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ESSAYS ON MIXTURE MODELS

by

TREVOR CAMPER

(Under the Direction of Stephen Carden)

ABSTRACT

When considering statistical scenarios where one can sample from populations that are not

of interest for the purposes of a study, bivariate mixture models can be used to study the ef-

fect that this missampling can have on parameter estimation. In this thesis, we will examine

the behavior that bivariate mixture models have on two statistical constructs: Cronbach’s

alpha [10], and Spearman’s rho [39]. Chapter 1 will introduce notions of mixture models

and the definition of bias under mixture models which will serve as the central concept of

this thesis. Chapter 2 will investigate a particular psychometric issue known as insufficient

effort responding (IER), which we model as a mixture model, while Chapter 3 will deal

with mixture models in a more general setting. Chapter’s 2 and 3 will demonstrate that

the sign of the bias and the bias under bivariate mixture models for Cronbach’s alpha and

Spearman’s rho, respectively, are polynomial functions in the mixing proportions of the

underlying distributions. This will be followed in each chapter by simulation results and

observations.
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CHAPTER 1

INTRODUCTION

In many statistical settings, there is the possibility that when attempting to sample

from a population of interest that observations from a secondary population can occur ran-

domly. For example, consider surveying individuals in City A, with the intent of estimating

the mean income of the area. However, City A happens to be a tourist destination for City

B. In the absence of screening questions, when surveying individuals on the streets of City

A, it is possible that some denizens of City B could be asked to perform the survey. If it

happens that City A and City B tend to have different mean incomes, then the resulting

presence of survey responses from denizens of City B may result in a biased estimate of

the mean income of City A. This example demonstrates a particular phenomena of when

one random quantity, the estimated mean income of City A, is dependent upon two random

quantities, namely the incomes of City A and City B. This phenomena leads naturally into

our first definition.

Definition 1. [[38]] A random variable X is said to have a mixture distribution if the dis-

tribution of X depends on a quantity that also has a distribution.

In the example presented above, one can think of the incomes coming from City A as

coming from a target, or valid, population, while incomes coming from City B are from an

undesired, or contaminating population. Going forward, we shall associate random vari-

ables (or vectors) V andC with these valid and contaminating classes, respectively. Similar

situations as described in the introductory paragraph tend to occur in many sampling sce-

narios. Whereas in the example, we see our contaminating population coming from one

source, this is not always the case, as this contamination can ultimately arise from many

possible sources. However, in constructing a probability model to use in this situation, one

can simply treat the sources of contamination as coming from a random variable C that has

a mixture distribution. This formulation then results in there only being two components
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of interest: those associated with the valid distribution, and those associated with a class

of contamination. The next definition provides a more mathematical construction of the

concepts described thus far.

Definition 2. Let M , V , and C be random variables, and let W ∼ Bernoulli(p). We say

that M is a bivariate mixture of V and C if the distribution of M is a mixture distribution

of V and C. Formally, we say that M is a bivariate mixture of V and C with mixing

proportion p if

M = (1−W )V +WC.

Now that we have described a proper probability model to describe the mis-sampling

issue, we can now begin to discuss how bivariate mixture models affect the population

forms of particular statistics. Namely, practitioners would be interested in knowing if the

population form of a statistic under the mixture model is larger or smaller than that under

the target population, and what conditions on the contaminating distribution result in a

larger or smaller value of the statistic. The notion that the statistic can be larger or smaller

under a mixture model than for the target population leads us into our next definition.

Definition 3. Let θ be the population form of some statistic θ̂. The bias under bivariate

mixture is defined as a function of the mixing proportion p as follows:

Bias(p) = θM − θV

where θM is the statistic under the bivariate mixture model M described in Definition 2,

and θV is the statistics under the target population.

Definition 3 will serve as the main area of focus for the remainder of this thesis. In

the second Chapter of this thesis, we will explore the effect of bivariate mixture models

on Cronbach’s alpha [10], a measure of internal consistency often used when constructing

surveys. In particular, we will investigate a particular form of mis-sampling, commonly
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known as insufficient effort responding, via a bivariate mixture model where the contam-

inating distribution is represented as a distribution of responses for which little effort is

supplied by the survey respondent. This will allow us to provide a characterization of the

sign of the bias under this particular mis-sampling via the underlying means, variances, and

covariances of the valid and contaminating distributions. Chapter 2 will be concluded by

including commentary and observations dealing with particular types of insufficient effort

responding.

Following Chapter 2, Chapter 3 will discuss Spearman’s rho [39], a rank-based mea-

sure of correlation. First, however, the population form of Spearman’s rho involves a par-

ticular probabilistic notion known as a copula, which we define at the start of Chapter 3.

We then demonstrate that the bias in Spearman’s rho defined in Definition 3 is a cubic

equation in the mixing proportion p. In addition to this, we briefly discuss the dynamics

of a cubic equation, with particular care for the cubic’s root behavior. We follow this by

demonstrating via simulation that all possible mathematical situations for a cubic equation

can exist for the bias. Chapter 4 will conclude this thesis and discuss future routes for new

research. This concludes Chapter 1.
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CHAPTER 2

CRONBACH’S ALPHA AND IER

When administering self-report surveys, there is often a class of respondents that fail

to provide accurate and thoughtful responses [1]. This type of responding, referred to as

careless responding or insufficient effort responding (IER) [2], can contaminate otherwise

accurate data and bias statistical summaries. Intuition suggests that IER would weaken

measures of the association of variables, and often it does [3]. However, recent research

[4, 5] has observed and discussed the non-intuitive phenomena of IER inflating measures

of association.

The negative consequences of inflated measures of association due to IER are many.

The effect of IER on the linear correlation coefficient has been well documented [6, 7, 4],

and conditions causing the magnitude of correlation to inflate have been characterized.

Other studies have suggested that patterned careless responses in surveys with positively

and negatively keyed items can lead to misleading conclusions about the dimensionality of

constructs [8, 9].

Cronbach’s alpha [10] is also subject to possible inflation under IER [11, 5]. Whether

justified or not [12], Cronbach’s alpha is often the only reported measure of reliability.

McNeish [13] found that of 118 studies published in a 21-month period in American Psy-

chological Association flagship journals, 109 used Cronbach’s alpha as the sole assessment

of reliability. Therefore the possibility of inflation due to careless responses is particularly

insidious, as it is possible that researchers will overestimate an instrument’s reliability. Ul-

timately, this can have downstream effects on the evaluation of the study, and can make

studies seem more sound than they actually are.
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2.0.1 WORK RELATED TO CRONBACH’S ALPHA UNDER IER OR MIXTURE

MODELS

Previous investigations into the effect of IER on Cronbach’s alpha fall into three cate-

gories: those that remove suspected IER from real data and see how the value of Cronbach’s

alpha changes [2, 14], those that simulate a combination of valid and careless responses and

examine alpha and other statistics [5], and those that proceed by mathematical derivations.

Previous works in the last category include Attali’s [15] investigation of reliability in the

context of speeded multiple-choice questions, and Fong, Ho, & Lam’s [11] study which

considered IER as consisting of either random or straight-lining responses, derived a for-

mula for the bias in Cronbach’s alpha, and plotted the bias for various proportions of each

kind of IER.

The present chapter primarily consists of mathematical derivations with a small sim-

ulation component. The main result is a characterization of the behavior of Cronbach’s

alpha under a mixture of two distributions, representing valid responses and IER. An im-

portant earlier work in this area is that of Waller [16], in which he derived an expression

for the value of Cronbach’s alpha under a mixture model and illustrated through several

examples how the mixture can create either a negative or positive bias. Our analysis will

extend his work in two directions. First, we will relate the sign of the bias in Cronbach’s

alpha to a quadratic function of the mixing proportion. The roots and leading coefficient

of this function yield five mathematical possibilities. Simulation is used to show that all

five possibilities are potential realities by identifying sampling scenarios that correspond to

each. Second, we relate the result to IER. Six distinct observations will be made, which

include not only general confirmations of previous observations from simulation studies,

but also the existence of a case which we have not seen mentioned in the literature.

The intent of this chapter is to demonstrate via mathematical proof all of the ways

that Cronbachs alpha can be biased, including some possibilities that are non-intuitive. As
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an educational aid, we include a link to a simulation app to help visualize the impact of

varying proportions of IER.

The remaining sections will derive the mathematics, apply the main result in the con-

text of IER, and conclude.

2.0.2 MATHEMATICS FOR GENERAL RESULT

As the result builds on Waller’s [16], we adopt his notation wherever possible. Kuder

and Richardson [17] defined a measure of internal reliability for binary choices (commonly

known as KR-20), which was generalized by Hoyt [18] and Guttman [19] and popular-

ized by Cronbach [10] to the form bearing his name. Let V = (V1, V2, . . . , Vk) represent

responses from a multivariate probability distribution to k items on an instrument. The

notation V is used to represent the valid distribution. Cronbach’s alpha is defined as

αV =
k

k − 1

1−
∑k

i=1 var(Vi)

var
(∑k

i=1 Vi

)
 . (2.1)

An alternate formulation in terms of average variances and covariances will be conve-

nient. Define σ2
iV to be the average variance of components of V, and σijV to be the average

covariance between distinct components of V. Specifically,

σ2
iV =

∑k
i=1 var(Vi)

k

and

σijV =

∑∑
i 6=j cov(Vi, Vj)

k(k − 1)
.

Then Cronbach’s alpha may be expressed in the form [16, 20]

α =
kσijV

(k − 1)σijV + σ2
iV

. (2.2)
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Now consider an instrument with k items given to a population with two distinct subgroups.

The first subgroup has a response distribution denoted by V = (V1, V2, . . . , Vk), and the sec-

ond subgroup has a response distribution denoted by C = (C1, C2, . . . , Ck). The notation

C is used to represent the contaminating IER.

Let W be a Bernoulli random variable with parameter p, where p is a value between

zero and one representing the probability of observing a response from the contaminating

class. That is, W is a random variable which takes value one with probability p and zero

with probability 1− p. The responses actually recorded on the instrument are described by

the multivariate distribution M, defined by

M = (1−W )V +WC. (2.3)

The notation M is used to emphasize that it is a mixture of the valid and contaminating

responses. Because W is either zero or one, each individual gives responses from one of

the two response distributions. With probability p an individual will give contaminating

responses, and with probability 1− p an individual will give valid responses.

By adopting this model, it is assumed that a respondent will either respond attentively

to all items, or respond in an invalid manner to all items. We acknowledge that this as-

sumption does not perfectly model real-life data; responses may be partially invalid [21]

and are more likely to be invalid at the end of a survey [22]. However, we believe (and

there is precedent in the literature [16]) this assumption represents a reasonable trade-off

between the realism of the assumptions and the complexity of the model. Furthermore, the

usual data cleaning methods used by a practitioner to remove suspected IER operate at the

respondent level rather than the item level.

The goal is to find when αM > αV ; that is, when contamination inflates Cronbach’s

alpha. First, notation and two results that will aid in the comparison are introduced.

Let µiV and µiC denote the respective means of responses to item i from the valid
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and contaminating distributions. The differences in these means are called “item validi-

ties” in the taxometrics literature and are denoted by ∆i = µiV − µiC [16]. As with the

variances and covariances, only averages are needed. Specifically, the average product of

item validities for distinct items, and the average of squared item validities:

∆i∆j =

∑∑
i 6=j ∆i∆j

k(k − 1)
=

∑∑
i 6=j(µiV − µiC)(µjV − µjC)

k(k − 1)
,

∆2
i =

∑k
i=1 ∆2

i

k
=

∑k
i=1(µiV − µiC)2

k
.

The first of the two needed results is known as the general covariance mixture theorem

[23, 24]. Here, it will be expressed in terms of averages.

Lemma 2.0.1. Let M be defined as a mixture of V and C as in Equation (2.3), where p is

the probability of observing a response from C. Assume the random quantities V, C, and

W are independent. Then

1. σijM = (1− p)σijV + pσijC + p(1− p)∆i∆j

2. σ2
iM = (1− p)σ2

iV + pσ2
iC + p(1− p)∆2

i

A proof is in Appendix A of Meehl [23].

The second result is an inequality between average variances and covariances of items

within a distribution, and will be used to investigate special cases during the discussion.

Lemma 2.0.2. The average of covariances between distinct components of a multivariate

distribution V is less than or equal to the average variance. Symbolically,

σijV ≤ σ2
iV .

The proof is in Appendix A.1. The main result can now be stated and proved.
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Theorem 2.1. Let V and C be multivariate distributions with k components representing

potential responses to an instrument. Let W be a Bernoulli random variable with parame-

ter p between zero and one. Define M = (1−W )V +WC as a mixture of V and C. Assume

that V, C, and W are independent. The behavior of Cronbach’s alpha under the mixture

can be broken down into five categories.

1. Cronbach’s alpha does not change for any mixing proportion. αM = αV for all p.

2. Cronbach’s alpha inflates for any mixing proportion. αM > αV for all p.

3. Cronbach’s alpha deflates for any mixing proportion. αM < αV for all p.

4. Cronbach’s alpha inflates for small mixing proportions, but deflates for large mixing

proportions. There is a value p0 in the interval (0, 1) such that αM > αV for p < p0,

but αM < αV for p > p0.

5. Cronbach’s alpha deflates for small mixing proportions, but inflates for large mixing

proportions. There is a value p0 in the interval (0, 1) such that αM < αV for p < p0,

but αM > αV for p > p0.

Furthermore, there exist distributions that will yield each of the above cases, including

when the item scale is continuous, discrete, or binary.

Proof. The general strategy is to derive that the sign of the bias in Cronbach’s alpha has the

same sign as a quadratic function of the mixing proportion p, and then invoke elementary

properties of quadratic functions. Begin by finding conditions under which Cronbach’s al-

pha inflates, or when αM−αV > 0. Apply Equation (2.2), the alternate form of Cronbach’s

alpha.

kσijM

(k − 1)σijM + σ2
iM

− kσijV

(k − 1)σijV + σ2
iV

> 0.
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Combine into a single fraction with a common denominator.

k
σijM

(
(k − 1)σijV + σ2

iV

)
− σijV

(
(k − 1)σijM + σ2

iM

)
(

(k − 1)σijM + σ2
iM

)(
(k − 1)σijV + σ2

iV

) > 0.

Expand the numerator. The term (k − 1) (σijM) (σijV ) will cancel.

k(
(k − 1)σijM + σ2

iM

)(
(k − 1)σijV + σ2

iV

) (σ2
iV σijM − σijV σ2

iM

)
> 0. (2.4)

The denominator of (2.4) is a scaled product of variances and must be positive, so it

will not affect the sign of the bias. Thus to determine if Cronbach’s alpha has inflated, it

suffices to find when

σ2
iV σijM − σijV σ2

iM > 0.

Apply the general covariance mixture theorem to the average variances and covariances of

M.

σ2
iV

(
(1− p)σijV + pσijC + p(1− p)∆i∆j

)
−σijV

(
(1− p)σ2

iV + pσ2
iC + p(1− p)∆2

i

)
> 0.

Expand and group terms that include p2 and p. The term (1 − p)σ2
iV σijV will cancel. The

result is

(
σijV ∆2

i − σ2
iV ∆i∆j

)
p2 +

(
σ2
iV σijC − σijV σ2

iC − σijV ∆2
i + σ2

iV ∆i∆j

)
p > 0.

Define a and b as

a = σijV ∆2
i − σ2

iV ∆i∆j, (2.5)

b = σ2
iV σijC − σijV σ2

iC − σijV ∆2
i + σ2

iV ∆i∆j = σ2
iV σijC − σijV σ2

iC − a. (2.6)

It is now easy to see that Cronbach’s alpha inflates when f(p) = ap2 + bp > 0.

f(p) is a quadratic with no constant term. This is a simple family of functions, though the
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coefficients are not simple. Momentarily ignore how a and b are defined (we will return to

this soon), and consider the possible behaviors of functions of the form f(p) = ap2 + bp.

In particular, we are interested in the sign for values of p in the interval (0, 1), as this will

determine when Cronbach’s alpha inflates or deflates. This behavior can be characterized

in terms of the concavity and roots of f(p). The roots are at 0 and−b/a (as long as a 6= 0).

Consider each case in turn.

1. Case one is a trivial possibility when a = b = 0. f(p) = 0 for all p in (0, 1).

2. Case two is f(p) > 0 for all p in (0, 1). This has two subcases: if a ≥ 0 and b ≥ 0

(but not both a = b = 0), or if 0 < −a ≤ b.

3. Case three is f(p) < 0 for all p in (0, 1). This has two subcases: if a ≤ 0 and b ≤ 0

(but not both a = b = 0), or if b ≤ −a < 0.

4. Case four occurs when 0 < b < −a. The non-zero root p0 lies in the interval (0, 1),

meaning f(p) changes sign at p0. Because a < 0 the function is concave down, so the

bias changes from positive to negative.

5. Case five occurs when −a ≤ b < 0. The non-zero root p0 is in the interval (0, 1),

except now a > 0 and the function is concave up. The bias changes from negative to

positive.

Examples of each non-trivial case, including the subcases for two and four, are included in

Figure 3.2.

Because the sign of the bias is derived to be the same as the sign of a quadratic func-

tion with a root at zero, these scenarios are exhaustive. For example, a scenario in which

Cronbach’s first deflates, then inflates, and deflates again as p increases would require three

crossings of the horizontal axis. This is not possible for a quadratic and is logically ex-

cluded.
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Case 3: f(p) always negative
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Case 4: f(p) positive, then negative
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Case 5: f(p) negative, then positive

Figure 2.1: Graphs showing the general behavior of cases two through five for f(p) = ap2+

bp, where p is the mixing proportion representing the probability of seeing a contaminating

response. The sign of this function (positive or negative) on each region is equivalent to the

sign of the bias of Cronbach’s alpha.
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To complete the proof, remember that the values a and b are not arbitrary, but defined

in Equations (2.5) and (2.6) in terms of summaries of two multivariate probability distribu-

tions which represent responses to an instrument. Item validities, representing differences

in means, are bounded by the item scale. Variances and covariances are also limited by the

range of the scale and inequalities such as Cauchy-Schwarz [25]. Furthermore, if the scale

has a small number of discrete options or is binary, then means, variances, and covariances

are not independent parameters. A natural question is: are all five cases actually possible?

The answer is yes, and the following two paragraphs describe how to obtain each.

Consider an instrument with 20 items on a five-point scale from one to five. No ques-

tions use negative keying. Discrete data is produced by first generating multivariate normal

observations with a given mean vector and covariance matrix, and then rounding. The co-

variance matrix is constructed by using the average variance for the diagonal entries and

the average covariance for the off-diagonal entries. The multivariate normal observations

are rounded to the nearest integer in the scale. Forcing discrete responses by rounding will,

of course, change the means, variances, and covariances, but in the particular cases con-

sidered, the change is not enough to alter the characterization of Cronbach’s alpha. Two

data sets are produced, representing valid responses and mixed responses. Cronbach’s al-

pha is calculated for each, and the bias is recovered as the difference. This simulation is

repeated for values of p, the mixing proportion, in increments of .025 between zero and

one. Table 2.1 describes the means, variances, and covariances of the multivariate normal

values which were rounded to obtain V and C in order to reproduce each case. Figure 2.2

shows, for each case, the bias of the simulation as a solid black line, the exact bias before

discretization as a dotted blue line, and the function f(p) as a dot-dash red line. To aid in

seeing when the sign changes, there is a dashed line for the horizontal axis. The simulations

used 10,000 respondents at each value of p.

Reproducing all cases when all items are binary options is trickier, but still possible.
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Case 2: Alpha always inflates

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

6
−

0.
2

0.
0

Mixing proportion, p

B
ia

s 
in

 C
ro

nb
ac

h'
s 

A
lp

ha
; f

(p
)

Case 3: Alpha always deflates
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Case 4: Alpha inflates, then deflates
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Case 5: Alpha deflates, then inflates

Graphs of f(p), exact bias, and simulated bias

Figure 2.2: Graphs of f(p), exact bias before discretization, and simulated bias after dis-

cretization for each case. The distributions described in Table 2.1 were used to produce

these plots. 10,000 respondents were simulated for each value of p.
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Table 2.1: Summaries of V and C (before discretization) for producing each case in the

context of a scale with five options.

Means of V σ2
iV σijV Means of C σ2

iC σijC

Case 1 µiV = 3 for all items 2 1 µiC = 3 for all items 2 1

Case 2 µiV = 2 for all items 1 0 µiC = 4 for all items 1 0

Case 3 µiV = 2 for all items 2 1.5 µiC = 4 for all items 6 0

Case 4 µiV = 2 for all items 1 .5 µiC = 4 for all items 1 0

Case 5 µiV = 3 for all items 1 .2
µiV = 1 for odd items;

µiV = 5 for even items
1 .8

Table 2.2: Summaries of V and C (before discretization) for producing each case in the

context of a scale with binary options.

Means of V σ2
iV σijV Means of C σ2

iC σijC

Case 1 µiV = .5 for all items 1 .5 µiC = .5 for all items 1 .5

Case 2 µiV = .4 for all items 1 0 µiC = .6 for all items 1 .8

Case 3 µiV = .4 for all items .5 .4 µiC = .6 for all items 1 0

Case 4 µiV = .2 for all items .3 .1 µiC = .8 for all items .3 0

Case 5 µiV = .5 for all items 1 .3
µiC = 0 for odd items;

µiC = 1 for even items
.5 .2

Data was simulated in the same manner as before, except now responses are rounded to the

nearest of zero or one. Table 2.2 describes the summaries of the multivariate normal values

which were rounded to obtain V and C in order to reproduce each case. A larger number

of simulations was necessary to reduce the sampling variability and clearly see the bias in

Cronbach’s alpha. We found 20,000 to be sufficient for all except case five, which used

100,000 simulations. The graphs for the binary case are not significantly different from the

five-option case, and are omitted. This completes the proof.

We illustrate one of the non-intuitive possibilities, case 2, through an example with
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simulated data. Table 3.4 contains data from ten respondents for an instrument with five

items. The data were generated such that there was a p = .5 chance of a contaminating

response. In this sample, the result was six valid responses and four contaminating re-

sponses. Each class has a variance of one for all items and a covariance of zero (due to

independence) between any pair of items. Because any pair of items has independent re-

sponses, the exact value for Cronbach’s alpha is zero, which is estimated from this sample

to be .13 for the valid class and .063 for the contaminating class. However, because the

valid class has a mean of two and the contaminating class has a mean of four, responses

appear to be consistent when the two classes are combined into a single dataset. The re-

sulting estimate of Cronbach’s alpha for the entire sample is .87, a value generally seen as

desirable, yet we see it is only due to contamination in the sample.

Now let us relate this example to Theorem 2.1. The contaminating classes have sum-

maries µiV = 2, µiC = 4, σ2
iV = 1, σ2

iC = 1, σijV = 0, and σijC = 0. Applying Equations

(2.5) and (2.6), we see:

a = σijV ∆2
i − σ2

iV ∆i∆j = 0 · 4− 1 · 4 = −4,

b = σ2
iV σijC − σijV σ2

iC − a = 1 · 0− 0 · 1− (−4) = 4.

As 0 < −a = b, this is case 2 of Theorem 2.1, so Cronbach’s alpha will inflate for any

proportion p of contamination.

For this example we estimated Cronbach’s alpha using Equation (2.1) with sample

estimates of variance, but most software solutions have built-in functions with helpful fea-

tures. For example, the alpha() function in the psych package [26] in R [27] produces a

confidence interval for alpha and an analysis of how alpha will change if items are removed

from this instrument.

At this point, no claim is made as to how likely each case is, only that all are possible.

In the discussion, we will demonstrate that each of these cases could potentially be arrived

at through specific types of IER.
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Table 2.3: An example of data simulated from case 2. Each class is inconsistent, with

estimates of Cronbach’s alpha being .13 for the valid class and .06 for the contaminating

class, yet the combined data set estimates alpha as .87.

Respondent Response class Q1 Q2 Q3 Q4 Q5

1 Contaminating 4 5 4 3 4

2 Valid 3 1 3 1 1

3 Valid 1 1 1 1 2

4 Valid 1 2 4 2 1

5 Contaminating 4 4 3 2 4

6 Valid 1 1 1 1 2

7 Valid 2 3 1 2 2

8 Contaminating 3 5 3 5 5

9 Contaminating 3 5 3 4 3

10 Valid 2 2 4 2 1
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Because of the removal of the positive term in Equation (2.4), f(p) does not give the

magnitude of the bias, but is a function with the same sign as the bias. The cancelled term

includes covariances of M which implicitly depend on p, so the magnitude of the bias is

a ratio of polynomials in p and is more difficult to analyze. Figure 2.2 makes it clear that

f(p) and the magnitude of the exact bias share the same roots and sign but potentially very

different magnitudes. This is why the cases in Tables 2.1 and 2.2 and Figure 2.2 do not

differentiate between f(p) being concave or convex; that property is not necessarily shared

with the magnitude of the bias.

The simulation code that produced Figure 2.2 is available through a Shiny R [28]

web app found at https://alphaier.shinyapps.io/cronbachs alpha under ier/. The app allows

users to investigate how Cronbach’s alpha will behave under a mixture model consisting of

discretized multivariate normal distributions with any mean vector, average variance, and

average covariance (as long as the resulting covariance matrix is valid). We see two poten-

tial uses for this tool. The first is educational, as it allows the user to visualize the effects

of contamination on Cronbach’s alpha and test the effect when the valid and contaminat-

ing distribution are altered. Second, the forthcoming discussion relates Theorem 2.1 to

the two main types of IER, but IER could potentially manifest through myriad possible

response distributions. For any other hypothesized pattern of IER, if the means, variances,

and covariances can be specified, this tool can immediately determine the effect of that

contamination on Cronbach’s alpha.

The reader is reminded that the preceding is true for any mixture of two distributions,

whether the interpretation of “valid” and “contaminating” holds or not.
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2.1 DISCUSSION AND SPECIAL CASES

This section refers repeatedly to the quadratic coefficients a and b, which were defined

as

a = σijV ∆2
i − σ2

iV ∆i∆j,

b = σ2
iV σijC − σijV σ2

iC − σijV ∆2
i + σ2

iV ∆i∆j = σ2
iV σijC − σijV σ2

iC − a.

With effort, these complicated coefficients yield much information about the behavior

of Cronbach’s alpha under mixture models.

Now we relate the behavior of Cronbach’s alpha to IER. Studying IER in any gener-

ality is difficult because IER can take so many forms. IER is defined more by what the

responses are not, rather than by what they are. For this reason, past investigations [11, 5]

have typically considered two extreme forms through which IER may manifest:

• Random responding: Item responses are uniformly and independently chosen from

those available.

• Straight-lining: The respondent chooses the same option for all items, either in an

attempt to complete the instrument as quickly as possible or operating on the belief

that all questions are sufficiently similar to the first. Different respondents may choose

different options, but each respondent repeats their choice without deviation.

A strength of the current approach is that any form of IER can be investigated as long

as the means, average variance, and average covariance can be determined. Some of the

following observations will refer specifically to random responding or straight-lining, and

the fifth observation will deal with a potential form of IER we have not seen studied in the

literature.

Observation 1: If all components of V have a common mean, and all components

of C have a common mean, then the quadratic coefficient a cannot be positive. Cases one
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through four are still possible, but case five is not.

Suppose that all means are equal within a response distribution, that is, µiV = µjV

and µiC = µjC for all items i and j. This implies ∆2
i = ∆i∆j , and so Equation (2.5) can

be simplified as

a =
(
σijV − σ2

iV

)
∆2

i . (2.7)

∆2
i is an average of squares and is clearly positive, while Lemma 2.0.2 implies the

term in parentheses is negative. Thus a is non-positive, precluding the possibility of case

five.

Actually, the assumption of common means within a distribution is stronger than nec-

essary, as it is sufficient for all item validities to be equal. However, the case of common

means within a distribution is an important special case for many of the following observa-

tions, so that is the form in which the observation is stated.

Observation 2: The forces pressuring Cronbach’s alpha to inflate are:

1. Increasing the differences between means of V and C when item validities have the

same sign,

2. Increasing the ratio of average covariance to variance for the contaminating distribu-

tion,

3. Decreasing the ratio of average covariance to variance for the valid distribution.

Likewise, forces in the opposite direction will pressure Cronbach’s alpha to deflate.

The first part of this observation is easiest to see when response distributions have

common means, so consider a 6= 0 as expressed in Equation (2.7). As the difference in

means grows, a becomes more negative and b becomes more positive. This moves in the

direction of cases two and four, so alpha tends to inflate. This is pertinent to situations in

which the content of the survey will lead the mean of attentive responses to be close to
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an extreme bound. Consider a survey attempting to detect a rare trait like psychopathy.

The mean of attentive responses is expected to be low, but if careless responses are chosen

randomly and have a mean close to the midpoint of the scale, it is possible alpha will inflate

due to IER. This suggests that measures of extreme psychopathology may report inflated

values of Cronbach’s alpha.

The second part of this observation is intuitively plausible, as it corresponds to con-

taminating with a highly internally consistent distribution, such as straight-lining. As the

average covariance of C increases, b becomes more positive, moving away from case three

towards case two, possibly moving through cases four and five.

The third part of this observation corresponds to a valid distribution with low internal

consistency, leaving ample opportunity for inflation. As the average covariance of V de-

creases, a becomes more negative, which by itself would pressure alpha towards deflation,

but b includes −a in the sum, so b is becoming more positive. Also the second term in b in-

cludes a negative average covariance of V. Thus b is increasing faster than a is decreasing,

moving in the direction of case two and possibly case four.

Observation 3: If means are equal across items and distributions and contamination

consists purely of random responses, then Cronbach’s alpha must deflate (except for the

unusual case that αV ≤ 0). However, if the distributions have different means, either

inflation or deflation is possible.

The key characteristic of random responding is the independence between responses,

so σijC = 0. All means being equal implies all item validities are zero, thus a = 0.

Combining these observations, b = −σijV σ2
iC . The assumption that αV > 0 implies σijV >

0, so b is negative. This is case three, in which Cronbach’s alpha deflates. The example of

case three in Table 2.1 illustrates this exact situation.

However, if the means of V and C are not equal, then deflation is not guaranteed.

Consider case two in Table 2.1 and Figure 2.2, in which the contaminating distribution has
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independent responses, yet alpha always inflates due to the difference in means. Case four

also uses a contaminating distribution with independent observations, but whether alpha

inflates or deflates depends on the exact mixing proportion p. Case two is noteworthy

because both of the distributions contributing to the mixture have average covariances of

zero (thus αV = αC = 0), yet the mixture has a positive value of Cronbach’s alpha. This

scenario is discussed by Waller [16] as admittedly contrived and non-realistic, but useful

as an example of the non-intuitive nature of reliability measures under mixtures.

The scenario of contamination with random responses is included in the simulation

study of DeSimone et al. [5]. Prior to the study, the authors state the expectation that

random responding will reduce alpha (p. 312). Figure 2 of the same article confirms that

for their particular situation, random responses did indeed result in a strict decrease in

Cronbach’s alpha. However, the results of the present article show that this is not the only

possibility, and that random responses can increase Cronbach’s alpha if the means of the

valid and contaminating distributions are sufficiently different.

Observation 4: Assume the valid distribution has a common mean and no questions

use reverse keying. If contamination consists purely of straight-lining, then alpha is guar-

anteed to inflate.

The key characteristic of straight-lining respondents is that covariance equals the vari-

ance, which can be seen from applying Ci = Cj to the definition of covariance. Further-

more, straight-lining forces a common mean. Thus the item validities are all identical, and

from Observation 1 a is negative. Combining with the fact σijC = σ2
iC and Lemma 2.0.2, b

can be simplified as

b = σ2
iC

(
σ2
iV − σijV

)
− a ≥ −a > 0.

This is case two, so Cronbach’s alpha can only inflate. This confirms generally the

expectation by DeSimone et al. [5] that pure straight-lining will inflate alpha.



30

Observation 5: If contamination is of a form that alternates between extremes, then

case five is a possibility. Cronbach’s alpha deflates for small p, but inflates for larger p.

Consider a mischievous responder who deliberately alternates between the first and

last option in a scale for the entirety of the instrument. This form of IER can produce

case five. We are not aware of (nor would we expect) any studies of this contrived style of

response (though anecdotally, one of the authors observed a classmate exhibit this behavior

on a standardized test in secondary school). This is case five in Table 2.1 and Figure

2.2. This could also be produced by straight-lining respondents when the survey alternates

between regular and reverse keying.

Observation 6: To investigate the effects of multiple types of IER occurring simulta-

neously, mixture models and the general covariance mixture theorem can be applied itera-

tively.

In reality, IER rarely consists exclusively of purely random or straight-lining responses.

It is more likely that non-valid responses from C are themselves a mixture of random,

straight-lining, and perhaps other kinds of IER. Therefore the general covariance mixture

theorem (Lemma 2.0.1 in the present chapter) can be applied repeatedly to obtain the pa-

rameters of C, at which point Theorem 2.1 can be applied to determine whether Cronbach’s

alpha will deflate or inflate.

Consider the following illustrative example. An instrument has five questions, with

each having five options. Of the respondents, 75% will answer in a valid manner, 20% will

answer randomly, and 5% will straight-line. The valid responses follow a discrete uniform

with αV = .4, corresponding to a common mean µiV = 3, an average variance of σ2
iV = 2

and an average covariance of σijV = .235. Careless responses come in two forms. The

20% of respondents who respond randomly (denote corresponding quantities with the sub-

script R) have a common mean µiR = 3, an average variance of σ2
iR = 2, and an average

covariance of σijR = 0. The 5% of respondents who straight-line (denote corresponding
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quantities with the subscript S) chose the first item uniformly, so these responses have a

common mean µS = 3, an average variance of σ2
iS = 2, and an average covariance of

σijS = 2. All means are identical, so item validities are zero. Within the contaminating

class, 80% comes from random responses and 20% are straight-line responses, so an appli-

cation of Lemma 2.0.1 yields σ2
iC = .8 ·2 + .2 ·2 = 2, and σijC = .8 ·0 + .2 ·2 = .04. Next,

applying Equations (2.5) and (2.6) yields a = 0 and b = 2 · 2 − 0 · 2 = .04 > 0, so this is

case two, where Cronbach’s alpha will always inflate. It is interesting that for this example,

only the mixing proportion within the contaminating class is important. Because the valid

distribution has relatively low internal consistency, the few straight-lining responders have

a larger effect than the more numerous random responders. Changing the mixture propor-

tion between the valid and contaminating class may change the magnitude of the bias, but

will not alter the fact that Cronbach’s alpha will inflate due to contamination.

In the previous example, the random responding followed a uniform distribution (a

sort of pure randomness). There are infinite other potential response distributions, but

fortunately, a full specification of the exact distribution is not necessary. The behavior

of Cronbach’s alpha depends on the valid and contaminating distributions only through

the variances, covariances, and differences in means. So in a partial sense, the realm of

possibilities is reduced. Any multivariate distribution of responses with identical means,

variances, and covariances will bias Cronbach’s alpha in the same manner.

How do real-life manifestations of careless responses tend to affect Cronbach’s alpha?

For an answer, we defer to studies with real data where alpha is calculated with and without

suspected IER. Huang et al. [2] compared alpha for 30 facets and found that generally al-

pha decreases as a result of careless responses, with a notable exception: one section with

eight positively keyed and only two negatively keyed items manifested in an increase in

alpha, which the authors attribute to straight-lining respondents, which is consistent with

the present analysis. Wertheimer [14] conducted a similar analysis for multiple data sets
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and classified respondents as conscientious, random, or patterned. In summary, removing

random respondents tended to increase alpha, removing patterned respondents tended to

decrease alpha, and removing both tended to increase alpha, but to a lesser degree. This

agrees with the results of the present chapter, lending evidence that the mathematical as-

sumptions are not too unrealistic.

2.2 CONCLUSION

This chapter has presented a mathematical analysis of the behavior of Cronbach’s

alpha when responses are contaminated with a secondary distribution, with a discussion

emphasizing the implications for contamination from careless responses.

One limitation is the assumption that a respondent will answer all questions in ei-

ther a valid or non-valid manner. In reality, some individuals will become weary part-way

through a survey and begin to answer carelessly, or give careless answers to items that de-

mand a greater deal of thought. On one hand, this simplification makes a mathematical

analysis feasible, reveals the possibility of behavior not mentioned in previous IER litera-

ture (case 5), and offers mathematical certainty whenever the assumption is met. On the

other hand, because the model excludes the possibility of partial IER by an individual, the

conclusions reached in this investigation will not apply perfectly to real-life manifestations

of IER. This is a weakness likely to affect any conceptual research into IER, as any model

general enough to encompass all possible IER patterns is probably too broad to reach any

specific conclusions. More complex models may allow the relaxation of this assumption,

such as specifying probabilities of careless responses based on cognitive load and distance

into the instrument, or modeling the number of items a respondent will answer validly be-

fore answering carelessly from that point on. Such models may not allow for a tractable

analysis, and might be better suited for simulation studies. Another possibility is applying

person-fit statistics [29, 30] and item-response theory [31] to investigations of reliability



33

under IER.

This chapter does not address the issue of how a researcher should deal with IER. The

reader is referred to one of the many articles detailing methods for detecting and removing

IER [32, 2, 33, 34, 35].

Though not the only measure of reliability, Cronbach’s alpha is the most common.

This chapter should not be viewed as an indictment of a deficiency unique to Cronbach’s

alpha, but alpha is the first natural choice for investigating the effect of IER on internal

consistency. Investigation into the effect of IER on other measures of reliability, including

beta [36] or ωh [37], is a possible avenue for future research.

Hopefully, the analysis in this chapter will increase understanding of how Cronbach’s

alpha will behave under IER, and convince practitioners that IER is a threat to high quality

research. In particular, except for the special cases of straight-lining when no questions

use reverse keying and random responding with the same mean, IER can cause Cronbach’s

alpha to behave in non-intuitive and unpredictable ways. Because Cronbach’s alpha can

inflate due to IER, practitioners should be aware that a high value of alpha does not imply

respondents were sufficiently attentive; it may be due to straight-lining or random respond-

ing with a different mean. In the other direction, random responding with a mean similar to

the valid responses can decrease Cronbach’s alpha, underestimating the reliability of an in-

strument. We suggest a best practice is that measures for prevention, detection and removal

of IER take place before analysis [32], especially calculations of reliability.
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CHAPTER 3

BIAS IN SPEARMAN’S RHO UNDER BIVARIATE MIXTURE

3.1 INTRODUCTION

When considering data that presents some form of relationship that cannot be de-

scribed as a primarily linear, there are many different correlation measures that can be used.

One particular class of correlation measures, used when the data has some form of mono-

tonic relationship, is the class of rank-based correlation methods. In particular, a famous

rank-based measure of monotonic correlation is that of Spearman’s Rho [39]. A population

form of Spearman’s Rho was not discovered until later by Kruskal and Lehmann [40, 41].

The population form of Spearman’s Rho involves the notion of a copula [44], which we

define below.

Definition 4. A two-dimensional copula is a function C : I2 → I satisfying the following

properties:

1. For every u, v ∈ I,

C(u, 0) = 0 = C(0, v) and

C(u, 1) = u, C(1, v) = v

2. For every u1, u2, v1, v2 ∈ I, satisfying u1 ≤ u2 and v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

Originally, copulas were discovered in the study of probabilistic metric spaces [42],

and their relation to random variables can be summarized in the following theorem.

Theorem 3.1 (Sklar’s Theorem [42]). LetH be a joint distribution function with marginals

F and G. Then there exists a copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)).
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If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF ×RanG. Conversely, if C is a copula and F and G are distribution functions, then

the function H defined prior is a joint distribution function with marginals F and G.

Essentially, Sklar’s theorem tells us that a copula serves as “linking” function between

the marginal distribution functions of two random variables. This “linking” function, in a

sense, captures the dependence structure between two random variables. Thus, since a

copula captures dependence, we can discuss measures of correlation in terms of copulas.

The population form of Spearman’s Rho as a function of a copula is as follows:

ρs = 12

∫∫
I2
C(u1, u2)du1du2 − 3 (3.1)

Of particular interest to practitioners is the effect that sampling from an undesired, or con-

taminating, population can have on statistical summaries. Usually, this sort of sampling

from an undesired population can be represented by a bivariate mixture model, as defined

in Definition 3, where the mixing proportion represents the probability of an observation

coming from the contaminating distribution. The approach of using mixture models as a

representation of mis-sampling has been used in many settings with regards to statistical

summaries. In particular, the resulting difference between the “contaminated” versions of

statistical summaries, which we shall consider as the bias resulting from the mixture model

(as defined in Definition 3), has been of particular interest to researchers in the area of

quantitative psychology (see [16]). In addition to this, characterizations of the resulting

behavior of the bias for different values of the mixing proportion has drawn the attention

of researchers. Results along these lines have been demonstrated for Cronbach’s Alpha, a

measure of internal consistency (see [16, 43]).

In this chapter, we aim to provide some form of a characterization of the bias of

Spearman’s Rho under a bivariate mixture model. In Section 3.2, we demonstrate that the

bias in Spearman’s Rho resulting from a bivariate mixture model can be represented as a
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cubic function of the mixing proportion. We then derive some mathematical cases for a

cubic function that would be of particular interest to practitioners in Section 3.3. Finally,

in Section 3.4, due to the complexity of the coefficients of the cubic function, we perform

simulations for multivariate normal random variables to demonstrate that there exist mean

vectors and covariance matrices such that all mathematical cases for a cubic function as

described in Section 3.2 are possible for the forms that our coefficients take.

3.2 MATHEMATICS OF SPEARMAN’S RHO RESULT

We will now begin demonstrating that the bias of Spearman’s Rho under a bivariate

mixture model can be represented as a cubic function. First, we begin with some algebraic

and probabilistic lemmas that will aid in this demonstration. For the following lemmas

and the main theorem, we shall treat V = (V1, V2) as representing the desired, or valid,

distribution, and C = (C1, C2) as representing the undesired, or contaminating distribution.

Lemma 3.2.1. Let C = (C1, C2), V = (V1, V2) be continuous random vectors with support

on S ⊂ R2. For M = WC + (1 −W )V, with W ∼ Bernoulli(p) and independent of C

and V,

CM(u1, u2) = pFC(F−1M1
(u1), F

−1
M2

(u2)) + (1− p)FV (F−1M1
(u1), F

−1
M2

(u2)).

Proof. By Sklar’s Theorem [42], we have by continuity

FM(u1, u2) =CM(FM1(u1), FM2(u2))

=⇒FM(F−1M1
(u1), F

−1
M2

(u2)) = CM(FM1(F
−1
M1

(u1)), FM2(F
−1
M2

(u2))) = CM(u1, u2).

Thus, using this expression for the copula of M, we have that

CM(u1, u2) =FM(F−1M1
(u1), F

−1
M2

(u2))

=P(M1 ≤ F−1M1
(u1),M2 ≤ F−1M2

(u2))
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By applying the Law of Total Probability, we arrive at

=pP(C1 ≤ F−1M1
(u1), C2 ≤ F−1M2

(u2)) + (1− p)P(V1 ≤ F−1M1
(u1), V2 ≤ F−1M2

(u2))

=pFC(F−1M1
(u1), F

−1
M2

(u2)) + (1− p)FV (F−1M1
(u1), F

−1
M2

(u2)).

The above demonstrates that we can represent the copula of a bivariate mixture model

as a convex combination in the mixing proportion of the joint distribution functions of V

and C. The next lemma demonstrates that a similar result holds for marginal distribution

and density functions.

Lemma 3.2.2. Let C, V , and M be described as in Lemma 3.2.1. Then, for i ∈ {1, 2},

FMi
(ui) = pFCi

(ui) + (1− p)FVi
(ui)

and

fMi
(ui) = pfCi

(ui) + (1− p)fVi
(ui). (3.2)

Proof. By the Law of Total Probability,

FMi
(ui) =P(Mi ≤ ui)

=pP(Ci ≤ ui) + (1− p)P(Vi ≤ ui)

=pFCi
(ui) + (1− p)FVi

(ui)

Thus, the first equality is satisfied. Applying a derivative, we arrive at:

=⇒ d

dui
FMi

(ui) =
d

dui
pFCi

(ui) +
d

dui
(1− p)FVi

(ui)

=⇒fMi
(ui) = pfCi

(ui) + (1− p)fVi
(ui).
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The final lemma is simply for algebraic purposes. It will allow us to simplify some of

the expressions that we will encounter in the main theorem.

Lemma 3.2.3. Let C, V , and M be described as in Lemma 3.2.1. Then,

fM1(u1)fM2(u2) = ∆2∆1p
2 + (fV2(u2)∆1 + fV1(u1)∆2)p+ fV1(u1)fV2(u2)

where

∆2 =fC2(u2)− fV2(u2)

∆1 =fC1(u1)− fV1(u1)

Proof. Applying Lemma 3.2.2,

fM1(u1)fM2(u2) =(pfC1(u1) + (1− p)fC2(u2))(pfC2(u2) + (1− p)fV2(u2))

=p2fC1(u1)fC2(u2) + p(1− p)fC1(u1)fV2(u2) + p(1− p)fC2(u2)fV1(u1)

+ (1− p)2fV1(u1)fV2(u2)

=p2(fC1(u1)fC2 − fC1(u1)fV2(u2)− fC2(u2)fV1(u1) + fV1(u1)fV2(u2))

+ p(fC1(u1)fV2(u2)− 2fV1(u1)fV2(u2) + fC2(u2)fV1(u1))

+ fV1(u1)fV2(u2)

=p2(fC2(u2)− fV2(u2))(fC1(u1)− fV1(u1))

+ p(fV2(u2)(fC1(u1)− fV1(u1)) + fV1(u1)(fC2(u2)− fV2(u2))

+ fV1(u1)fV2(u2)

=∆2∆1p
2 + (fV2(u2)∆1 + fV1(u1)∆2)p+ fV1(u1)fV2(u2).

Now that we have proved the above lemmas, we can now begin to prove our main

result.
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Theorem 3.2. LetC, V , andM be defined as in Lemma 3.2.1. Then the bias in Spearman’s

Rho as defined in Definition 3 is a cubic function of the mixing proportion of the form:

Bias(p) = ap3 + bp2 + cp

where

a =12

∫∫
S
(FC(v1, v2)− FV (v1, v2))∆2∆1dv1dv2,

b =12

∫∫
S
(FC(v1, v2)− FV (v1, v2))(fV2(v2)∆1 + fV1(v1)∆2)dv1dv2

+ 12

∫∫
S
FV (v1, v2)∆2∆1dv1dv2,

c =12

∫∫
S
(FC(v1, v2)− FV (v1, v2))fV1(v1)fV2v2)dv1dv2

+ 12

∫∫
S
FV (v1, v2)(fV2(v2)∆1 + fV1(v1)∆2)dv1dv2.

Proof. Applying Lemma 3.2.1, and by Equation 3.1, we have the following expression for

bias:

ρM − ρV =12

∫∫
I2
CM(u1, u2)du1du2 − 3− (12

∫∫
I2
CV (u1, u2)du1du2 − 3)

=12

∫∫
I2
CM(u1, u2)du1du2 − 12

∫∫
I2
CV (u1, u2)du1du2

=12p

∫∫
I2
FC(F−1M1

(u1), F
−1
M2

(u2))du1du2 − 12p

∫∫
I2
FV (F−1M1

(u1), F
−1
M2

(u2))du1du2

+ 12

∫∫
I2
FV (F−1M1

(u1), F
−1
M2

(u2))du1du2 − 12

∫∫
I2
CV (u1, u2)du1du2.

Noting that the marginal distribution functions are continuous and strictly increasing and

thus the inverse distribution functions exist, we apply the following variable substitution to

the first three integrals of the bias:

v1 = F−1M1
(u1), v2 = F−1M2

(u2)

=⇒ u1 = FM1(v1), u2 = FM2(v2).
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Note that these are univariate substitutions. Thus, for the Jacobian, off-diagonal terms are

zero. Thus, we have:

|J| =

∣∣∣∣∣∣∣
∂u1

∂v1
0

0 ∂u2

∂v2


∣∣∣∣∣∣∣ = fM1(v1)fM2(v2)

Thus, our bias becomes:

=12p

∫∫
S
FC(v1, v2)fM1(v1)fM2(v2)dv1dv2

−12p

∫∫
S
FV (v1, v2)fM1(v1)fM2(v2)dv1dv2

+ 12

∫∫
S
FV (v1, v2)fM1(v1)fM2(v2)dv1dv2 − 12

∫∫
I2
CV (u1, u2)du1du2.

Applying Lemma 3.2.3, we have:

=12p

∫∫
S
FC(v1, v2)

(
∆2∆1p

2 + (fV2(v2)∆1 + fV1(v1)∆2)p+ fV1(v1)fV2(v2)

)
dv1dv2

− 12p

∫∫
S
FV (v1, v2)

(
∆2∆1p

2 + (fV2(v2)∆1 + fV1(v1)∆2)p+ fV1(v1)fV2(v2)

)
dv1dv2

+ 12

∫∫
S
FV (v1, v2)

(
∆2∆1p

2 + (fV2(v2)∆1 + fV1(v1)∆2)p+ fV1(v1)fV2(v2)

)
dv1dv2

− 12

∫∫
I2
CV (u1, u2)du1du2.
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We now group terms in order of their respective powers of the mixing proportion p.

=

(
12

∫∫
S
FC(v1, v2)∆2∆1dv1dv2 − 12

∫∫
S
FV (v1, v2)∆2∆1dv1dv2

)
p3

+

(
12

∫∫
S
FC(v1, v2)(fV2(v2)∆1 + fV1(v1)∆2)dv1dv2

− 12

∫∫
S
FV (v1, v2)(fV2(v2)∆1 + fV1(v1)∆2)dv1dv2

+ 12

∫∫
S
FV (v1, v2)∆2∆1dv1dv2

)
p2

+

(
12

∫∫
S
FC(v1, v2)fV1(v1)fV2(v2)dv1dv2

− 12

∫∫
S
FV (v1, v2)fV1(v1)fV2v2)dv1dv2

+ 12

∫∫
S
FV (v1, v2)(fV2(v2)∆1 + fV1(v1)∆2)dv1dv2

)
p

+ 12

∫∫
S
FV (v1, v2)fV1(v1)fV2(v2)dv1dv2

− 12

∫∫
I2
CV (u1, u2)du1du2.

Note that the above expression is almost the desired cubic. Thus, it is sufficient to show

that

12

∫∫
S
FV (v1, v2)fV1(v1)fV2(v2)dv1dv2 = 12

∫∫
I2
CV (u1, u2)du1du2

in order to show that our Bias(p) takes the desired form. With this in mind, consider the

first integral. First, apply Sklar’s Theorem [42] on the distribution function. This yields:

12

∫∫
S
FV (v1, v2)fV1(v1)fV2(v2)dv1dv2

=12

∫∫
S
CV (FV1(v1), FV2(v2))fV1(v1)fV2(v2)dv1dv2. (3.3)

We now perform a bivariate variable substitution of the form:

w1 = FV1(v1), w2 = FV2(v2)

=⇒ v1 = F−1V1
(w1), v2 = F−1V2

(w2)
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Note that these are univariate substitutions. Thus, for the Jacobian, off-diagonal terms

are zero and the remaining diagonal derivatives are derivatives of inverse functions. Since

these functions are non-zero on their common support S, we have by the Inverse Function

Theorem [45]:

|J| =

∣∣∣∣∣∣∣
 ∂v1

∂w1
0

0 ∂v2
∂w2


∣∣∣∣∣∣∣ =

1

fV1(F
−1
V1

(w1))fV2(F
−1
V2

(w2))
.

Thus, (3.3) now becomes:

12

∫∫
S
CV (FV1(v1), FV2(v2))fV1(v1)fV2(v2)dv1dv2

=12

∫∫
I2
CV (w1, w2)

fV1(F
−1
V1

(w1))fV2(F
−1
V2

(w2))

fV1(F
−1
V1

(w1))fV2(F
−1
V2

(w2))
dw1dw2

=12

∫∫
I2
CV (w1, w2)dw1dw2.

Thus, we have proved our claim. This completes the proof.

3.3 MATHEMATICS OF A CUBIC EQUATION AND PRACTICAL SCENARIOS

Now that we have demonstrated that the bias in Spearman’s Rho under a bivariate

mixture model can be described by a cubic equation of the mixing proportion, of particular

interest is the resulting behavior of the bias. In particular, it would be useful to know how

varying levels of the mixing proportion changes the level of the bias, for what values of

the mixing proportion the bias is positive or negative, and perhaps if changing the mixing

proportion can result in our bias going from positive to negative or vice versa. In addi-

tion to this, it would be of use to practitioners to know if this resulting behavior could be

characterized by the underlying coefficients of our cubic equation. Thus, it is the aim of

this section to consider possible cases for our bias that would be interesting for practition-

ers, while also providing sets of inequalities on the coefficients of the cubic equation that

would result in these cases. We will now begin by enumerating possible scenarios of the

bias, following this by the mathematical possibilities that would result in these cases.
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Figure 3.1: Graphs showing the general behavior of cases one through six for Bias(p) =

ap3 + bp2 + cp, where p is the mixing proportion representing the probability of seeing a

contaminating response.
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3.3.1 CASES 1 & 2: INFLATE ALWAYS AND DEFLATE ALWAYS

Of first interest would be when any change in the mixing proportion does not result in

a change in the sign of the bias. Mathematically, this occurs when either

Bias(p) > 0 ∀p ∈ (0, 1)

or when

Bias(p) < 0 ∀p ∈ (0, 1).

Going forward, we shall denote the first of the cases as “Inflate Always” and the latter

as “Deflate Always”, as they imply that the mixed Spearman’s Rho is larger or smaller than

the value under the target population V , respectively. Since our bias is a cubic equation,

the above two conditions are equivalent to (respectively):

ap3 + bp2 + cp > 0 ∀p ∈ (0, 1)

and

ap3 + bp2 + cp < 0 ∀p ∈ (0, 1).

Thus, we can now begin to discuss the mathematical possibilities of a cubic equation that

would result in this behavior. First, note that our bias is a cubic function without a constant

term, and thus must have a root at zero. Hence, for inflate always and deflate always,

there are four mathematical possibilities that can occur for each. These include: complex

non-zero roots; one non-zero root greater than one and one non-zero root less than zero;

two non-zero roots greater than one; and two non-zero roots that are less than zero. The

mathematical possibilities that would result in these cases for inflate always are as follows:

1(a). Complex Roots: a > 0, |b| < 2
√
ac, c > 0

1(b). Two Roots Greater than 1: a > 0, |b| > 2
√
ac, b ≤ −2a, c ≥ a, a+ b+ c ≥ 0

1(c). Two Roots Less than 0: a > 0, b > 0, c > 0, |b| > 2
√
ac
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1(d). One Positive and One Negative Root: a < 0, c > 0, a+ b+ c ≥ 0

As for deflate always, the mathematic possibilities are as follows:

2(a). Complex Roots: a < 0, |b| < 2
√
ac, c < 0

2(b). Two Roots Greater than 1: a < 0, |b| > 2
√
ac, b ≥ −2a, c ≤ a, a+ b+ c ≤ 0

2(c). Two Roots Less than 0: a < 0, b < 0, c < 0, |b| > 2
√
ac

2(d). One Positive and One Negative Root: a > 0, c < 0, a+ b+ c ≤ 0

The derivations of these sets of inequalities with respect to inflate and deflate always can

be found in Appendix B.0.1.

3.3.2 CASES 3 & 4: INFLATION, THEN DEFLATION AND DEFLATION, THEN

INFLATION

Now that we have discussed the mathematical possibilities where any change in the

mixing proportion would not result in a change in the sign of the bias, we now discuss the

case in which there are values of the mixing proportion for which the bias would change

from positive to negative, or vice versa. Mathematically, these cases occur when ∃p0 ∈

(0, 1) such that either Bias(p) ≥ 0 for p ∈ (0, p0] and Bias(p) < 0 for p ∈ (p0, 1) or

Bias(p) ≤ 0 for p ∈ (0, p0] and Bias(p) > 0 for p ∈ (p0, 1). We shall denote each of

these practical cases as ”Inflate/Deflate” and ”Deflate/Inflate” going forward, as they imply

that the mixed Spearman’s Rho is larger, then smaller (or vice versa) than the Spearman’s

Rho of the target population, V .

First note that, since there is a point p0 for which the sign of our bias changes, this

implies that our mathematical scenarios for each of these cases will involve one root that

is in (0, 1). First, we know that since our cubic has one real zero root, that the remaining

two roots must both either be real, or complex conjugates of each other. Since we assume
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that there is a root in (0, 1), we cannot have complex roots in this case. This significantly

reduces the number of possible mathematical scenarios for each of these cases. Thus,

for Inflate/Deflate and Deflate/Inflate there are only two mathematical possibilities. These

include: One non-zero root in (0, 1) and one non-zero root greater than one; and one non-

zero root in (0, 1) and one non-zero root less than zero. The mathematical possibilities that

would result in inflate, then deflate are as follows:

3(a). Both Positive Roots: a > 0, b ≤ −a, c > 0, |b| > 2
√
ac, a+ b+ c ≤ 0

3(b). One Positive, One Negative Root: a < 0, c > 0, a+ b+ c ≤ 0

For deflate, then inflate, the mathematical possibilities are:

4(a). Both Positive Roots: a < 0, b ≥ −a, c < 0, |b| > 2
√
ac, a+ b+ c ≥ 0

4(b). One Positive, One Negative Root: a > 0, c < 0, a+ b+ c ≥ 0

The derivations of these sets of inequalities with respect to inflate, then deflate and deflate,

then inflate can be found in Appendix B.0.2.

3.3.3 CASES 5 & 6: INFLATE, DEFLATE, THEN INFLATE, AND DEFLATE, INFLATE,

THEN DEFLATE

We now discuss the last two practical possibilities of interest, namely when smaller

values of the mixing proportion can result in a change in the sign of the bias, yet larger

values of the mixing proportion will result in the same sign for the bias. Mathematically,

this occurs when either ∃p0, p1 ∈ (0, 1) such thatBias(p) ≥ 0 for p ∈ (0, p0], Bias(p) ≤ 0

for p ∈ (p0, p1], andBias(p) > 0 for p ∈ (p1, 1] orBias(p) ≤ 0 for p ∈ (0, p0], Bias(p) ≥

0 for p ∈ (p0, p1], and Bias(p) ≤ 0 for p ∈ (p1, 1]. We shall denote each of these cases

as ”Inflate/Deflate/Inflate” and ”Deflate/Inflate/Deflate” going forward, as they imply that
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the mixed Spearman’s Rho is larger, then smaller, then larger (or vice versa) than the value

under the target population as one increases the mixing proportion.

First note that since there are points p0 and p1 for which the sign of our bias changes,

this implies that our cubic has two roots in (0, 1). Thus, there is only one mathematical

possibility for each of these two practical scenarios. For inflate, then deflate, then inflate,

the mathematical possibility is:

5. Both Roots in (0, 1): a > 0, −2a ≤ b ≤ 0, c ≤ a, |b| > 2
√
ac, a+ b+ c ≥ 0

As for deflate, then inflate, then deflate, the mathematical possibility is:

6. Both Roots in (0, 1): a < 0, −2a ≥ b ≥ 0, c ≥ a, |b| > 2
√
ac, a+ b+ c ≤ 0

The derivations of these sets of inequalities is presented in Appendix B.0.3. This completes

all mathematical possibilities for a cubic function as described by our bias.

3.4 EXISTENCE OF MATHEMATICAL POSSIBILITIES

Of particular interest to the practitioner is if each of the mathematical possibilities

described in the previous section can actually exist for the given expressions of a, b, and

c. In addition to this, given the mathematical complexity of the expressions for a, b, and

c, it would also be of interest to the practitioner that if these mathematical possibilities

do exist, if they can also be described by sets of means, variances, and covariances on

the underlying distributions. If this were the case, a practitioner could then estimate these

quantities to establish the possibility of a particular form of the bias in their data set. The

answer to these questions is in the affirmative, as we shall demonstrate in this section

through simulation results.

In order to demonstrate that each of these cases exist, we begin by randomly gener-

ating mean vectors and covariance matrices for the valid and contaminating classes V and

C, respectively. The mean vectors are generated component wise from a discrete uniform
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distribution on the interval (−5, 5). For the covariance matrices, we first generate variances

from a continuous uniform distribution on the interval (1, 3), then generate the covariance

for this matrix by sampling from a uniform distribution where the lower and upper bounds

are derived from the Cauchy-Schwarz Inequality [25]. Finally, once we have generated

these variances and covariances, we check to determine that the resulting matrix is positive

semidefinite, to ensure that it is a valid covariance matrix.

Once we have generated the mean vectors and covariance matrices for the valid and

contaminating classes, we use these as parameters in the multivariate normal cumulative

distribution functions and univariate normal density functions. We then use these func-

tions to calculate, via numerical integration, the values of a, b, and c using the expressions

derived in Theorem 3.2. We then determine if these calculated values of a, b, and c sat-

isfy one of the given sets of inequalities presented in Section 3.3. If these values do not

satisfy the given set of inequalities, the process starts over again, until the set of inequal-

ities is satisfied. We performed this criteria for each of the 14 cases presented in Section

3.3, and generated sets of mean vectors and covariance matrices that will generate each

of the 14 mathematical possibilities. The sets of mean vectors and covariance matrices

that generate the 14 cases is presented above, where Cases 1(a) through 1(d) correspond to

mathematical possibilities for Inflate Always, Cases 2(a) through 2(d) to Deflate Always,

Cases 3(a) and 3(b) to Inflate/Deflate, Cases 4(a) and 4(b) to Deflate/Inflate, Case 5 to

Inflate/Deflate/Inflate, and Case 6 to Deflate/Inflate/Deflate.

Of additional interest would be to determine the sampling behavior of Spearman’s

Rho under the bivariate mixture model relative to the theoretical derivations provided in

Theorem 3.2. To this end, we partition values of p into increments of .01. For each value of

p, we generate 10,000 observations for Cases 1 through 4, 1,000,000 observations for Case

5, and 100,000 observations for Case 6, each of which is from either a multivariate normal

distribution with parameters from the valid or contaminating classes depending on whether
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Case µV µC σV σC σ2
V1

σ2
C1

σ2
V2

σ2
C2

1(a) (5,3) (-1,5) -2.010 1.240 1.880 2.850 2.180 2.270

1(b) (-5,-1) (0,4) 0.092 0.459 2.913 2.646 2.186 2.246

1(c) (1,-3) (0, 0) -1.000 0.362 2.170 1.555 1.200 1.594

1(d) (-2,-4) (0,-4) -1.460 0.651 2.010 1.629 2.530 2.170

2(a) (-5,5) (-4,3) 1.260 -2.390 1.920 2.790 2.960 2.210

2(b) (3,-5) (-1,-2) 1.890 -0.365 2.360 2.926 1.740 2.938

2(c) (-5,1) (4,0) -1.140 -1.790 2.950 2.830 1.050 1.340

2(d) (1,-5) (-5,-5) 1.270 0.028 2.290 1.852 2.900 1.680

3(a) (-4,3) (0,3) -1.060 -1.550 1.690 1.020 1.020 2.390

3(b) (-1,3) (2,4) -1.060 -0.647 2.840 1.172 2.610 1.949

4(a) (-2,-1) (-1,-4) -0.525 -0.507 2.743 1.714 1.523 2.626

4(b) (-1,1) (-4,2) -0.091 0.057 1.449 2.707 2.029 1.993

5 (0,-2) (-2,4) -1.540 -1.470 2.150 2.860 1.630 1.190

6 (5,-4) (-4,-2) -2.130 -1.570 2.120 2.750 2.840 1.120
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the given value of p is greater than or less than an observation from a uniform distribution

on (0, 1). We then compute Spearman’s Rho for this mixed sample. Following this, we

generate an equivalent number of observations from a multivariate normal distribution for

only the valid class for each case, and calculate Spearman’s Rho. The resulting difference

of Spearman’s Rho then serves as an estimate for our expression in Definition 3 for each

value of p.

After completing the above simulations, we then plot these against the plots of Bias(p)

derived by our estimates of a, b, and c for each of the 14 mathematical possibilities. A table

of these graphs is presented below. Note that the estimated values of the bias for each p

closely match those of the calculated analytical value at each p. This completes Chapter 3.
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Figure 3.2: Graphs showing the general behavior of cases one through six for Bias(p) =

ap3 + bp2 + cp, where p is the mixing proportion representing the probability of seeing a

contaminating response. In red, simulated estimates of the bias are plotted.
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Appendix A

APPENDIX TO CHAPTER 2

A.1 PROOF OF LEMMA

Proof. Begin by applying the Cauchy-Schwarz Inequality to covariances:

cov(Vi, Vj) ≤
√

var(Vi)var(Vj)

=⇒
∑∑

i 6=j

cov(Vi, Vj) ≤
∑∑

i 6=j

√
var(Vi)var(Vj)

≤
∑∑

i 6=j

1

2
(var(Vi) + var(Vj))

where the last line invokes the arithmetic-geometric mean inequality. Thus,

=⇒
∑∑

i 6=j

cov(Vi, Vj) ≤
1

2

(
2(k − 1)

k∑
i=1

var(Vi)

)

=⇒ 1

k − 1

∑∑
i 6=j

cov(Vi, Vj) ≤
k∑

i=1

var(Vi)

=⇒ σijV ≤ σ2
iV .
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Appendix B

APPENDIX TO CHAPTER 3

B.0.1 MATHEMATICS OF CASES 1& 2

First, consider Inflate Always. For this case, none of the roots of our cubic equation

must occur in (0, 1). In addition to this, since our cubic equation does not have a constant

term, we know that there will be a root at zero. Thus, to necessitate the Bias being strictly

positive on (0, 1), the Bias must be increasing away from zero. Thus,

0 < [Bias(p)]′
∣∣∣∣
0

= (3ap2 + 2bp+ c)

∣∣∣∣
0

= c.

Thus, the first condition to necessitate Inflate Always is that c > 0.

In order to proceed, we must now consider the placement of the two nonzero roots

with respect to (0, 1). The first possible scenario is that our cubic equation has only a

singular root in R, and thus it’s two nonzero roots take values in C. Since our Bias is a

cubic equation without a constant term, the two nonzero roots are those of the quadratic

variety. Thus, these two roots are complex only when the discriminant is negative, or when

b2 − 4ac < 0⇐⇒ |b| < 2
√
ac.

In addition to this, for the cubic to be strictly positive in (0, 1) with two complex roots,

Bias(p) → ∞ as p → ∞. This only occurs when a > 0. Thus, the first mathematical

possibility for Inflate Always can be characterized by the following set of inequalities:

a > 0, c > 0, |b| < 2
√
ac.

The second possible mathematical scenario is when both of our nonzero roots are real

numbers and strictly greater than or equal to one. For this, we now choose to represent our

cubic in a different manner. Let r1 and r2 represent our nonzero roots. By the Fundamental
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Theorem of Algebra, we have that our cubic takes the form:

Bias(p) =ap(p− r1)(p− r2)

=ap3 − a(r1 + r2)p
2 + ar1r2p

=⇒b = −a(r1 + r2), c = ar1r2

Thus, we can discuss bounding the coefficients of our cubic by discussing the place-

ment of the two nonzero roots. First note that for the Bias to be positive in (0, 1) when the

two nonzero roots are greater than 1, we must have thatBias(p)→∞ as p→∞. This only

occurs when a > 0. Now, if r1, r2 ≥ 1, we have that:

b = −a(r1 + r2) ≤ −a(1 + 1) = −2a

and

c = ar1r2 ≥ a(1)(1) = a.

In addition to this, the above inequalities do not preserve the positivity of the cubic at p = 1.

In order to preserve this, we add the following inequality:

Bias(1) = a+ b+ c ≥ 0.

Finally, to ensure that r1 and r2 are real, we ensure that the discriminant is real, or:

|b| > 2
√
ac.

Thus, the second mathematical possibility for Inflate Always can be characterized by the

following set of inequalities:

a > 0, c ≥ a, a+ b+ c ≥ 0, |b| > 2
√
ac.

The third mathematical possibility is when our two nonzero roots are strictly less than zero.

First, this implies that there are no roots in R+, and thus for the cubic to be positive in (0, 1),
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we must have Bias(p) → ∞ as p → ∞, and thus a > 0. Now, using the expressions for b

and c provided above by the Fundamental Theorem of Algebra, we have that for r1, r2 < 0:

b = −a(r1 + r2) > −a(0 + 0) = 0

and

c = ar1r2 = a(−|r1|)(−|r2|) = a|r1||r2| > 0.

Finally, to ensure that r1 and r2 are real, we include that |b| > 2
√
ac. Thus, the set of

inequalities that generates the third mathematical possibility for Inflate Always is:

a > 0, b > 0, c > 0, |b| > 2
√
ac.

The final mathematical possibility for Inflate Always is when one of our nonzero roots is

negative, while the other one is greater than or equal to 1. First, note that for our Bias to

be positive in (0, 1) and for there to be a root past 1, we must have that Bias(p)→ −∞ as

p→∞, and thus a < 0. Using the expression for c provided by the Fundamental Theorem

of Algebra, and without loss of generality suppose r1 < 0, we get that:

c = ar1r2 = −|a|(−|r1|)r2 = |a||r1|r2 > 0.

However, we do not get a similar inequality on b, as the sign of b could be positive or

negative, depending on the maginitude of the positive and negative roots with respect to

each other. In addition to this, we must ensure that our Bias is non-negative at 1, and thus

a + b + c ≥ 0. Finally, to ensure that our roots are real numbers, we must ensure that our

discriminant is non-negative, or:

b2 − 4ac ≥ 0⇐⇒ b2 > 4ac⇐⇒ c >
b2

4a
.

Thus, the set of inequalities that generates the final mathematical possibility for Inflate

always is as follows:

a < 0, c > 0, a+ b+ c ≥ 0, c >
b2

4a
.
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For the case where Bias(p) < 0 ∀p ∈ (0, 1), it is sufficient to consider the function g(p) =

−Bias(p). Then performing a similar analysis as above, will result in different signs to

each of the above sets of inequalities.

B.0.2 MATHEMATICS OF CASES 3& 4

The first mathematical scenario that would result in Inflate/Deflate is when the second

nonzero root is greater than or equal to one. First note that for the mathematical conditions

of Inflate/Deflate to occur with one root being greater than or equal to one, we must have

that Bias(p)→∞ as p→∞. Thus, we must have that a > 0. Going forward, assume that

0 < r1 < 1. Using the same formulation for b and c as in the previous section, we have that

b = −a(r1 + r2) ≤ −a(0 + 1) = −a

and

c = ar1r2 > 0.

Furthermore, to ensure that deflation occurs for all values of p to the right of r1, we must

ensure that our Bias is non-positive at p = 1. Thus, we include the inequality a + b + c ≤

0. Finally, to ensure that both roots are real valued, we include the following inequality:

|b| >
√
ac. Thus, the set of inequalities that generates the first mathematical possibility for

Inflate/Deflate are as follows:

a > 0, c > 0, b ≤ −a, a+ b+ c ≤ 0, |b| >
√
ac.

The second mathematical scenario that would result in Inflate/Deflate is when the second

nonzero root is negative. First note that under this scenario that Bias(p)→ −∞ as p→∞,

and thus a < 0. Using the expression for c from the previous section, we have that

c = ar1r2 = −|a|r1(−|r2|) = |a|r1|r2| > 0.
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However, there does not need to be a bound on b, as the magnitude and sign of b depends

on the magnitude of the positive and negative roots with respect to each other. In addition

to this, we must ensure that the negativity of the Bias holds at p = 1. Thus, the following

inequality is included: a+ b+ c ≤ 0. Finally, to ensure that both roots take real values, we

must ensure that the discriminant is positive, or:

b2 − 4ac > 0⇐⇒ b2 > 4ac⇐⇒ c >
b2

4a
.

Thus, the set of inequalities that generates the second mathematical possibility for In-

flate/Deflate is as follows:

a < 0, c > 0, a+ b+ c ≤ 0, c >
b2

4a
.

For the case of Deflation/Inflation, it is sufficient to consider the function g(p) = −Bias(p).

Then, performing a similar analysis as above will result in different signs to each of the

above sets of inequalities.

B.0.3 MATHEMATICS OF CASES 5& 6

The only mathematical scenario that would result in Inflate/Deflate/Inflate is when

both nonzero roots are strictly positive, and less than one. First note that for the mathemat-

ical conditions of this root behavior, we must have that Bias(p) → ∞ as p → ∞. Thus,

we must have that a > 0. Going forward, assume that 0 < r1, r2 < 1. Using the same

formulations for b and c as in section B.0.1, we have that

b = −a(r1 + r2) > −a(1 + 1) = −2a

and

b = −a(r1 + r2) < −a(0 + 0) = 0

. Thus, we have that −2a < b < 0. For c, we have

c = ar1r2 < a(1)(1) = a
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and

c = ar1r2 > a(0)(0) = 0

. Thus, we have that 0 < c < a. In addition to this, to ensure that inflation occurs for

all values of p to the right of r2 (assuming r2 ≥ r1), we include the following inequality:

a + b + c ≥ 0. Finally, to ensure that our two nonzero roots are real, we ensure that

the discriminant is nonnegative, or when |b| > 2
√
ac. Thus, the set of inequalities that

generates the mathematical possibility for Inflate/Deflate/Inflate is as follows:

a > 0, 0 < c < a, −2a < b < 0, a+ b+ c ≤ 0, |b| >
√
ac.

For the case of Deflation/Inflation/Deflation, it is sufficient to consider the function g(p) =

−Bias(p). Then, performing a similar analysis as above will result in different signs to

each of the above sets of inequalities.
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