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On Stochastic Inequalities and Comparisons
of Reliability Measures for Weighted
Distributions

BRODERICK O. OLUYEDE®* and E. OLUSEGUN GEORGE®

@Department of Mathematics and Computer Science, Georgia Southern University, Statesboro,
GA 30460-8093; bDepartment of Mathematical Sciences, The University of Memphis

(Received 18 December 2000)

Inequalities, relations and stochastic orderings, as well as useful ageing notions for weighted distributions are
established. Also presented are preservation and stability results and comparisons for weighted and length-
biased distributions. Relations for length-biased and equilibrium distributions as examples of weighted
distributions are also presented.

Key words: Life distribution; Reliability functions; Weight function; Residual life function

1 INTRODUCTION

It is well known that if data is unknowingly sampled from the weighted distribution as
opposed to the parent distribution, the survival function, hazard function and mean
residual life function may be under or overestimated, depending on the weight function.
For size-biased or length-biased sampling, the analyst will usually give an over optimistic
estimate of the survival function and mean residual life function. Blumenthal (1967), Patel
and Ord (1976), Patil and Rao (1977, 1978), Gupta and Keating (1985), among others
obtained relations for reliability measures of length-biased distributions and discussed
some applications of weighted distributions in general and length-biased distributions in
particular.

In this paper, we derive reliability inequalities for weighted distributions in general and
length-biased distributions in particular. In section 2, some basic notions and definitions
useful in modeling for reliability, economic and biometry applications are given. In
section 3, we establish results on inequalities and relations for reliability measures under
weighted models. Closure results on mixtures in the class of new worst than used in
failure rate (NWUFR) is established. Section 4 deals with stability results, inequalities
and comparisons for length-biased distributions. Section 5 contains a summary and
conclusion.

* Corresponding author. Tel.: 912-681-0164; E-mail: boluyede@gasou.edu
ISSN 1024-123X print; ISSN 1563-5147 online/ © 2002 Taylor & Francis Ltd
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2 BASIC NOTIONS AND DEFINITIONS

Let F be the set of absolutely continuous random variables whose distribution function F
satisfy

F0)=0, lim F(x)=1, Sup{x:F(x)<1}=o0. 2.1)
X—=>00
It is clear that if the mean of a random variable in F is finite, it is positive. The well known

survival function, hazard rate, and mean residual life functions (MRLF) are given by
F(x) =1 = F(x), Ar(x) = f(x)/F (x) and

or(x) = EX — X > 1) = J F g(l‘;y ,

where f(x) = dF(x)/dx is the probability density function. The corresponding functions of a
random variable Y are denoted by G(x), Ag(x) and d(x), respectively.
It is well known that F(x), Ax(x) and dx(x) are equivalent, as

F = 20 exp(f‘ & ) 2 = IR

0F(x) 00r(y) OF(x)
and
% F(y)d
6p(x)=J F g(l)y . 2.2)

Let X and Y be two non-negative random variables with distribution functions F and G in F.

DEFINITION 2.1 We say F <4 G or X <4 Y if F(x) > G(x), for x > 0 or equivalently, for
any increasing function ¥,

E¥(X) < E¥(Y). (2.3)

DEFINITION 2.2 The mean residual life is decreasing in convex order if

J°° Foydy ro FOOd o aix>0, 0<1 <t (2.4)

vty F) ~ D, Fr) '
This is denoted by X;, <. Xy, for all 0 < t; < t,.
DEFINITION 2.3 Let Mg (x) = yp(x)/F(x), where yp(x) = [° F(y)W'(y) dy, W(x) > 0 and

W'(x) = dW(x)/dx. The weighted mean residual life function My(x) is decreasing in convex
order if

J°° Fo)W'()dy J°° FOW () dy 2.5)

x+t F(tl) - x+t F(IZ)

forall x> 0,0 <t <t, provided W(x)I_?'(x) — 0 as x = oo.
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DEFINITION 2.4 The specific age factor of a system at time t, specific with respect to a
positive parameter s, is defined as Ar(t,s) = F(t)F(s)/F(t,s), t,s > 0, and the specific
interval-average hazard rate is

s+t
Hp(t,s)=1t"" j Ar(x)dx, t>0, s>0. (2.6)

s

DEFINITION 2.5 The random variable X is said to be:

(i) Increasing in likelihood ratio (ILR) if and only if f (x + t)/f (x) is decreasing in x > 0
forall t > 0; _ _
(ii) Decreasing in mean residual life (DMRL) if and only if [° F(t) dt/F (x) is decreasing in
x> 0;
(iii) Increasing failure rate (IFR) if and only if F(x + t)/F(x) is decreasing in x > 0, for
every t > 0.

The next definition is due to Loh (1984).

DEFINITION 2.6 An absolutely continuous distribution function for which lim,_o F(x)/x
exist is new better than used in average failure rate (NBAFR) if

2r(0) = lim X! J Ar(y)dy < x7! J Ar()dy  for all x > 0. VX))
x—0+ 0 0

The inequality is reversed for new worst than used in average failure rate (NWAFR).
Similarly, we say F is new better than used in failure rate (NBUFR) if A7(0) < Ar(x) for all
x > 0. The inequality is reversed if F is new worst than used in failure rate (NWUFR).

The next definition is due to Bhattacharjee (1986).

DEFINITION 2.7 Let X be in F. The distribution function F(x) of X is said to be finitely and
positively smooth if there exists a number o € (0,00) such that

lim F(x) =e™ for all x > 0,
=00

where

F(x+1)

Fx)=PX >x+tX > 1) = )

(2.8)

is the survival function of a random variable X, (lifetime of a device at age t, t > 0) and o the
asymptotic decay coefficient of X.

The following definition is due to Alzaid (1994).

DEFINITION 2.8 Let X be in F. If its distribution function F(x) is finitely and positively
smooth with asymptotic decay coefficient o, X is called
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(i) Used better than age (UBA) if
F(x)>e™ forall t,x>0; 2.9)
(ii) Harmonic used better than aged in expectation (HUBAE) if

00

00 00
J F(t)dt > e"”‘J F)dy forallx>0, provided p= J F(y)dy < co. (2.10)
x 0 0

The inequalities in (2.9) and (2.10) are reversed for used worse than aged (UWA) and
harmonic used worse than aged in expectation (HUWAE).

3 RELATIONS AND STOCHASTIC ORDERINGS FOR RELIABILITY
MEASURES

Let X be a nonnegative random variable in F, with distribution function F and probability
density function (pdf) f. The weighted distribution of X or the pdf of the weighted random
variable X,, is given by

Sulx) = LV%)@ (3.1)

where 6" is a normalizing constant. Patel and Rao (1977) referred to (3.1) as a weighted
distribution with weight function W(x) > 0. The distribution given in Eq. (3.1) arises
naturally when one subsamples from the original distribution with large sample size say N,
given a chance proportional to W(x) to observation x. In such a case, as N — oo, the
subsample of fixed size n may be considered as a random sample on a random variable X,,
with probability density function

Wy )

= Eweny

3.2)

where 0 < E(W(x)) < oo. In studies in reliability, biometry, renewal theory, survival analyses
and wildlife populations the weighted distribution is often applicable for certain sampling
plans. See Patel and Rao (1977) for a survey and their applications. In this section, we obtain
inequalities and stability results on the survival function, hazard rate and mean residual life
function for weighted distributions.

We also obtain closure results on mixtures of weighted distributions under NWUFR class
of life distributions. The following results given by Egs. (3.3)—(3.6) connecting the weighted
distribution to the unweighted distribution can be easily obtained.



STOCHASTIC INEQUALITIES 5

The weighted survival function of the weighted distribution function Fy is given by

= [PWOF@)d

P =~ | ey
_ WEF®x) N o
= Fweor + aran |, FOv o
_ F){W () + Mp(x)}

E[WX)] '
where
Mp(x) = ro ﬂlf—);%()ﬁﬂ, assuming W(x)F(x) — 0 as x — oo. (3.3)

Note that if W’(x) > 0, then Mg(x) > 0 for all x > 0. The hazard function of the weighted
distribution Fy is given by

W (x)f (x) WA
FUW ) + Mp(x)} W (x) + Mr(x)

AF, W (x) = (3 4)

and the mean residual life function of the weighted distribution function Fy is

[ Fw(ndt
5FW(x) h Jx FW(x)

_ J°° FOUr @) +Mr(0) dr
x FOW () + Mp(x)}

(3.5)

The hazard rate Ag(x) in terms of Ag, (x) is given by

Ay (X)) W (X)
[ G @)/ W () exp(— [} Ak, () dy) dt

The weighted specific age factor of a system at time ¢, specific with respect to a positive time
parameter s, is given by

AF(x) =

(3.6)

_ (W () + M) (W(s) + Mp(s)EW (t + 5)
Ary (t,) = Ar (1. ) [ W(t+ s) + Mp(t + 5))EW()EW (s) ] (3.7)
and the weighted specific interval-average hazard rate is
[ @A)
Hp,(t,s) =t L o + Mo @) dx, t>0, s>0. (3.8)

Remark 3.1

(i) Note that Hr,, (t,s) > HF, (t1,s) foralls > 0 and t, > &, if Ap, (s) < AF, (s + ¢) for all
s>0,t>0.
(ii) Clearly, if W(x) is increasing in x, then Af,, (x) < Ap(x) for all x > 0.
(iii) If F is IFR(DFR), and W (x) is increasing and concave (decreasing and convex), then Fy
is IFR(DFR).
(iv) If F is DMRL(ILR), then Fy is DMRL (ILR).
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(v) If fiw(x) is continous and tw1ce differentiable then AFW(Z) is increasing in x > 0, pro-
vided W)W (x) < (W'(x)}* and " (x) 7 (x] < (f(x})’, where /*(x} = df(x]/dx and
S"(x) = &f(x) /.

(vi) Mg(x) is non-increasing if and only if F2(x)W’(x) > yp(x)f(x), where yg(x) =
[ F(y)W'(y) dy. This follows from the fact that

V@) — F2(x) W)}
F2(x)

M(x) = (3.9)

A measure of deviation of Mg(x) from constant is given by
bro = [ (FP0W - roneto) a
= J:o (2W (x)F(x) — yp(x)) dF (x), assuming W(x)F*(x) - 0 as x > co.  (3.10)
In the following theorem, we prove consistency of test based on empirical estimates of Fandyp.

THEOREM 3.1 fi;, > 0 and any test based on the empirical estimates of F and yp in
Eq. (3.10) is consistent.

Proof Let the weight function W (x) be positive and continous. Set
g(x) = 2W (x)F(x) — yp(x). Then g(x) > 0 and continous, since F is continous and has
decreasing mean residual life. In fact g(x) > 0 for at least one x, that is g(x;) > 0 for some x;.
Therefore  g(xy) = 2W(x2)F(x2) — pp(x2) > g(x1) >0,  where  x, = inf{x|x < xy,
F(x) = F(x1)}. Consequently, Bz, >0, and the test based on empirical estimates is
consistent. n

An empirical estimate of f§- is given by B = f(;x’ W (X)F,(x) — 9F,(x)) dF,(x), where F,
is the empirical distribution function and j, (x) an empirical estimate of y4(x).

THEOREM 3.2 Suppose fh dFy(x)/Fw(x) < ah:,' dFy(x)/Fw(x) for t>0  then
M,’;W(x +1) < Mi(x) for all x€la,b) such that x+1t<b, where Mgy (x)=
[y Fw(®) dt/FW(x) Fy(x) = F{W(x) + Mr(x)}/EIW(X)]  and  Mp(x) = [ F()
W'(t) dt/F(x).

Proof Note that

b -
Mi ) = s j Fw(y)dy

°°FW(V)
x Fw(x)

bt i’vf/()’) dy
Jx FW(X)
b Fw(s)
x+t FW(x + t)

v

I\

ds = Mg (x+1). [ ]
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Let H(x) = fe Fy(x)dK(0) be a mixture of Fy, where K is the mixing distribution and
{Fp: 0 € O} is a family of distributions. If each Fy(x) has a density fy(x), then the probability
density function of H is given by

hx) = J@fe(x) dK(6) @3.11)

THEOREM 3.3  Suppose each Fy in NWUFR, 0 € © and H is an arbitrary mixture of Fy,
then Hy, the weighted survival function is NWUFR.

Proof Let Ay, (t) and Ap,(¢) be the hazard functions corresponding to the distribution
function Hy and Fy, respectively. We show that

_ t
An, (0) > %J An, (x)dx for all £ > 0.
0

Note that

log Hy(t) = log (J@ Fy(x) dK(G))
> log<J F dK(e))
[C]
> [ 1ogFw)dk®)
JO

- (f k() dx) dK(6)
JO

0

> (J' ) dx) dK ().
JO\JO

The first inequality is due to the fact that F(x) > F(x) for all x > 0. The second inequality
follows from Jensen’s inequality and the last inequality follows from the fact that
Ar(x) > Ag, (x) for all x > 0. It follows therefore that

[/ e < I, (L 31, ) dx) aK(6)

<t| In©&e
<)
and by the dominated convergence theorem
t -
J A, (x)dx < Ay, (0)
0

for all # > 0. Consequently, Hy is NWUFR. |
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The next result, whose proof is straightforward and omitted deals with the closure of the
HUBAE class of life distributions for weighted and in particular length-biased distributions.

THEOREM 3.4 Let Fy,(x) be distribution functions of weighted random variables
Xw,,i=1,2,...,in F that are HUBAE with equal asymptotic decay coefficient o, then the
distribution function Fy(x) =Y piFw,(x), 0<p; <1, 32, pi=1, is HUBAE with
asymptotic decay coefficient o provided that Fy (x) is finitely and positively smooth. n

We now discuss problem of distance between Hy and Hg where up = ug = f(;"’ G(f)dr.
Let Hi(x) = [y W(t)dF(f) and HE(x) = [j W(2)dG(¢), x > 0, be bounded nondecreasing
functions with H}(0) = H}(0) = 0. The Lévy distance between Hy and H(; denoted by
L(H}, Hf) is the infimum of the numbers 6 > 0 satisfying

Hi(x— 8) — 6 < Hi(x) < Hi(x + ) + 6, (3.12)

for all x > 0, where W(x) is continuous, nonnegative, and nondecreasing on [0, co0). We
consider the Lévy distance for the distributions functions of the minimum and maximum
order statistic from Hr and Hg.

Let Xy = (X, X5, ..., X,) and Yy = (Y}, Y2, ..., Y,) be two random vectors with in-
dependent components following the distributions {Hr} and {Hg,}, respectively. Let
Hp,,, Hp,, and Hg,, Hg,, denote the distribution functions of the minimum and maximum
of the order statistics from Hr and Hg, respectively.

1(";[{:;:;024)35 L(Hry, Hay ) < St L(HEHE,), and L(Hg,y,Hey,) < YL

Proof 1t is clear that

n n
[1#7-[]He = >, {Hr—-Hg) for0<Hp, Hg <1, 1<i<n
i=1 i=1 {ilHE,—Hg,; >0}

Now let J; decrease to L(H;ii, Ha), l<i<n and set 6= 1,0, then
Hp,, — Hg,(x — ) — 6 < ZmH,:,.—Hg,zol{HFf(x) — Hg,(x — (5)} -0 <0, and Hg, (x + 0)—
Hp,(x)—0<0 for all x>0, so that L(Hg,, Hg,) <> i, 0. Consequently,
L(Hr,,, Ha,,) < Y1, L(H};, HE,). Similarly, L(H,,, Hs,,) < Y i L(H},, H{,). [ |

4 INEQUALITIES FOR LENGTH BIASED DISTRIBUTIONS

In this section, inequalities and stability results for the length-biased distribution functions
and residual life function are established.
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Let X be a random variable in F, and X, the lifetime of a device at age ¢, > 0. The
survival function of X; is as t — 00, X; has the survival function or equilibrium survival
function given by

- 1 (-
Fe(x)=;;L Fo)dy, x20, @.1)

and the length-biased equilibrium survival function

- T
G) = “—j GO dy

G Jx

J FO) + 6r0)) dy,

=7 ]
Hg + 0% Jx

where

® F(f) dt
. F@)

y >0, and a,zr is the variance of F. 4.2)

or(y) = J

In general, when W (x) = x, the moments of the length-biased distribution and those of the
original distribution are related by

Ep(X™)

EFW (Xr) = ur

4.3)

where Ef,, denotes expectation with respect to the weighted distribution. It is well known
that if 7 > 0 and Ef(X") < oo, then Ep(X") = [;° ¥ ~'F(x) dx and lim,, oo ¥ F(x) = 0 and if
r < 0 and Er(X") < oo, then Ep(X") = || f:" ¥ ~1F(x)dx and lim,_, o+ X' F(x) = 0.

Several stochastic equivalence of ordered random variables and generalizations have been
considered by various authors. See for example Barcelli and Makowski (1989), and refer-
ences therein.

THEOREM 4.1  Let Hr(x) = 1/py [y tdF(f) and Hg(x) = 1/pg [y t dG(¢). Suppose that X
stochastically dominates Y in the second order and Ep.(X") = Eg,(X") < oo for some
r>1, and pp = pg = p, then X =4 Y, where =? denotes equality in distribution.

Proof 1fr > 1, then

EF(Xr+l) EG(Xr+])
Hr He
EF(XI'+1) _ EG(XI‘+1 )]

“:o X (F(x) — G(x)) dx}.

Ep(X") — Ege(X7) =

N =

+1
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Now
Ep,(X") — Eyg(X7) = 0 implies
rtl rox'(ﬁ(x) ) dx] =0,
B Uo
That is,
aty ( [ ! dt) (F(v) — G)) dx = 0, 4.4)
noJo \Jo
and
’(—rii-l—)J ( [ F@) - G) dx) dr=0,
by Fubini’s Theorem. @.5)

Using the fact that X stochastically dominates Y in the second order and (4.5), we have
00 - - - -
J (F(x) — G(x))dx =0, and F(x) = G(x) for x > 0. |
t

Next, we obtain inequalities for the length-biased residual life and equilibrium distribution
functions. Let the distribution function F possess moment of order J, that is

=EX), j=1,2,...,J. Let {Sj(x)},j=0,1,2,...,J, be a sequence of decreasing
functions given by

F(x), j=0,

-1 (4.6)

99 = i=1,2,...,J
( l)', J=44,...,J.

JmF(x+t)

, We let S_i(x)=f(x) be the pdf of F if it exists. Then S;(0)= /!,
Si(x) = =§;-1(x),j=0,1,2,...,J. The ratio S;_;(x)/S;(x) is a hazard function of a dis-
tribution function with survival function S;(x)/S;(0). The following is a modified version of
the Lemma given by Barlow et al. (1963).

LEMMA (Barlow et al. (1963)) If F has decreasing mean residual life (DMRL), then

Si(x) < Sp(0)e™*, k=1,2,..., and
Sk(x) > pSk—1(0) ™" — pSk_1(0) + Sk(0),  k=2,3,.... (4.7)

The inequalities are reversed if F has increasing mean residual life (IMRL).

THEOREM 4.2 If G, has increasing hazard rate (IHR), then for 6 > 0,

(o] _ #2
j |Go(x) —xe /M| dx <20, where d = p* ——
0 2u
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Proof Let A = {x|G.(x) < x exp{—x/u}}. Then for x > 0, we have
L 1Go(x) — x expl—x/u)] dx
- L (rexpl—x/u) — Gul(®)) dx — Lc{" expl—x/u) — Gu()} dx
<2 [ trexplox/u) - Guw) ax
JA4

<2 [ rexplox/u} - Fu()) dx
JO

= 2u0 [xexp{—x/u} - (%J F(y)dy)}dx

F Jx

00 1% -
=2 —x/uy— (=1 Fo)dy)}dx

0 {xexp{ x/1) (NJ ) y)}
=2 . {xexp{—x/pu} — S1(x)/u} dx
=2(% — $(0)/)
_ 2_Ha) _
= 2(,u 2“) = 20. u

PROPOSITION 4.1 Let X be in F. If X; is HUBAE, then the length biased random variable
Xy or its distribution function G is HUBAE.

Proof The results follows from the fact that

F@lx+ 6 _ 7

G(x) = (x) forall x >0,
Br
where
1 (*-
0 ==——| F@dt.
o) =g | PO
Consequently,
00 _ 00 _
J G() dt > J F(r)de
X X

o0
> e_“"J F(t)dt, for all x > 0. |
0

The next theorem shows that if the length-biased random variable is UWA, then the original
random variable is also UWA.
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THEOREM 4.3 If G(x +1) < G(t) e for all x,t >0, then F(x+1t) < F(t)e™™ for all
x,t >0, where G(t) = 1/pp [[° x dF (x).

Proof G(x+1) < G(t)e™™, for all x,¢ > 0 is equivalent to

F(x+t)x +t 4 0p(x + )}/ up < FO{t + 0r()}e ™ /up, forall x,t >0,

F()f +9 < £+ 0r(?) e”, forallx,t>0,
F(r) x+t+0p(x+1)

, forallx>0. [ ]

<e™

The last inequality follows from the fact that (y + dr(»)) is an increasing function of y. This is
due to the fact that for 0 <y, < y,, we have

Y2 +0r(2) — (1 + 0r(1)) = 02 —YOF2)F()

1
Fp)F ()
+(FOn) = F)) j o dr

Y2
Y

—F(Vz)r Flydx > 0

»i

by noting that,

FOOEG)02 =) = Fi) [" Fo)dx. -

Iy

THEOREM 4.4 Let G be in F with finite mean pg. If G is HUBAE with asymptotic decay
coefficient o, then pg > 1/o.

Proof Using the fact that G is HUBAE we have

oo
e =1 G@)de
Jo
X _ o o] _
= | G(r)dt + J G(f)dt
0 x
> | G@t)dt/(1 —e™) for all x > 0,
JO
Xt -
> | F(f)dt/(1 —e ™) for all x > 0.
0
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Now

G F 1
e > lim 0 S IO 1 ]
x>0t e T x0t e o

5 CONCLUSION

In this article, we have obtained useful inequalities and established relations for weighted
distributions function in general, and in particular length-biased distribution functions, and
their unweighted counterparts. Results on mixtures of NWUFR and HUBAE classes are
established for weighted distributions. Finally, some basic results on Levy distance and
reliability measures for weighted and length-biased models are presented.
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