e

{A} {A} ∅ {B} {B}

{A} ∅ ∅ {B}

Suppose R is any report complete signature network in which the
symbols A,B do not occur. If we connect the left half of S to one agent
in R and the right half of S to another, the new signature network will
still be report complete but will not contain a signature tree.

The next theorem improves Fact 1.6 by showing exactly which pointed
graphs (V,E) satisfy that condition that every signature network on
(V,E) with the Peak Property is report complete.

By a weak cycle in a pointed graph (V,E) we mean a finite se-
quence of agents that can be made into a directed cycle of length ≥ 3
by reversing the direction of some of the edges. Formally, a weak cy-
cle is a sequence of agents (x0, . . . , xn) such that n ≥ 3, x0, . . . , xn−1
are distinct, xn = x0, and for each j < n, at least one of the pairs
(xj, xj+1), (xj+1, xj) is an edge.

Theorem 4.3. For each pointed graph (V,E), the following are equiv-
alent:

(i) Every signature network on (V,E) with the Peak Property is re-
port complete.

(ii) Every signature network on (V,E) with the Peak Property con-
tains a signature tree.

(iii) (V,E) has no weak cycles.

Proof. Assume (iii). Let d be a decider in (V,E). Then for each x ∈ V ,
there is a unique path from x to d. Let F be the set of all edges
(x, y) ∈ E such that y is on the unique path from x to d. Then
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(V, F ) is a tree. Moreover, for every signature network S over (V,E),
S contains the signature network T obtained by replacing E by F . One
can easily see that every peak in S is a peak in T. So if S has the Peak
Property, then T has the Peak Property, and hence T is a signature
tree and (ii) holds. (ii) implies (i) by Corollary 4.1.

Now suppose (iii) fails, so (V,E) is a pointed graph with a weak cycle
(x0, . . . , xn). Let S be the signature network over (V,E) with L(xi) =
{Si, Si−1} for 1 ≤ i ≤ n, L(x0) = {S0, Sn}, and with all other agents
having the empty signature. Then S has the Peak Property. However,
S is not report complete, because if K is the knowledge base with
K(xi) = {Ev(Si, Si−1)} for 1 ≤ i ≤ n, and K(x0) = {¬Ev(S0, Sn)},
then K(V ) is inconsistent but K is report consistent. Therefore (i)
fails, so (i) implies (iii). �

5. Directed Acyclic Graphs

In this section we give a necessary and sufficient condition for report
completeness on a directed acyclic graph. We show that a signature
network on a directed acyclic graph is report complete if and only if it
has the Peak Property and every agent with parents has a dominant
parent, and also if and only if it contains a signature tree.

We first make some easy observations. For each edge (x, y) in a
graph, we will say that y is a parent of x, and that x is a child of y.
Then x is a sink if and only if x has no parents, and x is a source if
and only if x has no children.

Suppose (V,E) is a pointed directed acyclic graph. Recall that (V,E)
has a unique sink that is also the unique decider. So the Decider d has
no parents. (V,E) has at least one source. A directed acyclic graph
(V,E) is a tree if and only if each agent x 6= d has exactly one parent. If
P is a peak in a pointed directed acyclic graph, then P has an element
x such that for every y ∈ P , P contains a path from y to x.

Definition 5.1. Let S be a signature network. We say that an agent
y is a dominant parent of an agent x if y is a parent of x such that

L(x) ∩ L(y) ⊇ L(x) ∩ L(z)

for every other parent z of x. We say that S has dominant parents
if every agent x with parents has a dominant parent.

If an agent has only one parent, then that parent is trivially a domi-
nant parent. Therefore every signature tree has dominant parents. But
an agent with more than one parent may or may not have a dominant
parent. Example 1.2 gives signature a network on a directed acyclic
graph that has the Peak Property, but does not have dominant parents.
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Example 1.3 has the Peak Property and has dominant parents. Here
are two more examples.

Example 5.2. Both R and S are signature networks on a directed
acyclic graph. R has the Peak Property but the lower left agent lacks
a dominant parent. S has the Peak and has dominant parents. R is
not report complete, and S is report complete.
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Theorem 5.3. Let S be a signature network on a directed acyclic
graph. The following are equivalent:

(i) S is report complete.
(ii) S has the Peak Property and has dominant parents.
(iii) S contains a signature tree T.

To prove that (ii) implies (iii) we will show that when (ii) holds, the
following algorithm will produce a signature tree T contained in S.

Algorithm 5.4. GET.TREE.1(S):

• List the edges,

E = 〈(x1, y1), . . . , (xn, yn)〉.
• For each k ≤ n, if yk is a dominant parent of xk and there is no

integer j < k such that xj = xk and the edge (xj, yj) is green,
then color the edge (xk, yk) green, and otherwise color the edge
(xk, yk) red.
• Output the signature tree T = (V, F, L(·)) where F is the set of

all green edges.

Proof of Theorem 5.3. Let d be the unique decider in (V,E). By Fact
1.6 and Corollary 4.1, (iii) implies (i).

We now assume (ii) fails and prove that (i) fails. By Theorem 3.5,
S has the Peak Property. Since (ii) fails, there is an agent z 6= d
that does not have a dominant parent. Then z has a parent x such
that σ = L(x) ∩ L(z) is maximal among parents of z. But x is not a
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dominant parent of z, so z has another parent y such that L(x) does
not contain τ = L(y) ∩ L(z). Since σ is maximal, there is no parent u
of z such that (σ ∪ τ) ⊆ L(u). Since (V,E) has no cycles, there is no
directed path from x to z, and no directed path from y to z.

Let K be the knowledge base over S such that

K(x) = {Ev(σ)}, K(y) = {Ev(τ)}, K(z) = {¬Ev(σ) ∨ ¬Ev(τ)},

and all the other knowledge bases are empty. We note that K(V ) ` ⊥.
We will show that ⊥ is not report provable at d in K, so that K is not
report complete at d.

It is clear that Ev(σ) ∧ Ev(τ) is consistent.

Claim. For each n ≥ 0, whenever a sentence B is n-reportable to
an agent v in K, we must have Ev(σ) ∧ Ev(τ) ` B, and either

• ` B, or
• there is a path from x to v, or
• there is a path from y to v.

Proof of Claim: We argue by induction on n.
n = 0: Suppose B is 0-reportable along an edge (u, v) in K. Then

K(u) ` B. If u /∈ {x, y, z} then K = {>}, so ` B. If u = z, then
¬Ev(σ) ∨ ¬Ev(τ) ` B. But v is a parent of z, so there must be a
symbol in S ∈ σ ∪ τ that does not belong to L(v). Say S ∈ σ. Then
¬Ev(σ) ` B and S does not occur in B, so by Lemma 3.4 we again
have ` B. If u = x, then (x, v) is a path from x to v, and Ev(σ) ` B,
so Ev(σ) ∧ Ev(τ) ` B. The case u = y is similar.

Now suppose that n > 0 and the Claim holds for n−1. Also suppose
B is n-reportable along an edge (u, v). Then B ∈ [L(u) ∩ L(v)], and
there is a set R of sentences such that each A ∈ R is n−1-reportable to
u and K(u)∪R ` B. By the Claim for n−1, we have Ev(σ)∧Ev(τ) ` A
for each A ∈ R, and hence

K(u) ∪ {Ev(σ) ∧ Ev(τ)} ` B.

Assume first that there is no path from either x or y to u. Using
the Claim for n − 1, we have ` A for each A ∈ R, so K(u) ` B and
hence B is 0-reportable along (u, v). The Claim for n = 0 now gives
the required conditions.

Now assume that there is a path from x to u. Then there is a path
from x to v. Since (V,E) is acyclic, we have u 6= z, so Ev(σ)∧Ev(τ) `∧

K(u). Therefore Ev(σ) ∧ Ev(τ) ` B.
Similarly, if there is a path from y to u, then there is a path from y

to v and Ev(σ) ∧ Ev(τ) ` B.
This completes the induction, and the Claim is proved.
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By the Claim with v = d, any sentence that is reportable to d in
K must be provable from Ev(σ) ∧ Ev(τ). Since z has parents, d 6= z.
Therefore

∧
K(d) is also provable from Ev(σ) ∧ Ev(τ). Hence any

sentence that is report provable at d is provable from Ev(σ) ∧ Ev(τ).
But Ev(σ)∧Ev(τ) is consistent, so ⊥ is not report provable at d in K.
This completes the proof that if (ii) fails then (i) fails.

Finally, we assume (ii) and prove (iii). We show that GET.TREE.1 (S)
outputs a signature tree contained in S. By Lemma 6.5, for every agent
x 6= d there is a first edge (x, y) such that y is a dominant parent of x.
Put p(x) = y. Let

T = (V, F, L(·))
where F is the set of edges

F = {(x, p(x)) : x 6= d}.

Then F ⊆ E, and hence S contains T. Each agent x 6= d has a
unique parent in (V, F ), so (V, F ) is a tree. Let S be a symbol in
L(V ) and write V [S] for V {S}]. Let x, z ∈ V [S] and x 6= z. Then
V [S] contains an agent u, a path from x to u in (V,E), and a path
from z to u in (V,E). Hence V [S] contains at least one parent of x in
(V,E). Therefore V [S] contains the first dominant parent p(x) of x,
and (x, p(x)) ∈ F . It follows that V [S] contains the path (x1, . . . , xn)
in (V, F ) where x1 = x, xn = u, and xi+1 = p(xi) for each i < n.
Similarly, V [S] contains a path from z to u in (V, F ). This shows that
V [S] is a peak in T, so T has the Peak Property. Thus (ii) implies
(iii). �

As a by-product of the proof of Theorem 5.3, we see that for directed
acyclic graphs, report completeness for first order logic is equivalent to
report completeness for propositional logic. To make this precise, we
say that a signature network S′ in propositional logic is a propo-
sitional copy of a signature network S in first order logic if S′ is
obtained from S by replacing each symbol in L(V ) by a propositional
letter in a one-to-one fashion. (Recall that the symbols in L(V ) may
be constant, relation, or function symbols, and the special symbols =
and 0 do not belong to L(V )).

Corollary 5.5. Let S be a signature network over a directed acyclic
graph, and let S′ be a propositional copy of S. Then S′ is report com-
plete if and only if S is report complete.

Proof. It is clear that S′ has the Peak Property if and only if S does,
and that S′ has dominant parents if and only if S does. The proof of
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Theorem 5.3 works for propositional logic as well as first order logic.
So S′ is report complete if and only if S is report complete. �

6. The Twin Peaks Property

In this section we introduce the Twin Peaks Property. On a directed
acyclic graph, it is equivalent to having dominant parents and the Peak
Property. But it is different and better behaved on signature networks
with cycles. The property of having dominant parents behaves badly
on signature networks with cycles, even when the Peak Property holds.

The following examples shows that for arbitrary signature networks,
or even for signature networks with the Peak Property and no cycles of
length greater than two, having dominant parents is neither necessary
nor sufficient for report completeness.

Example 6.1. The signature network

R: {B} {A,B} - {A}
contains the signature tree

S: {B} - {A,B} - {A},
so R is report complete. R does not have dominant parents, because
the middle agent lacks a dominant parent. Note that R has the Peak
Property, and has just one cycle of length two.

Example 6.2. The signature network below has the Peak Property
and has dominant parents. Like the signature network R in Example
5.2, it is not report complete. Note that the graph has a cycle of length
two.
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We say that a property is preserved under adding edges if when-
ever S has the property and S is contained in R, then R also has the
property. Intuitively, a property is preserved under adding edges if it
cannot be destroyed by adding additional communication links. It is
easy to see that report completeness is preserved under adding edges.
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So is the property of d being a decider, the Peak Property, and the
property of containing a signature tree.

Example 6.1 shows that the property of having dominant parents is
not preserved under adding edges, even in the presence of the Peak
Property. ( S has dominant parents, but R does not.)

We now introduce the Twin Peaks Property. It corrects the defects
in the property of having dominant parents, but is not as easy to under-
stand. This is because having dominant parents only involves agents
and their parents, while the Twin Peaks Property involves paths.

Definition 6.3. A signature network S has the Twin Peaks Prop-
erty if or every two sets of symbols σ, τ and all agents x ∈ V [σ], y ∈
V [τ ], z ∈ V [σ ∪ τ ], there is an agent u ∈ V [σ ∪ τ ] such that:

• V [σ ∪ τ ] contains a path from z to u;
• either V [σ] contains a path from x to u, or V [τ ] contains a path

from y to u.

By taking σ = τ and x = y, we see at once from Lemma 2.2 that
every signature network with the Twin Peaks Property has the Peak
Property. It is easy to see that the Twin Peaks Property is preserved
under adding edges. The following picture gives an intuitive view of
the Twin Peaks Property. The solid line is a path in V [σ ∪ τ ], and at
least one of the dotted lines is a path in V [σ] or V [τ ].
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The signature network in Example 6.1 has the Twin Peaks Property
but, as we have seen, does not have dominant parents. The signa-
ture network in Example 6.2 has the Peak Property and has dominant
parents but does not have the Twin Peaks Property.

We now show that the Twin Peaks Property is necessary for report
completeness. The proof is similar to the proof of (i)⇒ (ii) in Theorem
5.3.
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Theorem 6.4. Every signature network that is report complete has the
Twin Peaks Property.

Proof. Let S be a report complete signature network. By Theorem 3.5,
S has the Peak Property.

Assume that S does not have the Twin Peaks Property. Then there
are sets of symbols σ, τ and agents x ∈ V [σ], y ∈ V [τ ], z ∈ V [σ∪τ ] such
that there is no path from x to an agent v ∈ V [σ ∪ τ ] that is entirely
within V [σ], and also no path from y to an agent t ∈ V [σ ∪ τ ] that is
entirely within V [τ ]. By the Peak Property, σ 6= σ ∪ τ and τ 6= σ ∪ τ .
Thus neither σ ⊇ τ nor τ ⊇ σ.

As in Theorem 5.3, we let K be the knowledge base over S such that

K(x) = {Ev(σ)}, K(y) = {Ev(τ)}, K(z) = {¬Ev(σ) ∨ ¬Ev(τ)},

and all the other knowledge bases are empty. We note that K(V ) ` ⊥.
We will show that ⊥ is not report provable at d, contradicting the fact
that S is report complete. This will show that S does have the Twin
Peaks Property after all.

Claim. Suppose n ≥ 0, v ∈ V , and B is a finite conjunction of
sentences that are n-reportable to v in K. Then either ` B, or exactly
one of the following holds;

(1) K(z) ` B and V [σ ∪ τ ] contains a path from z to v;
(2) K(x) ` B and V [σ] contains a path from x to v;
(3) K(y) ` B and V [τ ] contains a path from y to v.

Proof of Claim: If any two of conditions 1.–3. hold, then v ∈
V [σ∪ τ ] and either V [σ] contains a path from x to v or V [τ ] contains a
path from y to v. By the Peak Property, there is an agent w such that
V [σ∪ τ ] contains a path from v to w and a path from z to w. But then
either V [σ] contains a path from x to w or V [τ ] contains a path from
y to w, contrary to hypothesis. Therefore in all cases, at most one of
the conditions 1.–3. can hold. So it suffices to prove that when B is
a single sentence n-reportable to v in K, either ` B or at least one of
the conditions 1.–3. holds. We now argue by induction on n.
n = 0: Suppose B is 0-reportable along an edge (u, v) in K. Then

K(u) ` B. If u /∈ {x, y, z} then K = {>}, so ` B. If u = z, then
¬Ev(σ) ` B and ¬Ev(τ) ` B. Hence by Lemma 3.4, either ` B, or
every symbol in σ ∪ τ occurs in B, so (z, v) is a path in V [σ ∪ τ ] and
1. holds. If u = x, then Ev(σ) ` B, so by Lemma 3.4, either ` B, or
(x, v) is a path in V [σ] and 2. holds. The case u = y is similar.

Now suppose that n > 0 and the Claim holds for n−1. Also suppose
B is n-reportable along an edge (u, v) in K. Then B ∈ [L(u) ∩ L(v)],
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and there is a finite conjunction A of sentences that are n−1-reportable
to u in K such that K(u) ∪ {A} ` B. By the Claim for n − 1, either
` A or one of conditions 1.–3. holds for u and A.

Case 0. ` A. In this case, K(u) ` B, so B is 0-reportable to v in K
and the Claim for n follows from the Claim for 0. Hereafter suppose
not ` A.

Case 1. K(z) ` A and V [σ ∪ τ ] contains a path from z to u. Then
u ∈ V [σ∪ τ ], so u 6= x and u 6= y. Hence K(z) `

∧
K(u), so K(z) ` B.

We also have (¬Ev(σ)) ` A and (¬Ev(τ)) ` A, so by Lemma 3.4,
every symbol in σ ∪ τ occurs in A. Therefore v ∈ V [σ ∪ τ ], so V [σ ∪ τ ]
contains a path from z to v.

Case 2. K(x) ` A and V [σ] contains a path from x to u. Then
u ∈ V [σ], so u 6= y. We have already shown that V [σ] cannot contain
a path from x to an agent in V [σ∪τ ], so u 6= z. Hence K(x) `

∧
K(u),

so K(x) ` B. By Lemma 3.4, every symbol in σ occurs in A. Therefore
v ∈ V [σ], so V [σ] contains a path from x to v.

Case 3. K(y) ` A and V [σ] contains a path from y to u. Similar to
Case 2.

This completes the induction, and the Claim is proved.

By the Claim with v = d, we see that if B is reportable to d in
K then either K(z) ` B, K(x) ` B, or K(x) ` B. But each of the
sets K(z),K(x), and K(y) is consistent, so ⊥ is not reportable to d in
K. �

The next lemma shows that on a direct acyclic graph, the Twin
Peaks Property is equivalent to having both the Peak Property and
having dominant parents.

Lemma 6.5. Let S be a signature network on a directed acyclic graph
with decider d. Then S has the Twin Peaks Property if and only if it
has the Peak Property and has dominant parents.

Proof. If S has both the Peak and Dominance Properties, then S is
report complete by Theorem 5.3], and hence S has the Twin Peaks
Property by Theorem 6.4.

Suppose that S has the Twin Peaks Property. Then S has the
Peak Property. Suppose some agent z 6= d does not have a dominant
parent. Then there are two parents x, y of z such that neither of the
sets L(z)∩L(x), L(z)∩L(y) contains the other, but there is no parent
u of z such that L(z)∩L(u) contains (L(z)∩L(x))∪ (L(z)∩L(y)). Let
σ = (L(z)∩L(x)) and τ = (L(z)∩L(y)). By the Twin Peaks Property,
there is an agent v ∈ V [σ ∪ τ ] such that V [σ ∪ τ ] contains a path from
z to v, and either V [σ] contains a path from x to v, or V [τ ] contains a
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path from y to v, say the former. Then z 6= v, so the path from z to v
in V [σ∪ τ ] must pass through some parent u of z. Hence σ∪ τ ⊆ L(u),
contrary to hypothesis. Therefore S has dominant parents. �

Theorem 6.6. Let S be a signature network on a directed acyclic
graph. The following are equivalent:

(i) S is report complete.
(ii) S has the Twin Peaks Property.
(iii) S has Peak Property and has dominant parents.
(iv) S contains a signature tree T.

Proof. By Theorem 5.3 and Lemma 6.5. �

Example 8.4 will show that for arbitrary signature networks, or even
for signature networks with no cycles of length greater than two, the
Twin Peaks Property does not imply report completeness.

7. Deciders with Large Signatures

In this section we show that a signature network with a decider
d that has a “very large signature” is report complete and contains
a signature tree. To do this we will look at well-behaved paths in
signature networks.

Definition 7.1. In a signature network S, a good path is a path
(x0, . . . , xn) that is contained in V [L(x0) ∩ L(xn)], and an excellent
path is a path (x0, . . . , xn) such that (xi, . . . , xn) is a good path for
every i ≤ n.

Remark 7.2. (i) Every excellent path is good.
(ii) If (y0, . . . , yp) is an excellent path then every tail (yj, . . . , yp) is

also an excellent path.
(iii) A path (x0, . . . , xn) is excellent if and only if for all j < n,

(L(xj) ∩ L(xn)) ⊆ L(xj+1).

Lemma 7.3. In a signature network S, let d be an agent such that
for every agent x there exists a good path from x to d. Then for every
agent y there exists an excellent path form y to d.

Proof. We argue by induction on the cardinality |L(d)\L(y)|. If |L(d)\
L(y)| = 0, then every good path from y to d is excellent, so there
exists an excellent path from y to d. Assume that n > 0, and there
is an excellent path from y to d whenever |L(d) \ L(y)| < n. Suppose
|L(d) \ L(x)| = n. Let (x0, . . . , xm) be a good path from x to d. Since
xm = d, there is a least j ≤ m such that |L(d) \ L(xj)| < n. By
inductive hypothesis there is an excellent path (y0, . . . , yp) from xj to
d. Then (x0, . . . , xj−1, y0, . . . , yp) is an excellent path from x to d. �



CRAIG INTERPOLATION FOR NETWORKS OF SENTENCES 25

Theorem 7.4. Let S be a signature network on a directed graph, and
let d be a decider such that every symbol that is in L(x) for more than
one agent x ∈ V belongs to L(d). Then the following are equivalent:

(i) For every agent x there exists a good path from x to d.
(ii) For every agent x there exists an excellent path from x to d.
(iii) S contains a signature tree T with decider d.

This theorem will be needed twice in Section 9, once with a connected
graph, and once with a directed graph. The hard part is (ii) implies
(iii). The proof of the theorem will show that the following algorithm
will output a signature tree contained in S with decider d provided
that (ii) holds.

Algorithm 7.5. GET.TREE.2(S, d):

• Color every edge (x, d) ∈ E green, and color all other edges red.
• Until every agent x is on a green edge, find an edge (x, y) such

that:
– x is not on a green edge,
– y is on a green edge,
– L(x) ∩ L(d) ⊆ L(y),

and color the edge (x, y) green.
• When every agent x is on a green edge, output the signature

tree T = (V, F, L(·)), where F is the set of green edges.

Proof of Theorem 7.4. Lemma 7.3 shows that (i) implies (ii).
(iii) implies (i): The signature tree T has the Peak Property, so for

every x ∈ V there is a good path from x to d in T. This path is also a
good path in S.

To prove that (ii) implies (iii), we show that the algorithm works.
Note that at each stage in the algorithm, for every green edge (x, y)
we have L(x) ∩ L(d) ⊆ L(y), so y ∈ V [L(x) ∩ L(d)]. Therefore, every
path from x to d consisting of green edges is excellent. By hypothesis,
for every agent x0 6= d there is an excellent path (x0, x1, . . . , xn) from
x to d. If x0 is not on a green edge, then (x0, x1) is red and (xn−1, xn)
is green, so there exists i < n such that x = xi is not on a green
edge and y = xn+1 is on a green edge. Since the path is excellent,
L(x) ∩ L(d) ⊆ L(y). The set E of edges is finite, so the algorithm will
eventually terminate and return a signature network T that is contained
in S. By induction on the steps, for each x there is at most one y such
that (x, y) ∈ F , and if (x, y) ∈ F then there is a path from x to d in
(V, F ). At the end, for each x there exists y such that (x, y) ∈ F , so
(V, F ) is a tree with decider d. Moreover, the unique path from x to d
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in T is excellent. To prove that T has the Peak Property, consider a set
of symbols σ and suppose u, v ∈ V [σ] and u 6= v. Then each symbol in
σ occurs in both signatures L(u) and L(v), and therefore must be in
L(d). Hence d ∈ V [σ]. Since the paths from u to d and v to d in T are
excellent, they must be contained in V [σ]. This proves that T has the
Peak Property, and thus is a signature tree. �

Corollary 7.6. Let S satisfy the hypotheses of Theorem 7.4, and let
S′ be a propositional copy of S. Then S′ is report complete if and only
if S is report complete.

Proof. It is clear that S′ has the Peak Property if and only if S does,
and that S′ has Linked Chain Property if and only if S does. Moreover,
the proof of Theorem 5.3 works for propositional logic as well as first
order logic. �

The following two examples illustrate Theorem 7.4. In these exam-
ples, the graph has cycles, so Theorem 6.6 is not applicable.

Example 7.7. S is on a connected graph. Let d be the upper right
agent. L(d) contains every symbol, and there is an excellent path from
any agent to d. By Theorem 7.4, S is report complete and contains a
signature tree with decider d.

h

h

h

h

{A}

{A,B}

{B,C}

{A,B,C}

Example 7.8. In both of the signature networks R and S, every agent
is a decider. Moreover, L(d) contains every symbol, where d be the top
center agent.

In R, there is an excellent path from every agent to d. Theorem
7.4 says that R contains a signature tree with decider d, and hence is
report complete. To get this tree, remove the two diagonal edges.

In S, all the arrows are reversed. S has the Peak Property, but
S does not have the Twin Peaks Property, and hence is not report
complete. There is no good path from the agent with {A,C} to d, and
S does not contain a signature tree.
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8. The Linked Chain Property

In this section we give another necessary condition for report com-
pleteness, the Linked Chain Property. This property involves only the
set of agents and signatures, and does not depend on the edges in the
directed graph.

Definition 8.1. A linked chain in a signature network S is a finite
sequence of sets of symbols (σ0, . . . , σp) such that:

• p ≥ 2;
• σj is a non-empty subset of L(V ) for each j ≤ p;
• the sets σj are pairwise disjoint;
• for each j < p there is an agent xj such that L(xj) ⊇ σj ∪σj+1;
• there is an agent xp such that L(xp) ⊇ σp ∪ σ0.

We say that a linked chain (σ0, . . . , σp) in S is good if there are three
distinct i, j, k in {0, . . . , p} and an agent x ∈ V such that

L(x) ⊇ σi ∪ σj ∪ σk,

and bad otherwise.
S has the Linked Chain Property if every linked chain (σ0, . . . , σp)

in S is good.

Note that if S has an agent d such that L(d) contains every symbol
occurring in more than one signature (as in the preceding section), then
S automatically has the Linked Chain Property. Here are two examples
of signature networks that have the Twin Peaks Property but are not
report complete and do not have the Linked Chain Property.

Example 8.2. The graphs are a triangle and a square with edges in
both directions, and signatures as shown.
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The triangle is not report complete, because the knowledge base

K(x) = {Ev(B,C)}, K(y) = {¬Ev(A,C)}, K(d) = {Ev(A,B)}
is report consistent but K(V ) is not consistent. The triple of sets of
symbols

({A}, {B}, {C})
is a bad linked chain in S, so the Linked Chain Property fails.

The square is similar, but with a bad linked chain of length 4.

Example 8.3. This is a signature network on a directed acyclic graph
that has the Linked Chain Property and the Peak Property, but does
not have the Twin Peaks Property, and hence is not report complete.
The false sentence ⊥ is provable but not report provable. If an edge is
added from the upper right corner to the lower left corner, we obtain
a signature network with the same properties on a directed graph with
cycles.
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The following example shows that the Twin Peaks and Linked Chain
Properties together do not imply report completeness.

Example 8.4. Both the signature networks R and S have the Twin
Peaks Property and the Linked Chain Property but are not report
complete and do not have the Dominance Property. Note that S has
just one cycle, and that cycle has length two. By inserting a new agent
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with signature {A,B} on the left sides of R and S, and a new agent
with signature {B,C} on the right sides of R and S, we get examples
that also have dominant parents.
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The following theorem shows that the Linked Chain Property is nec-

essary for report completeness.

Theorem 8.5. If S is a report complete signature network, then S has
the Linked Chain Property.

Proof. Suppose S does not have the Linked Chain Property. Let (σ0, . . . , σp)
be a bad linked chain in S. For convenience put σp+1 = σ0.

For each j ≤ p let xj be an agent such that L(xj) ⊇ (σj ∪ σj+1).
For each j ≤ p let Aj be the sentence Ev(σj ∪ σj+1). Let K be the
knowledge base over S such that

K(xj) = {Aj} for each j < p,

K(xp) = {¬Ap}, and K(x) = ∅ for x /∈ {x0, . . . , xp}.
Since each symbol is counted twice, the combined theory K(V ) is in-
consistent. However, for each j ≤ p, the set of sentences K(V ) \K(xj)
is consistent.

By Lemma 3.4, for each j ≤ p and each sentence B, if Aj ` B then
either ` B or every symbol in σj ∪ σj+1 occurs in B.

It follows by induction on n that for each j ≤ p and every agent x,
either there is a unique j ≤ p such that L(x) ⊇ σj ∪ σj+1 and every
sentence that is n-reportable to x is provable from Aj, or nothing is
n-reportable to x. Therefore K is report consistent, and hence S is not
report complete. �

Corollary 8.6. A signature network S on a directed acyclic graph that
has the Twin Peaks Property has the Linked Chain Property.

Proof. By Theorems 8.5 and 3.5. �
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9. Connected Graphs and Trees

By a connected (undirected) graph we mean a pointed graph
(V,E) where E symmetric, that is, for each pair x, y of distinct agents,
(x, y) ∈ E if and only if (y, x) ∈ E (so (x, y, x) is a 2-cycle).

Note that in a connected graph, there is a path from x to y if and
only if there is a path from y to x. Since a connected graph is pointed
and thus has at least one decider, it follows that there is a path from
any agent to any other agent, and hence every agent is a decider. For
a signature network on a connected graph, the Peak Property holds if
and only V [σ] is connected for every set of symbols σ. It easily follows
that every signature network on a connected graph that has the Peak
Property also has the Twin Peaks Property.

Lemma 9.1. Let S be a signature network on a connected graph. If
S contains a signature tree, then for every agent d ∈ V , S contains a
signature tree with decider d.

Proof. Suppose S contains a signature tree T with decider e, and let
d ∈ V . Let T′ be the signature network obtained from T by reversing
the arrows on the path from d to e and keeping everything else the same.
It is easily seen that S contains T′, that T′ has the Peak Property, and
that d is the unique decider for T′. �

This is illustrated by Example 7.7. The graph is connected and S
contains a signature tree whose decider is the upper right agent, so for
every agent x it contains a signature tree with decider x.

The following an example shows that Lemma 9.1 does not hold for
all signature networks.

Example 9.2. The signature network S shown in the picture is report
complete, and every agent is a decider, but S only contains a signature
tree where the lower right agent is a decider.
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Our main result in this section, Theorem 9.7, will show that if S is a
signature network on a connected graph and S has the Peak Property
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and the Linked Chain Property, then S contains a signature tree and is
report complete. Our plan for doing this is as follows. Pick an agent d.
First, we will show in Lemma 9.3 every agent x connected to d by a an
excellent path. This, together with Theorem 7.4, gives us Theorem 9.7
in the special case that some L(d) is so big that it contains every symbol
that occurs in more than one signature. Then we will show in Theorem
9.5 that when L(d) is not that big, the signature network S can be
partitioned into a sequence of smaller signature networks S0, . . . , Sk in
such a way that each Si has the Peak Property and the Linked Chain
Property, and each symbol that is not in L(d) appears in exactly one
of the Si. All these results will be used in the proof of Theorem 9.7.
Arguing by induction on the number of agents, we assume that each Si

contains a signature tree Ti. We will then construct another signature
tree T′ whose agents are the indices i ≤ k, and use T′ to combine the
signature trees Ti into a big signature tree T that is contained in S.

Lemma 9.3. Let S be a signature network on a connected graph such
that S has the Peak Property. Then for each x, y ∈ V there exists an
excellent path from x to y.

Proof. Since S has the Peak Property and E is symmetric, for each
x, y ∈ V there is a good path from x to y. Then by Lemma 7.3, for
each x, y there is an excellent path from x to y. �

Given a signature network S on a connected graph, and an agent d
in V , let

α =
⋂
{(L(d) ∩ L(x)) : x ∈ V and x 6= d},

β =
⋂
{(L(x) ∩ L(y) : x, y ∈ V and x 6= y} \ α.

Then L(d) contains α and is disjoint from β. Let ∼ be the finest
equivalence relation on β such that P ∼ Q whenever there is an agent
x ∈ V with {P,Q} ⊆ L(x). Let {β1, . . . , βk} be the set of equivalence
classes under ∼. Note that

β = β1 ] · · · ] βk,
and for each agent x 6= d, the set L(x) ∩ β is contained in some βi.
When we need to show the dependence on S and d, we write α(S, d)
for α, and similarly for β and βi.

By the restriction of S to a connected set U ⊆ V we mean the
signature network R = (U, F, L′(·)) where F = E∩(U×U) and L′(x) =
L(x) for all x ∈ U . Note that (U, F ) is a connected graph and R is a
signature network over (U, F ). We define L(U) =

⋃
x∈U L(x), and for

a set σ of symbols we define U [σ] = {x ∈ U : σ ⊆ L(x}.



32 H. JEROME KEISLER AND JEFFREY M. KEISLER

Definition 9.4. A report decomposition of S at d is a sequence
of signature networks S0, . . . , Sk such that, with α = α(S, d) etc., we
have

• Each Si is a restriction of S to a connected set Vi and has the
Peak Property and the Linked Chain Property.
• The sets of agents Vi are pairwise disjoint and have union V ,

V = V0 ] · · · ] Vk.
• d ∈ V0 and L(V0) ∩ β = ∅.
• For 1 ≤ i ≤ k, L(Vi) ∩ β ⊆ βi.
• For each 1 ≤ i ≤ k there is an agent v ∈ Vi such that

(L(x) ∩ α) ⊆ (L(v) ∩ α)

for all x ∈ Vi. We say that v is high in Vi.

Theorem 9.5. Let S be a signature network S on a connected graph
(V,E) such that S has the Peak Property and Linked Chain Property.
Then S has a report decomposition at every agent d ∈ V .

The proof of Theorem 9.5 will show that the following algorithm
returns a report decomposition of S at d whenever S is on a connected
graph and has the Peak Property and Linked Chain Property.

Algorithm 9.6. DECOMP(S, d):

• Initially all agents are colored red.
• Find the sets of symbols α, β, β1, . . . , βk for ( S, d).
• Color d green and put d in V0.
• For each x ∈ V such that L(x) ∩ βi 6= ∅, color x green and put
x in Vi.
• Do the following until all agents are green:

– Take an agent x that is still red, and choose an excellent
path (x0, . . . , xp) from x to d.

– Let x` be the first green agent on the path.
– Color the agents x = x0, . . . , x`−1 green and put them into

the set Vi that contains x`.
• Return the sequence S0, . . . , Sk, where Si is the restriction of
S to Vi.

Proof of Theorem 9.5. Let α = α(S, d), and similarly for β and βi, i =
0, . . . , k. By Lemma 9.3, there is an excellent path from each agent x
to d, and it follows that Algorithm DECOMP(S, d) will terminate and
return a sequence S0, . . . , Sk. We must show that this sequence is a
report decomposition of S at d. Let

U0 = {x ∈ V : L(x) ∩ β = ∅},
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and for 1 ≤ i ≤ k let

Ui = {x ∈ V : ∅ 6= L(x) ∩ β ⊆ βi}.
Then d ∈ U0, and Ui, i ≤ k forms a partition of V into disjoint non-
empty sets.

It is easy to see that:

• V0, . . . , Vk partitions V into non-empty disjoint sets.
• V0 ⊆ U0, and for i ≥ 1, Vi ⊇ Ui.
• L(V0) ∩ β = ∅, and for 1 ≤ i ≤ k, L(Vi) ∩ β ⊆ βi.

Claim 1. For each i ≤ k, Si is a signature network on a connected
graph.

Proof of Claim 1: It is clear that for each x ∈ V0, V0 contains a path
from x to d, so (V0, E0) is connected.

Let 1 ≤ i ≤ k and let x, y ∈ Vi. By the definition of Vi, Vi contains
a path from x to an agent x′ ∈ Ui, and path from y to an agent
y′ ∈ Ui. There is a finite sequence of agents (x0, . . . , xm) in Ui such
that x′ = x0, y

′ = xm, and for each j < m there is a symbol Sj ∈
L(xj) ∩ L(xj+1) ∩ β. By the Peak Property for S, for each j < m the
set V [{Sj}] contains a path from xj to xj+1. But V [{Sj}] ⊆ Ui, so Ui

contains a path from xj to xj+1, and hence Ui contains a path from x′

to y′. Therefore Vi contains a path from x to y, so (Vi, Ei) is connected.
2

Claim 2. For i ≤ k there exists vi ∈ Ui such that (L(vi) ∩ α) ⊇
(L(x) ∩ α) for all x ∈ Ui, and v0 = d.

Proof of Claim 2: It is clear that the claim holds for i = 0.
Suppose 1 ≤ i ≤ k and the claim fails for i. Then there are x, y ∈ Ui

such that L(x) ∩ α and L(y) ∩ α are maximal but different. Hence
there is no agent z ∈ Ui such that L(z) contains both L(x) ∩ α and
L(y)∩α. So there is no agent z ∈ V such that L(z) contains L(x)∩α,
L(y) ∩ α, and some symbol S ∈ βi. For each P ∈ L(x) ∩ β and
Q ∈ L(y) ∩ β, we have P,Q ∈ βi, and therefore there is a sequence of
symbols (P0, . . . , Pm) in βi such that P0 = P, Pm = Q, and for each
j < m there is an agent zj ∈ V with {Pj, Pj+1} ⊆ L(zj). It follows
that there is a least integer p such that there is a sequence of symbols
(S0, . . . , Sp) in βi and a sequence of agents (x′, u0, . . . , up−1, y

′) in V
where:

• L(x′) contains L(x) ∩ α and S0;
• L(y′) contains (L(y) \ L(x)) ∩ α and Sp;
• for 0 ≤ j < p, L(uj) contains Sj and Sj+1.

Since L(x′), L(y′), and each L(uj) contains a symbol in βi, x
′, y′, and

each uj must belong to Ui. Since p is least, there is no agent z ∈ V such
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that L(z) contains two non-consecutive symbols in the list (S0, . . . , Sp)
(otherwise one or more symbol can be skipped and p would not be
least). For the same reason, there is no agent z ∈ V , such that L(z)
contains L(x) ∩ α and a symbol Sj with j > 0, and there is no agent
z ∈ V , such that L(z) contains (L(y) \L(x))∩α and a symbol Sj with
j < p. Since there is also no agent z ∈ V such that L(z) contains
L(x) ∩ α, L(y) ∩ α, and some symbol S ∈ βi, the sequence of sets

(L(x) ∩ α, {S1}, . . . , {Sp}, ((L(y) \ L(x)) ∩ α)

is a bad linked chain in S, contradicting the hypothesis that S has the
Linked Chain Property. 2

Claim 3. For each i ≤ k, vi is high in Vi.
Proof of Claim 3: By the construction of Vi, for each x ∈ Vi there

is an excellent path (y0, . . . , yn) from x to d such that some yj belongs
to Ui. Then (L(x) ∩ L(d)) ⊆ (L(yj) ∩ L(d)), so by Claim 2,

(L(x) ∩ α) ⊆ (L(yj) ∩ α) ⊆ (L(vi) ∩ α).

2

Claim 4. For each i ≤ k, Si has the Linked Chain Property.
Proof of Claim 4: S0 has the Linked Chain Property because any

symbol that belongs to more than one signature in S0 belongs to L(d).
Let i ≥ 1, and suppose (σ0, . . . , σp) is a linked chain in Si. Then
(σ0, . . . , σp) is a linked chain in S. Since S has the Linked Chain
Property, there is an agent x ∈ V and integers j, k, ` such that 0 ≤ j <
k < ` ≤ p and L(x) ⊇ σj ∪ σk ∪ σ`. If x ∈ V \ Vi, then by Claim 3, any
symbol that belongs to L(x) and the signature of an agent in Vi belongs
to L(vi) ∩ α, so L(vi) ⊇ σj ∪ σk ∪ σ`. This shows that (σ0, . . . , σp) is a
good linked chain in Si. 2

Claim 5. For each i ≤ k, Si has the Peak Property.
Proof of Claim 5: For each x ∈ V0, V0 contains an excellent path

from x to d, and it follows that S0 has the Peak Property.
Let i ≥ 1, let σ be a non-empty set of symbols, and let x, y ∈ Vi[σ]

and x 6= y. Then σ ⊆ (L(x)∩L(y)), so σ ⊆ ((L(vi)∩α)∪ βi). We also
have x, y ∈ V [σ], and since S has the Peak Property, V [σ] contains a
path from x to y. If σ meets βi, then V [σ] = Vi[σ], so Vi[σ] contains a
path from x to y.

Suppose instead that σ∩βi = ∅. Then σ ⊆ (L(vi)∩α). Since there is
an excellent path from x to d whose first element outside of U0 belongs
to Ui, we may assume that x ∈ Ui. Similarly, we may assume that
y ∈ Ui. Then there are symbols P,Q in βi such that L(x) contains σ
and P , and L(y) contains σ and Q. So there is a sequence of symbols
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(P0, . . . , Pm) in βi such that P0 = P, Pm = Q, and for each j < m
there is an agent zj ∈ V with {Pj, Pj+1} ⊆ L(zj). It follows that
there is a least integer m such that there exists a sequence of symbols
(S1, . . . , Sm) in βi and a sequence of agents (u0, . . . , um) in V where:

• L(u0) contains σ, P , and S1 (possibly P = S1);
• L(um) contains σ, Q, and Sm (possibly Q = Sm);
• for 0 < j < m, L(uj) contains Sj and Sj+1.

Case 1: m = 1. In this case we have S1 = Sm. By the Peak Property
for S, V [σ ∪ {P}] contains a path from x to u0, V [σ ∪ {S1}] contains
a path from u0 to u1, and V [σ ∪ {Q}] contains a path from u1 to y.
Since P,Q, and S1 belong to βi, all of these paths are within Vi, and
together they form a path from x to y in Vi[σ].

Case 2: m > 1. In this case, the sequence

(σ, {S1}, . . . , {Sm})
is a linked chain in (V,E). Since m is least, there is no z ∈ V
such that L(z) contains two non-consecutive symbols in the sequence
(S1, . . . , Sm). Take the least h such that 1 < h ≤ m and there exists
an agent w ∈ V where L(w) contains σ and Sh. Then the sequence

(σ, {S1}, . . . , {Sh})
is a linked chain in (V,E). By the Linked Chain Property for S, there
is an agent t ∈ V such that L(t) contains three distinct sets in this
linked chain. Since h is least, the only possibility is that m = h = 2
and L(t) contains σ, S1, and S2.

By the Peak Property for S, V [σ ∪ {P}] contains a path from x to
u0, V [σ ∪ {S1}] contains a path from u0 to t, V [σ ∪ {S2}] contains a
path from t to u1, and V [σ ∪ {Q}] contains a path from u1 to y. Since
P,Q, S2, and S2 belong to βi, all of these paths are within Vi, and
together they form a path from x to y in Vi[σ].

In both cases we have a path from x to y in Vi[σ], so Si has the Peak
Property. This completes the proof. �

Theorem 9.7. For every signature network S on a connected graph,
the following are equivalent:

(i) S is report complete.
(ii) S has the Peak Property and the Linked Chain Property.
(iii) S contains a signature tree T.

The proof of Theorem 9.7 will show that the following algorithm
returns a signature tree T contained in S with decider d whenever
d ∈ V and condition (ii) holds.
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Algorithm 9.8. GET.TREE.3(S, d):

• Run DECOMP(S, d), which returns a report decomposition
S0, . . . , Sk.
• If k = 0, run GET.TREE.2 (S0, d), which returns a signature

tree T contained in S0 = S with decider d, and return T.
• If k > 0, then for each i ≤ k, find a high element vi in Vi

and run GET.TREE.3 (Si, vi), which returns a signature tree
Ti contained in Si with decider vi.
• Form the signature network S′ = (V ′, E ′, L′(·)) where V ′ =
{v0, . . . , vk}, L′(vi) = L(Vi), and (vi, vj) ∈ E ′ if and only if
there is an edge (x, y) ∈ E such that x is high in Vi, y ∈ Vj,
and (L(x) ∩ α) ⊆ (L(y) ∩ α).
• Run GET.TREE.2 (S′, d), which returns a signature tree T′ =

(V ′, F ′, L′(·)) contained in S′ with decider d.
• For each i > 0 and edge (vi, vj) ∈ F ′, find a high element xi in
Vi and an edge (xi, yi) ∈ E such that yi ∈ Vj, and (L(xi)∩α) ⊆
(L(yi) ∩ α).
• Reverse arrows where necessary in Ti to get a signature tree T′i

with decider xi.
• Let F be the union of all the edges in T′i for i ≥ 0 and the edges

(xi, yi) for i ≥ 1.
• Return T = (V, F, L(·)).

Proof of Theorem 9.7. (i) implies (ii) by Theorems 3.5 and 8.5. Corol-
lary 4.1 says that (iii) implies (i).

To prove that (ii) implies (iii), we show by induction on the number
of agents that the algorithm GET.TREE.3 (S, d) returns a signature
tree T contained in S with decider d. This is trivial when S has two
agents. Let N > 2 and assume that the result holds for every signature
network with fewer than N agents. Suppose S satisfies (ii) and has N
agents. Choose an element d ∈ V . We prove that the algorithm returns
a signature tree T contained in S with decider d.

By Theorem 9.5, S has a report decomposition S0, . . . , Sk at d. If
k = 0, then S = S0 and L(d) contains every symbol that occurs in
more than one signature. By Lemma 9.3, for each agent x there is an
excellent path from x to d, so by Theorem 7.4 the algorithm returns a
signature tree contained in S with decider d.

Assume k > 0. Then for each i ≤ k, there is a high element vi ∈ Vi,
and Si satisfies (ii) and has fewer than N agents, so by the inductive
hypothesis, the algorithm with input (Si, vi) returns a signature tree
Ti = (Vi, Fi, Li(·)) contained in Si with decider vi. The algorithm
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will then construct the directed graph (V ′, E ′), with the agents V ′ =
{v0, . . . , vk}.

We will show that S′ = (V ′, E ′, L′(·)) satisfies the hypotheses of
Theorem 7.4. at d. To do this, we need the notion of a high path. We
call a path π from x to d in S a high path if π is an excellent path,
and whenever π enters a set Vi, it stays in Vi until it reaches a high
agent z ∈ Vi.

Claim 1. For each x ∈ V there exists a high path from x to d.
Proof of Claim 1: We argue by induction on the number a(x) =
|α \ L(x)| of symbols in α that are missing from L(x). Note that
a(d) = 0, and a path (x0, . . . , xn) from x to d is excellent if and only if
a(x0) ≥ a(x1) ≥ · · · ≥ a(xn). By Lemma 9.3, for every x ∈ V there is
an excellent path from x to d. Clearly, if a(x) = 0 then every excellent
path from x to d is a high path, so the result holds when a(x) = 0.

Assume that for every y ∈ V such that a(y) < M , there is a high
path from y to d. Suppose x ∈ V and a(x) = M . Let (x0, . . . , xm)
be an excellent path from x to d. We must show that there is a high
path from x to d. Suppose (x0, . . . , xm) is not already a high path.
Then there is a first agent y = xj such that (x0, . . . , xm) enters some
Vi at y, and later leaves Vi without reaching a high agent z ∈ Vi. By
Lemma 9.3, Vi contains an excellent path (y0, . . . , yn) from y to vi.
Since y is not high, we have a(x) ≥ a(y) > a(vi), so a(vi) < M . By
the inductive hypothesis, there is a high path (z0, . . . , zp) from vi to d.
Since (y0, . . . , ym) is excellent and vi is high in Vi, for each j ≤ m we
have

(L(yj)∩α) = (L(yj)∩L(vi)∩α) ⊆ (L(yj+1)∩L(vi)∩α) = (L(yj+1)∩α).

Therefore a(y0) ≥ · · · ≥ a(ym), so the combined path

(x0, . . . , xj = y0, y1, . . . , yn = z0, z1, . . . , zp)

is an excellent path, and in fact a high path, from x to d. 2

Claim 2. (V ′, E ′) is a pointed graph with d as a decider, and for
each vi ∈ V ′, there is an excellent path from vi to d in (V ′, E ′).

Proof of Claim 2: By Claim 1, for each vi ∈ V ′ there is a high
path (x0, . . . , xm) from vi to d. Let (xs0 , . . . , xsn) be the subsequence of
(x0, . . . , xm) composed of those x` such that the edge (x`, x`+1) crosses
from one set Vj to another. For each h ≤ n let yh = vj where Vj is the
set such that xsh ∈ Vj. Then (y0, . . . , yn) is an excellent path from vi
to d in (V ′, E ′). 2

It is easily seen from the definitions that:



38 H. JEROME KEISLER AND JEFFREY M. KEISLER

Claim 3. Every symbol that appears in more than one signature in
S′ belongs to α, and therefore belongs to L′(d).

By Claims 2 and 3 and Theorem 7.4, the algorithm GET.TREE.2 (S′, d)
will return a signature tree T′ = (V ′, F ′, L′(·)) contained in S′ with de-
cider d. The remaining steps of the algorithm can then be carried out,
and will return a signature network T that is contained in S and is on
a tree (V, F ) with decider d.

It remains to show that T has the Peak Property. Let x, y ∈ V . If
x, y ∈ Vi for some i ≥ 1, then in Ti the set Vi[L(x)∩L(y)] contains paths
from x to vi and y to vi. Therefore in T′i, Vi[L(x)∩L(y)] contains paths
from x to xi and from y to xi, and hence in T, V [L(x)∩L(y)] contains
these paths. If x ∈ Vi and y ∈ Vj with i 6= j, then (L(x) ∩ L(y)) ⊆ α,
and in T, V [L(x) ∩ L(y)] contains paths from x to d and from y to
d. This shows that T has the Peak Property, and hence is a signature
tree. �

Corollary 9.9. Let S be a signature network over a connected graph,
and let S′ be a propositional copy of S. Then S′ is report complete if
and only if S is report complete.

The following examples illustrate Theorem 9.7.

Example 9.10. S is on a connected graph and has the Peak Property
and Linked Chain Property. By Theorem 9.7 and Lemma 9.1, S is
report complete, and for every agent d it contains a signature tree with
decider d. The arrows indicate one such signature tree.
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Example 9.11. S is on a complete graph and has the Linked Chain
Property. Every complete graph has the Peak Property.



CRAIG INTERPOLATION FOR NETWORKS OF SENTENCES 39

?
6

�
�
�
�
�
�
�
�
�
��

���

@
@
@
@
@
@
@
@
@
@@h

h

h

h

{A,B,C} {C,D}

{A,B} {B,C,D}

Amir and McIlraith [2] deal with signature networks S on a con-
nected graph in the following way. An algorithm called CUT-CYCLES
produces a signature tree T′ = (V, F ′, L′(·)) by removing edges to form
a tree and adding symbols to the signatures to satisfy the Peak Prop-
erty. In general, L′(x) will properly contain the original signature L(x).
(Actually, they put signatures on the edges, but when the Peak Prop-
erty holds, the signature on an edge will be the intersection of the
signatures of the two agents on the edge.) Theorem 9.7 shows that
if S has the Peak Property and the Linked Chain Property, then S
contains a signature tree T = (V, F, L(·)) with the original signatures
L(x) rather than with enlarged signatures.

Like Theorem 6.6, Theorem 9.7 can be interpreted as a statement
about immediate supervisors. We are given signature network S over
a connected graph. Suppose that for every knowledge base K over
S, every provable sentence can be proved by Decider from sentences
reportable to Decider when each agent can report to any neighboring
agent a sentence that he knows and that is in the common language
of the two agents. Then there is a way of assigning an immediate
supervisor to each agent x 6= d so that for every knowledge base K
over S, every provable sentence can be proved by d from sentences
reportable to d when agents can only report sentences they know to
their immediate supervisors in their common language.

10. Open Questions

Our main focus in this paper has been on the following three general
questions.

Question 10.1. Which signature networks are report complete?
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We have seen in Theorems 6.4 and 8.5 that every report complete
signature network has both the Twin Peaks Property and the Linked
Chain Property. Theorems 4.3, 6.6, 7.4, and 9.7 give sufficient condi-
tions for report completeness.

Question 10.2. Which signature networks contain signature trees?

Corollary 4.1 shows that a signature network that is not report com-
plete cannot contain a signature tree. Theorem 6.6 shows that every
report complete signature network on a pointed directed acyclic graph
contains a signature tree. Theorem 9.7 shows that every report com-
plete signature network on a connected graph contains a signature tree.
But Example 4.2 shows that there are many report complete signature
networks that do not contain a signature tree.

Question 10.3. If S is a signature network and the propositional copy
of S is report complete, must S be report complete?

Corollaries 5.5 and 9.9 show that the answer is yes for signature
networks on pointed directed acyclic graphs and on connected graphs.

Here are some other questions related to this work.

Question 10.4. Can one generalize the Lyndon Interpolation Theorem
([17]) to signature networks?

E. Amir asked this question in a personal communication. Amir and
McIlraith [3] applied the Lyndon Interpolation Theorem to strengthen
the report completeness property of a signature tree in a way that
takes into account the parity of signatures. One can hope for analogous
results for signature networks.

Theorem 4.3 tells us that the pointed graphs with no weak cycles are
exactly the pointed graphs on which the Peak Property implies report
completeness. We can ask the corresponding questions for the Twin
Peaks Property and the Linked Chain Property.

Question 10.5. On which pointed graphs does the Twin Peaks Prop-
erty imply report completeness?

Question 10.6. On which pointed graphs does the Linked Chain Prop-
erty imply report completeness?

In summary, the main questions we have addressed in this paper are
Questions 10.1–10.3. We have solved each of these questions for signa-
ture networks on pointed directed acyclic graphs and for signature net-
works on connected graphs. However, these questions are still mostly
open for signature networks on arbitrary pointed directed graphs.
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Appendix A. Appendix: Proof of Fact 1.6

Fact 1.6 (restated). ([2]) Every signature tree is report complete.

Proof of Fact 1.6. We argue by induction on the number |V | of agents.
The result is trivial if there is only one agent.

Assume, as an inductive hypothesis, that every signature tree with
n agents is report complete. Let

S = (V,E, L(·)), K = (V,E, L(·))
be a signature tree with n+ 1 agents, let d be the unique decider, and
let K be a knowledge base over S. Suppose K(V ) is inconsistent. We
must show that K is report inconsistent at d, that is, the false sentence
⊥ is report provable at d.

Let x be a source agent in K. Since V has more than one element,
x 6= d, and there is a unique edge (x, y) ∈ E. Let C ∈ [L(x)∩L(y)] be
a sentence to be specified later. Let

S′ = (V ′, E ′, L(·),K′(·))
be the knowledge base over the signature network with n agents formed
from K by removing the agent x and the edge (x, y), and adding the
sentence C to the knowledge base of y. Thus V ′ = V \ {x}, E ′ =
E \ {(x, y)}, K′(y) = K(y) ∪ {C}, and everything else is unchanged.
By the Peak Property for S, any symbol that belongs to both L(x)
and L(V ′) also belongs to L(y). Thus

L(x) ∩ L(y) = L(x) ∩ L(V ′).

It is clear that
S′ = (V ′, E ′, L(·))

still has the Peak Property, and is still a signature tree with decider d.
Let K(V ′) =

⋃
v∈V ′ K(v). Then

K(V ) = K(x) ∪K(V ′) and K′(V ′) = K(V ′) ∪ {C}.
Since K(V ) ` ⊥, we have

K(x) ∪K(V ′) ` ⊥.
Therefore K(x) ∪ {B} ` ⊥ for some sentence B that is a finite con-
junction of sentences in K(V ′). B belongs to [L(V ′)]. We now define
the sentence C. By the Craig Interpolation Theorem, we may take C
to be a sentence C ∈ [L(x) ∩ L(V ′)] such that

K(x) ` C and C ∪ {B} ` ⊥.
Then C ∈ [L(x) ∩ L(y)] as required, and

K′(V ′) = K(V ′) ∪ {C} ` ⊥.
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By the inductive hypothesis, ⊥ is report provable in K′ at d. Since C is
0-reportable along (x, y) in K, it follows that ⊥ is also report provable
in K at d. �
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