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Abstract

The study of graph Ramsey numbers within restricted colorings, in particular for-

bidding a rainbow triangle, has recently been blossoming under the name Gallai-

Ramsey numbers. In this work, we extend the main structural tool from rainbow

triangle free colorings of complete graphs to rainbow Berge triangle free colorings of

hypergraphs. In doing so, some other concepts and results are also translated from

graphs to hypergraphs.

1 Introduction

Edge-colorings of graphs, particularly complete graphs, have been studied from a wide variety
of perspectives. Among the most famous of these is certainly Ramsey theory, but even within
Ramsey theory, there have been many variants. One particular direction, has been restricting
the colorings to those containing no rainbow copy of some specified subgraph. In light of
the following structural result, originally proven by Gallai [11] in 1967, it is natural that the
rainbow triangle has received the most attention.

To be precise, a subgraph of a colored graph is called rainbow if its edges have been
assigned all distinct colors. A colored complete graph is called a Gallai coloring if it contains
no rainbow colored triangle.

Theorem 1 ([4, 11, 14]). Every Gallai coloring of a complete graph of order at least 2
contains a non-trivial partition (with at least two parts) of the vertices such that between the
parts there is a total of at most two colors on the edges, and between each pair of parts there
is only one color on the edges.

Such a partition is called a Gallai partition or G-partition.
The goal of this paper is to extend Theorem 1 to hypergraphs and apply it to several

related areas of study. When transitioning to hypergraphs, the first question is how to
translate the definitions. For example, what does “complete” mean and what shall be called
a “triangle”?

Given a positive integer n, let K3
n denote the complete 3-uniform hypergraph on n vertices.

A hypergraph with at least 4 vertices and three distinct edges e1, e2, e3 is called a Berge
triangle, denoted by BC3, if there exist three distinct vertices, say u, v, w, with u, v ∈ e1,
v, w ∈ e2, and u, w ∈ e3. As in the case for graphs, a Berge triangle is called rainbow if the
hyperedges have been assigned distinct colors.

We first consider colorings of K3
n containing no rainbow Berge triangles. Our first main

result shows that the structure of rainbow-BC3-free colored 3-uniform hypergraphs is actually
much stronger than the structure provided by Theorem 1 for graphs. A color is called
universal if no two hyperedges of any two other colors share a vertex. In this work, we
consider only colorings of the hyperedges (not the vertices) of hypergraphs.

Theorem 2. For a positive integer n, let H be a copy of K3
n and c(H) be a coloring of H

containing no rainbow BC3. Then there exists a universal color.

There are 4 non-isomorphic 3-uniform Berge triangles. See Figure 1. With this in mind,
the hypothesis in Theorem 2 assumes that none of these four subhypergraphs appear using
three different colors.
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B1 B2

B3 B4

Figure 1: All 3-uniform Berge triangles

Note that B1 is also known as a “linear” or “loose” C3 and B2 can also be regarded as a
K3

4 minus a single hyperedge. With this notation for the different specific Berge triangles,
we can be more specific in our statements. In fact, it turns out that not all of the Berge
triangles are needed in the statement of Theorem 2.

Theorem 3. For a positive integer n, let H be a copy of K3
n and let c(H) be a coloring of

H containing no rainbow B3. Then there exists a universal color.

We have yet to find any indication whether this also holds true for B1, B2, or B4. It is
also unclear what one might find when forbidding any other Berge hypergraphs.

In order to extend these results to hypergraphs that are not 3-uniform, we first define
what it means to be “complete”. A hypergraph H is called 3-complete if, for each set of 3
vertices, there is a distinct hyperedge containing those 3 vertices. Notice that this definition
does not require H to be uniform. With this definition, we get the following extension of
Theorem 2.

Theorem 4. Let H be a 3-complete hypergraph on n ≥ 4 vertices and let c(H) be a coloring
of H. If c(H) contains no rainbow Berge triangle, then there is a universal color.

Note that Theorem 2 is a corollary of Theorem 4 but Theorem 3 is not. After some
preliminary results though, see Lemmas 1-4, it turns out that Theorem 2 and Theorem 3
are equivalent, meaning that Theorem 4 also implies Theorem 3. We therefore only include
the proof of Theorem 4, provided in Section 3.

Also observe that the conclusions of Theorems 3 and 4 imply that if H is a hyperedge-
colored hypergraph satisfying either of the hypotheses, then there is a nice partition of the
vertices.

Corollary 5. Let n ≥ 4 and let H be a hypergraph and c(H) be a coloring of H containing
no rainbow B3 such that either
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• H is a copy of K3
n, or

• H is a copy of an arbitrary hypergraph (perhaps not even uniform) in which for every
set of 3 distinct vertices, there is a distinct hyperedge containing those 3 vertices,

then, up to renumbering the colors, there is a partition of the vertices ofH into H1, H2, . . . , Hk

such that all hyperedges containing vertices from more than one part Hi must have color 1
and all hyperedges contained within Hi have either color 1 or color i.

Conversely, if such a partition exists, then there is no rainbow BC3.

Theorem 6. If H is a hypergraph (not necessarily uniform) of order at least 4 and c(H)
a coloring of H for which there is a partition of the vertices into H1, H2, . . . , Hk such that
all hyperedges containing vertices from more than one part Hi must have color 1 and all
hyperedges contained within Hi have either color 1 or color i, then c(H) contains no rainbow
BC3.

Section 2 contains several helpful lemmas that are used to show that Theorem 2 and
Theorem 3 are equivalent. The proof of Theorem 4 is presented in Section 3 and the proof
of Theorem 6 is presented in Section 4. Finally, Section 5 contains several applications of
Corollary 5 to other areas of hyperedge-colorings, extending corresponding graph notions.

2 Preliminaries

In this section, we prove some helpful implications between the existence of certain rainbow
subhypergraphs in a complete 3-uniform hypergraph K3

n.
A hypergraph with at least n+1 vertices and n distinct hyperedges e1, e2, . . . , en is called

a Berge path of length n if there exist a subset of n + 1 distinct vertices v1, v2, . . . , vn, vn+1

such that vi, vi+1 ∈ ei for each i with 1 ≤ i ≤ n. We say that a hypergraph is connected
if, between every pair of vertices, there is a Berge path. In particular, a path is called
tight if each pair of consecutive hyperedges shares two vertices. Given a hyperedge-colored
hypergraph H containing a hyperedge e, we denote by c(e) the color of the hyperedge e.
Note that B4 is a tight path on 3 hyperedges.

Lemma 1. For n ≥ 5, if a coloring c(H) of H = K3
n contains a rainbow B4, then c(H)

contains a rainbow B3.

Proof. Suppose c(H) contains a rainbow B4, say using hyperedges e1 = uvw in color 1,
e2 = uvx in color 2, and e3 = vwy in color 3. If c(wxy) /∈ {2, 3}, then wxy along with e2 and
e3 form a rainbow B3. If c(wxy) = 3, then wxy along with e1 and e2 form a rainbow B3.
These observations together imply that c(wxy) = 2, and symmetrically, c(uxy) = 3. Then
wxy in color 2, uxy in color 3 and e1 in color 1 form a rainbow B3, completing the proof.

Since B4 is a tight path on 3 hyperedges, the following is a corollary of Lemma 1.

Lemma 2. If a coloring c(H) of H = K3
n with n ≥ 5 contains a rainbow tight path on 3

hyperedges, then c(H) contains a rainbow B3.
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Lemma 3. For n ≥ 6, if a coloring c(H) of H = K3
n contains a rainbow B1, then c(H)

contains a rainbow B3.

Proof. Suppose c(H) contains a rainbow B1, say using hyperedges uvw with color 1, wxy
with color 2, and yzu with color 3. Then regardless of the color of uwy, there is a rainbow
tight path on three hyperedges. By Lemma 2, the proof is complete.

Lemma 4. If a coloring c(H) of H = K3
n with n ≥ 5 contains a rainbow B2, then c(H)

contains a rainbow B3.

Proof. Suppose c(H) is a coloring of H = K3
n with a rainbow B2, say with hyperedges

e1 = abc in color 1, e2 = bcd in color 2, and e3 = cda in color 3. Let f be another vertex
in H and consider the hyperedge bdf . If bdf has color 2 or a new color, then this hyperedge
along with e1 and e3 form a rainbow B3 as claimed. This edge therefore has either color 1
or 3 so by symmetry, we may assume c(bdf) = 1. Then the edges fbd in color 1, e2 = bdc in
color 2, and e3 = dca in color 3 forms a rainbow tight path on 3 hyperedges. By Lemma 2,
the desired rainbow copy of B3 is present.

With these lemmas in place, we observe the equivalence of our first two main results.

Corollary 7. Theorem 2 and Theorem 3 are equivalent.

Proof. That Theorem 3 implies Theorem 2 is immediate so suppose we assume the hypothesis
of Theorem 3, that the coloring of K3

n in question contains no rainbow B3. By Lemmas 1, 3,
and 4, the hypergraph also contains no rainbow B4, B1, or B2 respectively. Thus, there is no
rainbow BC3, which is the hypothesis of Theorem 2, completing the reverse implication.

3 Proof of Theorem 4

Proof. Let H be a 3-complete hypergraph on n ≥ 4 and c(H) be a coloring of H containing
no rainbow BC3. If the number of colors used in c(H) is at most 2, then the result is
immediate so suppose at least 3 colors appear on the hyperedges of H .

We first prove a claim about the color degree of each vertex.

Claim 1. Every vertex is contained in hyperedges of at most two different colors.

Proof. Suppose, for a contradiction, that a vertex v is contained in hyperedges of three
different colors, say ei of color i for 1 ≤ i ≤ 3. Since these hyperedges are distinct, there must
exist a set of three distinct vertices vi ∈ H \ {v} such that vi ∈ ei for each 1 ≤ i ≤ 3. Then
a hyperedge e0 containing vertices {v1, v2, v3} must be present and colored so let c = c(e0).
Regardless of the color c0 = c(e0), there exist indices i and j such that c0 /∈ {c(ei), c(ej}. Say
for example, if c0 = 2, then e1 and e3 have different colors than e0. Then {e0, ei, ej} forms a
rainbow BC3, for a contradiction.

Since every pair of vertices is contained in a hyperedge, certainly every pair of vertices
shares at least one color on their incident edges. If every vertex has a color in common, then
Claim 1 implies that this is the desired universal color so suppose not. Then, without loss
of generality, there must be three vertices v1, v2, v3 such that v1 has incident hyperedges in

4

Theory and Applications of Graphs, Vol. 6 [2019], Iss. 2, Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol6/iss2/1
DOI: 10.20429/tag.2019.060201



colors 1 and 2, v2 has incident hyperedges in colors 2 and 3, and v3 has incident hyperedges
in colors 1 and 3. Then regardless of the color of the edge v1v2v3, one of these vertices will
have three different colors on incident hyperedges, contradicting Claim 1 and completing the
proof of Theorem 4.

4 Proof of Theorem 6

Proof. For a contradiction, suppose there is a rainbow BC3 in c(H), and let u, v, w be the
representative vertices for this triangle. If all three of u, v, w are in a single part of the
assumed partition, then every edge containing any of these three vertices come from only
two colors, the universal color and the color corresponding to the part, contradicting the
assumption that the BC3 was rainbow. On the other hand, if at least two of the vertices
u, v, w are in different parts, then at least two of the hyperedges in the BC3 are crossing,
and so must have the universal color, again contradicting the assumption that the BC3 was
rainbow. This completes the proof of Theorem 6.

5 Applications of Corollary 5

In this section, we consider applications of Corollary 5 to other areas related to Ramsey-type
questions.

5.1 Gallai-Ramsey Numbers

Using Theorem 1, many authors have considered a variant of Ramsey numbers in which a
rainbow triangle is forbidden. Given a positive integer k and graphs G and H , let grk(G : H)
be the minimum integer N such that every k-coloring of the edges of Kn for n ≥ N contains
either a rainbow copy of G or a monochromatic copy of H . See [10] for many results on this
topic. Naturally, the most common choice for the graph G is the triangle. In particular, the
sharp value of grk(K3 : Kn) was conjectured in [7]. The case n = 3 was proven in [5] and the
case n = 4 was recently settled in [20] but the conjecture in general remains open and likely
very difficult since it depends on unknown classical 2-color Ramsey numbers for complete
graphs.

Let hrRk(H) be the k-colored hypergraph Ramsey number for finding a monochromatic
copy of a given r-uniform hypergraph H within a k-colored complete r-uniform hypergraph.
We refer the interested reader to [2, 12, 13, 15, 16, 17, 18] for several results related to this
topic.

We now define the hypergraph version of the Gallai-Ramsey number.

Definition 1. Given connected r-uniform hypergraphs G and H, define the k-color hyper-
graph Gallai-Ramsey number hrgrk(G : H) to be the minimum integer N such that for all
n ≥ N , every k-coloring of the hyperedges of Kr

n contains either a rainbow G or a monochro-
matic H in some color.

Note that the hypergraph Gallai-Ramsey number clearly exists since it is bounded from
above by the hypergraph Ramsey numbers, which are known to exist. By Corollary 5, we
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can easily extend 2-color hypergraph Ramsey numbers to any number of colors. This result
follows from Corollary 5 by simply merging all non-universal colors into a single color.

Corollary 8. For an integer k ≥ 2 and a connected hypergraph H,

hgrk(B3 : H) = h3R2(H).

5.2 Anti-Ramsey Numbers

Given graphs G and H , the anti-Ramsey number ar(G,H) is defined to be the maximum
number of colors k such that there exists a coloring of the edges of G using k colors in which
every copy of H as a subgraph of G has at least two edges of the same color. In other
words, the anti-Ramsey number is the maximum number of colors that can be used within
G while avoiding a rainbow copy of H . Since their introduction by Erdős, Simonovits, and
Sós [6], anti-Ramsey numbers have been well studied from many perspectives. See [10] for
an updated list of results in the area.

Despite a robust literature on anti-Ramsey numbers for graphs, the hypergraph version
has seen very little attention, the most visible results being contained in only three publica-
tions [1, 19, 24]. For completeness, given hypergraphs G and H , the hypergraph anti-Ramsey
number har(G,H) is defined to be the maximum number of colors k such that there exists a
coloring of the hyperedges of G using k colors in which every copy of H as a subhypergraph
of G has at least two edges of the same color.

Using Corollary 5, we easily obtain the precise anti-Ramsey number for avoiding a rain-
bow B3 within K3

n.

Corollary 9. For all n ≥ 3,

har(K3

n, B3) =
⌊n

3

⌋

+ 1.

5.3 Monochromatic Connectivity

Given fixed positive integer parameters k and m, a positive integer n, and some function
f(k,m) (not depending on n), a subgraph R of an m-edge-coloring of Kn is called almost
spanning if |R| ≥ n − f(k,m). The search for almost spanning monochromatic highly
connected subgraphs was initiated, in this form, by Bollobás and Gyárfás in 2008 with the
following conjecture.

Conjecture 1 (Bollobás and Gyárfás [3]). If n > 4(k−1), then every 2-edge-coloring of Kn

contains a monochromatic k-connected subgraph of order at least n− 2(k − 1).

After several partial solutions including some partial results in the original paper [3] along
with others in [8, 21, 22],  Luczak [23] recently published a proof of Conjecture 1 but a gap
in the proof has been found and not yet fixed.

Introducing forbidden rainbow subgraphs to the problem, in 2013, Fujita and Magnant
classified those graphs H with the property that if G is an edge-coloring of Kn without
rainbow H , then G contains an almost spanning monochromatic k-connected subgraph.

6

Theory and Applications of Graphs, Vol. 6 [2019], Iss. 2, Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol6/iss2/1
DOI: 10.20429/tag.2019.060201



Theorem 10 (Fujita and Magnant [9]). Let n, k,m be positive integers with n ≫ m ≫ k.
A connected graph H has the property that “any m-edge-coloring of Kn without rainbow
H contains an almost spanning monochromatic k-connected subgraph” if and only if H ∈
{K3, P

+

4 , P6} or a connected subgraph of them.

This concept can naturally be extended to hypergraphs through the following question.
Here we say a hypergraph is k-connected if the removal of any set of at most k − 1 vertices
leaves behind a connected hypergraph.

Question 1. For which 3-uniform hypergraphs H does the following hold for k and m suffi-
ciently large? If G is a rainbow H-free m-coloring of K3

n, then G contains a monochromatic
k-connected subgraph of order at least n− f(k,m) where f is a function of k and m but not
n.

Let H denote the set of hypergraphs satisfying the claim in Question 1. Then Corollary 5
implies the following result, meaning that B3 ∈ H .

Corollary 11. Let k ≥ 1 and n ≥ 4. If G is an m-coloring of K3
n with no rainbow B3, then

G contains a spanning monochromatic k-connected subgraph.
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