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MULTIPLE SOLUTIONS WITH CONSTANT SIGN OF A
DIRICHLET PROBLEM FOR A CLASS OF ELLIPTIC SYSTEMS
WITH VARIABLE EXPONENT GROWTH

LI YIN, JINGHUA YAOT, QIHU ZHANG, AND CHUNSHAN ZHAO

ABSTRACT. We investigate the following Dirichlet problem with variable exponents:

— DNp@y u = Aa(x) |u|0‘(m)72 i |v|ﬂ(m) + Fy(z,u,v), in Q,

— Dga) v = AB(x) | P @2y 4 F,(2,u,v), in Q,

u=0=wv, on 0.
We present here, in the system setting, a new set of growth conditions under which
we manage to use a novel method to verify the Cerami compactness condition. By
localization argument, decomposition technique and variational methods, we are able
to show the existence of multiple solutions with constant sign for the problem with-
out the well-known Ambrosetti-Rabinowitz type growth condition. More precisely,
we manage to show that the problem admits four, six and infinitely many solutions
respectively.
Key words: p(z)-Laplacian, Dirichlet problem, solutions with constant sign, Ambrosetti-

Rabinowitz Condition, Cerami condition, Critical point.
Mathematics Subject Classification(2010): 35J20; 35J25; 35J60

1. INTRODUCTION

In this paper, we consider the existence of multiple solutions to the following Dirichlet
problem for an elliptic system with variable exponents:

= By w = Aa(@) [ul " o)™ 4 Fy(,u,0), in 0,
(P) - Aq(:):) v = )\ﬁ(l‘) |u|a(:v) |v|5(33)*2 v+ Fv(xa U, U), n Qa
u=0=w, on 0,

where Appu = div(|Vul’ @2 7y) is called p(z)-Laplacian which is nonlinear and
nonhomogeneous, @ < RY is a bounded domain, and p(-),q(-),a(-), 5(-) > 1 are in
the space C*(€) which consists of differentiable functions with continuous first order

derivatives on (2.

Elliptic equations and systems of elliptic equations with variable exponent growth as in
problem (P) arise from applications in electrorheological fluids and image restoration.
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We refer the readers to [1], [3], [24], [39] and the references therein for more details
in applications. In particular, see [5] for a model with variable exponent growth and
its important applications in image denoising, enhancement, and restoration. Problems
with variable exponent growth also brought challenging pure mathematical problems.
Compared with the classical Laplacian A = Ay which is linear and homogeneous and
the p -Laplacian A, := div(|V-[P72V+) which is nonlinear but homogeneous for constant
p, the p(z)-Laplacian is both nonlinear and inhomogeneous. Due to the nonlinear and
inhomogeneous nature of the p(x)-Laplacian, nonlinear (systems of) elliptic equations
involving p(z)-Laplacian and nonlinearities with variable growth rates are much more
difficult to deal with. Driven by the real-world applications and mathematical chal-
lenges, the study of elliptic equations and systems with variable exponent growth has
attracted many researchers with different backgrounds, and become a very attracting
field. We refer the readers to [3], [9], [10], [12], [15], [20], [23], [25], [35], [36], [37] and
the related references to tract the rapid development of the field.

In this paper, our main goal is to obtain some existence results for the problem (P),
a Dirichlet problem for elliptic systems with variable exponents, without the famous
Ambrosetti-Rabinowitz condition via critical point theory. For this purpose, we pro-
pose a new set of growth conditions for the nonlinearities in the current system of ellip-
tic equations setting. Our new set of growth conditions involve only variable growths
which naturally match the variable nature of the problem under investigation. Under
our growth conditions, we can use a novel method to verify that the corresponding func-
tional to the problem (P) satisfies the Cerami compactness condition which is a weaker
compactness condition yet is still sufficient to yield critical points of the functional. See
the details of proofs in Section 3. The current study generalizes in particular our former
investigations [32] and [37]. However, this generalization from a single elliptic equation
to the current system of elliptic equations is by no means trivial. Besides technical
complexities, the assumptions in the current study are more involved. In particular,
though we still do not need any monotonicity on the nonlinear terms, we do need im-
pose certain monotonicity assumptions on the variable exponents to close our argument
in the system setting.

When we utilize variational argument to obtain existence of weak solutions to elliptic
equations, typically we impose the famous Ambrosetti-Rabinowitz growth condition on
the nonlinearity to guarantee the boundedness of Palais-Samle sequence. Under the
Ambrosetti-Rabinowitz growth condition, one then tries to verify the Palais-Smale con-
dition. However, the Ambrosetti-Rabinowitz type growth condition excludes a number
of interesting nonlinearities. In view of this fact, a lot of efforts were made to show the
existence of weak solutions in the variational framework without this type of growth
condition, especially for the usual p-Laplacian and a single nonlinear elliptic partial
differential equation (see, in particular, [14], [I7], [I8], [19], [21], [29] and the references
therein). Our results can be regarded as extensions of the corresponding results for
the p-Laplacian problems. There are also some related earlier works which dealt with
elliptic variational problems in the variable exponent spaces framework, see [2], [13],
[33], [37], [27] and related works. These earlier studies were mainly focused on a sin-
gle elliptic equation. In the interesting earlier study [33], the author considered the
existence of solutions of the following variable exponent differential equations without
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Ambrosetti-Rabinowitz condition on bounded domain,

— DNpy v = f(z,u), in Q,
{ u =0, on 0f2. (L.1)

However, in some aspects the assumption is even stronger than the Ambrosetti-Rabinowitz
condition. In a recent study [2], the authors considered the variable exponent equation
in the whole space RY under the following assumptions: (1°) there exists a constant
6 > 1, such that 0F(x,t) > F(x,st) for any (z,t) € R¥xR and s € [0, 1], where
Fl(z,t) = f(z, )t — ptF(z,t); (2°) f € C(RNxR,R) satisfies lim 2% — oo, In [13],

jtl—co 147"

the authors considered the problem (L)) in a bounded domain under the condition (2°).
In [27], the authors studied a variable exponent differential equation with a potential
term in the whole space RY . The authors proposed conditions under which they could
show the existence of infinitely many high energy solutions without the Ambrosetti-
Rabinowitz condition. In the above mentioned works, the growths conditions involved
either the supremum or the infimum of the variable exponents. In our current study, we
are able to provide a number of existence results in the system setting under assump-
tions that only involve variable exponent growths which match naturally the variable
growth of the problem under study.

We point out here that the growth conditions we use here and the method to check the
Cerami compactness condition are different from all the above mentioned works. Due
to the differences between the p-Laplacian and p(z) -Laplacian mentioned as above, it is
usually challenging to judge whether or not results about p-Laplacian can be generalized
to p(x)-Laplacian. Meanwhile, some new methods and techniques are needed to study
elliptic equations involving the non-standard growth, as the commonly known methods
and techniques to study elliptic equations involving standard growth may fail. The
main reason, as mentioned earlier, is that the principal elliptic operators in the elliptic
equations involving the non-standard growth is not homogeneous anymore. To see some
new features associated with the p(z) -Laplacian, we first point out that the norms
in variable exponent spaces are the so-called Luxemburg norms |ul,, (see Section 2)

and the integral §, [u(z)[” @) 4z does not have the usual constant power relation as in
the spaces LP for constants p. Another subtle feature is on the principal Dirichlet
eigenvalue. As invetigated in [I0], even for a bounded smooth domain Q = RY, the
principle eigenvalue A,y defined by the Rayleigh quotient

' S ﬁ IVuP'™) da
= inf @
ey PO @\ § oy lul” d

(1.2)

(")

is zero in general, and only under some special conditions Ay > 0 holds. For example,
when 2 < R (N = 1) is an interval, results show that A,y > 0 if and only if p(-) is
monotone. This feature on the p(x)-Laplacian Dirichlet principle eigenvalue plays an
important role for us in proposing the assumptions on the variable exponents and in
our proofs of the main results.

Now we shall first list the assumptions on the nonlinearity F' and variable exponents
involved in the current system setting. Our assumptions are as follows.
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(Hop) 38 + 08 <1,V e Q.

(Hy) F: QxR xR — R is C! continous and
| P, w,v)ul + | Fy (2, u,v)0] < O+ [u™ + o"@), ¥(z,u,0) e Q x R,

where 7,6 € C(Q) and p(z) < v(z) < p*(z), ¢(z) < d(x) < ¢*(x) where p*(x) and ¢*(z)
are defined as

Np(z) ¢ Ng(z)
. e p(z) < N . _m,lfq(x)<N
p($)={N”” ,q(fv)={N‘1”

+o0, if p(x) = N o0, ifg(x) =N

(H,) There exists constants M, Cy,Co > 0, a(-) > p(+) and b(-) > ¢(-) on Q such that

Cr ™ [In(e + [u])]"77" + Cy [0 [In(e + o))"

B Fy(z,u,v)u  F,(z,u,v)v
= 7 Uln(e+ [ul)  In(e + Jul)
1 1
< Fu(z,u,v)u + —F,(x,u,v)v — F(x,u,v),V |[u| + [v] = M,Vz € Q.

p(z) q(z)

(Hy) F(z,u,v) = o(|u["™ + |[v]*®) uniformly for z € Q as u,v — 0.
(Hs) F satisfies F,(z,0,v) = 0, Fy(z,u,0) =0, Yr € Q, Yu,v € R.
(Hy) F(z,—u,—v) = F(z,u,v), Yz € Q, Yu,v e R.

(H,,) There are vectors l,,l, € RN\{0} such that for any = € Q, ¢,(t) = p(z + tl,) is
monotone for t € I, ,(I) = {t | z + tl, € Q}, and ¢,(t) = ¢(x + tl;) is monotone for
tel () ={t|z+tl, €}

To gain a first understanding, we briefly comment on some of the above assumptions.
(Hp) means that the nonlinearity F' has a subcritical variable growth rate in the sense
of variable exponent Sobolev embedding and in the current system of elliptic equations
setting. (H;) and (Hs) describe the far and near field behaviors of the nonlinearity
F. Notice that in the current setting, the far field behavior (H;) is more involved.
We emphasize that (H,,) is crucial for our later arguments, for it guarantees that the
Rayleigh quotients for —A, ) and —Ay,) (see ([L2) for —A, ) are positive. Finally,
the assumptions (Hy)-(H,) on the nonlinearity F' are consistent, which can be seen by
the following example:

Fa,0) = [P (L4 a) O+ o] (14 o)+l o] (14 fu]) In(1+|o]),

where 1 < 0;(z) < p(z),1 < Os(z) < q(z), (2(%) + 9;((;)) = 1,Vr € Q. In addition, F' does

not satisfy the Ambrosetti-Rabinowitz condition.

Now we are in a position to state our main results.
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Theorem 1.1. If X is small enough and the assumptions (Ha ), (Ho), (Hz)-(H3) and
(H, ,) hold, then the problem (P) has at least four nontrivial solutions each with constant
sign respectively.

Theorem 1.2. If X is small enough and the assumptions (Ha ), (Ho)-(Hs) and (H, )
hold, then the problem (P) has at least siz nontrivial solutions each with constant sign
respectively.

Theorem 1.3. If the assumptions (H, ), (Ho), (Hy) and (Hy) hold, then there are
infinitely many pairs of solutions to the problem (P).

Remark 1.4. The solutions we obtained in Theorem [[.T and [L2 to (P) are of constant
sign. Meanwhile, we do not need any monotonicity assumptions on the nonlinearity

F(x,- ).

This rest of the paper is organized as follows. In Section 2, we do some functional-
analytic preparations. In Section 3, we give the proofs of our main results.

2. FUNCTIONAL-ANALYTIC PRELIMINARY

Throughout this paper, we will use letters ¢, ¢;,C,C;, i = 1,2,... to denote generic
positive constants which may vary from line to line, and we will specify them whenever
it is necessary.

In order to discuss problem (P), we shall discuss the functional analytic framework.

First, we present some results about space I/VO1 P (')(Q) which we call variable exponent
Sobolev space. These results on the variable exponent spaces will be used later (for

details, see [6], [7], [9], [16], [26]). We denote C(£2) the space of continuous functions on
Q with the usual uniform norm, and

Ci(Q) ={h|heC(Q), h(z) > 1for e Q}.

For h = h(:) € C(f), we denote h* := max,.g h(x) and h~ := min,.q h(z). For
p =p(-) € C4(Q), we introduce

PY(Q) = {u | u is a measurable real-value function, f u(z) P dx < oo} :
Q
When equipped with the Luxemberg norm

u(z)

So

p(z)
|ul,., = inf {,u>0 dr < 1},

(LPO(Q), || o)) becomes a Banach space and it is called variable exponent Lebesgue
space. For the variable exponent Lebesgue spaces, we have the following Holder type
inequality and simple embedding relation.
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Proposition 2.1. (see [6], [7], [9]). i) The space (LPX) (), |[,)) s a separable, uniform
convex Banach space, and its conjugate space is LPO)"(Q), where (p(-))° := z% is the
conjugate function of p(-). For any u € LPO(Q) and v e LD (Q), we have

1 1
f uvdx
Q

< (= + 2 [l Pl
i) If p1, p2 € C(Q), p1(x) < pa() for any v € Q, then LP2V)(Q) < LPO)(Q), and the
imbedding 1s continuous.

k
Denote Y = [[LP*")(Q) with the norm

i=1
k
|| Yy ||Y: Z ‘yz}pl() ’ Vy = (yla T 7yk) € Ya
=1

where p;(x) € C,(Q),i=1,--- ,m, then Y is a Banach space. The following proposition
can be regarded as a vectorial generalization of the classical proposition on the Nemytsky
operator.

Proposition 2.2. Let f(z,y) : Q x R¥ — R™ be a Caratheodory function, i.c., f
satisfies
(i) for a.e. x € Q, y — f(x,y) is a continuous function from R* to R™,

(ii) for any y € R*, x — f(x,y) is measurable.

If there exist n(x), py(z), -, pe(z) € CL(Q), h(z) € L") (Q) and positive constant ¢ > 0
such that

k
(2, 9)| < h(x) + e |yl for any x € Q,y e RY,
i=1
then the Nemytsky operator from 'Y to (L") (Q))™ defined by (Nju)(z) = f(z,u(z)) is
a continuous and bounded operator.

Proof. Similar to the proof of [4], we omit it here. O

The following two propositions concern the norm-module relations in the variable ex-
ponent Lebesgue spaces. Unlike in the usual Lebesgue spaces setting, the norm and
module of a function in the variable exponent spaces do not enjoy the usual power
equality relation.

Proposition 2.3. (see [9]). If we denote
pla) = ||l e, Ve (@),
Q

then there exists a & € Q0 such that |u|zg_£)) = {, [ul'™ da and
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i) [ul,y < H(=13>1) = p(u) < 1(= L;> 1);
.. - + - +
it) uf,) > 1= |u|z(.) < plu) < |u|z(.); ul,y < 1= |U|z(.) = p(u) = |U|z(.)§

iii) |ul, .y — 0 == p(u) = 0; |ul, ) — %0 = p(u) — .

Proposition 2.4. (see [9]). If u, u, € LPY(Q), n = 1,2,---, then the following
statements are equivalent to each other.

1) khjlolo ue = ul,) = 0;
2) im p (up —u) = 0;
k—o0

3) up — u in measure in  and klim p (ug) = p(u).
—0

The spaces WO () and W10 (Q) are defined by
WO@Q) = {ue L'O(Q)[Vue (17O ()N},
WhO@Q) = {ve 190 (Q) |V e (L0 (@)},

and be endowed with the following norm

\V4 p(z) p(x)
ull ., = in > A dx + _u(:c) dr <1},
Jullyc f{pu>0 . .
Q Q
q() a(x)
lulgey = inf{u>0f Vi d:c+f ulz) dx<1}.
ol H ol M

We denote by Wol’p(')(Q) the closure of C° (Q2) in W'P()(Q). Then we have in particular
the following Sobolev embedding relation and Poincaré type inequality:.

Proposition 2.5. (see [6], [9]). i) WPO(Q) and WyP(Q) are separable reflezive
Banach spaces;

i) If n € C4 (Q) and n(z) < p*(z) for any x € Q, then the imbedding from W0 (Q)
to L") (Q) is compact and continuous;

iii) There is a constant C' > 0, such that

[ul ., < C |Vl Yue Wy (Q).

We know from iii) of Proposition that [Vul,, and |uf,, are equivalent norms on
Wa(Q). From now on we will use |Vul, to replace |ul,,, as the norm on WO (Q),

and use [Vvl, ) to replace [v[,, as the norm on Wol’q(')(Q).
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Under the assumption (H, ), Ay(.) defined in (L2 is positive, i.e., we have the following
proposition.

Proposition 2.6. (see [10]). If the assumption (H,,) is satisfied, then A,y defined in

(1.2) is positive.
Denote X = Wy (Q) x W™ (). The norm || on X is defined by
[ (u, )| = max{ful], .y, [[v]g}-

For any (u,v) and (¢,%) in X, let
1

O (u) = — |Vulf® dx,
1(w) mp(ﬂf)| |
[ 1 v |q( ) d
Oy(v) = — | V0| dux,
2(v) Jao q(x)

O(u,v) = Py(u) + Po(v),

.
U(u,v) = Jo A 0)P®) 4 P2, u, v)da.

From Proposition[2.2] Proposition2.5land condition (Hy), it is easy to see that ®1, &y, &, U €
C!(X,R) and then

'(u,v)(¢, ) = Di®(u,v)(¢) + Da®(u,v)(¥),

U'(u,v)(d,¥) = D1¥(u,v)(¢) + DaW(u,v) (1)),

where
Dib(u,0)¢) = | [VuP™ VuTods = @)(u)(o).
Dab(u,0)(0) = | Vol"? VuT s = (0)(w),
DU (u,v)(¢) = J;)\a(x) |u|°‘($)2u|v|6(x)+%F(:p,u,v)¢dx,
Dy, v) (1)) — J;)\B(x) | |v|6(x)_zv+&—i}F(x,u,v)@/)dx.

The integral functional associated with the problem (P) is
(P(U, U) = (I)(ua U) - \Ij(ua 'U)'

Without loss of generality, we may assume that F(z,0,0) = 0,Vx € Q. Obviously, we
have

1
F(z,u,v) = J [udo F(z, tu, tv) + vos F (x, tu, tv)]dt, Vo € Q,
0

where 0; denotes the partial derivative of F' with respect to its j-th variable, then the
condition (Hy) holds

|F (2, u,v)| < c(ju]"™ + [v]°@ + 1), V2 e Q. (2.1)
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From Proposition 2.2 Proposition and condition (Hy), it is easy to see that ¢ €
C1(X,R) and satisfies
¢’ (u,0)(¢,¥) = Dip(u,v)($) + Dap(u, v) (1),
where
Dﬁp(U,U)((b) = qu)(u,v)(@—Dl\I’(u,v)((b),
Dap(u,0) () = Da®(u,v)(¢) — Da¥(u, v) ().

We say (u,v) € X is a critical point of ¢ if
¢ (u,0)(¢,9) = 0,V(¢,¢) € X.

The dual space of X will be denoted as X*, then for any H € X™, there exists f €
(Wol’p(')(Q))*, g € (Wol’q(')(Q))* such that H(u,v) = f(u) + g(v). We denote ||, ,
[l ¢y @0 [[l, 4y the norms of X*, (WP (Q))* and (W (Q))*, respectively. Holds
X% = (W™ (@) x (W (@), and

[H L = 11 py + 190 gy -

Therefore
[ (u, ), = [ Drp(u, )[4 iy + 1D20(w, V)[4 oy -

It’s easy to see that ® is a convex functional, and we have the following proposition.

Proposition 2.7. (see [9], [15]). i) &' : X — X* is a continuous, bounded and strictly
monotone operator;

i) ® is a mapping of type (S), i.e., if (Un,vy) — (w,v) in X and Tim (@ (un,v,) —

n—+00
' (u,v), (U, — u, v, —v)) <0, then (uy,v,) = (u,v) in X;

iii) ® : X — X* is a homeomorphism.

Remark 2.8. A proof of a simple version of the above proposition can be found in the
references [9], [I5]. In the system setting here, the idea of proof is essentially the same.
For readers’ convenience and for completeness, we present it here.

Proof. i) Tt follows from Proposition 2.2 that @’ is continuous and bounded. For any
¢,m e RY, we have the following inequalities (see [9]) from which we can get the strict
monotonicity of ®':

[P =" m & =m] - ([ + > P = -1 —nl> 1<p<2  (22)

(16772~ Il n)(e —m) = (P I~ p>2. (23)

ii) From i), if u,, — u and n@oo(@’(un, vn) — D' (u,v), (U, — u,v, —v)) <0, then

lim (9 (up, v,) — D' (u,v), (uy, — u,v, —v)) = 0. (2.4)

n—+0o0
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We claim that Vu,(z) — Vu(x) in measure.

Denote
Q| p) > 2V = freQ |1 < plx) < 2),
={x eV ||Vu,| + |Vu| <1},V.F = {x eV | |Vu,| + |Vu| = 1},

@, = (V"2 Vu, — |Vul'“ 2 Vu) (Vu, — Vu), U, = (V| + |Vul).
From (23], we have

J IV, — Vul'™ dz < 20 J O, dr < 27" J O, dx — 0. (2.5)
U U Q

In view of (2.2), we have

, 1 1 J
— dr < —d,dx < ®,dxr — 0. 2.
Jn \Vu, — Vul|” dz JV o) -1 x 1), r—0 (2.6)

n

Without loss of generality, we may assume that 0 < Sv* ®,dxr < 1. Then we have

f IV, — V'™ dz < C f @)/ 2-p@)p@)/2 gy
Vit 1%

+
n

From (24) and the bounded property of {u,} in X, we have

J IV, — V"™ dz < (J <I>nda:> 1/2[1 +J (V| + [ Vul )p(x)d:c] —0. (2.7)
Vi Vi Vit

Thus {Vu,} converges in measure to Vu in €2, so we have by Egorov’s Theorem that
Vu,(x) — Vu(z) a.e. € Q up to a subsequence. Consequently, we obtain, by Fatou’s

Lemma, that
1

lim Vu, [P dr /J | VulP® de. 2.8
n-to0 Qp()| | Qp($)| | 28)
Similarly, we have
1
lim V0,1 da > J —— |Vo|'™ da. (2.9)
n—+o00 JQ (J( ) q q(x)
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From (u,,v,) — (u,v) in X, we have

lm (D' (up, vp), (U — u, v, —v)) = lim (D' (up,v,) — D' (u,v), (U, —u,v, —v)) = 0.

n—-+0o0 n—-+0o0
(2.10)
We also have
(D (tn, vy), (Uy — u, v, — V)
_ f [V, ™ da — f |V [P Vi, Vudz
0 0
+ J V0,1 d — J IV, "% Vo, Voda
0 0
> f [V, P da — f V[P V| da
0 0
+J Vo, |*® da: — J IV, |[* 7 Vol da
0 0
—1 1
R e A L
Q o\ pa) p(z)
—1 1
| Vo, " dr — J a(x) Vo, |1 + —— Vo] 7® ) dg
J, 7 g el + g 1900)
1 1
J —— |V, [P da + f —— |V, |"™ da
o p(z) 0 q(z)
1 1
—f — | Vul'"™ dx — f — |Vo|"™ dg. (2.11)
o p(x) o q(x)
According to (2.8)-(2.11)), we obtain
1 1
m [ —— |V, [ dz = J —— |Vl da. (2.12)
n—+ Jo p(z) o p(7)

It follows from (2I2]) that the integrals of the functions family {zﬁ |V, |” (x)} possess
absolute equicontinuity on Q (see [22], Ch.6, Section 3, Corollary 1, Theorem 4-5). Since
1 1 1
p(z) p(z) p(z)
the integrals of the family { ﬁ |Vu,(z) — Vu(x) } is also absolutely equicontinuous
on § (see [22], Ch.6, Section3, Theorem 2) and therefore

. 1
lim —
n—-+ao0 Q p(aj‘)

By (2.14)), we conclude that

Vun(z) — Vu(z)[P" < C( IV, ()P + IVu(z)[P™), (2.13)

|p(x)

Vun(z) — Vu(z)[P® dz = 0. (2.14)

n—+0o0

lim f V() — V()@ de = 0. (2.15)
Q
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From Proposition 2.4 and (2.15]), we have u, — u in Wol’p(')(Q). Similarly, we have
U, — v in Wol’q(')(Q). Therefore, (uy,,v,) — (u,v) in X. Thus, &’ is of type (S, ).
iii) By the strict monotonicity, ®’ is an injection. Since

(@' (u,v), (u,v)) - SQ |Vu|p(x) do + SQ |V,U|q(x) dr

lwo) =+ | (u,v)] ()] oo I(u, v)]|

= +(X)’

' is coercive, thus @ is a surjection in view of Minty-Browder’s Theorem (see [34],
Th.26A). Hence @' has an inverse mapping (®')~! : X* — X . Therefore, the continuity
of (®')~! is sufficient to ensure @ to be a homeomorphism.

If fo, feX* fu— fin X¥ let (up,vn) = ()7 (fu), (u,0) = ()7(f), then

' (U, vy) = fr, P (u,v) = f. So {(un,v,)} is bounded in X. Without loss of generality,

we can assume that (u,,v,) — (ug,vo) in X. Since f, — f in X*, we have

: ’ ’ :
nkrfoo(q) ((tny vn)) — @' (uo, vo), (Un — uo, vy — vo) = ngrfoo(fn, (un — g, v — vp)) = 0.

(2.16)

Since @' is of type (S4), (Un, vn) — (ug, vo), we conclude that (uy,,v,) — (u,v) in X, so

(®')~! is continuous. The proof of Proposition 2.7 is complete. O

Denote B(zg,¢,0,0) = {x e RN | § < |z — 19| < ¢, e % > cosf}, where
0 € (0,%). Then we have

Lemma 2.9. If p € CY(Q), 29 € Q satisfy Vp(xo) # 0, then there exist a positive &
small enough such that

(x — x0) - Vp(x) > 0,Yx € B(xo,¢,6,0), (2.17)

and
max{p(x) | x € B(xg,¢)} = max{p(x) | z € B(zo,¢,¢,0)}. (2.18)

Proof. Since p € C*(Q), for any x € B(z,¢,0,0), when ¢ is small enough, it is easy to
see that

Vp(z) - (x —20) = (Vp(20) +0(1)) - (¥ — 20)
= Vp(zo) - (x — zo) + o]z — z0|)
IVp(zo)| |z — xo| cos 0 + o(|x — x¢|) > 0,

\%

where o(1) € RY is a function and o(1) — 0 uniformly as |z — x| — 0.

When ¢ is small enough, (ZI7) is valid. Since p € C*(Q), there exist a small enough
positive ¢ such that

p(x) — p(xo) = Vp(y) - (x — 20) = (Vp(20) + 0(1)) - (T — 20),
where y = 2o+ 7(x — 1) and 7 € (0,1), o(1) € RV is a function and o(1) — 0 uniformly

as |z — xo| — 0.

Suppose z € B(xg,&)\B(xo,¢,0,6). Denote z* = xy + eVp(xo)/ |Vp(z0)|-
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z—xq | Vp(zo)
lz—zo|  [Vp(zo)l

p(z) —p(zo) = (Vp(xo) +0(1)) - (x — 20)

|Vp(zo)| |z — xo| cos O + o(e)
(Vp(zo) + 0(1)) - eVp(xo)/ [Vp(o)|
p(z*) — p(zo),

where o(1) € RY is a function and o(1) — 0 as € — 0.

Suppose < cosf. When ¢ is small enough, we have

NN

Suppose |x — xo| < 6. When ¢ is small enough, we have
p(x) —p(zo) = (Vp(xo) +0(1)) - (x — x0)
[Vp(zo)| |2 — 2ol + o(e)
(Vp(zo) + 0(1)) - €Vp(o)/ [Vp(2o)|
p(x*) = p(zo),
where o(1) € RY is a function and o(1) — 0 as € — 0. Thus

max{p(x) | x € B(xg,¢)} = max{p(z) | z € B(xo,¢,0,0)}. (2.19)

AR/

It follows from (2.17)) and (2.19)) that (2.18]) is valid. Proof of Lemma 2.9 is complete. [
Lemma 2.10. Suppose that F(z,u,v) satisfies the following inequality
Cy [uf"™ [In(e + [u])]*® + Cy [v]"™ [In(e + [o])]*® < Fa,u,v),¥|u| + [v] > M,Vz € Q,

where a(-) > p(-) and b(-) > q(-) on Q , and x1, 25 € Q are two different points such that
Vp(x1) # 0 and Vq(za) # 0. Let

B 0, |z — 21| > €
hl(x)_{e—|x—:c1|, lz— x| <e
and
_ 0, |z — 9| > €
hQ(x)_{5—|x—x2|, |z — a9 <e

where € is as defined in Lemma 2.9 and small enough such that € < |y — x1|. Then
there holds

f IVt by [P da +J IVt hy| "™ de —f Aty | |t hol ™) + F(2,t hy,t hy)dz — —o0,
Q Q Q

ast — +oo.

Proof. According to (H, ), there is a constant 6 € (0, 1) such that

a(z)  Bla)
op(z) " Oq(z) =

1,Vz e Q.

Therefore, we have

0p(z) 0 Op(x)
|u|a(:v) |,U|5(m) < a(x) L p(SL’) )0 |U|B(x)( ap(x) )° < |u|€p(:v) + |v|€q(l‘) +1.
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To complete the proof of this lemma, it is sufficient to show that

G(th) ::f L

[Vthy [P — f Cy [thy [P [In(e + |th])]*®dz — —o0 as t — +o.
o p(T) Q

It is easy to see the following two inequalities hold:

1
f —— |Vithy [P7) d < CQJ IVt [P da,
Q p(l‘) B(zo,¢,0,0)
f Cu [tha [ [In(e + [th])]*@da > f Ci [tha[P™) [In(e + [thy])]*@ da.
Q B(z0,¢,8,0)

To proceed, we shall use polar coordinates. Let r = |z — 2¢|. Since p e C1(9Q), it follows
from (ZI7) that there exist positive constants ¢; and ¢y such that

ple,w) —ca(e — 1) < p(ryw) < ple,w) — c1(e — 1), Y(r,w) € B(zo,¢,4,0).

Therefore, we have

f Vth, [P dz = f 2 N1y
B(z0,¢,8,0) B(xo,¢,6,0)

J ()= ED N gy
B(z0.6,8,0)

N

N

EN_l J tp(a,w)—cl (e—r)drdw
B(zo,e,0,0)

N

tp(E,UJ)
gN-1 f dw. (2.20)
B(wo,1,1,0) C1 Int

Since p € C1(Q2) and a(-) > p(-) on €, we conclude that, for € small enough, there exists
a €; > 0 such that

a(z) = max{p(z) + € | © € B(xg,¢,0,0)}.
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Thus, when ¢ is large enough, we have

f Ci [tha P [in(e + [thy )" da
B(mo,a,é,@)

= f Cy [t(e — )P N Ine + [t(e — 7)[)] 2 drdw
B(x0,¢,0,0)

> Qo L< I e e O
x0,€,0,
T
e I ) B e A LR (R
Zo,l,1,
B 1 t e e
> Oy ()P In(e + —)PE)ta [P drde
B(1'0717179) lnt lnt 5
|t|p(67W)—l%
= C’45NIJ (Int)t ———dw
B(z0,1,1,0) c2Int
tp(evw)
> (lnt)“C55le id dw.
B(z0,1,1,0) €2 Int

Hence, we have

|t|p(6,w)
dw as t — +o0.

J Cy [tha [P [In(e + |t hy|)]*®dx = (Int)*Cs J
B(x0,e,0,0)

B(z0,1,1,0) Int (2.21)

It follows from (2.20) and (Z2I) that G(thy;) — —oo. The proof of Lemma 2.10 is
complete. 0

We have the following simple proposition concerning the growth rate of the nonlinearity
F(,-").
Proposition 2.11. (see [15]) (i) If F satisfies

1 1 —
0< F(x,s,t) < e—st(:c, s, t) + e—tFt(a:, s,t) for x € Q and |s|” + |t|” = 2M,
1 2

then F(z,s,t) = c1[(Js|™ + [¢|) — 1],V(x,5,8) e A x R x R.

3. PROOFS OF MAIN RESULTS

With the preparations in the last section, we will in this section give our proofs of
the main results. To be rigorous, we first give the definition of a weak solution to the
problem (P).
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Definition 3.1. (i) We call (u,v) € X is a weak solution of (P) if

L VP72 Vu - Veda L()\Oz(a:) @72 4 |o]P®) 4 Fy (2, u, v))pda, Yo € WP (),

L'V”'q(x)_gv“’wx - Lw(as) " [oPO2 4 4 Fy(z,u,0))de, Voo € WO Q).

The corresponding functional of (P) is given by ¢ = ¢(u,v) defined below on X:

o (u,v) = P(u,v)— V(u,v)

1 1
= —Vu® Vvq(m)d:c—f Al [o]P@) + P2, u,v)dz, ¥ (u,v) € X.
|, 7 9P 5 190 e = [ Al ol + Pl )V (.0)

As compactness is crucial in showing the existence of weak solutions via critical point
theory. We shall introduce the type of compactness which we shall use in the current
study, i.e., the Cerami compactness condition.

Definition 3.2. We say ¢ satisfies Cerami condition in X, if any sequence {u,} < X
such that {¢(un,v,)} is bounded and |/¢'(un, vy)| (1 + ||(2n, vs)|) — 0 as n — +o0 has
a convergent subsequence.

It is well-known that the Cerami condition is weaker than the usual Palais-Samle con-
dition. Under our new growth condition for the system under investigation, we manage
to show that the corresponding functional ¢ satisfies the above Cerami type compact-
ness condition which is sufficient to yield critical points. More specifically, we have the
following lemma.

Lemma 3.3. If (H,p), (Ho) and (Hy) hold, then ¢ satisfies the Cerami condition.

Proof. Let {(u,,v,)} < X be a Cerami sequence such that ¢(u,,v,) — ¢. From Defi-
nition 8.2, we know that |¢’(un, vn)| (1 + |(un, v)|) — 0 as n — +o0. We first claim
that to show ¢ satisfies the Cerami condition, it is sufficient to show that the Ce-
rami sequence {(un,v,)} is bounded in X. Indeed, suppose {(u,,v,)} is bounded, then
{(tn,v,)} admits a weakly convergent subsequence in X. Without loss of general-
ity, we assume that (u,,v,) — (u,v) in X, then ¥ (u,,v,) — V'(u,v) in X*. Since
O (Un, V) = D' (Up,vn) — V' (Uup,v,) — 0 in X*, we have &' (up,v,) — V'(u,v) in X*.
Since @’ is a homeomorphism, we have (u,,v,) — (u,v), hence ¢ satisfies Cerami
condition. Therefore, our claim holds.

Now we show that each Cerami sequence {(un,v,)} is bounded in X. We argue by
contradiction. Suppose not, then up to a subsequence (still denoted by {(u,,v,)}), we
have

p(tn; vn) = ¢ [ (tn, va) | (1 + [[(m, vn)[) = 0, [ (un, o) || = +00. (3.1)
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Obviously, we have

1 1 1 1
—— Uy, < —upl oy, [V=——=tn| < —|Vuu| .+ Clug| .,
p(z) o) I'E p() p(z) () - p(*) p()
1 1 1 1
—, < — ol oy, |V—=va] < —|Vul .y +Cloal, -
‘ Q("E) a() q- a0) Q("E) a() B a() aC)

From the above inequalities, we easily see that H(ﬁun, ﬁvn)

< C'||(up, vy)||. There-

fore, we have (¢ (tn, vn), (5iyUns gi70n)) — 0. We may assume that

c+1 = gp(un,’l}n) - (90 (u"’vn) (]%u %)

= J < ) |Vun|p + — |an|q de — | F(z,up,,v,)dx

n))

1 1
{J @ V[P da —J —>Fu(a: Uy, U ) U AT — L Wun V[P Vu, Vpda)

1
‘{f @)
ax) | Blr)
*L“mﬁqm 1) fen|”

1 1
= Uy | Vun P72 Vi,V dx+f —
Jo e S W

1 1
{——=Fu (T, Up, V) Uy + ——Fy (T, Uy, vy )Updr — F(x, up, v,) }dz
f (IE) q(z)

al@) | B@) e, B@ g,
+Lk(p(x) T @) D fn [ onl ™

Fo(x, up, v,)vpde — J

1
. q2(x)vn |an|q(x)72 Vv, Vqdx}

|Un|ﬁ(x) dr

U |V |*™ % Vo, Vgda

Hence, there holds

J {——=Fu(, up, vy)up +

Fo(z, tp, vp)vpde — F(z, up, vy,) }dx

L
q(z)

< cl(f |un| V[P da +J 0| [V, | " da + 1)
Q Q
_’_J )\(1 . Oé(l’) . 5(55)) |un|a(:v) |vn|5(m) dx
Q p(x)  q(x)
p(z) q(z)
oIn(e + |uy|)  In(e+ [va]) Q plx)  q(x)

+C(o) f P [in(e + [ JPE + 0,2 [In(e + |0 )]1@dz + Cy, (3.2)
Q

where o > 0 is a sufficiently small constant.
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Un
et Y

= Gl Choosing 2y as a

test functlon, we have

Un a(x) a(@) |, 1B)
Fu 9 ny ¥n —"_ A n n d
JQ (%, tn, v >ln(e + |unl) In(e + |un|) tn ™ o] v

= | VOV, V——d +
Jo T Y e+ o)

p(z) p(z)
_ fLu” dx‘f( b dz + o(1).

o In(e + |un) o (€ + |ua|)[In(e + [un])]?
It is easy to check that @ +|‘5:\|)|[Y:(Z|ﬁzl\)]2 < %ILV(::}Z:)). Therefore, we have
Vu, [ Ey (@, tn, v ) o)) |8
3f [V de —C; < f (2, tn, n ) + A a(z) |un|()|vn|ﬁ()dx
o In(e + |uy,|) o In(e+ |uy,l) In(e + |uy])
\V/ " p(z)
<c%lLlL—m+@. (3.3)
o In(e + |uy,|)

Similarly, we have

a(@) I
C7J Vo, de— Cy < f o (2, Uy, vy 0y, ) B(x)
Q

o) [y, 1@ g

In(e + |vy,]) In(e + |v,]) [tn]
< C J |an|q($)
= o In(e + |v,))

o In(e + |v,))

dx + ClO- (34)

From [B3.2), 33), (B:4) and condition (H;), we obtain that

N

<

N

J‘ Fu(xaunavn)un FU($’,Un,'Un)'Un
o In(e+ |u,|) In(e + |v,])

(H,) Fu(:c un vn)un Fo(z, tp, v,)vp
< C J L + L — F(x,up,)}dx
IVunI” |V, |1 J a(@)  B@).  a@ ) 8@
C de + | M1 - —<——2)u, n dx + C
o J In(e + |uy]) ln(e + |vn|) . Q ( p(z)  q(x) ) [un] [vn . 8

) || TP e+ P 1 e+ 1
Q

|vun |p($) |V'Un |q(m) J‘ OZ(ZL‘) ﬁ(ZL‘) a(x) B(z)
d Ml - —— — —2 d
Cro fg In(e + |uy,]|) * In(e + |v,]) z+Cr 0 ( p(z q(z ) [t |y | x

+C7C(0) f |t P [Ine + un )PP + 0,7 [In(e + |v,])]9) " da + Cy
Q

1 f Fu($’, Up, vn)un FU(fE, Up, vn)vn
o ln(e + |uy,]) In(e + |vy,])

. o) ) e b
o+ G 0= 55 = G ol
)

LO0 f P Tin(e + [N TP@ L + [0,]2) [Infe + [v,)]7®2dz + Cro.

2
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In view of the assumptions (H,g), (H;) and the above inequality, we conclude that

f [ ") (e + [ )]+ 0, |7 [In(e + v, ])]" da
Q

Unp,
In(e + |uy])

U,

—d
In(e + |vy,]) v

< Cllf Fu(l‘aunavn) + FU(ZL',Un,Un)
Q

< O f |un|P [In(e + [un)]P@ 71 + 0, [In(e + |vn])]7®) " dz + Cho.
Q

Noticing that a(-) > p(-) and b(-) > ¢(-) on €2, we can conclude that

{J |U/n|p(x) [hl(e + |un|)]a($)_1 + |vn|(I(:’3) [ln(e 4 |Un|)]b(x)_1d$}
Q

is bounded, which further yields that

Unp

v
Fu 7n7n7+Fv ananind
” (&t 0 e Ty T e ) e o }

and

[ Mata) + B ol P

are bounded. Now, it is easy to see that {SQ ‘F“lgfz’elf'ﬁ"‘))”"‘ - ‘F”ligz’e”ﬁf"'))”"‘ daz} is bounded.

) —1,(£)” — 1}. Since

2%

Let ¢ > 0 satisfy ¢ < min{l,p™ — 1,¢~ — 1,1)*%,(1*%,(
" (tn; vn)|| |t 0n) || = O, we have

f Va4 [V, |1 d
Q

- J Fo(, wp, vp)un, + Fy(x, up, v,)vpda + f Ma(z) + 8(2)) [un]*™ 0, |"® dz + o(1)
0 Q
1—¢

dx

Unp,

F R
u(x’un’vn)ln(e + |un])

_ f IFo (2, tn, vt [1n(e + Jun )]~
Q

l—¢

dx +C

U,
In(e + |v,|)

1—e
In(e + |uy,])

+ J | By (0, U, v )0 | [In(e + [0,)]F 8 | Fy (2, sy v
0

Co(1+ |u ’)HEJ [HFu(:E,un,vn)unHue + O

£

N

1+e

(1 + [ Cun, 0n) )=

6 Fy(x, U, vp)v, |15 + C
FCo(L+ o)™ L[” (&, tn, VnJunl] ™ + Cho

(1 + [[(uny va) )=
< 011(]' + H(una vn)H)H_s + 012.

) [|Fv<:c,un,vn>vn|

1—e
d
In(e + |vy,]) } £+C

The above inequality contradicts with (3.1]). Therefore, we can conclude that {(u,,v,)}
is bounded, and the proof of Lemma 3.3 is complete. U
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Now we are in a position to give a proof of Theorem 1.1.

Denote F**(z,u,v) = F(z,5(u),S(v)), where S(t) = max{0,t}. For any (u,v) € X,
we say (u,v) belong to the first, the second, the third or the fourth quadrant of X, if
u=0andv>0,u<0andv >0, u<0and v <0, u>0and v <0, respectively.

Proof of Theorem 1.1.

It is easy to check that F™*(z,s,t) e C*(Q x R% R), and
F (i, u,v) = Fula, S(u), S(0)), Fi (i, u,v) = Ful, S(u), S(v)).

Let’s consider the following auxiliary problem

—div(|VulP™ 72 V) = Aa(z) |S(w)|[* @72 S (u) [S@) [P + FH(z,u,v) in Q,
(PT%) S —div(|Vo"™ 72 Vo) = AB(z) |S ()™ |S(0)|*™ 72 S(v) + F+(z,u,v) in Q,
u=0=wv on 0.

The corresponding functional of problem (P*7) is
90++(ua U) = (I)(ua ’U) - \Ij++(u7 'U)a V(u, ’U) € X,

where

mH@myikﬂamﬂﬂw@W@+F@ﬁm%ammﬁw%wex

Let o > 0 be small enough such that o < $ min{A,), \g(y}. Such a o exits, as A,y > 0

and Ay) > 0 due to Proposition 2.6. By the assumptions (Hy) and (H>), we have
1

M@wM%+cwmﬁmtww@%wLweQxR

1
F(z,u,v) < o(— [ul’™™ +

p(x)
As noticed above, A, Agy > 0 and we have also by the choice of o that

1 1 3 1
J — |Vu|p(x) dx — OJ‘ — |u|p($) der > —J — |Vu|p(x) ,
Q Q Q

p(x) p(x) 4 Jo p(z)
1 1 3 1
—Vvqmdx—of—vqmdx > —J—Vvq(x).
Jozi v el g IV

Next, we shall use spatial decomposition technique. We divide the underlying domain

(2 into disjoint subsets €2y, - .-, 2, such that
minp*(z) > maxy(z) > miny(z) > maxp(x),j =1, no,
$€Qj $€Qj :L‘EQj :L‘EQj
ming*(z) > maxd(z) > mind(x) > maxq(z),j = 1,--- ,no.

:L'EQJ' :L'EQJ' :L'EQJ' :BEQJ'
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In the following, we denote

f; =minf(e), f =maxf(z), j =1, ,no, ¥f € C(Q),

xeQ); zeQ);
and

1 1
Dq (u,v) = — Vup(m)d:c—i—f — |Vo|" dx, ¥(u,v) € X.
ww) = | oIV oy () V)

J J

Denote

e = min {infy(z) — supp(z), igrzlfé(:c) — supq(z)}.

1<i<ng €

Denote also ||uf, o, the norm of u on €, ie.

It is easy to see that [ul,.) o < C |uf,, and there exist &, n; € ; such that

|u|“/(£z _ J |u|7(m)dx,
Q;

| 1 i
W, = | = VuPda

When |ul,, is small enough, we have

no
o) J " dz = C(O’)ZJ |u|") dx
Q i=1Y%%

no
- C(O’)Z |u|3§§)1)92 (where &; € €)))

p(x)
u der = 1.

lul,

\Y

0

< 012 HUHZ((%Z)QZ (by Proposition 2.5)
i—1
no ( o

< Gy HUH; 2 Hqu ) _ (where n; € Q;)
~ Calully, j T o
— G ully, L o |vu|p<r> da

1 1
< —J —— |Vul"™ da

4 Jo p(x)
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Similarly, when [v],, is small enough, we have

1 1
U)J w[°® dz < = J — |Vo|'™ dg
Q 4 Jo q()

Thus, when |(u,v)|| is small enough, we have

1 1 1
D (u,v) — L F(z,u,v)dx > 5 L (@) IVul™ da + B L @ V|7 dz. (3.5)

When A is small enough, for any (u,v) € X with small enough norm, we have
e (u,v) = P(u, v) — Ut (u,v)

1 1 1
> —f IVulP™ da + —f —|w|q d:c—f Al Jo]P@) dg,
2 QP( ) 2 Jo q()
1 1 1 1
> —J —— | Vulf" dx + —J —|Vv|q dr.
4 Jo p(z) 4 Jo q(z)

Therefore, when A is small enough, there exist » > 0 and € > 0 such that p(u,v) =€ >0
for every (u,v) € X and ||(u,v)| = r.

Let €y < §2 be an open ball with radius . Notice that (H, s) holds. Let ¢ > 0 be small
enough such that

Py, | = min{p(x) | Qo} > o%o = max{a(z) | Qo},
b ¢ = ming(@) | o} > 62 = max{8(z) | T}
and
+ +
?“ + @ < 1.
pﬁo q§0

Now we pick two functions ug, vy € C2(€) that are positive in Q. From (H, ), it is

easy to see that
1 1

<p++(tp50 o, +%%% o)

1 1 1 1

= D(t"0 g, t " vg) — U (7% g, £ "% vg)
1 1 1 1

< q)(tpgo U, £ %% vo) + ZJ |tp50 u0|1’($) + |tq60 v0|q(x)dl,
Q

1 1
_AJ 750 110 ) - [0 1y 7
Q

b

0

< tP(ug, vo) + QtJ |uo|P@ + |vp|9@ da — Xt I f |uo|“@ |vo|P@dx < 0 as t — 0F.
Q

Thus, ¢**(u,v) has at least one nontrivial critical point (u},v}) with p**(uf,v¥) < 0.
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From assumption (Hj), it is easy to see that (uj,v;) lies in the first quadrant of X. It
is easy to see that S(—uf) € Wol’p(')(Q). Choosing S(—uj) as a test function, we have

.
I IV PO Tt S (—ut)d

= J;[Aa@) 1S(w) "2 S (wh) [S(f)|P®) + Fy(w, S(ut), S(0i))]S(—ub)dz

— | Fu(x, S@), S()S(—up)da "L 0.
JOQ

Thus, uj > 0. Similarly, we have vj > 0. Therefore, (u},vf) is a nontrivial solution
with constant sign of (P) and such that ¢(uf,v]) < 0. By the former discussion and
(B.H), we can see that u} and v{ are both nontrivial. Similarly, we can see that (P) has a
nontrivial (u}, v}) with constant sign in the i-th quadrant of X, such that p(u},v}) < 0,

i = 2,3,4. Thus (P) has at least four nontrivial solutions with constant sign. By now,
we finished the proof of Theorem 1.1.

Proof of Theorem 1.2.

According to the proof of Theorem 1.1, when A is small enough, there exist » > 0 and
e > 0 such that p**(u,v) = e > 0 for every (u,v) € X and ||(u,v)| = r.

From (H,), for any (z,u,v) € Q x R x R, we have

F(z,u,v) = C4 |u|P(ac) [In(1 + |u|>]a(:v) +C, |U|q(x) [In(1 + |U|>]b(;c) — e

We may assume that there exists two different points xq, x5 € Q such that Vp(x;) #
0, Vq(zq) # 0.

Now we define hy € Co(B(x1,¢)) hy € Co(B(x2,¢)) as follows:

B 0, |z — x| =€
hl(x)_{e—|x—x1|, o — x| <€’

_ 0, |zt — a9 =€
hQ(x)_{e—|x—x2|, |z —ao| <e

From Lemma 2.10, we may let € > 0 be small enough such that ¢ < % |zy — 21| and

1
f —— |Vithy [P®) — f Cy [tha[P® [In(1 + [thy|)]*®de — —o0 as t — +0
o p() Q

1

J —— |Vithy|'™ —J Cy [tho|™™ [In(1 + [the))]"®dz — —o0 ast — +o0.
o q(z) Q

which imply that @t (thy,thy) — —oo (as t — +0). Since ™1 (0,0) = 0, p*t*

satisfies the conditions of the Mountain Pass Lemma. From Lemma 3.3, we know that

o1 satisfies Cerami condition. Therefore, we conclude that ¢** admits at least one
nontrivial critical point (u1,v;) with ¢ *(uy,v1) > 0. From assumption (H3) , we can
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easily see that (uj,v;) lies in the first quadrant of X. Thus, (u1,v;) is a nontrivial
solution with constant sign to the problem (P) in the first quadrant of X satisfying

o(uy,vy) > 0.

Similarly, we can see that (P) has a nontrivial solution (us, vy) in the third quadrant in
X, which satisfy p(ug, v9) > 0, and ( uy,vy), (ug,vs) are all nontrivial. From Theorem
1.1, (P) has nontrivial solutions with constant sign (u},v}) in the i-th quadrant of

X (i = 1,2,3,4), which satisfies p(uf,vf) < 0. Thus, (P) has at least six nontrivial

177

solutions with constant sign. By far, we have finished the proof of Theorem 1.2.

Now we proceed to prove Theorem 1.3. For this purpose, we need to do some prepara-
tions. Noticing that X is a reflexive and separable Banach space (see [38], Section 17,
Theorem 2-3), then there are {e;} < X and {e;‘} < X* such that

X =spanfe;, j = 1,2, }, X* =span" {e}, j=1,2,- -},

and
* . — ) )
<66 = { 0,i # j.

k 0
For convenience, we write X; = span{e;}, Y, = j(—_DlXj, 7y = j(—_Dka.

Lemma 3.4. Ifv,6 € C; (Q), v(z) < p*(z) and §(x) < ¢*(x) for any x € Q, denote

B = sup {Jul ) + [ulyg, [l (w,0)] = 1, (u,v) € Z }

then lim (3, = 0.
k—o0

Proof. Obviously, 0 < i1 < B, so B — B = 0. Let uy € Z; satisty
1
[, v)| = 1,0 < B =l = lowlsey < 7
Then there exists a subsequence of {(ug,v;)} (which we still denote by (ug,vy)) such
that (ug,vx) — (u,v), and
< €;~<, (U,U) >= kh—I};)lo <€;‘<7 (ukuvk>> = 07 ve;‘:

which implies that (u,v) = (0,0), and so (ug,vr) — (0,0). Since the imbedding from
Wol’p(') (Q) to L") (Q) is compact, then uy — 0 in L) (). Similarly, we have v, — 0
in L°C) (€2). Hence we get 3, — 0 as k — c0. Proof of Lemma 3.4 is complete. O

In odder to prove Theorem 1.3, we need the following lemma (see in particular, [40),
Theorem 4.7]). For a version of this lemma with the Palais-Samle condition, the (P.S.)-
condition, see [4, P 221, Theorem 3.6].

Lemma 3.5. Suppose ¢ € CY(X,R) is even, and satisfies the Cerami condition. Let
V*, V- < X be closed subspaces of X with codimVt + 1 =dim V—, and suppose there
holds
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(1°) ©(0,0) = 0.
(2°) 31 > 0, v > 0 such that ¥(u,v) € V" : ||(u,v)| = v = ¢(u,v) > 7.
(3°) 3p > 0 such that ¥(u,v) € V= : |(u,v)]| = p = ¢(u,v) < 0.

Consider the following set:
[ = {ge C°X, X) | g is odd, g(u,v) = (u,) if (u,v) € V= and |(u,v)] > p},
then

(a)¥6>0,gel, S ng(V")#@, here S§ = {(u,v) e VT | [(u,v)| = d};

(b) the number w := inlf sup ©(g9(u,v)) =7 >0 is a critical value for ¢.
&L (uw)eV -

Proof of Theorem 1.3.

According to (H, ), (Hp), (Hy) and (H,), we know that ¢ is an even functional and
satisfies the Cerami condition. Let V7 = Zj, it is a closed linear subspace of X and

V@Y = X.

We may assume that there exists different points z,,y, € Q such that Vp(z,) #
0,Vq(y,) # 0. We then define h,, € Co(B(zy,c,)) and h* € Co(B(yn, €,)) as follows:

_ 0, |z —x,] = e,
h"(x)_{en—|x—xn|, |z — 2, <en
. — 07 |x_yn|>€n
h"(x)_{en—w—ynl, 2 —yn| <en

Without loss of generality, we may assume that
supph; N supph} = @ for 1 =1,2,---

and
supp h; 0 supphj = @, supp hi N supph} = &, Vi # j.

From Lemma 2.9, we may let ¢, > 0 be small enough such that
1
f —— |Vt [P —f C1 [tha|P™ [In(1 + [t he)]*@dz — —o0 as t — +oo,
o () Q

1
f —— |Vt b —f Cy R " [In(1 + [t h)]"@dz — —o0 as t — +o0,
o q(z) Q

which imply that ¢(t h,,th¥) - —oo (as t — +0o0).

Set V.o = span{(hi,h}), -, (hg, hi)}. We will prove that there are infinitely many
pairs of V,* and V, ", such that ¢ satisfies the conditions of Lemma 3.5 and that the
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corresponding critical value wy, := inlﬁ sup ¢(g9(u,v)) — +oo when k — 400, which
g€ -
(u,w)eV,
implies that there are infinitely many pairs of solutions to the problem (P).

For any £ = 1,2, ---, we shall show that there exist pr > v, > 0 and large enough &
such that

(A) by @ = inf{@(u,v) | (u,v) € Vi |[(u,v)| = ’yk} — +0 (k> +w);
(A2) ar : =max{p(u,v) | (u,v) € V;", |(u,0)]| = pe} <0

First, we prove that (A;) holds. By direct computations, we have, for any (u,v) € Zy
with |[(u, v)| = v, = (2p*qTC GV (wintp™a I —max{(y"0"h e have

v>=SQa%quW“dx+Sgﬂx|VvP
— o M | 0D de — § F(2,u,0)de

> LG [Vul' de + L §, |Vo|" da
~C§, [ dz — C§, P dx — C,

C |v|5(’7 C; (where &, 1€ Q)

> p%r Hqu( - C |u|7(£ q* HUHq()

_ + + - B ot
> 3 lulfy — A" Tuly, + 3 ol ~ CAE ol = C:
> st I ) [ — O (o) [P — G

S— (2p+q+05k)min{p’,q’}/(min{piq’}—maX{v*45*})_02.

2ptqt

Therefore p(u,v) > 5 +q+fy,r€mn{p T _ Oy, Y(u,v) € Z with |[(u,v)| = 4, then by —
w0, (k — o). So we have shown that (A;) holds.

Next we show that (As) holds. From the definition of (h,, hY), it is easy to see that
o(th,th*) — —o0 as t — +0o0,

for any (h,h*) € V. = span{(hy,hY),- -, (hg, hy)} with || (h, h*) ||= 1. Therefore, (A2)
also holds.

Now, applying Lemma B.5, we finish the proof of Theorem 1.3.
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