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Abstract

Let F be a subset of edges and vertices of a graph G. If G − F has no fractional
perfect matching, then F is a fractional strong matching preclusion set of G. The frac-
tional strong matching preclusion number is the cardinality of a minimum fractional
strong matching preclusion set. In this paper, we mainly study the fractional strong
matching preclusion problem for two variants of hypercubes, the multiply twisted cube
and the locally twisted cube, which are two of the most popular interconnection net-
works. In addition, we classify all the optimal fractional strong matching preclusion
set of each.

Keywords: Fractional perfect matching; Fractional matching preclusion; Fractional
strong matching preclusion; Multiply twisted cube; Locally twisted cube

AMS subject classification 2010: 05C05, 05C12, 05C76.

1 Introduction

All graphs considered in this paper are connected and even order. For a graph G, V (G) and
E(G) are its vertices set and edges set, respectively. A matching for a graph is a set of edges
such that each vertex is incident with at most one edge in this set. A perfect matching for
a graph is a set of edges such that each vertex is incident with exactly one edge in this set.
An almost-perfect matching in a graph is a set of edges such that each vertex except one is
incident with exactly one edge in this set, and the exceptional vertex is incident with none.
Thus, if a graph has a perfect matching, then the graph has even order, if a graph has an
almost perfect matching, then the graph has odd order.

Recently there has been an increasing interest in a class of interconnection networks,
proposed to serve as the topology of a large-scale parallel and distributed system. Matching
preclusion is a measure of robustness when there is a link failure. The matching preclusion
problem is a topic researched widely in graph theory. Fractional matching preclusion is a
nice generalization for matching preclusion.

1.1 Matching preclusion and its generalizations

A set F of edges is called a matching preclusion set (MP set for short) if G−F has neither a
perfect matching nor an almost-perfect matching. The matching preclusion number of graph
G, denoted by mp(G), is the minimum size of MP sets of G, that is mp(G) = min{|F | : F
is a MP set}. The concept of matching preclusion was introduced by Birgham et al.[2] and
investigated in some special graphs. For more information, we refer to [3, 4, 5, 8]. According
to the definition of mp(G), for a graph G with the even number of vertices, we have

mp(G) ≤ δ(G),

where δ(G) is the minimum degree of G. A matching preclusion set is trivial if all the edges
in it are incident with a single vertex.

A set F of edges and vertices is called a strong matching preclusion set (SMP set for short)
ifG−F has neither a perfect matching nor an almost-perfect matching. The concept of strong
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matching preclusion was introduced in [14], for more details see [11]. The strong matching
preclusion number of a graph G, denoted by smp(G), is given by smp(G) = min{|F | : F is
a SMP set}. Then we have

smp(G) ≤ mp(G).

A SMP set F is optimal if |F | = smp(G).
Another standard way to see matching in polyhedral combinatorics is as follows. A

matching is a function f that assigns to each edge ofG a number in {0, 1} so that
∑

e∼v f(e) ≤
1 for each vertex v of G, where the sum taken over all edges e incident with v. A matching
is perfect if

∑
e∼v f(e) = 1 for each vertex v, that is,

∑
e∈E(G)

f(e) =
1

2

∑
v∈V (G)

∑
e∼v

f(e) =
|V (G)|

2
.

A matching is almost-perfect if there exists exactly one vertex v′ such that
∑

e∼v′ f(e) = 0
and

∑
e∼v f(e) = 1 for each other vertex v, that is,∑

e∈E(G)

f(e) =
1

2

∑
v∈V (G)

∑
e∼v

f(e) =
|V (G)| − 1

2
.

In this paper, we consider a kind of generalization of matching. A fractional matching
is a function f that assigns to each edge a number in [0, 1] so that

∑
e∼v f(e) ≤ 1 for each

vertex v of G, where the sum is taken all edges e incident with v. Clearly,∑
e∈E(G)

f(e) =
1

2

∑
v∈V (G)

∑
e∼v

f(e) ≤ |V (G)|
2

.

As a generalization of matching preclusion, Liu and Liu [10] recently introduced the con-
cept of fractional matching preclusion number. A fractional perfect matching is a fractional
matching f satisfying that

∑
e∼v f(e) = 1 for each v ∈ V (G). A fractional matching f is

perfect if and only if
∑

f(e) = |V (G)|
2

and a perfect matching is a fractional perfect matching.
Many further ideas and results on fractional graph theory can be found in [10, 17].

An edge subset F of G is a fractional matching preclusion set (FMP set for short) if
G − F has no fractional perfect matching. The fractional matching preclusion number of a
graph G, denoted by fmp(G), fmp(G) = min{|F | : F is a FMP set}. Then we have

fmp(G) ≤ δ(G).

If the number of vertices in G is even, we have

mp(G) ≤ fmp(G).

But, if the number of vertices in G is odd, mp(G) and fmp(G) do not satisfy this inequality.
Some examples are given in [10].

A set F of edges and vertices is a fractional strong matching preclusion set (FSMP set
for short) if G − F has no fractional perfect matchings. The fractional strong matching
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preclusion number of a graph G, denoted by fsmp(G), is given by fsmp(G)=min{|F | : F is
a FSMP set}. Then we have

fsmp(G) ≤ fmp(G) ≤ δ(G).

A FSMP set F is optimal if |F | = fsmp(G). A FSMP(FMP) set F is trivial if G− F has
a single vertex.

1.2 Two variants of hypercubes

Hypercubes are one of the most basic class of interconnection networks. Based on the
graph construction, Vaidya et al. [18] gave a recursive definition of a class of graph, called
the hypercube-like graph (HL-graph for short) and this class of networks are important
generalizations of hypercubes and defined recursively as follows.

HL0 = {K1}, HLn = {G0 ⊕M G1|G0, G1 ∈ HLn−1},
where the symbol “ ⊕M ” represents the perfect matching operation that connects G0 and
G1 using some perfect matching, denoted by PM(G). For a graph G ∈ HLn, V (G) =
V (G0 ⊕M G1) = V (G0) ∪ V (G1) and E(G) = E(G0 ⊕M G1) = E(G0) ∪ E(G1) ∪ PM(G),
where G0, G1 ∈ HLn−1. It is clear that for G ∈ HLn, G is an n-regular connected graph of
order 2n, more results are shown in [13, 15, 16].

MTQ4

1001101100110001

100010100010

1110

1111

0110

0111

0100

0101

0000

1100

1101

LTQ4

1001101100110001

100010100010

1110

1111

0110

0111

0100

0101

0000

1100

1101

MTQ3/LTQ3

110

010

001 011

100

101 111

000

Fig.1 The multiply twisted cube and locally twisted cube when n = 3, 4.

We first introduce the definition of the multiply twisted cube, which was proposed by Efe
in [7]. An n-dimensional multiply twisted cube denoted by MTQn = MTQ0⊕mMTQ1 with
2n vertices, each vertex labeled by an n-bit binary string un−1un−2 · · ·u0 such that ui ∈ {0, 1}
(i = 0, 1, · · · , n − 1). MTQ1 and MTQ2 are isomorphic to K2 and Q2, respectively. For
n ≥ 3, MTQn is defined recursively by using two copies of (n − 1)-dimensional multiply
twisted cube with edges between them, the first copy denote by MTQ0

n−1 with vertices
u = 0un−2un−3 · · ·u0, another copy is MTQ1

n−1 with vertices v = 1vn−2vn−3 · · · v0. MTQn

is a n-regular bipartite graph and diam(G) = ⌈ (n+1)
2

⌉, an edge exists between vertex u =
un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0 provided there is an index k such that
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(1) un−1un−2 · · ·uk = vn−1vn−2 · · · vk,
(2) uk−1 ̸= vk−1,

(3) uk−2 = vk−2 if k is even,

(4) for 0 ≤ i < ⌊ (k−1)
2

⌋, v2i+1v2i is pair-related to u2i+1u2i.

The definition of the locally twisted cube was introduced in [20, 21]. An n-dimensional
locally twisted cube denoted by LTQn with 2n vertices, and each vertex ia an n-string on
{0, 1}. LTQ1 and LTQ2 are isomorphic to K2 and Q2, respectively. For n ≥ 3, LTQn is
built from two disjoint copies of LTQn−1 according to the following steps. Let LTQ0

n−1 and
LTQ1

n−1 denote obtained by prefixing labels each vertex of one copy of LTQn−1 with 0 and
with 1, respectively. Two vertices u = u1u2 . . . un−1un and v = v1v2 . . . vn−1vn of LTQn are
adjacent if and only if either there is an integer 1 ≤ k ≤ n− 2 such that

(1) uk ̸= vk,

(2) uk+1 = vk+1 + vn,

(3) ui = vi for all the remaining bits.

where “ + ” represents the modulo 2 addition, or there is an integer k ∈ {n− 1, n} such
that u and v differ only in the k-th bit.

We illustrate the multiply twisted cube and locally twisted cube in Fig.1 when n = 3, 4,
respectively. More details refer to [1, 9].

In [18, 19] show that the multiply twisted cube and locally twisted cube are members of
hypercube-like graphs, which give better performance than hypercube with the same number
of edges and vertices.

1.3 Related results

In this section, we briefly collect some related results which are vital for our proof. We
now present some necessary and sufficient conditions for existence of the fractional perfect
matching in a graph, which introduced by Scheinerman and Ullman in [17].

Lemma 1.1. [17] A graph G has a fractional perfect matching if and only if i(G− S) ≤ |S|
for each set S ⊆ V (G), where i(G− S) is the number of isolated vertices of G− S.

Lemma 1.2. [17] The graph G has a fractional perfect matching if and only if there is a
partition {V1, V2, . . . , Vn} of the vertex set of V (G) such that, for each i, the subgraph of G
induced by Vi is either K2 or a Hamiltonian graph on odd number of vertices.

According to the above results, the following observations are immediate.

Observation 1.3. (1) If a graph G has a perfect matching, then it must have a fractional
perfect matching by assigning 1 to each edge of perfect matching and 0 to other edges of G.

(2) If a graph G is Hamiltonian, we can get a fractional perfect matching by assigning 1
2

to each edge of Hamiltonian cycle and 0 to other edges.

Lemma 1.4. [12] Let G be a n-dimensional multiply twisted cube or locally twisted cube for
n ≥ 3. Then mp(G) = n. Moreover, each optimal matching preclusion set is trivial.
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Lemma 1.5. [14] If n ≥ 3, then smp(HLn) = n. Furthermore,

(a) for n ≥ 5, each of its minimum SMP sets is trivial.

(b) for n = 4, each of its minimum SMP sets is either trivial or a set consisting of a
boundary edge (v1, vi+1) of HL0, another boundary edge (wj, wj+1) of HL1, and two white
vertices in Wi ∪W

′
j such that W i = B

′
j and Bi = W

′
j .

Lemma 1.6. [9, 15] Let G be a n-dimensional multiply twisted cube or locally twisted cube
with n ≥ 3, and let F be a set of fault vertices and/or edges of G. Then G−F is Hamiltonian
if |F | ≤ n− 2, and Hamiltonian-connected if |F | ≤ n− 3.

We need to a result in [6] regarding almost perfect matching.

Lemma 1.7. [6] Suppose G has an almost perfect matching M missing v. If v is not an
isolated vertex in G, then G has an almost perfect matching missing a vertex other than v.

2 Initial case

Since HLn has usually an even number of vertices, and we know from lemma 1.4 that
mp(HLn) = δ(HLn) for n ≥ 3, it is easy to determine the fractional matching preclusion
number of the multiply twisted cube and locally twisted cube.

Now we study the fractional strong matching preclusion problem of multiply twisted cube
and locally twisted cube. Without loss of generality, we can assume that any edge in a FSMP
set F is not incident with vertices in F in the following.

Theorem 2.1. Let n ≥ 3. Then fmp(MTQn) = fmp(LTQn) = n.

000

e

(a)G − F

100

011

111

(b)G− F − S

010

110

Fig.2 Illustration about the proof of Lemma 2.2.

Lemma 2.2. Let G be a 3-dimensional multiply twisted cube or locally twisted cube, then
fsmp(G) = 2. Moreover, the optimal fractional strong matching preclusion set must contain
exactly one vertex and one edge.
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Proof. It is clear that the 3-dimensional multiply twisted cube and locally twisted cube are
isomorphic. By Lemma 1.6, we have fsmp(G) ≥ 2. Let e = (010, 110) and F = {000, e},
see Fig.2(a). Choose S = {011, 111, 100}. Then i ((G− F )− S) = 4 > |S|, see Fig.2(b). By
Lemma 1.1, G − F has no fractional perfect matching, and hence F is a FSMP set of G.
Thus, fsmp(G) = 2. Since smp(G) = 3 by Lemma 1.5, it follows that any optional FSMP
set must contain one vertex and one edge.

For simplicity, we briefly introduce some notations throughout this paper. If G is a n-
dimensional multiply twisted cube or locally twisted cube, we denote by G0 and G1 two
copies of G. Given F ⊆ V (G) ∪ E(G), let F i = F ∩ (V (Gi) ∪ E(Gi)) for i = 0, 1.

Lemma 2.3. Let G be a 4-dimensional multiply twisted cube or locally twisted cube. Then
fsmp(G) = 3. Moreover, the optimal fractional strong matching preclusion set of G must
contain exactly one vertex and two edges.

0000

e1

e2

0001

0101

0110

1101

1001

1100

1010

(a)MTQ4 − F (b)MTQ4 − F − S

0011

0010

1110

1111

0000

e1
e2

0001

0101

0110

1111

1100

1010

(c)LTQ4 − F (d)LTQ4 − F − S

0011

0010 1000

1001 1011

Fig.3. Illustration about the proof of Lemma 2.3.

Proof. By Lemma 1.6, we have fsmp(G) ≥ 3. If G is a 4-dimensional multiply twisted
cube, let e1 = (0010, 0011), e2 = (1111, 1110) and F = {0000, e1, e2}, see Fig.3(a). Choose
S = {0001, 0101, 0110, 1010, 1001, 1101, 1100}. Clearly, i((G−F )−S) = 8 > |S|, see Fig.3(b).

If G is a 4-dimensional locally twisted cube, let e1 = (0010, 0011), e2 = (1000, 1001)
and F = {0000, e1, e2}, see Fig.3(c). Choose S = {0001, 0101, 0110, 1010, 1011, 1111, 1100}.
Clearly, i((G − F ) − S) = 8 > |S|, see Fig.3(d). From Lemma 1.1, we know that G − F
has no fractional perfect matching, which means that F is a FSMP set of G. Hence we have
fsmp(G) = 3.
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Since smp(G) = 4, it follows that G−F has perfect matching if F consists of three edges
or consists of two vertices and one edge. Thus we only consider the case that F consists of
three vertices. By deleting any three vertices of G, there are at least two vertices belong to
one copy, say G0. If there are two vertices in G0 and one vertex in G1, then we can find a
perfect matching with six vertices in G0 and a Hamiltonian cycle with seven vertices in G1.
If there are three vertices in G0, then we have an almost-perfect matching with five vertices
in G0, say vertex v is incident with none edge, then there exists a vertex v′ ∈ V (G1) such
that edge vv′ ∈ E(G), then we have a perfect matching with six vertices, G1 − {v′} has a
Hamiltonian cycle with seven vertices, then we can find a fractional perfect matching of G.
So any optional FSMP set must contain one vertex and two edges.

Lemma 2.4. Let G be a 5-dimensional multiply twisted cube or locally twisted cube. Then
fsmp(G) = 5.

Proof. Since fsmp(G) ≤ δ(G) = 5, we need to prove fsmp(G) ≥ 5. Let F ⊆ V (G)∪E(G)
for |F | = 4, FV ⊆ V (G). It suffices to prove that G − F has a fractional perfect matching.
If |FV | is even, then G − F has a perfect matching by Lemma 1.5, so we only consider the
case that |FV | is odd. Thus, there is at least one vertex in F . Without loss of generality,
suppose that this vertex belongs to F 0 and |F 0| ≥ |F 1|.

Case 1. |F 0| = 4.
Since F contains at least one vertex, say v, we let F 0′ = F 0−{v}. By Lemma 1.5, G0−F 0′

has a perfect matching M . Let (u, v) ∈ M , we assume that u′ is a neighbor of u in G1. By
Lemma 2.3, G1 − {u′} has a fractional perfect matching f1. Thus M − (u, v) ∪ (u, u′) ∪ f1
induces a fractional perfect matching of G− F .

Case 2. |F 0| = 3.
If F 0 contains two vertices and one edge or F 0 contains three vertices, from Lemma 2.3,

G0−F 0 and G1−F 1 have a fractional perfect matching f0 and f1, respectively. Then f0∪f1
induces a fractional prefect matching of G− F . So, we discuss that F 0 contains one vertex
and two edges.

Clearly, G0−F 0 has an almost-perfect matching with missing vertex u. Since each vertex
of G0 is incident with exactly one vertex of G1, it follows that there exist a vertex u′ ∈ G1

such that edge (u, u′) ∈ G, and hence G0−F 0−{u} has a perfect matching M . On the other
hand, combining |F 1| ≤ 1 and Lemma 2.3, G1 − F 1 − u′ has a fractional perfect matching
f1. Clearly, M ∪ (u, u′) ∪ f1 induces a fractional perfect matching of G− F .

Case 3. |F 0| = 2.
By Lemma 2.3, G0 − F 0 and G1 − F 1 have a fractional perfect matching f0 and f1,

respectively. Thus f0 ∪ f1 induces a fractional perfect matching of G− F .
We use the similar notation as above in following results.

Lemma 2.5. Let G be a 5-dimensional multiply twisted cube or locally twisted cube. Then
each optimal FSMP sets of G is trivial.

Proof. Let F ⊆ V (G)∪E(G) with |F | = 5, where F = F 0∪F 1. To the contrary, we assume
G−F has a fractional perfect matching. If |FV | is even, then G−F has a perfect matching
by Lemma 1.5. So we only consider the case that |FV | is odd. For notational convenience,
we assume that |F 0| ≥ |F 1|.
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Case 1. |F 0| = 5.
Subcase 1.1. F 0 contains at least three vertices u, v, w.
Let F 0′ = F 0 − {u, v, w}. From Lemma 1.5, G0 − F 0′ has a perfect matching M . Let

{(u, x), (v, y), (w, z)} ⊂ M , note that |F − F 0| = 0, so we can assume that x
′
, y

′
, z

′
are

neighbours of x, y and z, respectively, where x
′
, y

′
, z

′ ∈ G1. From Lemma 2.3, G1−{x′
, y

′
, z

′}
has a fractional perfect matching f1. Clearly, (M − {u, v, w}) ∪ {(x, x′

), (y, y
′
), (z, z

′
)} ∪ f1

induces a fractional perfect matching of G− F .
Subcase 1.2. F 0 contains one vertex u.
Let F 0′ = F 0−{u}. From Lemma 1.5, either G0−F 0′ has a perfect matching M , or F 0′

is a SMP set of G0. If G0 − F 0′ has a perfect matching M , then we can assume (u, x) ∈ M .
Note that |F − F 0| = 0, we can assume that x′ ∈ G1 is neighbour of x. From Lemma 2.3,
G1 − {x′} has a fractional perfect matching f1. Clearly, (M − {u}) ∪ {(x, x′

)} ∪ f1 induces
a fractional perfect matching of G− F . If F 0′ is a SMP set of G0, then we assume that it is
induced by u. Similarly, we can assume that x

′
, y

′
are neighbours of x and y, respectively,

where x
′
, y

′ ∈ G1. G1 − {x′
, y

′} has a fractional perfect matching f1. Thus we can easily
obtain a desired fractional perfect matching of G− F .

Case 2. |F 0| = 4.
By Lemma 1.5, there are at most two vertices u and v such that they are missed by a

perfect matching M . Since F is not a FSMP set of G, we assume that u′, v′ are neighbours of
u and v, respectively, where u′, v′ ∈ G1. From Lemma 2.3, G1−F 1−{u′, v′} has a fractional
perfect matching f1. Hence (M − {u, v}) ∪ {(u, u′

), (v, v
′
)} ∪ f1 induces a fractional perfect

matching of G− F .
Case 3. |F 0| = 3.
In fact, we only consider that F 0 contains one vertex. Otherwise, by Lemma 2.3, G0−F 0

and G1 − F 1 have fractional perfect matchings f0 and f1, respectively. Thus we can easily
obtain a desired fractional perfect matching of G − F . From Lemma 1.7, G0 − F 0 has an
almost perfect matching M . By Lemma 1.7 and Lemma 2.3, there exists a vertex v missed
by M such that G1 − F 1 − {v′} has a fractional perfect matching f1, where v′ ∈ G1 is a
neighbour of v. Clearly, (M − {v}) ∪ {(v, v′

)} ∪ f1 induces a fractional perfect matching of
G− F .

3 Main results

Now is the time to present the main results of this paper.

Theorem 3.1. Let G be a n-dimensional multiply twisted cube or locally twisted cube.

fsmp(G) =

{
n− 1, if 3 ≤ n ≤ 4;
n, if n ≥ 5.

Moreover, for n ≥ 5, each optimal FSMP set of G is trivial.

Proof. By Lemmas 2.2 and 2.3, the results holds for n = 3, 4. Now we only to prove
fsmp(G) = n for n ≥ 5 by induction on n. The statement is true for n = 5 by Lemma 2.4.
For n ≥ 6, we assume that the result holds for n− 1. Now we show that fsmp(G) = n. Let
F ⊆ V (G) ∪ E(G), |F | = n − 1 and F = F 0 ∪ F 1. It suffices to prove that G − F has a

8

Theory and Applications of Graphs, Vol. 6 [2019], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol6/iss2/2
DOI: 10.20429/tag.2019.060202



fractional perfect matching. If |FV | is even, then G − F has a perfect matching by Lemma
1.5. So we only consider the case that |FV | is odd. We suppose that |F 0| ≥ |F 1|.

Case a. |F 0| = n− 1.
Since F contains at least one vertex, we can assume that F 0′ = F 0 − {v} and v ∈ F .

By Lemma 1.5, G0 − F 0′ has a perfect matching M . Let (u, v) ∈ M , we assume that u′ is
a neighbor of u in G1. From the induction hypothesis, G0 − {u′} has a fractional perfect
matching f . Thus (M − (u, v))∪ (u, u′) and f induce a fractional perfect matching of G−F .

Case b. |F 0| = n− 2.
By the induction hypothesis, we can know that the G0−F 0 and G1−F 1 have fractional

perfect matching f0 and f1, respectively. Thus, f0 and f1 induce a fractional perfect matching
of G− F and fsmp(MTQn) ≥ n.

Since fsmp(G) ≤ δ(G), there are fsmp(G) ≤ n, and hence fsmp(G) = n.
Next, we classify the optimal solutions, for F ⊆ V (G) ∪ E(G) with |F | = n. We only

show that one of the two cases holds: (i) F is a trivial FSMP set, (ii) G−F has a fractional
perfect matching. If F contains even number of vertices, then G − F has either perfect
matching or isolated vertex by Lemma 1.5. Thus we only consider the case that F contains
odd number of vertices. For notational convenience, assume that |F 0| ≥ |F 1|. We distinguish
the following the following three cases.

Case 1. |F 0| = n.
Clearly, F contains odd number of vertices. Let u ∈ F . We consider the following two

subcases.
Subcase 1.1. F 0 contains at least an edge (w, s).
Let F 0′ = F 0 − {u, (w, s)}, then |F 0′| = n − 2. Since G0 − F 0′ has an even number

of vertices and |F 0′| = n − 2, it follows from Lemma 1.5 that G0 − F 0′ has a perfect
matching M . Let (u, v) ∈ M , since |F 1| = 0, it follows that we may assume that v

′
, w

′
,

s
′
are neighbours of v, w and s, respectively, where v

′
, w

′
, s

′ ∈ G0. We consider the case
that (w, s) ∈ M , otherwise, it is easy. Since n ≥ 6 and |{v′

, w
′
, s

′}| = 3, it follows from
the induction hypothesis that G1 −{v′

, w
′
, s

′} has a fractional perfect matching f1. Clearly,
(M−{u, (w, s)})∪{(v, v′

), (w,w
′
), (s, s

′
)}∪f1 induces a fractional perfect matching of G−F .

Subcase 1.2. F 0 contains all vertices.
Since n − 1 ≥ 6 − 1 > 3, we can pick two additional vertices v and w in F0. Let

F 0′ = F 0−{u, v, w}. SinceG0−F 0′ has an even number of vertices and |F 0′ | = n−3, it follows
from Lemma 1.5 that there exists a perfect matching M . Let {(u, x), (v, y), (w, z)} ⊆ M .
For |F − F 0| = 0, we may assume that x

′
, y

′
, z

′
are neighbours of x, y and z, respectively,

where x
′
, y

′
, z

′ ∈ G1. Since n ≥ 6 and |{x′
, y

′
, z

′}| = 3, it follows from the induction
hypothesis that G1 − F 1 has a fractional perfect matching f1. Clearly, (M − {u, v, w}) ∪
{(x, x′

), (y, y
′
), (z, z

′
)} ∪ f1 induces a fractional perfect matching of G− F .

Case 2. |F 0| = n− 1.
By the induction hypothesis, either G0−F 0 has a fractional perfect matching f0 or F

0 is
a trivial FSMP set of G0. In the first case, since |F − F 0| = 1, it follows from the induction
hypothesis that G1 − F 1 has a fractional perfect matching f1. Clearly, f0 ∪ f1 induces a
fractional perfect matching of G − F . Now we consider the case that F 0 is a trivial FSMP
set of G0 and it is induced by the vertex u. If u has no neighbour in G1 ∪ (G−F ), then u is
an isolated vertex in G − F , so we are done. Thus we may assume that u has a neighbour
u′ ∈ G1 in G− F . We distinguish the following two subcases to show this case.
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Subcase 2.1. F 0 contains only edges.

Since |F 0| ≥ 6 and |F − F 0| = 1, there exists an edge (u, v) in F 0 such that v has a
neighbour v

′ ∈ G1 in G − F . Let F 0′ = F 0 − {(u, v)} and F 1′ = F 1 ∪ (V (G1) ∩ {u′
, v

′}).
Clearly, |F 0′| ≤ n−2 and |F 1′| ≤ 3. From the induction hypothesis, G1−F 0′ has a fractional
perfect matching. Note that u has only one neighbour v in G0 − F 0′ . From Lemma 1.2, the
subgraph of G0 − F 0′ induced {u, v} is K2 and G0 − F 0′ − {u, v} can be partitioned into
disjoint union of some K2 and Hamiltonian graphs on odd number of vertices. It is obvious
that G0−F 0′ −{u, v} has a fractional perfect matching f0. Furthermore, note that n−1 ≥ 5
and |F 1′| ≤ 3. By the induction hypothesis, G1 − F 1′ has a fractional perfect matchings f1.
Clearly, f0 ∪ f1 ∪ {(u, u′

), (v, v
′
)} induces a fractional prefect matching of G− F .

Subcase 2.2. F 0 contains at least one vertex v.

Let F 0′ = F 0−{v} and F 1∩{u′} for 2 ≤ i ≤ n. Clearly, |F 0′| ≤ n−2 and |F 1∩{u′}| ≤ 2.
By the induction hypothesis, G0 − F 0′ has a fractional perfect matching. Note that u has
only one neighbour v in G0 − F 0′ . From Lemma 1.2, the subgraph of G0 − F 0′ induced
by {u, v} is K2 and G0 − F 0′ − {u, v} can be partitioned into disjoint union of some K2

and Hamiltonian graphs on odd number of vertices. It is obvious that G0 − F 0′ − {u, v}
has a fractional perfect matching f0 by Lemma 1.2. Furthermore, noting that n − 1 ≥ 5
and |F 1 ∩ {u′}| ≤ 2, by the induction hypothesis, G1 − F 1 ∩ {u′} has a fractional perfect
matchings f1. Thus f0 ∪ f1 and {(u, u′

)} induces a fractional prefect matching of G− F .

Case 3. |F 0| ≤ n− 2.

In this case, |F 1| ≤ |F 0| ≤ n− 2. By the induction hypothesis, Gi − F i has a fractional
perfect matching fi for 0 ≤ i ≤ 1. It is clear that f0∪f1 induces a fractional perfect matching
of G− F .

4 Conclusion

We believe that the concept of fractional matching preclusion introduced in [10] is very
interesting and it will gain more attention in the future. In this paper, we studied this topic
of strong version for multiply twisted cube and locally twisted cube, two special members
of HL graphs. It is not difficult to see that the proofs for them are similar. One may ask
why not prove the more general HL graphs. That’s our early vision, but we didn’t achieve
it. Clearly, the fractional strong preclusion number for 4-dimensional multiply twisted cube
or locally twisted cube is 3, but not 4. For some of the other HL graphs, such as Mcube,
which was proposed in [22], however we found the fractional strong preclusion number for
4-dimensional Mcube is 4, but not 3. Therefore, the induction can’t be used always. We
believe that the fractional strong preclusion number for n-dimensional HL graphs is n if
n ≥ 5. We are looking forward to more results for this topic.
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