University of Massachusetts Boston ScholarWorks at UMass Boston

Urban Harbors Institute Publications

Urban Harbors Institute

10-1-2004

Improving Links Between Science and Coastal Management: Results of a Survey to Assess U.S. State Coastal Management Science and Technology Needs

Jeff Benoit University of Massachusetts Boston

Chantal Lefebvre University of Massachusetts Boston

Dan Hellin University of Massachusetts Boston

Regan Maund University of Massachusetts Boston

Follow this and additional works at: http://scholarworks.umb.edu/uhi_pubs

Part of the <u>Land Use Planning Commons</u>, <u>Natural Resources and Conservation Commons</u>, and the Water Resource Management Commons

Recommended Citation

Benoit, Jeff; Lefebvre, Chantal; Hellin, Dan; and Maund, Regan, "Improving Links Between Science and Coastal Management: Results of a Survey to Assess U.S. State Coastal Management Science and Technology Needs" (2004). *Urban Harbors Institute Publications*. Paper 20.

http://scholarworks.umb.edu/uhi_pubs/20

This Research Report is brought to you for free and open access by the Urban Harbors Institute at ScholarWorks at UMass Boston. It has been accepted for inclusion in Urban Harbors Institute Publications by an authorized administrator of ScholarWorks at UMass Boston. For more information, please contact library.uasc@umb.edu.

IMPROVING LINKS BETWEEN SCIENCE AND COASTAL MANAGEMENT

Results of a Survey To Assess U.S. State Coastal Management Science and Technology Needs

October 2004
COASTAL STATES ORGANIZATION

In cooperation with

Urban Harbors Institute, University of Massachusetts Boston University of New Hampshire Survey Center

Funding provided by

Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET)

Prepared for the Coastal States Organization

Report and Survey Prepared By
Jeff Benoit
Chantal Lefebvre
Dan Hellin
Regan Maund
Urban Harbors Institute
University of Massachusetts Boston

Survey Conducted By
Annette Arno
Andrew Smith, PhD
University of New Hampshire
Survey Center

October 2004

Additional copies of this report and the accompanying appendices are available online at http://www.uhi.umb.edu/publications.htm

Special thanks to the Coastal States Organization and the CSO Science Work Group who provided valuable resources and quidance in the preparation of this report:

Tony MacDonald, Coastal States Organization Jena Carter, Coastal States Organization Debra Hernandez — CHAIR, South Carolina Coastal and Ocean Resource Management David Keeley – SWG CO-CHAIR, Maine State Planning Office Brian Baird – SWG CO-CHAIR, Resources Agency of California Tom Calnan, Texas General Land Office Jeanne Christie, Association of State Wetland Managers Susan Snow-Cotter, Massachusetts Coastal Zone Management Linda Eichmiller, Association of State and Interstate Water Pollution Control Agency Holly Greening, Tampa Bay Estuary Program Phillip Hinesley, Alabama Dept of Conservation and Natural Resources Terry Howey, Louisiana Dept. of Natural Resources Paul Klarin, Oregon Dept. Land Conservation and Development Keelin Kuipers, National Oceanic and Atmospheric Administration Richard Langan, Cooperative Institute for Coastal and Estuarine Environmental Technology Shamus Malone, Pennsylvania Office for River Basin Co-op Mark Mauriello, Association of State Floodplain Managers Chuck Nieder, National Estuarine Research Reserve Association Richard Ribb, Association of National Estuary Programs Dwight Trueblood, Cooperative Institute for Coastal and Estuarine Environmental Technology Geoff White, Atlantic States Marine Fisheries Commission

TABLE OF CONTENTS

1	EXE	CUTIVE SUMMARY	1
	Key F	ndings	1
2	INT	RODUCTION	4
	2-1	Background	4
	2-2	Survey Methodology	5
	2-3	Results Reporting	6
3	NAT	IONAL SURVEY RESULTS	8
	3-1	Introduction	8
	3-2	National Priorities	9
4	SUF	RVEY RESULTS BY REGIONS	10
	4-1	Introduction	10
	4-2	Great Lakes Region Priorities	11
	4-3	Northeast Region Priorities	12
	4-4	Mid-Atlantic Region Priorities	13
	4-5	Southeast Region Priorities	14
	4-6	Gulf Region Priorities	15
	4-7	Pacific Region Priorities	16
	4-8	Islands Region Priorities	17
	4-9	Comparison of Top-ranked Habitat Change Responses Across Regions	18
	4-10	Comparison of Top-ranked Land Use Responses Across Regions	19
	4-11	Comparison of Top-ranked Nutrient Enrichment Responses Across Regions	. 20
	4-12	Comparison of Top-ranked Environmental Contamination Responses Across Region 21	ns
	4-13	Comparison of Top-ranked Nonindigenous Species Responses Across Regions	. 23
	4-14	Comparison of Top-ranked Coastal Hazards Reponses Across Regions	. 24
	4-15	Comparison of Top-ranked Sediment Management Responses Across Regions	25
	4-16	Comparison of Top-ranked Ocean Management Responses Across Regions	. 27
	4-17	Comparison of Top-ranked Marine Debris Responses Across Regions	
5	SUF	RVEY RESULTS BY PROGRAMS	30
	5-1	Introduction	
	5-2	Coastal Zone Management Program Priorities	31
	5-3	National Estuarine Research Reserve Priorities	32
	5-4	National Estuary Program Priorities	33
	5-5	Association of State Floodplain Managers Priorities	
	5-6	Association of State Wetland Managers Priorities	
	5-7	Association of State and Interstate Water Pollution Control Administrators	
	5-8	Atlantic States Marine Fisheries Commission Priorities	
	5-9	Others Priorities	
	5-10	Comparison of Top-ranked Habitat Change Issues Across Programs	
	5-11	Comparison of Top-ranked Land Use Responses Across Programs	
	5-12	Comparison of Top-ranked Nutrient Enrichment Responses Across Programs	. 41

	5-13 Prograi	Comparison of Top-ranked Environmental Contamination Responses Across ns	42
	5-14	Comparison of Top-ranked Nonindigenous Species Responses Across Programs	
	5-15	Comparison of Top-ranked Coastal Hazards Responses Across Programs	
	5-16	Comparison of Top-ranked Sediment Management Responses Across Programs	
	5-17	Comparison of Top-ranked Ocean Management Responses Across Programs	
	5-18	Comparison of Top-ranked Marine Debris Responses Across Programs	
6		VEY RESULTS BY STATE	
	6-1	Introduction	51
	6-2	Indiana's Priorities	
	6-3	Michigan's Priorities	
	6-4	Minnesota's Priorities	
	6-5	Ohio's Priorities	
	6-6	Pennsylvania's Priorities	
	6-7	Wisconsin's Priorities	
	6-8	Connecticut's Priorities	61
	6-9	Massachusetts' Priorities	62
	6-10	Maine's Priorities	63
	6-11	New Hampshire's Priorities	64
	6-12	New York's Priorities	65
	6-13	Rhode Island's Priorities	66
	6-14	Delaware's Priorities	68
	6-15	Maryland's Priorities	69
	6-16	New Jersey's Priorities	71
	6-17	Virginia's Priorities	73
	6-18	Florida's Priorities	74
	6-19	Georgia's Priorities	75
	6-20	North Carolina's Priorities	77
	6-21	South Carolina's Priorities	79
	6-22	Alabama's Priorities	80
	6-23	Louisiana's Priorities	82
	6-24	Mississippi's Priorities	84
	6-25	Texas' Priorities	86
	6-26	Alaska's Priorities	88
	6-27	California's Priorities	90
	6-28	Oregon's Priorities	91
	6-29	Washington's Priorities	93
	6-30	American Samoa's Priorities	95
	6-31	Commonwealth of the Northern Marianas Islands' Priorities	97
	6-32	Guam's Priorities	99
	6-33	Hawaii's Priorities	101
	6-34	Puerto Rico's Priorities	103

APPENDICES are provided under separate cover.

1 EXECUTIVE SUMMARY

In Winter 2003/2004 the Coastal States Organization (CSO) sponsored a national survey of state coastal resource managers to better understand their science and technology needs. The webbased survey was sponsored by CSO with funding provided by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) at the University of New Hampshire. This survey builds upon a previous survey conducted by CSO in 1999. CSO contracted with the Urban Harbors Institute (UHI) at UMass-Boston to prepare the survey questions and final report. The University of New Hampshire Survey Center was contracted to conduct the survey and analyze the results.

Two hundred thirty (230) respondents completed the survey from 33 states, territories and Commonwealths. Organizations participating in this survey included the Coastal States Organization (CSO), National Estuarine Research Reserve Association (NERRA), Association of National Estuary Programs (ANEP), Association of State Floodplain Managers (ASFPM), Association of State Wetland Managers (ASWM), Association of State and Interstate Water Pollution Control Administrators (ASIWPCA), and the Atlantic States Fishery Management Commission (ASFMC).

While some analysis of the data and recommendations how on the report should be used are provided, this report is not intended to offer specific interpretations of the results. Rather it is intended to raise awareness on those topics, research, information, and technology needs that are important to coastal resource managers for the purpose of initiating further dialogue on what exactly this data means and how it can best be applied to improve our future efforts.

Key Findings

Finding 1

The two top-ranked management topics identified to be very important or important at the national-level are *land use* (97%) and *habitat change* (94%).

Finding 2

There are common national-level research, information and technology needs that can be identified when viewed across the management topics. For research, several of the top-ranked needs fall into two categories of *cumulative effects* and *source identification/tracking*. *Trends/change analysis* is a common category of top-ranked information needs, and *remote sensing* and *improved models* are two common categories for technology needs.

Finding 3

At the national-level, *cumulative effects* (research needs), *trends/change analysis* (information needs), and *remote sensing* (technology needs) are all associated with the top-ranked categories of land use and habitat change. This is an important connection because it indicates that by addressing these top-ranked needs, it will speak to both the most important management topics that coastal managers are facing, as well as have the broadest application of needs across the management topics.

Finding 4

At the regional-level, *land use* and *habitat change* generally are identified as very important or import management issues. Greater variations in the top-ranked management issues occur at the program and state-levels, likely a reflection of the differences in program goals and state specific circumstances.

Next Steps

Conducting the national survey of state coastal resource managers and presenting the results in this report represents only the first of several important steps that need to be taken to make this effort meaningful and successful. There is a wealth of data that has been generated through the survey (see Appendices) that can be further analyzed in many ways. The presentation of the results in this report only represents a first order synthesis of the data and should be considered a beginning, not an end, of effectively using the survey results. The following recommendations are critical steps that need to be taken in order to make sure the survey data and report are used to effect a positive change in better defining coastal resource managers science and technology needs, and concurrently, how those needs are being addressed by the science community.

Recommendation 1

The Coastal States Organization should assume the responsibility of promoting the availability of this report. At a minimum, this should include making sure copies are provided to each representative of their organization, to each of the participating organizations, representatives of the key Federal coastal science agencies including, NOAA, EPA, USGS, USDA and NSF, each coastal member of Congress, and the staff members of relevant Congressional committees. Other opportunities include posting a PowerPoint presentation to the CSO website for others to use, encouraging associations to highlight the results in their publications and newsletters, working with regional science organizations to secure the support of the research community, and requesting survey partners to make presentations to their boards and membership. Twelve months from the date of this report CSO, should assess the collective progress in distributing the survey and recommit to making people aware of the results.

Recommendation 2

The Coastal States Organization, in partnership with the states and pertinent Federal agencies, should convene regional focus group sessions to further refine the science and technology needs of selected priorities. These intense sessions would bring together coastal managers and scientists to enhance their shared understanding of the priority, to explore what science currently exists that addresses the priority, and to identify a course of scientific inquiry responsive to managers needs.

Recommendation 3

The key Federal coastal science agencies such as NOAA, EPA, USGS, USDA and NSF should assess the alignment of their strategic and annual operating plans and research priorities to address the science needs of the coastal management community, as identified through the results of this survey report. CSO should commence this work by identifying the science funding programs most consistent with the priorities, including state research programs.

Recommendation 4

The Coastal States Organization should work with its survey partners to educate members of Congress as to the science and technology needs of state coastal resource managers. Examples of how this might be accomplished include a 1-2 page national and/or regional priorities statement suitable for a Hill staff briefing, Ocean Week presentations, and meetings with key members of Congress. A 1-year strategy to accomplish this should be jointly prepared by the survey partners.

2 INTRODUCTION

2-1 Background

Since 1970, the Coastal States Organization (CSO) has represented the Governors of U.S. coastal states and territories as an advocate for improved management of the nation's coasts, oceans and Great Lakes. The purpose of the organization is to shape and advance a national agenda that enhances the sound management of coastal and ocean resources and furthers the vision for the coasts shared by its 35 member states and territories.

One of the core principles long held by CSO is that decisions made by coastal and ocean resource managers are supported by the best science available. To this end, CSO strives to enhance the links between science and management through sustained discourse and improved information exchange between scientists and managers. In Winter 2003/2004 CSO sponsored a national survey of state coastal resource managers to better understand their science and technology needs. The results of this survey form the basis for this report. The web-based survey was funded by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) at the University of New Hampshire, and builds upon a previous survey conducted by CSO in 1999. CSO contracted with the Urban Harbors Institute (UHI) at UMass-Boston to prepare the survey questions and final report. The University of New Hampshire Survey Center was contracted to conduct the survey and analyze the results. The results of this survey will be used by CICEET and other science sponsors to strategically plan future funding programs and to select projects. In addition, the information obtained from this survey benefits all members of the coastal management community (see Table 2-1).

Table 2-1. Survey Goals

- ✓ Provide a current understanding of coastal management needs so that federal agency technical assistance efforts can be targeted more effectively.
- ✓ Enhance researchers ability to share, learn, and leverage resources across multiple coastal and estuarine management programs.
- ✓ Assist Congress in understanding the issues and in shaping policy responses including program funding and reauthorization.

Organizations participating in this survey included the Coastal States Organization (CSO), National Estuarine Research Reserve Association (NERRA), Association of National Estuary Programs (ANEP), Association of State Floodplain Managers (ASFPM), Association of State Wetland Managers (ASWM), Association of State and Interstate Water Pollution Control Administrators (ASIWPCA), and the Atlantic States Fishery Management Commission (ASFMC).

While some analysis of the data and recommendations how on the report should be used are provided, this report is not intended to offer specific interpretations of the results. Rather it is intended to raise awareness on those topics, research, information, and technology needs that are important to coastal resource managers for the purpose of initiating further dialogue on what exactly this data means and how it can best be applied to improve our future efforts.

2-2 Survey Methodology

The survey was conducted as a web-based survey. The survey questions were prepared by the Urban Harbors Institute through an iterative process with the CSO Science Work Group (SWG). A draft survey framework was presented to SWG at their October 2003 meeting in New Hampshire and several drafts of the questions were subsequently provided to SWG for comment. The survey was posted on the web from December 22, 2003 to February 15, 2004.

The survey consisted of nine primary categories representing broad management topics that are most common among coastal and estuarine management programs (Table 2-2).

Table 2-2. Survey Question Categories

- 1. Habitat Change (including degradation, loss and restoration);
- 2. Land Use:
- 3. Nutrient Enrichment;
- 4. Environmental Contamination;
- 5. Nonindigenous Species;
- 6. Coastal Hazards:
- 7. Sediment Management;
- 8. Ocean Management; and
- 9. Marine Debris.

Respondents were first asked to rank how important each broad management topic would be to their program over the next five years. Importance was considered on a five-point scale (Table 2-3).

Table 2-3. Scale of Importance of Issues

- 1. Very important
- 2. Important
- 3. Not very important
- 4. Not important at all
- 5. Not relevant

If the topic was ranked either *Very Important* or *Important*, respondents were asked a series of follow-up questions. The first follow-up questions asked respondents to identify no more than three important issues from a list. The next four follow-up questions asked respondents to select priority *research needs, information needs, observation and monitoring needs, and technology needs* related to the broad management topic.

Survey respondents included the coastal members or delegates from each of the seven program associations, as well as certain staff members deemed most appropriate. The names and e-mail addresses of the potential participants were collected by CSO and provided to UNH and UHI. Information about the survey, and a link to the web site, were e-mailed to all of the program association staff. Follow-up reminders were made to potential respondents to encourage broad participation in the survey.

2-3 Results Reporting

The remaining sections of this report present survey responses cross-tabulated by national, regional, state, and program association. Two hundred thirty (230) respondents completed the survey from 33 states, territories, and Commonwealths. *Unless otherwise indicated, all responses are shown as a percentage of respondents. In some cases multiple responses were possible and percentages may sum to more than 100%.*

Data for this report were compiled by the University of New Hampshire Survey Center using the Statistical Package for the Social Sciences (SPSS). The number of respondents from each state completing the survey varied, ranging from a high of 29 respondents per state to a low of 1 respondent per state. It should be noted that some state programs or agencies opted to distribute the survey to several individuals, and then consolidate answers into a single response. To reduce the impact that any one state would have on the analysis, the data were weighted (or normalized) by state, so each state had equal influence. This was accomplished by representing each state respondent as a fraction of the total respondents from that state. For example, if state X has 8 respondents, each respondent counted as 1/8 of a response.

Respondents were asked to identify their current program position or responsibility. As shown by Table 2-4, the two top-ranked responses were from Program Managers (76) and Technical Staff (66).

Table 2-4. Number of Responses by Program Position or Responsibility

Program Manager	77
Technical Staff	66
Management Staff	47
Policy Staff	15
Other	25

Survey respondents were asked to identify the program or organization they were representing. Table 2-5 shows the distribution of responses. Because respondents could associate with more than one program or organization, the total in Table 2-5 is not representative of the total respondents.

Table 2-5. Respondents Identified by Program or Association

Coastal States Organization	106
(State Coastal Management Programs)	
National Estuarine Research	49
Reserve Association	
Association of National Estuary	32
Programs	
Association of State Floodplain	11
Managers	
Association of State Wetland	10
_ Managers	
Association of State and	
Interstate Water Pollution	15
Control Administrators	
Atlantic States Marine Fisheries	10
Commission	
Other	15

3 NATIONAL SURVEY RESULTS

3-1 Introduction

This section discusses the highlights of the results of the survey from a *national perspective*, reporting responses from all 230 respondents. A complete set of responses cross-tabulated for the *national perspective* is included in the appendices of this report. Using the top-ranked responses of the *national perspective* provides an indication of the relative level of importance of a management issue and/or the science and technology needs they may share. This information can then be used to strategically project future coastal management needs and how products and services can be delivered most effectively.

Survey respondents were asked to indicate the importance of nine separate coastal resource management topics over the next five years (see Figure 3-1). Table 3-1 shows the percentage of all respondents who found the issues of habitat change, land use, nutrient enrichment, environmental contamination, nonindigenous species, coastal hazards, sediment management, ocean management, and marine debris either *very important* or *important* to their programs over the next five years. Table 3-1 also identifies the top-ranked research, information, and technology needs for each.

The discussions following Table 3-1 highlight views expressed by the respondents based on the top-ranked responses. With regards to the responses from the surveys related to continuous observation and monitoring variables, respondents were not asked to select from the list those variables they considered most important, but rather to select all variables that they considered necessary to address a particular issue. Because there was no prioritization of these variables, they are not discussed in the body of this report, and instead can be found in the tables in the appendices.

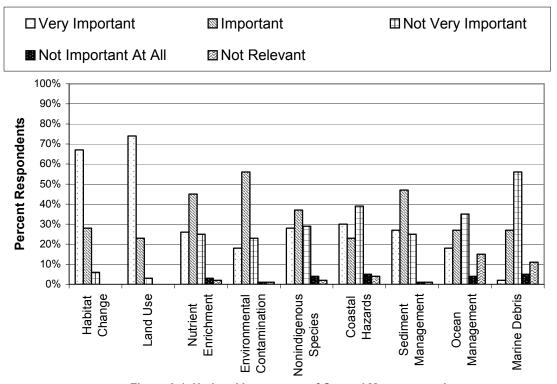


Figure 3-1. National Importance of Coastal Management Issues.

3-2 National Priorities

The two top-ranked management topics (Table 3-1) that all respondents considered to be important or very important were closely related, *land use* (97%) and *habitat change* (95%). These two management topics ranked well above the next pair of topics, *environmental contamination* (74%) and *sediment management* (74%). The fact that *land use* and *habitat change* are ranked so high reflects the day-to-day level of effort state coastal resource mangers must invest to address continuing development pressures in coastal areas. It is also interesting to note that the top-ranked research needs for the land use and habitat change topics both involve cumulative effects/impacts. This is an import fact for the science community to pay attention to and try to work together more to better understand the interplay of multiple stressors.

Although each of the management topics have associated with them unique top-ranked needs for research, information and technology, when viewed across the management topics there are some common needs that can be identified. For research, several of the top-ranked needs fall into two categories of *cumulative effects* and *source identification/tracking*. *Trends/change analysis* is a common category of top-ranked information needs, and *remote sensing* and *improved models* are two common categories for technology needs.

It is also noted that *cumulative effects* (research), *trends/change analysis* (information), and *remote sensing* (technology) needs are all associated with the top-ranked categories of *land use* and *habitat change*. This is an important connection because it indicates that by addressing these top-ranked needs, it will speak to both the most important management topics that coastal managers are facing, as well as have the broadest application of needs across the management topics.

Table 3-1. Responses by All Respondents (National)

Management Topic Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need		
LAND USE	97%	Identify cumulative effects of development	61%	Land use change analysis	59%	Affordable remote sensing	65%	
HABITAT	95%	Cumulative impact assessments	70%	Trends analysis (rate of loss/gain, success of restoration, etc.)	81%	High resolution remote sensing Low cost remote sensing platforms to measure change	46% 46%	
ENVIRONMENTAL CONTAMINATION	74%	Identification of sources	68%	Remediation options	53%	Improved treatment or removal technologies	57%	
SEDIMENT MANAGEMENT	74%	Analysis of impacts of engineering solutions (e.g., jetties)	48%	Sediment transport patterns	65%	Improved models that simulate and/or predict	63%	
NUTRIENT ENRICHMENT	71%	Source identification/tracking	80%	BMP effectiveness or cost/benefit analysis	73%	Cost effective long- term monitoring/sampling equipment	58%	
NONINDIGENOUS SPECIES	65%	Early detection of species	60%	Ecosystem inventory	79%	Rapid detection and monitoring	76%	
COASTAL HAZARDS	53%	Risk and vulnerability assessments	74%	Design standards for shoreline management technologies	59%	Improved models that simulate and predict Alternative shoreline protection technologies	74% 74%	
OCEAN MANAGEMENT	45%	Cumulative impact assessments	54%	More geospatial data for GIS (benthic maps, jurisdictions, etc.)	79%	Mapping and other data acquisition	51%	
MARINE DEBRIS	29%	Source tracking	58%	Public outreach and education	94%	Debris removal technology	65%	

4 SURVEY RESULTS BY REGIONS

4-1 Introduction

This section discusses the results of the survey from a *regional perspective*, with the 33 coastal, island, and Great Lake states and territories grouped by region as defined in Table 4-1.

Survey respondents were asked to indicate the importance of nine separate coastal resource management issues over the next five years. Tables 4-2 to 4-8 show the percentage of respondents in each of the seven *regions* who found the issues of habitat change, land use, nutrient enrichment, environmental contamination, nonindigenous species, coastal hazards, sediment management, ocean management, and marine debris to be either *very important* or *important* to their programs over the next five years. These tables also identify the top-ranked research, information, and technology needs for each.

The discussions accompanying each table highlight views expressed by the respondents based on the top-ranked responses. With regards to the responses from the surveys related to *continuous observation and monitoring variables*, respondents were not asked to select from the list those variables they considered most important, but rather to select all variables that they considered necessary to address a particular issue. Because there was no prioritization of these variables, they are not discussed in the body of this report, and instead can be found in the tables in the appendices.

Table 4-1. Regional Classification of States and Territories

Danian	Maria la anti- f	In alredo a the Faller of C	total and Tamillaria
Region	Number of	Includes the Following S	tates and Territories
	Respondents		
Great Lakes ¹	13	Indiana (IN)	Ohio (OH)
		Michigan (MI)	Wisconsin (WI)
		Minnesota (MN)	Pennsylvania (PA)
Northeast	60	Connecticut (CT)	New Hampshire (NH)
		Massachusetts (MA)	New York (NY)
		Maine (ME)	Rhode Island (RI)
Mid-Atlantic	36	Delaware (DE)	New Jersey (NJ)
		Maryland (MD)	Virginia (VA)
Southeast	55	Florida (FL)	North Carolina (NC)
		Georgia (GA)	South Carolina (SC)
Gulf	24	Alabama (AL)	Mississippi (MS)
		Louisiana (LÁ)	Texas (TX)
Pacific	34	Alaska (AK)	Oregon (OR)
		California (CA)	Washington (WA)
Islands ²	8	American Samoa (AS)	Guam (GU)
		Commonwealth of Northern	Hawaii (HI)
		Marianas Islands (CNMI)	Puerto Rico (PR)

¹ Illinois does not participate in the National Coastal Management Program.

² The US Virgin Islands did not respond to the survey.

4-2 Great Lakes Region Priorities

The top-ranked management topics that the Great Lakes region (Table 4-2) considered to be very important or important were *land use* (100%), *habitat change* (100%) and *environmental contamination* (100%), followed closely by *sediment management* (96%) and *nonindigenous species* (88%). Land use and habitat change match the national top-ranked topics.

The top-ranked research, information and technology needs identified for habitat change were *cumulative impact* assessments (71%), *trends* analysis (67%) and *habitat* restoration BMPs (75%).

Land use top-ranked research, information and technology needs were socioeconomic cost/benefit analysis of various land use options (63%), more geospatial data for GIS (58%) and customized GIS (79%).

The top-ranked research, information and technology needs identified for *environmental contamination* were *identification of sources* (67%), *remediation options* (54%) and *improved treatment or removal technologies* (75%).

Table 4-2. Top-ranked Responses from Great Lakes Region

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Habitat	100%	Cumulative impact assessments	71%	Trends analysis	67%	Habitat restoration BMPs	75%
Land use	100%	Provide socioeconomic cost/benefit analysis of various land use options	63%	More geospatial data for GIS	58%	Customized GIS	79%
Environmental contamination	100%	Identification of sources	67%	Remediation options	54%	Improved treatment or removal technologies	75%
Sediment management	96%	Analysis of impacts of engineering solutions	91%	Improved methods and models for quantifying sediment budgets	74%	Methods for quantifying sediment budgets	61%
Nonindigenous species	88%	Effectiveness of BMPs	86%	Ecosystem inventory	76%	Prevention techniques	76%
Nutrient enrichment	79%	Cumulative impact assessments Source identification/ tracking	74% 74%	BMP effectiveness or cost/benefit analysis	89%	Improved treatment technologies Enhanced remote sensing	53% 53%
Coastal hazards	58%	Shoreline characterizations	79%	Design standards for shoreline management technologies	93%	Alternative shoreline protection technologies	93%
Ocean management	30%	Ecological characterizations	86%	More geospatial data for GIS Access, retrieval and analysis of data State-of- knowledge	71% 71% 71%	Energy technology Other	57% 57%
Marine debris	25%	Public education effectiveness	100%	reports Public outreach and education	100%	Debris removal technology Disposal or reuse technologies	67% 67%

4-3 Northeast Region Priorities

The two top-ranked management topics that the Northeast region (Table 4-3) considered to be very important or important were *habitat change* (98%) and *land use* (96%), followed by *nutrient enrichment* (82%), *nonindigenous species* (70%) and *environmental contamination* (68%). Land use and habitat change match the national top-ranked topics.

The top-ranked research, information and technology needs identified for habitat change were *cumulative impact* assessments (60%), *trends* analysis (81%) and *high* resolution remote sensing (53%).

Land use top-ranked research, information, and technology needs were to *quantify impacts of land use on water quality* (74%), *land use change analysis* (71%) and *affordable remote sensing* (77%).

Table 4-3. Top-ranked Responses from Northeast Region

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Habitat	98%	Cumulative impact assessments	60%	Trends analysis	81%	High resolution remote sensing	53%
Land use	96%	Quantify impact of land use on water quality	74%	Land use change analysis	71%	Affordable remote sensing	77%
Nutrient enrichment	82%	Source identification/trackin g	73%	Land use analysis	60%	Cost effective long-term monitoring/sampling equipment	68%
Nonindigenous species	70%	Early detection of species	63%	Ecosystem inventory	72%	Rapid detecting and monitoring	71%
Environmental contamination	68%	Cumulative impact assessments	59%	Remediation options	49%	Cost effective long-term monitoring/sampling equipment Improved remote sensing/ sampling technologies	51% 51%
Sediment management	52%	Effects of dredging	66%	Sediment transport patterns	65%	Improved models that simulate or predict	64%
Ocean management	44%	Cumulative impact assessments	69%	Access, retrieval and analysis of data	81%	Mapping and data acquisition	77%
Coastal hazards	26%	Trends analysis	58%	Access, retrieval and analysis of data	58%	Improved models that simulate and predict	73%
Marine debris	13%	Source tracking Public education effectiveness	52% 52%	Public outreach and education	100%	Gear modifications to make less harmful to non-target species and habitat	52%

4-4 Mid-Atlantic Region Priorities

The two top-ranked management topics that the Mid Atlantic region (Table 4-4) considered to be very important or important were *land use* (97%) and habitat change (94%) match the national top-ranked topics.

The top-ranked land use research, information and technology needs were to *identify cumulative effects of development* (60%), *land use change analysis* (61%) and *improved models that simulate or predict* (77%).

The top-ranked research, information and technology needs identified for habitat change were *cumulative impact assessments* (78%), *trends analysis* (88%) and *habitat restoration BMPs* (54%)

Table 4-4. Top-ranked Responses from Mid-Atlantic Region

Management Iss Ranked Very Imp or Importan	ortant	Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Land use	97%	Identify cumulative effects of development	60%	Land use change analysis	61%	Improved models that simulate or predict	77%
Habitat	94%	Cumulative impact assessments	78%	Trends analysis	88%	Habitat restoration BMPs	54%
Sediment management	72%	Prioritize restoration/protection based on max benefit for cost	55%	Sediment transport patterns	62%	Improved models that simulate or predict	61%
Nutrient enrichment	61%	Source identification/tracking	75%	BMP effectiveness or cost/benefit analysis	81%	Cost effective long-term monitoring/sampling equipment	59%
Nonindigenous species	57%	Early detection of species	78%	Ecosystem inventory	74%	Rapid detecting and monitoring	82%
Environmental contamination	56%	Identification of sources	62%	Remediation options	48%	Cost effective long-term monitoring/sampling equipment	53%
Coastal hazards	54%	Shoreline characterizations	67%	Design standards for shoreline management technologies	74%	Alternative shoreline protection technologies	87%
Ocean management	43%	Cumulative impact assessments	68%	More geospatial data for GIS	66%	Improved models that simulate or predict	66%
Marine debris	12%	Public education effectiveness	73%	Public outreach and education	86%	Debris removal technology	100%

4-5 Southeast Region Priorities

The two top-ranked management topics that the Southeast region (Table 4-5) considered to be very important or important were *land use* (97%) and *habitat change* (89%). The third top-ranked topic was *nutrient enrichment* (73%). Land use and habitat change match the national top-ranked topics.

Land use top-ranked research, information and technology needs were develop indicators that link land use with ecosystem health (74%), land use change analysis (80%) and improved models that simulate or predict (74%).

The top-ranked research, information and technology needs identified for habitat change were *cumulative impact* assessments (78%), *trends* analysis (86%) and *high* resolution remote sensing (54%).

Table 4-5. Top-ranked Responses from Southeast Region

Management Iss Ranked Very Important	ortant	Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Land use	97%	Develop indicators that link land use with ecosystem impact	74%	Land use change analysis	80%	Improved models that predict or simulate	74%
Habitat	89%	Cumulative impact assessments	78%	Trends analysis	86%	High resolution remote sensing	54%
Nutrient enrichment	73%	Source identification/tracking	82%	BMP effectiveness or cost/benefit analysis	70%	Cost effective long-term monitoring/sampling equipment	63%
Sediment management	63%	Effects of dredging	61%	Sediment transport patterns	71%	Methods for quantifying sediment budgets	70%
Environmental contamination	58%	Identification of sources	87%	Economic impact evaluations	59%	Rapid/real time detection	57%
Coastal hazards	50%	Risk and vulnerability assessments	84%	Design standards for shoreline management technologies	61%	Improved models that simulate and predict	82%
Nonindigenous species	48%	Early detection of species	78%	Ecosystem inventory	79%	Treatment and removal techniques	84%
Marine debris	45%	Perceptions and behaviors linked to sources	76%	Public outreach and education	96%	GPS tracking systems for potential sources of debris	66%
Ocean management	40%	Cumulative impact assessments	56%	State-of- knowledge reports	81%	Improved models that simulate or predict	69%

4-6 Gulf Region Priorities

The two top-ranked management topics that the Gulf region (Table 4-6) considered to be very important or important were *land use* (94%) and *habitat change* (91%). The next closely top-ranked topics were *environmental contamination* (79%) and sediment management (78%). Land use and habitat change match the national top-ranked topics.

Land use top-ranked research, information and technology needs were develop indicators that link land use with ecosystem health (70%), land use change analysis (62%) and affordable remote sensing (69%).

The top-ranked research, information and technology needs identified for habitat change were *cumulative impact* assessments (67%), *trends* analysis (81%) and *models* that predict or simulate (60%).

Table 4-6. Top-ranked Responses from Gulf Region

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Land use	94%	Develop indicators that link land use with ecosystem impact	70%	Land use change analysis	62%	Affordable remote sensing	69%
Habitat	91%	Cumulative impact assessments	67%	Trends analysis	81%	Models that predict or simulate	60%
Environmental contamination	79%	Identification of sources	59%	Explanation of interactions among contaminants	49%	Reliable DNA fingerprinting	65%
Sediment management	78%	Improved beneficial use	70%	Shoreline characterization s	64%	Improved models that simulate or predict	75%
Coastal hazards	70%	Risk and vulnerability assessments	79%	Design standards for shoreline management technologies	75%	Improved models that simulate and predict	91%
Nutrient enrichment	67%	Source identification/trackin g	73%	BMP effectiveness or cost/benefit analysis	77%	Cost effective long-term monitoring/sampling equipment	69%
Nonindigenous species	62%	Susceptibility factors for coastal invasive introduction	56%	Ecosystem inventory	85%	Treatment and removal techniques	91%
Ocean management	51%	Cumulative impact assessments	88%	Access, retrieval and analysis of data	87%	Improved models that simulate or predict	61%
Marine debris	47%	Biodegradable products	63%	Public outreach and education	100%	Debris removal technology	94%

4-7 Pacific Region Priorities

The two top-ranked management topics that the Pacific region (Table 4-7) considered to be very important or important were *land use* (93%) and *habitat change* (90%). Land use and habitat change match the national top-ranked topics.

Land use top-ranked research, information and technology needs were *quantify impacts of land use on water quality* (60%), *land use change analysis* (60%) and *affordable remote sensing* (61%).

The top-ranked research, information and technology needs identified for habitat change were *evaluate* effectiveness of restoration/protection techniques (70%), ecological and physical baselines and inventories (86%) and low cost remote sensing platforms to measure change (50%).

Table 4-7. Top-ranked Responses from Pacific Region

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Nee	
Land use	93%	Quantify impact of land use on water quality	60%	Land use change analysis	60%	Affordable remote sensing	61%
Habitat	90%	Evaluate effectiveness of restoration/ protection techniques	70%	Ecological and physical baselines and inventories	86%	Low cost remote sensing platforms to measure change	50%
Sediment management	65%	Prioritize restoration/protect ion based on max benefit for cost	43%	Sediment transport patterns	55%	Methods for quantifying sediment budgets	69%
Environmental contamination	59%	Identification of sources	68%	Remediation options	51%	Rapid/real time detection	66%
Nonindigenous species	56%	Effectiveness of BMPs	66%	Ecosystem inventory	85%	Rapid detecting and monitoring	92%
Nutrient enrichment	51%	Source identification/ tracking	89%	BMP effectiveness or cost/benefit analysis	74%	Effective mitigation strategies	60%
Coastal hazards	50%	Risk and vulnerability assessments	52%	More geospatial data for GIS	72%	Improved models that simulate and predict	69%
Ocean management	44%	Marine managed area effectiveness	60%	More geospatial data for GIS	87%	Nondestructive bottom fishing gear	69%
Marine debris	24%	Ecological impacts	78%	Public outreach and education	57%	Debris removal technology	59%

4-8 Islands Region Priorities

The top-ranked responses for the Islands region resulted in the highest variation from other regions. The top-ranked management topic that the Islands region (Table 4-8) considered to be very important or important was *land use* (100%). Land use was followed by *habitat change* (90%) and *environmental contamination* (90%).

Land use top-ranked research, information and technology needs were to *identify cumulative effects of development* (70%), *land use change analysis* (53%) and *customized GIS* (80%).

Table 3-8. Top-ranked Responses from Islands Region

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Land use	100%	Identify cumulative effects of development	70%	Land use change analysis	53%	Customized GIS	80%
Habitat change	90%	Cumulative impact assessment	89%	Trends analysis	100%	High resolution remote sensing	59%
Environmental contamination	90%	Identification of sources	78%	Remediation options	78%	Improved treatment or removal technologies	70%
Sediment management	82%	Effectiveness of confinement techniques	64%	Sediment transport patterns	88%	Containment and stabilization technologies	88%
Nutrient enrichment	70%	Source identification/tracking	100%	BMP effectiveness or cost/benefit analysis	71%	Improved treatment technologies	67%
Ocean management	70%	Economic assessments Marine managed area effectiveness	52% 52%	More geospatial data for GIS	90%	Mapping and data acquisition	52%
Coastal hazards	70%	Risk and vulnerability assessments	100%	More geospatial data for GIS	81%	Improved models that simulate and predict Advanced detection and/or warning	71% 71%
Nonindigenous species	57%	Effectiveness of BMPs	53%	Ecosystem inventory	88%	technologies Treatment and removal techniques	100%
Marine debris	40%	Source tracking	100%	Public outreach and education	100%	GPS tracking systems for potential sources of debris	67%

4-9 Comparison of Top-ranked Habitat Change Responses Across Regions

Importance of Issues Related To Habitat Change

The top-ranked responses (by percentages) for six of the seven regions indicate that issues related to habitat change are *very important* (see Figure 4-1). The top-ranked response for the Pacific region indicates that issues related to habitat change is *important*.

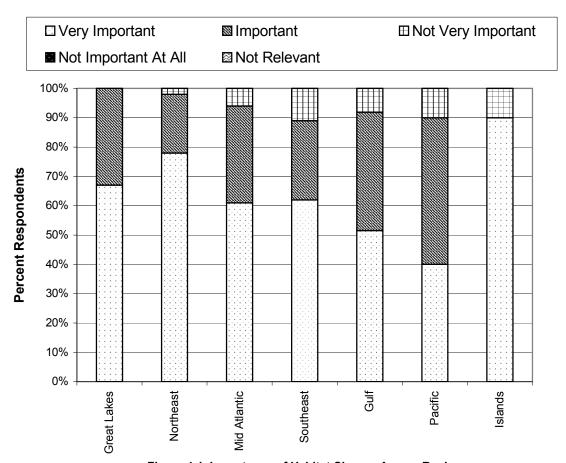


Figure 4-1. Importance of Habitat Change Across Regions

Important Habitat Types

The top-ranked responses of habitat types important to a particular program for the Mid-Atlantic (78%) and Pacific (73%) regions were *uplands* (including riparian/special habitats). The top-ranked response for the Islands (100%) was *coral*. Salt marsh received the top-ranked response for the Northeast (81%), Southeast (70%) and Gulf (80%).

Habitat Change Research Needs

The top-ranked response of research needs to address habitat change for the Great Lakes (71%), Northeast (60%), Mid-Atlantic (78%), Southeast (78%), Gulf (67%) and Islands (89%) were for *cumulative impact assessments*. The Pacific Region identified to *evaluate effectiveness of restoration/protection techniques* as their top-ranked response (70%).

Types of Information Needed To Address Habitat Change

Trends analysis (e.g., rate of loss/gain, success of restoration, etc.) was the top-ranked response for the Great Lakes (67%), Northeast (81%), Mid-Atlantic (88%), Southeast (86%) Gulf (81%) and the Islands (100%). The Pacific Region identified *ecological and physical baselines and inventories* as their top-ranked response (86%).

Improved Technologies To Address Habitat Change

The top-ranked responses of technology needs related to habitat change for the Northeast (54%), Southeast (54%), and Islands (59%) were for *high resolution remote sensing*. The Great Lakes (75%) and Mid-Atlantic (54%) identified *habitat restoration BMPs* as their top-ranked responses. The Gulf region identified *models that predict or simulate* as their top-ranked responses (60%) and the Pacific region top-ranked responses (50%) were for low *cost remote sensing platforms to measure change*.

4-10 Comparison of Top-ranked Land Use Responses Across Regions

Importance of Land Use

The top-ranked responses (by percentages) for all seven regions indicate that land use issues are *very important* (see Figure 4-2).

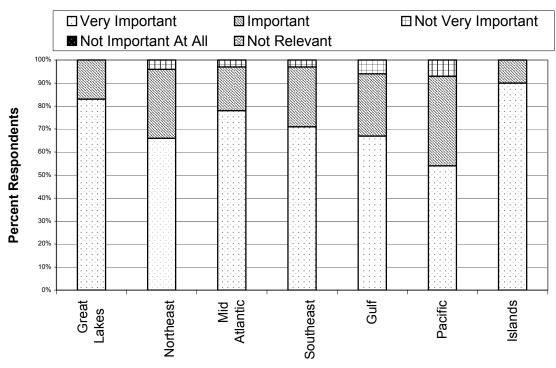


Figure 4-2 Importance of Land Use Across Regions

Important Land Use Issues

The top-ranked land use issue considered to be most important over the next five years for the Great Lakes (75%), Northeast (71%), Southeast (91%), and Pacific (72%) regions was to manage the effects of coastal development. The Northeast (71%) actually had a tie for top-ranked issue that also included open space conservation and/or natural resource protection. The Mid

Atlantic (84%) response favored open space conservation and/or natural resource protection. The Gulf region's (77%) top issue was to integrate watershed/ecosystem planning at the state and local level; the Islands region's (100%) was to reduce the inputs of nonpoint source pollutants.

Land Use Research Needs

The top-ranked responses of research activities to address the most important land use issues over the next five years were varied, with Great Lakes region (63%) identifying research to provide socioeconomic cost/benefit analysis of various land use options as the top need; the Mid Atlantic (60%) and Islands regions (70%) would prefer to identify cumulative effects of development; the Southeast (74%) and Gulf (70%) regions would like to see research to develop indicators that link land use with ecosystem impact; and the Northeast (74%) and Pacific (60%) regions to quantify the impact of land use on water quality.

Information Needed To Address Land Use Issues

Six of the seven regions identified *land use change analysis* as their top-ranked information need to address land use issues over the next five years, which is consistent with the need for trends analysis identified for habitat change: Northeast (71%), Mid Atlantic (61%), Southeast (80%), Gulf (62%), Pacific (60%), and Islands (53%). The Great Lakes (58%) region was in favor of *more geospatial data for GIS*.

Improved Technologies To Address Land Use Issues

The Northeast (77%), Gulf (69%), and Pacific (61%) found *more affordable remote sensing* to be the greatest technology need to address land use issues over the next five years. The Great Lakes (79%) and Islands (80%) regions identified *customized GIS*, and the Mid Atlantic (77%) and Southeast (74%) would like to see *improved models that predict and simulate* the impacts of land use.

4-11 Comparison of Top-ranked Nutrient Enrichment Responses Across Regions

Importance of Nutrient Enrichment

Six of the seven regions top-ranked responses found nutrient enrichment issues to be *important* or *very important* (see Figure 4-3), with the exception of the Pacific region whose top-ranked response found nutrient enrichment to be *not very important* (41%)

Important Nutrient Enrichment Sources

The top-ranked sources causing nutrient enrichment for the Northeast (89%) and Southeast (77%) was *stormwater sources*. The Great Lakes (84%) and Islands (71%) regions identified *urban runoff*, although the Islands had tie for top-ranked sources that also included *agricultural sources* (71%). The Mid Atlantic also identified agricultural sources to be the greatest source; the Gulf (74%) and Pacific (61%) identified *onsite disposal systems*.

Nutrient Enrichment Research Needs

All seven states identified *pollutant source tracking/identification* as the top priority research need for issues related to nutrient enrichment. The Great Lakes region had a tie for top-ranked research need that also identified *cumulative impact assessment* (e.g., the factors that lead to eutrophication) as an additional research need.

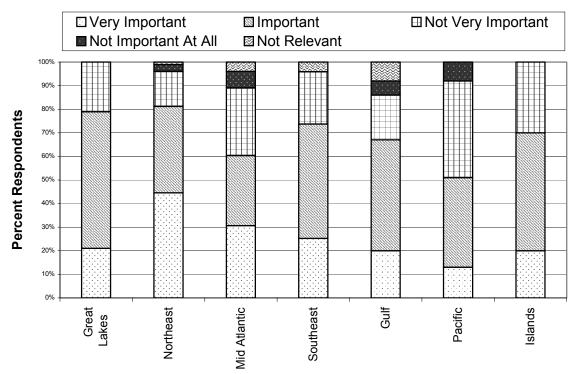


Figure 4-3. Importance of Nutrient Enrichment Across Regions

Nutrient Enrichment Information Needs

There was consensus among most regions that to address nutrient enrichment issues there is a need for better information regarding best management practices (BMPs) effectiveness and/or BMP cost/benefit analysis: Great Lakes (89%), Mid Atlantic (81%), Southeast (70%), Gulf (77%), Pacific (74%), and Islands (71%). The Northeast (60%) was the exception, identifying land use analysis as a more pressing information need.

Nutrient Enrichment Technology Needs

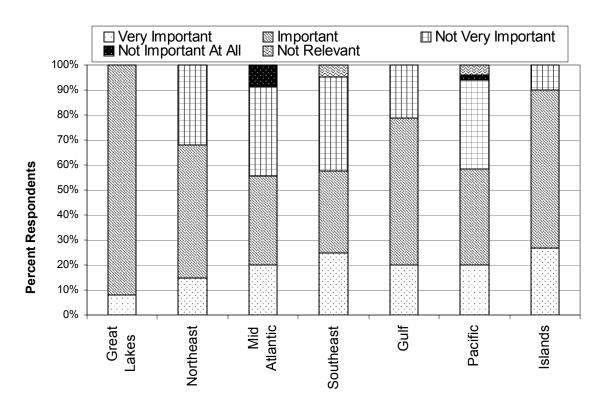
The Northeast (68%), Mid Atlantic (59%), Southeast (63%), and Gulf (69%) regions identified the top technology need to address nutrient enrichment issues as the need for more *cost-effective*, *long-term monitoring and sampling equipment*. The Great Lakes (53%) had a tie for top-ranked technology need between *enhanced remote sensing* and *improved treatment technologies*; the Islands (67%) also identified improved treatment technologies. The Pacific (60%) region was alone in its selection of *effective mitigation strategies* as it top technology need.

4-12 Comparison of Top-ranked Environmental Contamination Responses Across Regions

Importance of Environmental Contamination Issues

Six of the seven regions' top-ranked responses identified environmental contamination as an *important* issue (see Figure 4-4): Great Lakes (92%), Northeast (53%), Mid Atlantic (36%), Gulf (59%), Pacific (39%), and Islands (63%). The majority of respondents in the Southeast (38%) do not consider environmental contamination to be a very important issue.

Important Types of Environmental Contamination


The Great Lakes (83%) and Southeast (79%) identified *mercury* as the leading contaminant in their regions; the Northeast (56%) and Mid Atlantic (66%) identified *excess nitrogen*; the Gulf (54%), *sewage*; the Pacific (43%), *pathogens*; and the Islands (78%), *biocides*.

Environmental Contamination Research Needs

The majority of respondents in six of the seven regions indicated that *source identification* was the top research need to address issues related to environmental contamination over the next five years: Great Lakes (67%), Mid Atlantic (62%), Southeast (87%) Gulf (59%), Pacific (68%), and Islands (78%). The majority of respondents in the Northeast (59%) region identified *cumulative impact assessments* as the research priority, although *source identification* was a close second in the Northeast (56%).

Environmental Contamination Information Needs

The Great Lakes (54%), Northeast (49%), Mid Atlantic (48%), Pacific (51%), and Islands (78%) regions identified the top information need to address environmental contamination issues over the next five years to be *remediation options*. The Southeast (59%) selected *economic impact evaluations*, and the Gulf (49%), would like to see better *explanation of the interactions among contaminants*.

4-4. Importance of Environmental Contamination Across Regions

Environmental Contamination Technology Needs

The Northeast (51%) and Mid Atlantic (53%) identified the greatest technology need with respect to environmental contamination to be more *cost effective long-term monitoring equipment*. The Northeast (51%) had a tie for top choice that also included *improved remote sensing/sampling technologies*; the Islands (70%) region also made this their top selection. The Southeast (57%)

and Pacific (66%) regions would like to see better *rapid real time detection technologies*; the Gulf (65%) region identified the need for more *reliable DNA fingerprinting*.

4-13 Comparison of Top-ranked Nonindigenous Species Responses Across Regions

Importance of Nonindigenous Species Issues

The Great Lakes (63%) region's top-ranked response identified nonindigenous species as *very important* (see Figure 4-5). The Northeast (42%), Mid Atlantic (41%), Gulf (44%), and Islands (37%) regions' top-ranked responses were that nonindigenous species were *important*, while the Southeast (45%) and Pacific (40%) regions' top-ranked responses thought they were *not very important* to their regions.

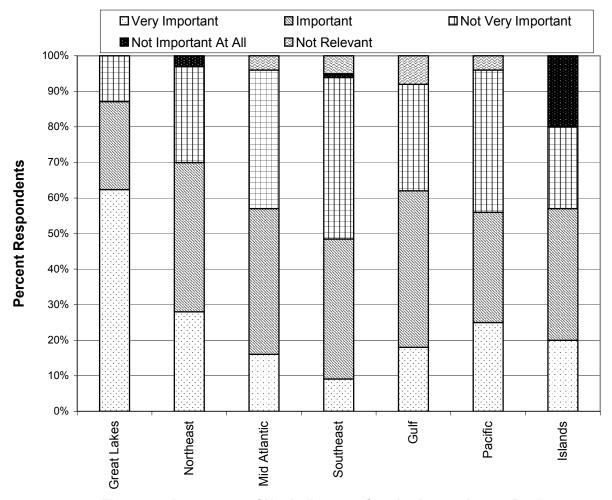


Figure 4-5. Importance of Nonindigenous Species Issues Across Regions

Important Nonindigenous Species Issues

The Great Lakes (90%), Northeast (81%), Mid Atlantic (79%), and Pacific (77%) regions identified that the effects of nonindigenous species on native species and communities as the most important nonindigenous species issue. The Gulf (76%) and Islands (65%) identified eradicating or controlling species and communities as most important, and the Southeast (88%) identified preventing introduction.

Nonindigenous Species Research Needs

The Northeast (63%), Mid Atlantic (78%), and Southeast (78%) identified *early detection of species* as the most important research need to address nonindigenous species issues over the next five years. The Great Lakes (86%), Pacific (66%), and Islands (53%) identified the *effectiveness of best management practices* as most important, and the Gulf (56%) was alone in selecting *susceptibility factors for coastal invasive introduction*.

Nonindigenous Species Information Needs

All seven regions selected *ecosystem inventory* as the most important information need to address nonindigenous species issues over the next five years: Great Lakes (76%), Northeast (72%), Mid Atlantic (74%), Southeast (79%), Gulf (85%), Pacific (85%), and Islands (88%).

Nonindigenous Species Technology Needs

The Southeast (84%), Gulf (91%), and Islands (100%) identified *treatment and removal technologies* as the top technology needed to address nonindigenous species issues over the next five years. The Northeast (71%) Mid Atlantic (82%), and the Pacific (92%) preferred a focus on *rapid detection and monitoring*, and the Great Lakes (76%) on *prevention techniques*.

4-14 Comparison of Top-ranked Coastal Hazards Reponses Across Regions

Importance of Coastal Hazards Issues

The top-ranked response of Islands (70%) respondents identified coastal hazards issues as *very important* (see Figure 4-6). The Mid Atlantic (42%) and Gulf (41%) regions' top-ranked response identified coastal hazards issues as *important*, and the Great Lakes (33%), Northeast (58%), Southeast (41%), and Pacific (41%) top responses found these issues to be *not very important*.

Important Coastal Hazards Issues

All seven regions identified *managing areas subject to erosion* as the most important coastal hazard issue over the next five years: Great Lakes (93%), Notheast (100%), Mid Atlantic (83%), Southeast (79%), Gulf (92%), Pacific (77%), and Islands (90%).

Research Needs for Coastal Hazards

The Southeast (84%), Gulf (79%), Pacific (52%), and Islands (100%) selected *risk and vulnerability assessments* as the top research activity to address coastal hazards over the next five years. The Great Lakes (79%) and Mid Atlantic (67%) selected *shoreline characterizations*, and the Northeast (58%) selected *trends analysis* as the priority research need.

Information Needs for Coastal Hazards

The Great Lakes (93%), Mid Atlantic (74%), Southeast (61%), and Gulf (75%) regions identified the most important information need to address coastal hazards issues over the next five years to be design standards for shoreline management technologies. The Pacific (72%) and the Islands (81%) identified spatial and temporal demographics, and the Northeast (58%) identified access, retrieval, and analysis of data.

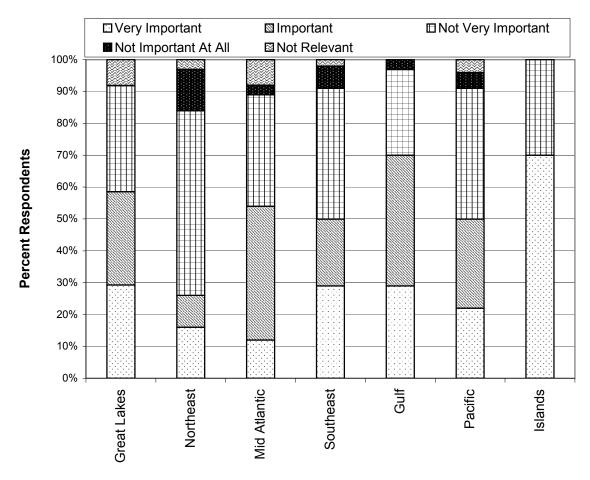


Figure 4-6. Importance of Coastal Hazards Across Regions

Technology Needs for Coastal Hazards

The Northeast (73%), Southeast (82%), Gulf (91%), Pacific (69%), and Islands (71%) selected *improved models to simulate and predict* as the priority technology need to address coastal hazards issues over the next five years; the Islands (71%) also selected *advanced detection and warning technologies* in a tie for their top-ranked technology need. The Great Lakes (93%) and Mid Atlantic (87%) selected *alternative shoreline protection technologies*.

4-15 Comparison of Top-ranked Sediment Management Responses Across Regions

Importance of Sediment Management

The Great Lakes (63%), Mid Atlantic (55%), Southeast (42%), Gulf (46%), Pacific (37%), and Islands (50%) regions identified sediment management as *important*, and the Northeast (47%) considered it to be *not very important* (see Figure 4-6).

Important Sediment Management Issues

The Great Lakes (57%), Pacific (57%), and Islands (88%) identified *identifying sediment transport* patters as the most important sediment management issue over the next five years. The Northeast (70%) and Gulf (53%) identified managing the reuse of material; the Southeast (61%), *identifying disposal options*; and the Mid Atlantic (60%), developing regional management of sediment resources.

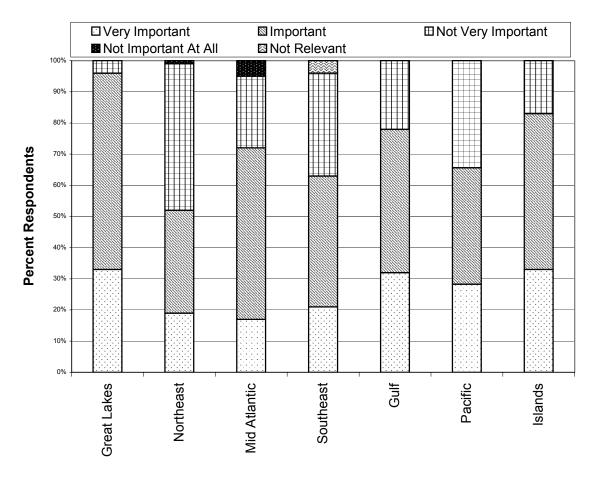


Figure 4-7. Importance of Sediment Management Across Regions

Research Needs for Sediment Management

The Northeast (66%) and Southeast (61%) identified the most needed research activity to address sediment management issues over the next five years is to *study the effects from dredging*. The Mid Atlantic (55%) and Pacific (43%) identified the need to *prioritize restoration and protection based on the most the maximum benefit for cost*; the Great Lakes (91%) identified the need to *analyze the impacts of engineering solutions*; the Gulf (70%), *improved beneficial uses*; and the Islands (64%), *effectiveness of confinement techniques*.

Information Needs for Sediment Management

The Northeast (65%), Mid Atlantic (62%), Southeast (71%), Pacific (55%), and Islands (88%) identified the top information need to address sediment management issues over the next five years to be sediment transport patterns. The Great Lakes (74%) identified improved methods and models for quantifying sediment budgets; while the Gulf (64%) identified shoreline characterizations.

Technology Needs for Sediment Management

The Great Lakes (61%), Southeast (70%), and Pacific (69%) regions identified the most important technological need to address sediment management issues over the next five years to be improved methods for quantifying sediment budgets. The Northeast (64%), Mid Atlantic (61%), and Gulf (75%) identified improved models that simulate and predict; and the Islands (88%), containment and stabilization technologies.

4-16 Comparison of Top-ranked Ocean Management Responses Across Regions

Importance of Ocean Management Issues

The Islands (40%) was the only region where the top-ranked response was that ocean management issues were *very important* (see Figure 4-8), and the Gulf (45%) was the only region whose top-ranked response found ocean management to be *important*. The top-ranked response was *not very important* in the Northeast (42%), Mid Atlantic (38%), Southeast (52%), and Pacific (39%) regions, and not relevant among the majority of Great Lakes respondents (54%).

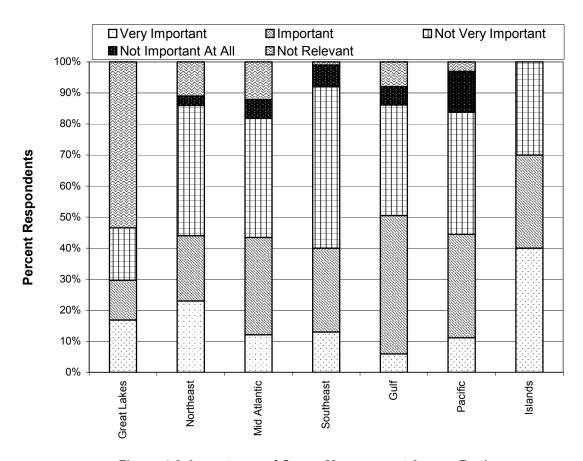


Figure 4-8. Importance of Ocean Management Across Regions

Important Ocean Management Issues

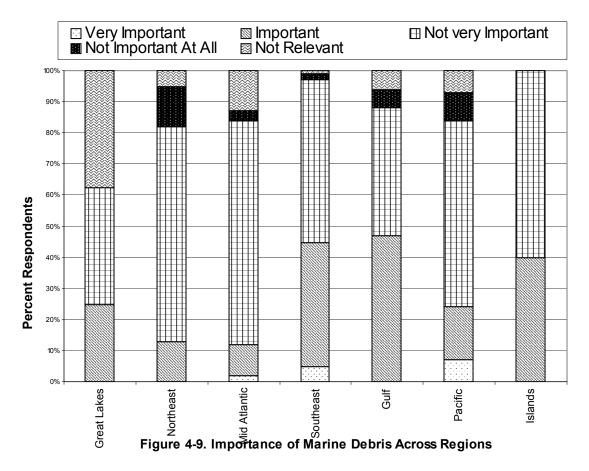
The Great Lakes (86%), Northeast (78%), Southeast (74%), and Gulf (81%) regions identified *loss of habitat or biodiversity* as the top ocean management issue to address over the next five years. The Mid Atlantic (82%) and Islands (71%) identified *reconciling conflicting uses*, and the Pacific (70%) identified the *use of Marine Management Areas* as the priority issue.

Research Needs for Ocean Management

The Northeast (69%), Mid Atlantic (68%), Southeast (56%), and Gulf (88%) regions think that *cumulative impact assessments* are the most important research activity to address ocean management issues over the next five years. The Pacific (60%) and Islands (52%) thought that research addressing *Marine Managed Area effectiveness* was most important, although the Islands (52%) had a tie for top choice and also identified *economic assessments* as most important. The Great Lakes (86%) identified *ecological characterizations*.

Information Needs for Ocean Management

The Great Lakes (71%) had a three-way tie for top information needs to address ocean management over the next five years that included *more geospatial data for GIS, access retrieval, and analysis of data*, and *state of knowledge and case studies*. The Mid Atlantic (66%), Pacific (87%), and Islands (90%) selected *more geospatial data for GIS* as the top priority information need; the Northeast (81%) and the Gulf (87%) selected *access, retrieval, and analysis of data*; and the Southeast (81%) selected *state of knowledge reports and case studies*.


Technology Needs for Ocean Management

The Mid Atlantic (66%), Southeast (69%), and Gulf (61%) identified the top technology need to address ocean management issues over the next five years to be *improved models that simulate* and predict. The Northeast (77%) and Islands (52%) identified *mapping and data acquisition* as top priority; the Pacific (69%) identified *nondestructive bottom fishing gear*; and the Great Lakes (57%) region selected energy technology.

4-17 Comparison of Top-ranked Marine Debris Responses Across Regions

Importance of Marine Debris Issues

The top-ranked response from the Gulf (47%) identified marine debris as an *important* issue (see Figure 4-9). The Great Lakes (38%), Northeast (69%), Mid Atlantic (72%), Southeast (53%), Pacific (60%), and Islands (60%) regions' top-ranked responses thought marine debris was *not very important*. The Great Lakes (38%) region also had an equal number of respondents who did not think the issue was relevant.

Important Marine Debris Issues

The top-ranked marine debris issue over the next five years was identified to be *source identification* by the Great Lakes (100%), Mid Atlantic (57%), Southeast (79%), and Islands (100%). The Great Lakes (100%), Northeast (70%), Pacific (65%), and Islands (100%) identified *aesthetic/habitat degradation* as the top issue. The Gulf (76%) found that *removal and disposal of retrieved debris* was a pressing issue.

Research Needs for Marine Debris

In the Great Lakes (100%), Northeast (52%), and Mid Atlantic (73%), public education effectiveness is the most important research need to address marine debris issues over the next five years; in the Northeast (52%), source tracking is also a top priority as it is in the Islands (100%) region. In the Southeast (76%), perceptions and behaviors linked to sources is top priority; in the Gulf (63%), biodegradable products; and in the Pacific (78%), ecological impacts is top.

Information Needs for Marine Debris

All seven regions identified the top information need to address marine debris issues over the next five years to be *public outreach and education*: Great Lakes (100%), Northeast (100%), Mid Atlantic (86%), Southeast (96%), Gulf (100%), Pacific (57%), and Islands (100%).

Technology Needs for Marine Debris

In the Great Lakes (67%), Mid Atlantic (100%), Gulf (94%), and Pacific (59%) regions, the most important technology need to address marine debris issues over the next five years is *debris removal technology*; there is also a second top priority in the Great Lakes (67%), which is marine debris *disposal or reuse technologies*. In the Southeast (66%) and Islands (67%), *GPS tracking systems for potential sources of debris* (e.g., containers, nets) is most important; and in the Northeast (52%), *gear modifications to make less harmful to non-target species and habitat*.

5 SURVEY RESULTS BY PROGRAMS

5-1 Introduction

This section discusses the results of the survey from a *program perspective*, grouped by program association as defined in Table 5-1.

Survey respondents were asked to indicate the importance of nine separate coastal resource management issues over the next five years. Tables 5-2 to 5-9 show the percentage of respondents in each of the seven *programs* who found the issues of habitat change, land use, nutrient enrichment, environmental contamination, nonindigenous species, coastal hazards, sediment management, ocean management, and marine debris to be either *very important* or *important* to their programs over the next five years. These tables also identify the top-ranked research, information, and technology needs for each.

The discussions accompanying each table highlight views expressed by the respondents based on the top-ranked responses. With regards to the responses from the surveys related to *continuous observation and monitoring variables*, respondents were not asked to select from the list those variables they considered most important, but rather to select all variables that they considered necessary to address a particular issue. Because there was no prioritization of these variables, they are not discussed in the body of this report, and instead can be found in the tables in the appendices.

Table 5-1. Associations and Program Interest

Association	Program Interest			
Coastal States Organization (Coastal Zone Management Programs)	Coastal Management			
National Estuarine Research Reserve Association	National Estuarine Research Reserve System			
Association of National Estuary Programs	National Estuary Programs			
Association of State Wetland Managers	State Wetland Programs			
Association of State Floodplain Managers	State Floodplain Management Programs			
Association of State and Interstate Water Pollution Control Administrators	State Water Quality Programs			
Atlantic States Marine Fisheries Commission	State Fisheries Programs			
Other	Varied by program			

5-2 Coastal Zone Management Program Priorities

The two top-ranked management topics that the Coastal Management Program (Table 5-2) considered to be very important or important were *habitat change* (99%) and *land use* (97%). Land use and habitat change match the national top-ranked topics.

The top-ranked research, information and technology needs identified for habitat change were *cumulative* impact assessments (74%), trends analysis-rate of loss/gain, success of restoration, etc (79%) and low cost remote sensing platforms to measure change (48%).

Land use top-ranked research, information and technology needs were to *identify cumulative effects of development* (64%), *more geospatial data for GIS* (60%) and *customized GIS* (75%).

Table 5-2. Top-ranked Responses from Coastal Management Programs

Management Topic Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
HABITAT	99%	Cumulative impact assessments	74%	Trends analysis (rate of loss/gain, success of restoration, etc.)	79%	Low cost remote sensing platforms to measure change	48%
LAND USE	97%	Identify cumulative effects of development	64%	More geospatial data for GIS	60%	Customized GIS	75%
NUTRIENT ENRICHMENT	97%	Source identification/tracking	86%	BMP effectiveness or cost/benefit analysis	76%	Cost effective long-term monitoring/sampling equipment	55%
SEDIMENT MANAGEMENT	80%	Improved beneficial uses Analysis of impacts of engineered solutions	51% 51%	Sediment transport patterns	62%	Containment and stabilization technologies	63%
ENVIRONMENTAL CONTAMINATION	76%	Identification of sources	75%	Remediation options	54%	Improved treatment or removal technologies	58%
NONINDIGENOUS SPECIES	71%	Effectiveness of BMPs (e.g., ballast water treatment)	58%	Ecosystem inventory	79%	Treatment or removal technologies	73%
COASTAL HAZARDS	68%	Risk and vulnerability assessments	73%	More geospatial data for GIS (elevation maps, land cover and use, etc.)	68%	Alternative shoreline protection technologies	75%
OCEAN MANAGEMENT	55%	Cumulative impact assessments	57%	More geospatial data for GIS (benthic maps, jurisdictions, etc.)	81%	Mapping and data acquisition	50%
MARINE DEBRIS	32%	Source tracking	69%	Public outreach and education	96%	Disposal or reuse technologies	59%

5-3 National Estuarine Research Reserve Priorities

The two top-ranked management topics that the National Estuarine Research Reserves (Table 5-3) considered to be very important or important were *land use* (96%) and *habitat change* (93%). Land use and habitat change match the national top-ranked topics.

Land use top-ranked research, information and technology needs were develop indicators that link land use with ecosystem impacts (84%), land use change analysis (64%) and improved models that predict and/or simulate (89%).

The top-ranked research, information and technology needs identified for habitat change were *cumulative* impact assessments (67%), trends analysis-rate of loss/gain, success of restoration, etc (85%) and improved models that predict and/or simulate (62%).

Table 5-3. Top-ranked Responses from the National Estuarine Research Reserve Association

Management Issues Ranked Very Important or Important	•	Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
LAND USE	96%	Develop indicators that link land use with ecosystem impact	84%	Land use change analysis	64%	Improved models that predict and/or simulate	89%
HABITAT	93%	Cumulative impact assessments	67%	Trends analysis (rate of loss/gain, success of restoration, etc.)	85%	Models that predict and simulate	62%
ENVIRONMENTAL CONTAMINATION	77%	Identification of sources	53%	Explanation of interactions among contaminants	69%	Improved models that predict and/or simulate	61%
NONINDIGENOUS SPECIES	68%	Early detection of species	79%	Ecosystem inventory	80%	Rapid detection and monitoring	89%
SEDIMENT MANAGEMENT	68%	Prioritize restoration/protection based on max benefit for cost	55%	Sediment transport patterns	78%	Methods for quantifying sediment budgets	78%
NUTRIENT ENRICHMENT	65%	Source identification/tracking	66%	Land use analysis	75%	Improved models that predict and/or simulate	51%
OCEAN MANAGEMENT	41%	Ecological characterizations	65%	More geospatial data for GIS	61%	Improved models that predict and/or simulate	75%
COASTAL HAZARDS	37%	Shoreline characterizations Risk & vulnerability assessments	64% 64%	Design standards for shoreline management technologies	70%	Improved models that predict and/or simulate	81%
MARINE DEBRIS	10%	Biodegradable products (e.g., packing materials)	56%	Public outreach and education	94%	Debris removal technology	89%

5-4 National Estuary Program Priorities

The two top-ranked management topics that the National Estuary Program (Table 5-4) considered to be very important or important were *nutrient enrichment* (100%) and *land use* (100%).

The top-ranked research, information and technology needs identified for nutrient enrichment were *source* identification/tracking (73%), bmp effectiveness or cost/benefit analysis (68%) and effectiveness of mitigation strategies (58%).

Land use top-ranked research, information and technology needs were to Quantify impacts of land use on water quality (76%), land use change analysis (63%) and affordable remote sensing (75%).

Table 5-4. Top-ranked Responses from the Association of National Estuary Programs

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
NUTRIENT ENRICHMENT	100%	Source identification/tracking	73%	BMP effectiveness or cost/benefit analysis	68%	Effectiveness mitigation strategies	58%
LAND USE	100%	Quantify impact of land use on water quality	76%	Land use change analysis	63%	Affordable remote sensing	75%
HABITAT CHANGE	95%	Valuation of social, ecological, economic factors		Trends analysis	84%	High resolution remote sensing	71%
ENVIRONMENTAL CONTAMINATION	80%	Effectiveness of remediation techniques	69%	Remediation options	75%	Improved treatment or removal technologies	75%
NONINDIGENOUS SPECIES	72%	Early detection of species	68%	Ecosystem inventory	90%	Rapid detection and monitoring	90%
SEDIMENT MANAGEMENT	56%	Improved beneficial uses	61%	Improved methods and models for quantifying sediment budgets	60%	Improved models that simulate and/or predict	t 65%
MARINE DEBRIS	35%	Public education effectiveness	59%	Public outreach and education	79%	Disposal or reuse technologies	87%
COASTAL HAZARDS	32%	Risk and vulnerability assessments	64%	Geomorphologic studies Design standards for shoreline management technologies	64% 64%	Alternative shoreline protection technologies	65%
OCEAN MANAGEMENT	30%	Ecological characterizations	57%	More geospatial data for GIS	78%	No-impact aquaculture techniques	66%

5-5 Association of State Floodplain Managers Priorities

The two top-ranked management topics that the State Floodplain Managers (Table 5-5) considered to be very important or important were *land use* (100%) and *nutrient enrichment* (100%).

The top-ranked research, information and technology needs identified for land use were *identify cumulative* effects of development (86%), land use change analysis (72%) and customized GIS (85%).

Nutrient enrichment top-ranked research, information and technology needs were *cumulative impact* assessments (100%), *BMP* effectiveness or cost/benefit analysis (100%) and cost-effective long-term monitoring/sampling equipment (100%).

Table 5-5. Top-ranked Responses from the Association of State Floodplain Managers

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
LAND USE	100%	Identify cumulative effects of development	86%	Land use change analysis	72%	Customized GIS	85%
NUTRIENT ENRICHMENT	100%	Cumulative impact assessments	100%	BMP effectiveness or cost/benefit analysis	100%	Cost effective long-term monitoring/sampling equipment	100%
COASTAL HAZARDS	93%	Risk and vulnerability assessments	100%	More geospatial data for GIS	73%	Improved models that simulate and predict	100%
MARINE DEBRIS	65%	Public education effectiveness	66%	Public outreach and education	100%	Debris removal technology	81%
SEDIMENT MANAGEMENT	52%	Cost/benefit analysis Analysis of impacts of engineering solutions	81% 81%	Shoreline characterizations	70%	Methods for quantifying sediment budgets Improved models that simulate and/or predict	87% 87%
HABITAT	45%	Cumulative impact assessments Evaluate effectiveness of restoration/protection techniques	84% 84%	Trends analysis (rate of loss/gain, success of restoration, etc.)	100%	Long-term monitoring/equipment	48%
ENVIRONMENTAL CONTAMINATION	43%	Cumulative impact assessments	70%	Economic impact evaluation	87%	Improved models that simulate and predict	70%
OCEAN MANAGEMENT	38%	Cumulative impact assessments	74%	More geospatial data for GIS	100%	Improved models that simulate and predict	90%
NONINDIGENOUS SPECIES	26%	Cumulative impact assessments Early detection of species	74% 74%	Land use assessment	74%	Rapid detection and monitoring	100%

5-6 Association of State Wetland Managers Priorities

The two top-ranked management topics that the State Wetland Managers (Table 5-6) considered to be very important or important were *habitat change* (100%) and *land use* (100%). Land use and habitat change match the national top-ranked topics.

The top-ranked research, information and technology needs identified for habitat change were *cumulative* impact assessments (82%), trends analysis-rate of loss/gain, success of restoration, etc. (96%) and high resolution remote sensing (61%).

Land use top-ranked research, information and technology needs were to *identify cumulative effects of development* (78%), more *geospatial data for GIS* (67%) and improved *models that simulate and/or predict* (85%).

Table 5-6. Top-ranked Responses from the Association of State Wetland Managers

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
HABITAT	100%	Cumulative impact assessment	82%	Trends analysis (rate of loss/gain, success of restoration)	96%	High resolution remote sensing	61%
LAND USE	100%	Identify cumulative effects of development	78%	More geospatial data for GIS	67%	Improved models that simulate and/or predict	85%
SEDIMENT MANAGEMENT	78%	Effects from dredging	89%	Sediment transport pattern	95%	Containment and stabilization technologies	79%
NONINDIGENOUS SPECIES	52%	Early detection of species	76%	Ecosystem inventory	94%	Treatment or removal technologies	100%
NUTRIENT ENRICHMENT	42%	Source identification/tracking	100%	Land use analysis	64%	Cost effective long-term monitoring/sampling equipment	100%
ENVIRONMENTAL CONTAMINATION	59%	Identification of sources	100%	More geospatial data for GIS Explanation of interactions among contaminants	87% 87%	Reliable DNA fingerprinting	87%
COASTAL HAZARDS	11%	Shorelines characterization	100%	Design standards for shoreline management technology	100%	Improved models that simulate and/or predict Alternative shoreline protection technologies	100%
OCEAN MANAGEMENT	11%	characterization Marine managed area effectiveness Feasibility of alternative energy sources	100% 100% 100%	State of knowledge reports/case studies	100%	Improved models that simulate and/or predict Nondestructive bottom fishing gear Energy technology	100% 100% 100%
MARINE DEBRIS	7%	No information		No information		No information	

5-7 Association of State and Interstate Water Pollution Control Administrators

The two top-ranked management topics that the State Water Quality Programs (Table 5-7) considered to be very important or important were *land use* (100%) and *environmental contamination* (92%). Land use matches the national top-ranked topic.

The top-ranked research, information and technology needs identified for land use were *quantify impacts of land use on water quality (65%), land use change analysis* (97%) and *customized GIS* (60%).

Environmental contamination top-ranked research, information and technology needs were *identification of sources* (86%), *explanation of interactions among contaminants* (71%) and *improved remote sensing/sampling technologies* (56%).

Table 5-7. Top-ranked Responses from the Association of State and Interstate Water Pollution Control Administrators

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
LAND USE	100%	Quantify impact of land use on water quality (e.g., nutrients and bacteria)	65%	Land use change analysis	97%	Customized GIS	60%
ENVIRONMENTAL CONTAMINATION	92%	Identification of sources	86%	Explanation of interactions among contaminants	71%	Improved remote sensing/sampling technologies	56%
SEDIMENT MANAGEMENT	85%	Prioritize restoration/protection based on max benefit for cost		Sediment transport patterns	59%	Improved models that simulate and/or predict	75%
HABITAT	71%	Cumulative impact assessments	81%	Trends analysis (rate of loss/gain, success of restoration)	72%	Models that simulate or predict	65%
NUTRIENT ENRICHMENT	69%	Source identification/tracking	94%	BMP effectiveness or cost/benefit analysis	100%	Improved models that simulate and/or predict	69%
MARINE DEBRIS	36%	Source tracking	100%	Public outreach and education	100%	Debris removal technology	68%
OCEAN MANAGEMENT	32%	Cumulative impact assessments	74%	More geospatial data for GIS Access, retrieval, analysis of data	100% 100%	Improved models that simulate and/or predict	100%
COASTAL HAZARDS	28%	Shoreline characterization	90%	State of knowledge reports/case studies Design standards for shoreline management technologies	90%	Improved models that simulate and/or predict	100%
NONINDIGENOUS SPECIES	26%	Susceptible factors for coastal invasive introduction	78%	Land use assessment	78%	Rapid detection and monitoring	100%

5-8 Atlantic States Marine Fisheries Commission Priorities

The two top-ranked management topics that the Atlantic States Marine Fisheries Commission (Table 5-8) considered to be very important or important were *habitat change* (100%) and *nonindigenous species* (91%). Habitat change matches the national top-ranked topics.

The top-ranked research, information, and technology needs identified for habitat change were *cumulative impact assessments* (89%), *ecological and physical baselines and inventories* (82%), and *high resolution remote sensing* (68%).

Nonindigenous species top-ranked research, information and technology needs were to understand *human* behaviors leading to introductions (59%), access, retrieval and analysis of data (75%) and prevention technology (85%).

Table 5-8. Top-ranked Responses from the Atlantic States Marine Fisheries Commission

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
HABITAT CHANGE	100%	Cumulative impact assessments	89%	Ecological and physical baselines and inventories	82%	High resolution remote sensing	68%
NONINDIGENOUS SPECIES	91%	Human behaviors leading to introductions	59%	Access, retrieval, and analysis of data	75%	Prevention technology (e.g., irradiation)	85%
LAND USE	78%	Identify cumulative effects of development	93%	Access, retrieval and analysis of data	70%	Affordable remote sensing	93%
ENVIRONMENTAL CONTAMINATION	77%	Cumulative impact assessments	93%	Economic impact evaluations	77%	Improved models that simulate and/or predict	77%
OCEAN MANAGEMENT	75%	Cumulative impact assessments	67%	Access, retrieval, and analysis of data	93%	Nondestructive bottom fishing gear	65%
NUTRIENT ENRICHMENT	75%	Effects on species/communities	100%	Access, retrieval, and analysis of data	78%	Cost effective long-term monitoring/sampling equipment	85%
SEDIMENT MANAGEMENT	72%	Cost/benefit analysis	62%	Improved methods and models for quantifying sediment budgets	72%	Improved models that simulate and/or predict	83%
COASTAL HAZARDS	35%	Risk and vulnerability assessments	100%	Geomorphologial studies Spatial and temporal demographics Design standards for shoreline management technologies	64%	Impact zone identification Alternative shoreline protection technologies	100% 100%
MARINE DEBRIS	27%	Biodegradable gear	100%	Public outreach and education	100%	Gear modifications to make less harmful to non-target species and habitat	100%

5-9 Others Priorities

The top-ranked management topics that Other Respondents (Table 5-9) considered to be very important or important was *land use* (100%) and *environmental contamination* (63%). Land use matches the national top-ranked topic.

The top-ranked research, information and technology needs identified for land use were to provide socioeconomic cost/benefit analysis of various land use options (84%), land suitability analysis (100%) and affordable remote sensing (100%).

The top-ranked research, information and technology needs identified for environmental contamination were toxicity analysis (100%), explanations of interactions among contaminants (100%), and rapid/real-time detection (100%).

Table 5-9. Top-ranked Responses from Others

Management Issues Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
LAND USE	100%	Provide socioeconomic cost/benefit analysis of various land use options	84%	Land suitability analysis	100%	Affordable remote sensing	100%
ENVIRONMENTAL CONTAMINATION	63%	Toxicity analysis	100%	Explanation of interactions among contaminants	100%	Rapid/real time detection	100%
SEDIMENT MANAGEMENT	61%	Cost/benefit analysis	100%	Sediment transport patterns Improved methods and models for quantifying sediment budgets	100%	Engineered solutions	100%
NUTRIENT ENRICHMENT	55%	Source identification/tracking	100%	Short term forecasts of nutrient loading	100%	Improved models that simulate and predict Cost effective long-term monitoring/sampling equipment Enhanced remote sensing	71% 71% 71%
HABITAT CHANGE	55%	Identify causes of loss/gain	100%	Trends analysis Ecological and physical baselines and inventories	100% 100%	Low cost remote sensing platforms to measure change	100%
COASTAL HAZARDS	45%	Littoral cell inventories Risk and vulnerability assessments Trends analysis	100% 100% 100%	Socioeconomic impact assessments State of knowledge reports/case studies More geospatial data for GIS	100% 100% 100%	Impact zone identification Improved models that simulate and/or predict Alternative shoreline protection technologies	100% 100% 100%
OCEAN MANAGEMENT	45%	Economic assessments State of knowledge reports/case studies Risk assessments	100% 100% 100%	More geospatial data for GIS Access, retrieval, analysis of data State of knowledge reports/case studies	100%	No impact aquaculture techniques Mapping and data acquisition Improved models that simulate and/or predict	100% 100% 100%
NONINDIGENOUS SPECIES	0%	N/A		N/A		N/A	
MARINE DEBRIS	0%	N/A		N/A		N/A	

5-10 Comparison of Top-ranked Habitat Change Issues Across Programs

Importance of Issues Related To Habitat Change

Top-ranked responses from CZM (72%), NERR (61%), NEP (85%), ASWM (82%), and AFMC (69%) found issues related to habitat change were *very important*. Top-ranked responses from ASIWPCA (67%) selected *important*, and ASFPM (55%) and Others (45%) believed they were *not very important* (see Figure 5-1).

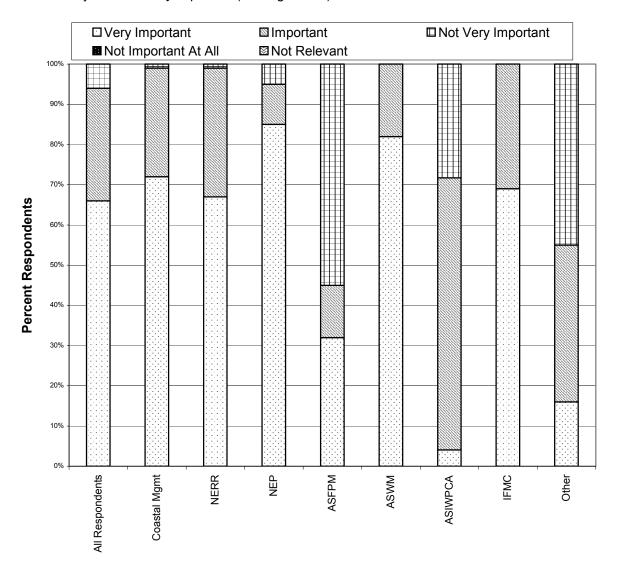


Figure 5-1. Comparison of Habitat Change Across Programs

Important Habitat Types

The top-ranked habitat type important to CZM (69%), NERR (72%), and ASIWPCA (87%) was *uplands*. ASWM (86%) found *freshwater wetlands* to be most important; NEP (76%) and Others (100%), salt marshes; ASFPM (65%), *engineered shorelines*; and AFMC (58%) identified both *shellfish beds/reefs* and *seagrass beds*.

Habitat Change Research Needs

Six of the eight programs ranked *cumulative impact assessment* as the top research needs to address habitat change: CZM (74%), NERR (67%), ASFPM (84%), ASWM (82%), ASIWPCA

(81%), and AFMC (89%). ASFPM (84%) also selected evaluation of the effectiveness of restoration/protection techniques as a priority research need. NEP (60%) selected the valuation of social, ecological, and economic factors, and Others (100%) selected identification of causes of loss/gain.

Types of Information Needed To Address Habitat Change

Trends analysis was selected as the top information need by seven of the eight program groups surveyed: CZM (79%), NERR (85%), NEP (84%), ASFPM (100%), ASWM (96%), ASIWPCA (72%), and Others (100%). AFMC (82%) and Others (100%) selected ecological and physical baselines and inventories.

Improved Technologies To Address Habitat Change

The top-ranked responses of technology needs to address habitat change for NEP (71%), ASWM (61%), and AFMC (68%) was high resolution remote sensing. CZM (48%) and Others (100%) selected low cost remote sensing platforms to measure change. ASFPM (48%) selected long term monitoring equipment and ASIWPCA (65%) selected models that predict and simulate.

5-11 Comparison of Top-ranked Land Use Responses Across Programs

Importance of Land Use

Five of the eight program groups' top ranked response selected land use as a *very important* coastal management issue: CZM (82%), NERR (69%), NEP (68%), ASFPM (86%), ASIWPCA (66%), and Other (55%). ASWM (54%), and AFMC (49%) agreed it was an *important* issue.

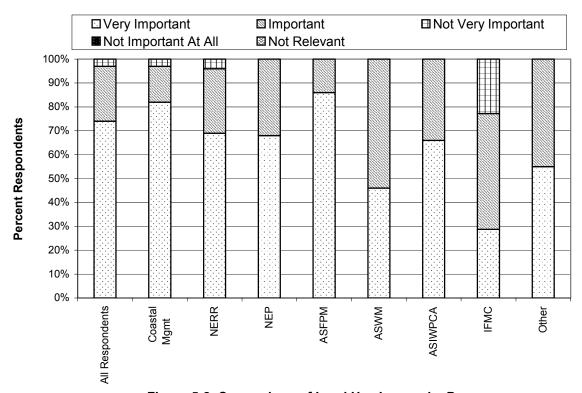


Figure 5-2. Comparison of Land Use Issues by Program

Important Land Use Issues

The top-ranked land use issue for the CZM (78%), ASFPM (100%), AFMC (82%), and Others (100%) was managing the effects of coastal development. NERR (84%) and ASWM (96%) identified integrating watershed/ecosystem planning at the state and local level; NEP (78%) and ASIWPCA (89%) identified reducing the impacts of nonpoint source pollution.

Land Use Research Needs

CZM (64%), ASFPM (86%), ASWM (78%), and AFMC (93%) selected the top-priority research need to address land use issues over the next five years was to identify cumulative effects of development. NEP (76%) and ASIWPCA (65%) would like to see research to quantify impacts of land use on water quality; NERR (84%) identified that developing indicators that link land use with ecosystem impact was a top research priority; Others (84%) top research priority was to provide socioeconomic cost/benefit analysis of various land use options.

Information Needed To Address Land Use Issues

NERR (64%), NEP (63%), ASFPM (72%), and ASIWPCA (97%) selected *land use change* analysis as the top information need to address land use issues over the next five years. CZM (60%) and ASWM (67%) selected *more geospatial data for GIS*; AFMC (70%) selected access, retrieval, and analysis of data; and Others (100%) selected *land suitability analysis*.

Improved Technologies To Address Land Use Issues

CZM (75%), ASFPM (85%), and ASIWPCA (60%) selected *customized GIS* as the top-ranked research activity to address land use change issues over the next five years. NEP (75%), AFMC (93%), and Others (100%) found *affordable remote sensing* to be a priority technology for their land use issues, and NERR (89%) and ASWM (85%) identified *improved models that simulate or predict*.

5-12 Comparison of Top-ranked Nutrient Enrichment Responses Across Programs

Importance of Nutrient Enrichment

Top-ranked responses from CZM (82%), NEP (68%), ASFPM (86%), and ASIWPCA (53%) identified nutrient enrichment issues as *very important* (see Figure 5-3). NERR (39%) and AFMC (43%) found it was *important*; ASWM (58%) and Others (45%) agreed nutrient enrichment was *not very important*.

Important Nutrient Enrichment Sources

The top-ranked nutrient enrichment source for NERR (59%), NEP (71%), ASFPM (100%), ASIWPCA (98%), and Others (100%) is *stormwater sources*. CZM (78%), ASWM (73%), AFMC (69%), and Others (100%) agreed the top source is *urban runoff*.

Nutrient Enrichment Research Needs

Six of the eight programs identified *source identification/tracking* as the top research need for nutrient enrichment issues: CZM (86%), NERR (66%), NEP (73%), ASWM (100%), ASIWPCA (94%), and Others (100%). ASFPM (100%) identified *cumulative impact assessments*, and AFMC (100%) identified research on the *effects of nutrient enrichment on species/communities* as top priority.

Nutrient Enrichment Information Needs

CZM (76%), NEP (68%), ASFPM (100%), and ASIWPCA (100%) agreed that more *information* on *BMP effectiveness or BMP cost/benefit analysis* is a top priority. NERR (75%) and ASWM (64%) found *information on land use analysis* to be priority; AFMC (78%) thought *access*, *retrieval and analysis of data* to be priority for nutrient enrichment issues, and Others identified *short-term forecasts of nutrient loading*.

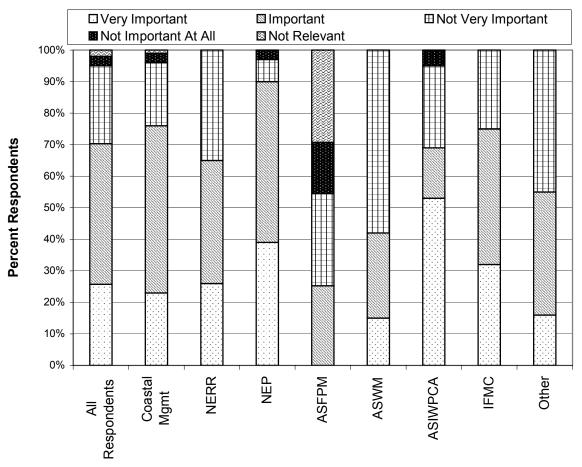


Figure 5-3. Nutrients Issues Across Programs

Nutrient Enrichment Technology Needs

CZM (55%), ASFPM (100%), ASWM (100%), AFMC (85%), and Others (71%) identified *cost* effective long-term monitoring/sampling equipment to be a priority technology need. NERR (51%) ASIWPCA (69%), and Others (71%) identified improved models to simulate and predict; NEP (58%) identified more effective mitigation strategies as the top technology need; and Others (71%) identified enhanced remote sensing.

5-13 Comparison of Top-ranked Environmental Contamination Responses Across Programs

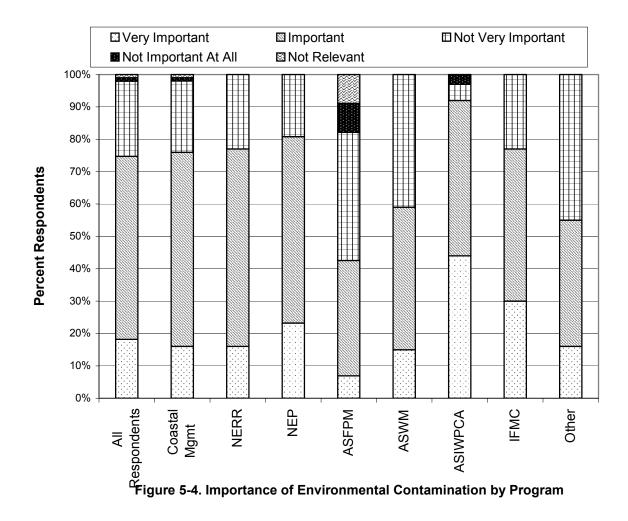
Importance of Environmental Contamination Issues

Six of the eight programs' top-ranked responses identified environmental contamination as an *important* issue: CZM (60%), NERR (61%), NEP (57%), ASWM (44%), ASIWPCA (48%), AFMC (47%), and Others (47%) (see Figure 5-4). ASFPM (40%) found it to be *not very important*.

Important Types of Environmental Contamination

NEP (66%), ASIWPCA (68%), and AFMC (68%) identified *pathogens* as the most important type of environmental contamination. *Sewage* was identified as most important by NERR (61%) and ASFPM (100%). CZM (51%) and ASWM (76%) identified *mercury*, and Others (100%) identified *other* types.

Environmental Contamination Research Needs


Respondents from CZM (75%), NERR (53%), ASWM (100%), and ASIWPCA (86%) selected *identification of sources* as the top research need to address issues related to environmental contamination over the next five years. NEP (69%) selected *effectiveness of remediation techniques*, ASFPM (70%) and AFMC (93%) selected *cumulative impact assessments*, and Others (84%) selected *toxicity analysis*.

Environmental Contamination Information Needs

NERR (69%), ASWM (87%), ASIWPCA (71%), and Other (100%) identified *explanations of interactions among contaminants* as a top information need to address environmental contamination issues over the next five years. CZM (54%) and NEP (75%) identified the top need to be *more remediation options*; ASFPM (87%) and AFMC (77%), *economic impact evaluations*, and ASWM (87%) identified *more geospatial data for GIS* in a tie for their top information need.

Environmental Contamination Technology Needs

CZM (58%) and NEP (75%) selected *improved remote sensing/sampling technologies* as the top technology needed to address environmental contamination issues over the next five years. NERR (61%), ASFPM (70%), and AFMC (77%) identified *improved models that simulate and predict*; ASWM (87%) identified *reliable DNA fingerprinting*; ASIWPCA (56%) identified *improved remote sensing/sampling technologies*; and Others (63%) identified *rapid/real time detection*.

5-14 Comparison of Top-ranked Nonindigenous Species Responses Across Programs

Importance of Nonindigenous Species Issues

Top-ranked responses from CZM (37%), NEP (55%), and AFMC (61%) identified nonindigenous species issues as *important* to coastal management (see Figure 5-5). NERR (38%) identified it as *very important*; ASWM (49%), ASIWPCA (74%) and Others (100%), *not very important*; and ASFPM (38%) as *not relevant*.

Important Nonindigenous Species Issues

Five of the eight programs identified the top nonindigenous species issue over the next five years to be *effects on native species and communities*: CZM (74%), NERR (88%), ASFPM (100%), ASIWPCA (100%), and AFMC (97%). NEP (82%) identified *preventing introductions* as an important issue, and ASWM (90%) identified *eradicating or controlling species*.

Nonindigenous Species Research Needs

NERR (79%), NEP (68%), ASFPM (74%), and ASWM (76%) selected *early detection of species* as the top research activity for nonindigenous species issues over the next five years. CZM (58%) identified the top research need to be effectiveness of BMPs; ASIWPCA (78%) identified susceptibility factors for coastal invasive introductions; and Others (59%), identified the need to understand *human behaviors leading to introductions*, as a priority research need.

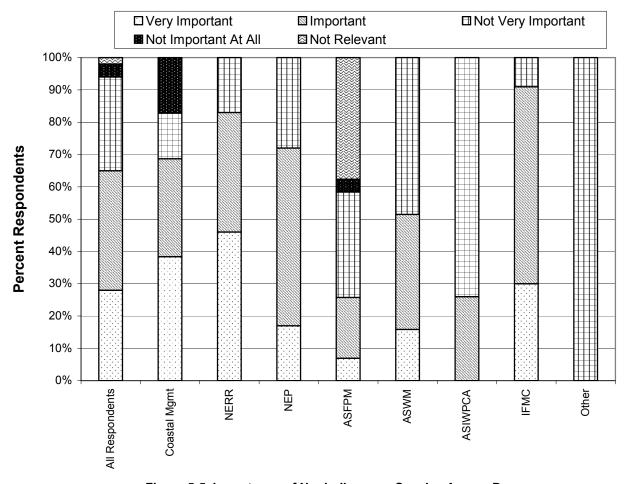


Figure 5-5. Importance of Nonindigenous Species Across Programs

Nonindigenous Species Information Needs

CZM (79%), NERR (80%), NEP (90%), and ASWM (94%) selected *ecosystem inventory* as the top information need for nonindigenous species issues over the next five years. ASFPM (74%) and ASIWPCA (78%) selected *land use assessment*. AFMC (75%) identified *access, retrieval and analysis of data* as a top priority.

Nonindigenous Species Technology Needs

Rapid detection and monitoring was the most important technology need over the next five years identified by NERR (89%), NEP (90%), ASFPM (100%), and ASIWPCA (100%). CZM (73%) and ASWM (100%) selected *treatment or removal technologies*; and AFMC (85%) selected *prevention techniques*, as a priority technology need.

5-15 Comparison of Top-ranked Coastal Hazards Responses Across Programs

Importance of Coastal Hazard Issues

Top-ranked responses from CZM (44%) and ASFPM (74%) considered coastal hazards issues to be *very important* (see Figure 5-6). Top-ranked responses were *not very important* by NERR (52%), NEP (51%), ASIWPCA (66%), AFMC (66%), and by the Other programs (55%). The top-ranked response from ASWM (40%) considered coastal hazard issues *not relevant* to their work.

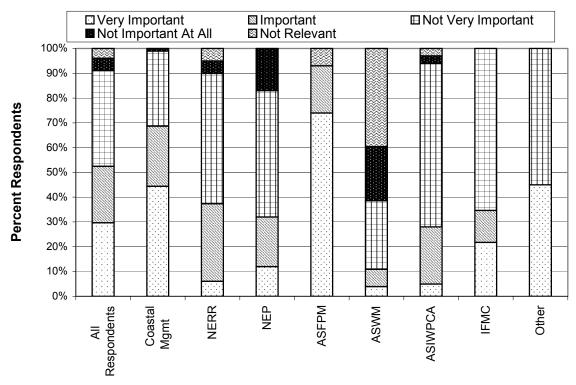


Figure 5-6. Importance of Coastal Hazards Across Programs

Important Coastal Hazard Issues

Managing areas subject to erosion was identified as the most important coastal issue by CZM (93%), NERR (84%), NEP (65%), ASWM (100%), and by the Other programs (100%). ASFPM (100%), ASIWPCA (82%), and Other programs (100%) ranked managing areas subject to flooding (100%) as its priority issue. Managing for effects of shoreline stabilization was top ranked by ASWM (100%), AFMC (64%), and Other programs (100%). AFMC (64%) also identified as a priority, understanding economic impacts.

Research Needs for Coastal Hazards

Risk and vulnerability assessments were identified by CZM (73%), NERR (64%), NEP (64%), ASFPM (100%), AFMC (100%), and Other programs (100%) as the highest priority research need to address coastal hazards issues over the next five years. NERR (64%) also identified shoreline characterizations as a top need, as did ASWM (100%) and ASIWPCA (90%).

Information Needs for Coastal Hazards

Design standards for shoreline management technologies was identified by NERR (70%), NEP (64%), ASWM (100%), ASIWPCA (90%), and AFMC (64%) as the highest priority information need to address coastal hazard issues over the next five years. NEP (64%) and AFMC (64%) also identified geomorphologic studies. CZM (68%), ASFPM (73%), and Other programs (100%) desire more geospatial data for GIS. The top priority for ASIWPCA (90%) and Other programs (100%) was state of knowledge reports/case studies. AFMC (64%) also identified information on spatial and temporal demographics; and Other programs (100%) also would like to see socioeconomic impact assessments.

Technology Needs for Coastal Hazards

NERR (81%), ASFPM (100%), ASWM (100%), ASIWPCA (100%), and the Other (100%) programs identified *Improved models that simulate and predict* as a priority technology need to address issues related to coastal hazards over the next five years. *Alternative shoreline protection technologies* was identified by CZM (75%), NEP (65%), ASWM (100%), AFMC (100%), and Others (100%) as an important technology need. Both AFMC (100%) and the Other programs (100%) also selected *Impact zone identification*, as a priority need.

5-16 Comparison of Top-ranked Sediment Management Responses Across Programs

Importance of Sediment Management Issues

Top-ranked responses from CZM (49%), NERR (49%), ASWM (51%), ASIWPCA (55%), and AFMC (57%) identified sediment management issues as *important* (see Figure 5-7). NEP (44%) and ASFPM (48%) ranked these issues as *not very important*. Top-ranked responses from Other programs (45%) identified sediment issues as *very important*.

Important Sediment Management Issues

Managing the reuse of material was ranked as the most important sediment management issue over the next five years by AFMC (100%). CZM (58%), NERR (80%), NEP (55%), ASFPM (83%), and ASWM (58%) identified *identifying sediment transport patterns* as the most important sediment management issue. *Identifying disposal options* was priority for ASIWPCA (60%); and Other programs (100%) prioritized *managing sediment resources regionally*.

Research Needs for Sediment Management

ASFPM (81%), AFMC (100%), and Other (100%) programs think that cost benefit analysis would best address the most important sediment management issues over the next five years. Improved beneficial uses was identified by CZM (51%) and NEP (61%) as the most important research activity. ASWM (89%) identified effects from dredging as their priority. Analysis of impacts of engineering solutions was also selected by CZM (51%) and ASFPM (81%) in addition to other activities as the primary research activity. NERR (55%) and ASIWPCA (54%) identified prioritize restoration/protection based on max benefits for cost, as their top research need

Information Needs for Sediment Management

Sediment transport patterns were identified as the primary information need to address sediment management issues over the next five years by CZM (62%), NERR (78%), ASWM (95%), ASIWPCA (59%), and Other programs (100%). NEP (60%), AFMC (72%) and Others (100%) selected *improved methods and models for quantifying sediment budgets* as their primary information need. ASFPM (70%) identified *shoreline characterizations* as their priority information need.

Technology Needs for Sediment Management

Top-ranked responses from NEP (65%), ASFPM (87%), ASIWPCA (75%), and AFMC (83%) identified *improved models that simulate and/or predict* as their priority technology need to address sediment management issues over the next five years. *Methods for quantifying sediment budgets* were selected by both NERR (78%) and ASFPM (87%) as their primary need. CZM (63%) and ASWM (79%) identified *treatment technologies*, and Other programs (100%) identified *engineering solutions*, as their most important technology need.

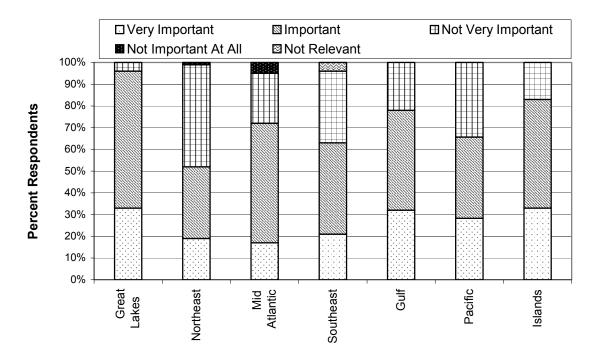


Figure 5-7. Importance of Sediment Management Across Regions

5-17 Comparison of Top-ranked Ocean Management Responses Across Programs

Importance of Ocean Management Issues

The top-ranked response from AFMC (52%) identified ocean management issues as very important (see Figure 5-8). Top-ranked responses from CZM (28%) and NERR (35%) found them to be important; NEP (61%), ASFPM (33%), ASIWPCA (63%), and Other programs (55%) identified ocean management issues to be not very important; and ASWM (42%) ranked them as not relevant.

Important Ocean Management Issues

Six of the eight programs selected *loss of habitat or biodiversity* as the most pressing ocean management issue over the next five years: CZM (65%), NERR (86%), NEP (84%), ASIWPCA (100%), AFMC (93%), and Other programs (100%). ASWM (100%) and Other programs (100%) identified *reconciling conflicting uses* to be the most important issue. ASFPM (100%) and ASWM (100%) respondents think that permitting of emerging uses such as transportation/transmission corridors, aquaculture, energy production, etc. is most important; ASWM (100%) also identified *design and implementation of marine managed areas*, and Other programs (100%) think that *accommodating compatible economic activities* is a priority issue.

Research Needs for Ocean Management

CZM (57%), ASFPM (74%), ASIWPCA (74%), and AFMC (67%) selected *cumulative impact* assessments as their priority research need in ocean management over the next five years. *Ecological characterizations* was selected as the most important research need by NERR (65%), NEP (57%), and ASWM (100%). ASWM also selected *Marine Managed Area effectiveness* (100%) and *feasibility of alternative energy sources* (100%) as priorities. Other programs (100%) selected *risk assessments*, *state of knowledge reports/case studies* and *economic assessments* as the most important ocean management research needs.

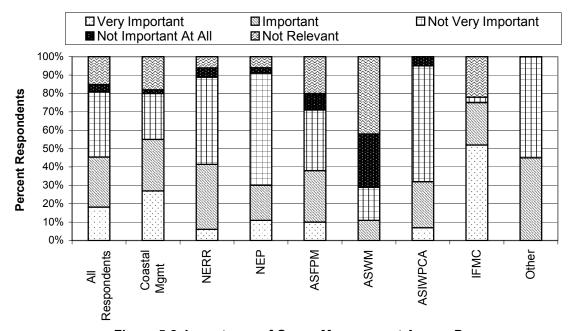


Figure 5-8. Importance of Ocean Management Across Programs

Information Needs for Ocean Management

More geospatial data for GIS was selected by CZM (81%), NERR (61%), NEP (78%), ASFPM (100%), ASIWPCA (100%), and Other (100%) as their most important information need to address ocean management issues over the next five years. ASIWPCA (100%) and Other programs (100%) additionally selected access, retrieval and analysis of data as a priority along with AFMC (93%). ASWM (100%) and Other programs (100%) identified state of knowledge reports/case studies as its most important information need for ocean management.

Technology Needs for Ocean Management

Improved models that simulate and/or predict was selected by NERR (75%), ASFPM (90%), ASWM (100%), ASIWPCA (100%) and Other programs (100%) as the most important technology need to address ocean management issues over the next five years. ASWM (100%) additionally selected nondestructive bottom fishing gear (100%) and energy technology (100%). AFMC also selected nondestructive bottom fishing gear (65%) as its priority. Both CZM (50%) and Other programs (100%) selected mapping and data acquisition, as their primary technology need. No impact aquaculture techniques were the priority technology need for NEP (66%) and Other programs (100%) to address ocean management.

5-18 Comparison of Top-ranked Marine Debris Responses Across Programs

Importance of Marine Debris Issues

ASFPM's (65%) top-ranked response considered issues related to marine debris to be *important* whereas ASWM's (52%) top-ranked responses considered them to be not relevant. The top responses from CZM (52%), NERR (75%), NEP (64%), ASIWPCA (54%), AFMC (51%), and Other programs (100%) considered marine debris issues to be *not very important* (see Figure 5-9).

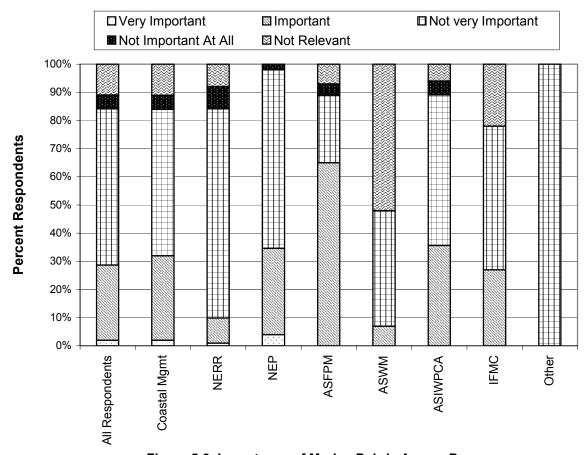


Figure 5-9. Importance of Marine Debris Across Programs

Important Marine Debris Issues

Source identification was considered the most important marine debris issue over the next five years by ASFPM (37%) and AFMC (100%). AFMC (100%) also considered wildlife entanglement or ingestion to be a priority issue., and ASFPM (37%) also considered other issues a priority. CZM (88%), NERR (81%), and NEP (75%) consider the most important issue to be aesthetic/habitat degradation. In addition, ASFPM (37%) identified other issues as the most important. ASIWPCA (59%) selected public health impacts as the most important issue related to marine debris.

Research Needs for Marine Debris

CZM (69%) and ASIWPCA (100%) consider *source tracking* to be the primary research need to address marine debris issues over the next five years. NEP (59%) and ASFPM (66%) identify *public education effectiveness* as a priority. *Biodegradable products* (*e.g.*, *packing materials*) is

selected by NERR (56%), and *biodegradable gear* by AFMC (100%), as the most pressing research needs.

Information Needs for Marine Debris

Public outreach and education is the information need identified by all of the programs including CZM (96%), NERR (94%), NEP (79%), ASFPM (100%), ASIWPCA (100%), and AFMC (100%).

Technology Needs for Marine Debris

Debris removal technology is selected by NERR (89%), ASFPM (81%), and ASIWPCA (68%) as the most pressing technology need to address marine debris issues over the next five years. Disposal or reuse technologies was also selected by CZM (59%) and NEP (87%). AFMC (100%) selected gear modifications to make less harmful to non target species and habitat as its priority technology need.

6 SURVEY RESULTS BY STATE

6-1 Introduction

This section presents the results of the survey on a state-by-state basis. Those states that participated in the survey, and the number of responses from each state, are listed in Table 6-1. It is noted that some state programs or agencies opted to distribute the survey to several individuals, and then consolidate answers into a single response. The state results that follow are arranged by region, beginning with the Great Lakes.

Survey respondents were asked to indicate the importance of nine separate coastal resource management issues over the next five years. Tables 5-2 to 5-9 show the percentage of respondents in each of the seven *programs* who found the issues of habitat change, land use, nutrient enrichment, environmental contamination, nonindigenous species, coastal hazards, sediment management, ocean management, and marine debris to be either *very important* or *important* to their programs over the next five years. These tables also identify the top-ranked research, information, and technology needs for each.

The discussions accompanying each table highlight views expressed by the respondents based on the top-ranked responses. With regards to the responses from the surveys related to *continuous observation and monitoring variables*, respondents were not asked to select from the list those variables they considered most important, but rather to select all variables that they considered necessary to address a particular issue. Because there was no prioritization of these variables, they are not discussed in the body of this report, and instead can be found in the tables in the appendices.

Table 6-1. States and Territories that Participated in Survey

Region	States and Territories with n	umber of responses shown in ().
Great Lakes ¹	Indiana (2) Michigan (2) Minnesota (2)	Ohio (2) Wisconsin (4) Pennsylvania (1)
Northeast	Connecticut (6) Massachusetts (16) Maine (17)	New Hampshire (5) New York (10) Rhode Island (6)
Mid-Atlantic	Delaware (15) Maryland (5)	New Jersey (7) Virginia (9)
Southeast	Florida (16) Georgia (4)	North Carolina (6) South Carolina (29)
Gulf	Alabama (9) Louisiana (4)	Mississippi (3) Texas (8)
Pacific	Alaska (7) California (16)	Oregon (6) Washington (5)
Islands ²	American Samoa (1) Commonwealth of Northern Marianas Islands (3)	Guam (1) Hawaii (2) Puerto Rico (1)

¹Illinois does not participate in the National Coastal Management Program

²The US Virgin Islands did not respond to the survey

6-2 Indiana's Priorities

The top-ranked management topics that Indiana (Table 6-2) considers to be very important or important over the next five years are *habitat change* and *land use* (100%).

The top-ranked research and information needs identified for habitat change are *effects of human values and choices* and *more geospatial data for GIS* (100%). *Habitat restoration BMPs* is the priority technology need.

Land use top-ranked research need is to *identify growth patterns/land use conversion patterns* (100%). Both *land use classification* and *more geospatial data for GIS* rank as the top information needs (100%). *Improved models is* the highest ranked technology needs (100%).

Table 6-2. Top-ranked Responses from Indiana

Management Is Ranked Very Imp or Importar	y Important Need Need Need		mation	Top-ranked Technolog	y Need		
Habitat change	100%	Effects of human values and choices	100%	More geospatial data for GIS	100%	Habitat restoration BMPs	100%
Land use	100%	Identify growth patterns/land use conversion patterns	100%	Land use classification More geospatial data for GIS	100% 100%	Improved models	100%
Environmental contamination	100%	Bioindicators	100%	TMDL guidelines More geospatial data for GIS	100% 100%	Reliable DNA fingerprinting Improved treatment or removal technologies	100% 100%
Sediment management	100%	Analysis of impacts of engineering solutions	100%	Beach profile data Quantification of sediment budgets	100%	Improved models Engineering solutions Containment and stabilization technologies Treatment technologies Remote sampling	50% 50% 50% 50%
Nutrient enrichment	50%	Bioindicators Efficacy of education and outreach efforts	100% 100%	Data access/analysis BMP effectiveness or CBA	100%	Cost effective long term monitoring/sampling Improved treatment technologies Enhanced remote sensing	100% 100% 100%
Nonindigenous species	50%	Cumulative impact assessment Effectiveness of BMPs	100%	Ecosystem inventory More geospatial data for GIS	100%	Rapid detection and monitoring Treatment or removal technologies	100% 100%

6-3 Michigan's Priorities

The six top-ranked management topics that Michigan (Table 6-3) considers to be very important or important over the next five years are *land use*, *habitat change*, *nutrient enrichment*, *sediment management*, *nonindigenous species*, and *environmental contamination* (100%). Land use and habitat change match the national top-ranked topics.

The top-ranked research and information needs identified for land use change are socioeconomic cost-benefit analyses of land use options, developing indicators that link land use with ecosystem impact, and more geospatial data for GIS (100%). The technology needs are change detection sensors, affordable remote sensing, and customized GIS (100%).

The top-ranked research and information needs for habitat change are identification of habitat health indicators, identification of causes of loss/gain, evaluation of the effectiveness of restoration/protection technique, provision of ecological characterizations, valuation of socioeconomic and ecological factors, determining effects of human values and choices (50%), development of ecological baselines and inventories, and more geospatial data for GIS (100%). The technology need is low cost remote sensing platforms (100%).

Table 6-3. Top-ranked Responses from Michigan

Management I Ranked Very Im or Importa	portant	Top-ranked Researc	h Need	Top-ranked Inforr Need	nation	Top-ranked Technology Need	
Land use	100%	Socioeconomic cost benefit analysis of land use options	100%	More geospatial data for GIS	100%	Change detection sensors	100%
		Develop indicators	100%			Affordable	100%
		that link land use with ecosystem impact	100 /6			remote sensing Customized GIS	100%
Habitat change	100%	Identify indicators of habitat health	50%	Baselines and inventories	100%	Low cost remote sensing	100%
		Identify causes of loss/gain	50%	More geospatial data for GIS	100%	platforms	
		Evaluate effectiveness of restoration/protecti on technique	50%				
		Provide ecological characterization	50%				
		Valuation of socioeconomic and ecological factors	50%				
		Effects of human values and choices	50%				
Nutrient enrichment	100%	Source identification	100%	Data access/analysis	100%	Cost effective long term monitoring	100%
Sediment management	100%	Improved beneficial uses	100%	Beach profile data Quantification of sediment budgets	100% 100%	Methods for quantification of sediment budgets	100%
				-		Containment and stabilization technologies	100%

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Nonindigenous species	100%	Early detection of species	100%	Ecosystem inventory	100%	Rapid response techniques	100%
		Susceptibility factors Effectiveness of BMPs	100% 100%	More geospatial data for GIS	100%	Treatment or removal technologies	100%
Environmental contamination	100%	Source ID Public health risk	100% 100%	Economic impact evaluations	100%	Rapid/real time detection	100%
		assessment		Remediation options	100%		
Coastal hazards	50%	Shoreline characterizations	100%	Design standards for shoreline	100%	Impact zone identification	100%
		Risk and vulnerability	100%	management technologies		Alternative shoreline	100%
		assessments Effects of climate	100%	Geomorphologic studies	100%	protection technologies	
		change		More geospatial data for GIS	100%	3.13	

6-4 Minnesota's Priorities

Minnesota ranks habitat change, land use, environmental contamination, sediment management, and nonindigenous species (100%) as the top management topics (Table 6-4).

The most important research needs for habitat change are *cumulative impact assessments* (100%). The information need is *standardized methodologies and reporting* (100%). The major technological need is identified as *habitat restoration BMPs* (100%).

The top-ranked research, information and technology needs identified for land use change are the development of indicators that link land use with ecosystem impacts (100%), data access/analysis (100%) and customized GIS (100%).

Table 6-4. Top-ranked Responses from Minnesota

Management I Ranked Very Imp or Importa	oortant	Top-ranked Researc	h Need	Top-ranked Info Need	rmation	Top-ranked Technology Need		
Habitat change	100%	Cumulative impact assessment	100%	Standardized methodologie s and reporting	100%	Habitat restoration BMPs	100%	
Land use	100%	Develop indicators that link land use with ecosystem impact	100%	Data access/analy- sis	100%	Customized GIS	100%	
Environmental contamination	100%	Cumulative impact assessments	100%	Interactions among contaminants	50%	Improved treatment or removal	100%	
				Economic impact evaluations	50%	technologies		
				Remediation options	50%			
				More geospatial data for GIS	50%			
				Cost/benefit analysis of remediation	50%			
Sediment management	100%	Effectiveness of confinement techniques	100%	Geospatial data for GIS	100%	Engineering solutions Containment	100% 100%	
		Analysis of impacts of engineering solutions	100%			and stabilization technologies	10070	
Nonindigenous species	100%	Cumulative impact assessment	100%	Data access/analy-	100%	Prevention	100%	
species		Effectiveness of BMPs	100%	sis More geospatial	100%	techniques		
		Human behaviors leading to introductions	100%	data for GIS				
Nutrient enrichment	50%	Cumulative impact assessments	100%	Data access/analy-	100%	Improved treatment	100%	
		Source ID Efficacy of education and outreach efforts	100% 100%	sis BMP effectiveness or CBA	100%	technologies Effective mitigation strategies	100%	
				More geospatial data for GIS				

6-5 Ohio's Priorities

The six top-ranked management topics that the Ohio (Table 6-5) considers to be very important or important over the next five years are *habitat change, land use, nonindigenous species, nutrient enrichment, coastal hazards,* and *sediment management* (100%). Habitat and land use match the national top-ranked responses.

The top-ranked research need identified for habitat change is *cumulative impact assessments* (100%). The information and technology needs are *trends analysis, baselines and inventories* (100%) *habitat restoration BMPs* and *new restoration techniques* (100%).

The top-ranked research needs to address land use change are to identify the cumulative impacts of development, develop indicators that link land use with ecosystem impacts and quantifying the impacts of land use change on water quality, socioeconomic cost-benefit analyses of land use options, calculation of pollutant removal efficiencies, and identification of growth/land conversion patterns (50%). The information needs are land use change analyses (100%). The top technology need is improved prediction or simulation models (100%).

Table 6-5. Top-ranked Responses from Ohio

Management I Ranked Very Imp or Importar	oortant	Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Habitat change	100%	Cumulative impact assessments	100%	Trends analysis Baselines and inventories	100% 100%	New restoration techniques Habitat restoration BMPs	100% 100%
Land use	100%	Identify cumulative impacts of development	50%	Land use change analysis	100%	Improved models	100%
		Socioeconomic CBA of land use options	50%				
		Indicators that link land use with ecosystem impact	50%				
		Quantify impact of land use on water quality	50%				
		Calculate pollutant removal efficiencies	50%				
		Identify growth/land conversion patterns	50%				
Nonindigenous species	100%	Susceptibility factors	100%	Ecosystem inventory	100%	Rapid detection and monitoring	100%
						Treatment or removal technologies	100%
Nutrient enrichment	100%	Cumulative impact assessments	100%	BMP effectiveness or CBA	100%	Effective mitigation strategies	100%
		Effects on species/communit ies	100%	Land use analysis	100%	3 • • • • • • • • • • • • • • • • • • •	
Coastal hazards	100%	Risk and vulnerability assessments	100%	Design standards for shoreline management	100%	Alternative shoreline protection	100%
		Trends analysis	100%			technologies	

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Sediment management	100%	Analysis of impact of engineering solutions	100%	Data access/analysis Sediment transport patterns	50% 50%	Methods for quantifying sediment	100%
				Shoreline characterizations	50%	budgets	
				Case studies	50%		
				Quantification of sediment budgets	50%		
				Geospatial data for GIS	50%		
Environmental contamination	100%	Source ID Test and validate assessment techniques	100% 100%	Remediation options	100%	Improved models	100%
Ocean management	50%	Economic assessments	100%	Other	100%	Improved models	100%
· ·		Ecological characterizations	100%				
		Other	100%				
Marine debris	50%	Public education effectiveness	100%	Geospatial data for GIS	100%	Debris removal technology	100%
		Transport of debris	100%	Public outreach and education	100%	Disposal or reuse technologies	100%

6-6 Pennsylvania's Priorities

The nine top-ranked management topics that Pennsylvania (Table 6-6) considered to be very important or important over the next five years are *habitat change*, *land use*, *environmental contamination*, *nutrient enrichment*, *nonindigenous species*, *sediment management*, *ocean management*, *coastal hazards*, and *marine debris* (100%). Land use and habitat change match the national top-ranked topics.

The top-ranked research needs identified for habitat change are *cumulative impact assessments*, *rate of freshwater inflow*, and *effects of human values and choices* (100%). The information and technology needs are *trends analysis*, *baselines and inventories*, *success stories* (100%), *habitat restoration BMPs*, *low cost remote sensing* and *long term monitoring equipment* (100%).

The top-ranked research needs to address land use change are to *Other* (100%). The information needs are build out/infill analyses and land suitability analysis (100%). The top technology needs are affordable remote sensing, customized GIS, and QA/QC of existing technology (100%).

Table 6-6. Top-ranked Responses from Pennsylvania

Management I Ranked Very Imp or Importar	oortant	Top-ranked Researc	h Need	Top-ranked Inform Need	ation	Top-ranked Techr Need	ology
Habitat change	100%	Cumulative impact assessment	100%	Trends analysis Baselines and	100% 100%	Low cost remote sensing	100%
		Rate of freshwater inflow Effects of human	100% 100%	inventories Success stories	100%	platforms Habitat restoration	100%
		values and choices				BMPs Long term monitoring equipment	100%
Land Use	100%	Cumulative effects of development	100%	Build out/infill analysis	100%	Affordable remote sensing	100%
		Socioeconomic CBA of land use options Other	100% 100%	Land suitability analysis	100%	Customized GIS QA/QC of existing	100% 100%
Environmental contamination	100%	Source ID Bioindicators	100% 100%	Epidemiology of contaminants	100%	technology Rapid/real time detection	100%
		Toxicity analysis	100%	Explanation of interaction among contaminants	100%	Improved remote sensing/sampli ng techniques	100%
				CBA of remediation	100%	Improved treatment or removal technologies	100%
Nutrient enrichment	100%	Cumulative impact assessments	100%	Data access/analysis	100%	Improved models Improved	100% 100%
		Source ID Efficacy of education	100% 100%	BMP effectiveness or CBA	100%	treatment technologies	10070
		and outreach efforts		Land use analysis	100%	Enhanced remote sensing	100%
Nonindigenous species	100%	Early detection of species	100%	Ecosystem inventory	100%	Rapid detection and monitoring	100%
		Effectiveness of BMPs	100%	Success stories	100%	Rapid response techniques	100%
						Prevention techniques	100%
Sediment management	100%	CBA Improved beneficial	100% 100%	Sediment transport patters	100%	Improved models Engineering	100% 100%
		uses Analysis of impacts of engineering solutions	100%	Beach profile data Quantification of sediment budgets methods	100% 100%	solutions Methods for quantifying sediment budgets	100%

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Inform Need	Top-ranked Information Need		ology
Ocean management	100%	Cumulative impact assessments	100%	More geospatial data for GIS	100%	Energy technology	100%
		Ecological characterizations	100%	Data access/analysis	100%	Other	100%
		Risk assessments	100%	Case studies	100%		
Coastal hazards	100%	Shoreline characterizations	100%	Design standards for shoreline	100%	Improved models Alternative	100% 100%
		Trends analysis Risk attitudes,	100% 100%	management technologies		shoreline protection	
		values, and perceptions		Geomorphologic studies	100%	technologies Advanced	100%
				More geospatial data for GIS	100%	detection or warning technologies	
Marine debris	100%	Source tracking	100%	Debris inventory	100%	Gear	50%
		Public education effectiveness Biodegradable	100% 100%	Public outreach and education	100%	modifications Disposal or reuse technologies	50%
		products				Other	50%

6-7 Wisconsin's Priorities

The top-ranked management topics that Wisconsin (Table 6-7) considers to be very important or important over the next five years are *habitat change*, *land use*, *environmental contamination*, *and coastal hazards* (100%).

Habitat change top-ranked research needs are *cumulative impact assessments*, *effectiveness of restoration/protection techniques*, and *valuation of socioeconomic and ecological factors* (75%). The top information needs are *standardized methodologies and reporting*, and *ecological baselines and inventories* (75%). The top technology needs are *high resolution remote sensing*, *rapid ecological assessment and evaluation*, *habitat restoration BMPs*, and *long-term monitoring equipment* (50%).

Table 6-7. Top-ranked Responses from Wisconsin

Management I Ranked Very Imp or Importar	oortant	Top-ranked Research Need		Top-ranked Inform Need	nation	Top-ranked Techr Need	nology
Habitat change	100%	Cumulative impact assessment Evaluate effectiveness of restoration/protecti on technique	75% 75%	Standardized methodologies and reporting Baselines and inventories	75% 75%	High resolution remote sensing Rapid ecological assessment and evaluation technology	50% 50%
		Valuation of socioeconomic and ecological factors	75%			Habitat restoration BMPs Long term monitoring	50% 50%
Land Use	100%	Socioeconomic CBA of land use options	75%	Standardized methodologies	75%	equipment Improved models Customized GIS	75% 75%
Environmental contamination	100%	Cumulative impact assessments Public health risk assessment	75% 75%	Remediation options	75%	Improved models	75%
Coastal hazards	100%	Risk and vulnerability assessments	100%	Design standards for shoreline management technologies Socioeconomic impact assessments	75% 75%	Improved models	100%
Sediment management	75%	Analysis of impacts of engineering solutions	100%	Shoreline characterizations	100%	Improved models	100%
Nonindigenous species	75%	Human behaviors leading to introductions	100%	Ecosystem inventory Success stories	67% 67%	Rapid detection and monitoring Prevention techniques	67% 67%
Nutrient enrichment	75%	Cumulative impact assessments Source ID Efficacy of education and outreach efforts	67% 67% 67%	BMP effectiveness or CBA	100%	Effective mitigation strategies	100%
Ocean management	25%	Changes in community composition	100%	Geospatial data for GIS Data access,	100% 100%	Improved models No impact aquaculture	100% 100%
		Cumulative impact assessment Case Studies	100% 100%	retrieval, analysis Case Studies	100%	Mapping and data acquisition	100%

6-8 Connecticut's Priorities

The top-ranked management topics that Connecticut (Table 6-8) considered to be very important or important over the next five years are *habitat change* (100%), *land use* (100%) and *nutrient enrichment* (100%).

The top-ranked research and information needs identified for habitat change are the *identification of the* causes of loss or gain (83%) and trends analysis (100%). Both high resolution remote sensing and low cost remote sensing platforms are rated the highest in terms of the technology needed to address habitat change (67%)

Land use change top-ranked research need was to *quantify the impact of land use change on water quality* (83%). Both *land use change* analysis and *build out analysis* rate as the top information needs (80%) and *affordable remote sensing* is the highest ranked technology need (100%)

Table 6-8. Top-ranked Responses from Connecticut

Management I Ranked Very Imp or Importar	ortant	Top-ranked Rese Need	earch	Top-ranked Inform Need	mation	Top-ranked Technolog	y Need
Habitat change	100%	Identify causes of loss/gain	83%	Trends analysis	100%	High resolution remote sensing Low cost remote sensing	67% 67%
Land use	100%	Quantify impact of land use on water quality	83%	Land use change analysis Build out analysis	80% 80%	Affordable remote sensing	100%
Nutrient enrichment	100%	Cumulative impact assessments Source ID	83% 83%	Short term forecasts of nutrient loading	83%	Cost effective monitoring equipment	67%
Environmental contamination	67%	Cumulative impact assessments Source ID Bioindicators Toxicity analysis	50% 50% 50% 50%	Cost/benefit analysis	75%	Improved models Real time detection Cost effective equipment Treatment technologies	67% 67% 67%
Nonindigenous species	66%	Early detection of species	75%	Ecosystem inventory	100%	Rapid detection and monitoring	100%
Sediment management	66%	Effective confinement techniques Improved beneficial uses Effects from dredging	50% 50% 50%	Data access / retrieval Shoreline character	67% 67%	Treatment technologies	100%
Coastal hazards	34%	Effects of climate change/global warming	100%	More geospatial data for GIS	100%	Improved models Impact zone identification Alternative protection technologies Other	50% 50% 50% 50%
Marine debris	17%	Perceptions linked to sources Public education effectiveness	100%	Public outreach and education Other	100% 100%	NO RESPONSE	
Ocean management	17%	Cumulative impact assessments Ecological character State of knowledge	100% 100% 100%	More geospatial data for GIS Data access / retrieval State of knowledge	100% 100% 100%	No impact aquaculture techniques Energy technology Mapping and data acquisition	100% 100% 100%

6-9 Massachusetts' Priorities

The two top-ranked management topics that Massachusetts (Table 6-9) considers being very important or important over the next five years are *land use* (100%) and *habitat change* (94%). Land use and habitat change match the national top-ranked topics.

The top-ranked research and information needs identified for land use change are *quantifying the impact of land use change on water quality* (73%) and *land use change analysis* (80%). The technology needs are *improved modeling* (60%) and *customized GIS* (60%).

The top-ranked research and information needs for habitat change are *cumulative impact assessments* (73%), and *trends analysis* and *ecological and physical baselines and inventories* (73%). The technology needs are *high resolution remote sensing* (53%) and *rapid ecological assessment and evaluation technology* (53%).

Table 6-9. Top-ranked Responses from Massachusetts

Management I Ranked Very Imp or Importar	oortant	Top-ranked Rese Need	earch	Top-ranked Inform Need	nation	Top-ranked Techr Need	ology
Land use	100%	Quantify impact of land use on water quality	73%	Land use change analysis	80%	Improved models Customized GIS	60% 60%
Habitat change	94%	Cumulative Impact Assessment	73%	Trends analysis Baselines and inventories	73% 73%	High resolution remote sensing Rapid ecological assessment	53% 53%
Nutrient enrichment	88%	Cumulative impact assessments	92%	Land use analysis	62%	Improved models Cost effective monitoring equipment	62% 62%
Ocean management	82%	Ecological characterizations	100%	More geospatial data for GIS	77%	Nondestructive bottom fishing gear Mapping and data acquisition	62% 62%
Nonindigenous species	69%	Early detection of species	73%	Ecosystem inventory	73%	Rapid detection and monitoring Rapid response techniques Treatment technologies	73% 73% 73%
Environmental contamination	63%	Identification of sources	78%	TMDL guidelines Remediation options	67% 67%	Rapid/real time detection	88%
Coastal hazards	50%	Trends analysis	71%	Design standards for shoreline management technologies.	57%	Improved models	86%
Sediment management	50%	Effects from dredging	57%	Sediment transport patterns Beach profile data Shoreline characterizations	57% 57% 57%	Containment and stabilization technologies	71%
Marine Debris	6%	Source tracking Perceptions linked to sources Public education effectiveness	100% 100% 100%	State of knowledge Debris inventory Public outreach and education	100% 100% 100%	Debris removal technology	100%

6-10 Maine's Priorities

Maine ranked both *land use* and *habitat change* (94%) as the top management topics over the next five years (Table 6-10).

The most important research needs for habitat change are *cumulative impact assessments*, to *identify indicators of habitat health* and to *identify causes of loss/gain* (50%). The information needs are *trends analysis* and *ecological and physical baselines and inventories* (75%). The major technological needs are identified as *models that predict or simulate*, *high resolution remote sensing* and *low cost remote sensing* (50%).

The top-ranked research, information and technology needs identified for land use change are the development of indicators that link land use with ecosystem impacts (75%), land use change analysis (69%) and customized GIS (88%).

Table 6-10. Top-ranked Responses from Maine

Management Is Ranked Very Imp or Importan	ortant	Top-ranked Research Need		Top-ranked Infor Need	mation	Top-ranked Tech Need	nology
Habitat change	94%	Cumulative impact assessment	50%	Trends analysis Baselines and	75% 75%	Models that predict	50%
		Identify indicators of habitat health	50%	inventories		High resolution remote sensing	50%
		Identify causes of loss/gain	50%			Low cost remote sensing	50%
Land use	94%	Develop indicators that link land use with ecosystem impact	75%	Land use change analysis	69%	Customized GIS	88%
Environmental contamination	65%	Cumulative impact assessments Source identification Bioindicators	58% 58% 58%	Explanation of interactions among contaminants	58%	Improved remote sensing/ sampling	75%
		Bioliferactors	0070	Remediation options	58%		
Nutrient enrichment	59%	Effects on species/communitie s	80%	Land use analysis	70%	Cost effective monitoring equipment	60%
Nonindigenous species	53%	Early detection of species	60%	More geospatial data for GIS	60%	Prevention techniques	90%
Ocean management	53%	Effects of changes in community composition	56%	More geospatial data for GIS	100%	Mapping and data acquisition	78%
		Ecological characterizations	56%				
Sediment management	47%	Effects from dredging Analysis of impacts of	63% 63%	Sediment transport	75%	Improved models Quantifying	63%
		engineering solutions		patterns		sediment budgets	63%
Coastal hazards	30%	Shoreline characterizations Risk and vulnerability	80% 80%	More geospatial data for GIS	100%	Alternative shoreline protection	100%
		assessments				technologies	
Marine debris	12%	Biodegradable gear Ecological impacts	50% 50%	Geospatial data for GIS	100%	Debris removal technology	100%
		Perceptions and behaviors linked to sources	50%	Debris inventory Public outreach and education	100% 100%	Disposal or reuse technologies	100%
		Biodegradable products	50%	and Education		teciniologies	

6-11 New Hampshire's Priorities

The two top-ranked management topics that the New Hampshire (Table 6-11) considers to be very important or important over the next five years are *land use* and *habitat change* (100%).

The top-ranked research needs identified for habitat change are *cumulative impact assessments*, the *identification of indicators of habitat health* and the *evaluation of restoration techniques* (80%). The information and technology needs are *trends analysis* (100%) and *new restoration techniques* (80%).

The top-ranked research needs to address land use change are to identify the cumulative effects of development, develop indicators that link land use with ecosystem impacts and quantifying the impacts of land use change on water quality (80%). The information needs are land use change analysis, state-of-knowledge reports or success stories and more geospatial data for GIS (60%). The top technology needs are prediction and simulation models and affordable remote sensing (80%).

Table 6-11. Top-ranked Responses from New Hampshire

Management I Ranked Very Importan	oortant	Top-ranked Rese Need	arch	Top-ranked Informatio	n Need	Top-ranked Technology Need	
Habitat change	100%	Cumulative Impact Assessment	80%	Trends analysis	100%	New restoration techniques	80%
		Identify indicators of habitat health	80%				
		Evaluate restoration techniques	80%				
Land use	100%	Identify cumulative effects of	80%	Land use change analysis	60%	Improved models Affordable remote	80% 80%
		development		State of knowledge	60%	sensing	
		Develop indicators Quantify impact of land use	80% 80%	More geospatial data for GIS	60%		
Nonindigenous species	60%	Cumulative impact assessment	67%	State-of-knowledge	100%	Treatment technologies	100%
.,		Susceptibility factors	67%			Prevention techniques	100%
		Rapid assessment techniques	67%			Improved remote sensing/ sampling	100%
Nutrient	60%	Cumulative impact	100%	BMP effectiveness	67%	Cost-effective	100%
enrichment		assessments		State of knowledge	67%	long-term	
		Effects on species	100%	Land use analysis	67%	monitoring Effective mitigation	100%
Environmental contamination	40%	Cumulative impact assessments	100%	BMP effectiveness or cost/benefit analysis	67%	Cost effective monitoring	100%
		Effects on species/	100%	State of knowledge	67%	equipment	
				Land use analysis	67%	Effective mitigation strategies	100%
Sediment management	40%	Effects from dredging	100%	Sediment transport patterns	100%	Improved models Engineering	100% 100%
- 3		Analysis of impacts of engineering	100%	Models for quantifying sediment budgets	100%	solutions	
		solutions		Geospatial data for GIS	100%		

6-12 New York's Priorities

The two top-ranked management topics that the New York (Table 6-12) considers to be very important or important over the next five years are *habitat change* (100%) and *land use* (100%). Land use and habitat change match the national top-ranked topics.

The top-ranked research and information needs identified for habitat change are *identifying the causes of loss/gain* (70%) and *ecological and physical baselines and inventories* (90%). The top-ranked technology needs are identified as *high resolution remote sensing* and *habitat restoration best management practices* (60%).

Land use top-ranked research, information and technology needs are to *develop indicators that link land use* with ecosystem health (80%), land use change analysis (60%) and affordable remote sensing (100%).

Table 6-12. Top-ranked Responses from New York

Management I Ranked Very Importan	portant	Top-ranked Research Need		Top-ranked Inform Need	ation	Top-ranked Technology Need	
Habitat change	100%	Identify causes of loss/gain	70%	Baselines and inventories	90%	High resolution remote sensing Habitat restoration BMPs	60% 60%
Land Use	100%	Develop indicators	80%	Land use change analysis	60%	Affordable remote sensing	100%
Environmental contamination	90%	Cumulative impact assessments	67%	Remediation options Cost/benefit analysis	56% 56%	Improved treatment technologies	75%
Nutrient enrichment	80%	Effects on species	88%	BMP effectiveness or cost/benefit analysis	63%	Rapid community assessment Cost effective monitoring equipment	63% 63%
Nonindigenous species	70%	Early detection of species	71%	Ecosystem inventory State-of-knowledge	57% 57%	Rapid detection Rapid response techniques Prevention techniques	83% 83% 83%
Sediment management	60%	Prioritize restoration	67%	Sediment transport patterns	83%	Quantifying sediment budgets	67%
Ocean management	30%	Changes in community composition Cumulative impact assessments Ecological characterizations	67% 67% 67%	Data access / retrieval	100%	Mapping and data acquisition	100%
Coastal hazards	10%	Risk assessments Trends analysis Attitudes, values and perceptions of risk	100% 100% 100%	Socio economic impact assessments Spatial and temporal demographics Other	100% 100% 100%	Improved models Impact zone identification Other	100% 100% 100%
Marine debris	10%	Source tracking Perceptions linked to sources Public education effectiveness	100% 100% 100%	Debris inventory Public outreach and education	100% 100%	GPS tracking systems	100%

6-13 Rhode Island's Priorities

The top-ranked management topics that Rhode Island (Table 6-13) considers to be very important or important over the next five years are *habitat change* (100%), *nonindigenous species* (100%) and *nutrient enrichment* (100%).

Habitat change top-ranked research need is the *effectiveness of restoration techniques* (83%). The top information needs are *trends analysis*, *ecological and physical baselines and inventories* and *more geospatial data for GIS* (67%). The top technology needs are *habitat restoration BMPs* and *long term monitoring equipment* (67%).

The top research needs to address nonindigenous species are *early detection of species* and *cumulative impact assessments* (60%). The most important information need is *ecosystem inventories* (83%) and the top technology needs are *rapid detection, rapid response techniques* and *treatment or removal techniques* (67%).

Table 6-13 Top-ranked Responses from Rhode Island

Management I Ranked Very Importan	oortant	Top-ranked Rese Need	arch	Top-ranked Inform Need	ation	Top-ranked Techn Need	ology
Habitat change	100%	Effectiveness of restoration techniques	83%	Trends analysis Baselines and inventories. More geospatial data for GIS	67%	Habitat restoration BMPs Monitoring equipment	67% 67%
Nonindigenous species	100%	Early detection of species Cumulative impact assessment	60% 60%	Ecosystem inventory	83%	Rapid detection Rapid response techniques Treatment technologies	67%
Nutrient enrichment	100%	Cumulative impact assessments Source identification	67%	Data access / retrieval	67%	Cost effective monitoring equipment	67%
Environmental contamination	84%	Source ID Public health risk assessment	60% 60%	Epidemiology of contaminants Economic impact evaluations	60% 60%	Reliable DNA fingerprinting Cost-effective long- term monitoring	60% 60%
Land Use	83%	Quantify impact of land use on water quality	100%	Land use change analysis	80%	Customized GIS	80%
Ocean management	83%	Cumulative impact assessments	100%	Data access / retrieval	100%	Nondestructive fishing gear Mapping and data acquisition	80%
Sediment management	50%	Effects from dredging	100%	Transport patterns Beach profile data Shoreline characterizations GIS geospatial data	50% 50% 50%	Improved models	75%
Coastal hazards	33%	Shoreline characterizations Trends analysis Effects of climate change/global warming	67% 67% 67%	Data access / retrieval	100%	Improved models Alternative shoreline protection technologies	67% 67%

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Marine debris	33%	Source tracking	67%	State of knowledge Public outreach and education	100% 100%	Debris removal technology	93%

6-14 Delaware's Priorities

The top-ranked management topics that Delaware (Table 6-14) considers to be very important or important over the next five years are *land use* and *habitat change* (60%).

The top-ranked research and information needs identified for land use are the *identification of cumulative effects of development* (67%), *developing indicators* (67%), *land use change analysis* (53%) and *more geospatial data for GIS* (53%). *Improved models that simulate and predict* are rated the highest in terms of the technology needed to address land use (79%).

For habitat change, cumulative impact assessment (73%) and trends analysis are identified as the top-ranked research and information needs, respectively. The top technology need is *habitat restoration BMPs* (87%).

Table 6-14. Top-ranked Responses from Delaware

Management I Ranked Very Im or Importa	portant	Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Land use	100%	Identify cumulative effects of development Develop indicators that link land use with ecosystem impact	67% 67%	Land use change analysis More geospatial data for GIS	53% 53%	Improved models that simulate and predict	79%
Habitat change	100%	Cumulative impact assessment	73%	Trends analysis	73%	Habitat restoration BMPs	87%
Nutrient enrichment	73%	Source ID	73%	BMP effectiveness or CBA	73%	Cost effective monitoring equipment	64%
Nonindigenous species	67%	Human behaviors leading to introductions	60%	Ecosystem inventory	100%	Treatment or removal technologies	90%
Sediment management	60%	Effects from dredging	78%	Data access / retrieval	44%	Improved models that simulate or predict	67%
Ocean management	54%	Cumulative impact assessments	62%	More geospatial data for GIS	62%	Energy technology	75%
Environmental contamination	53%	Cumulative impact assessment	50%	Interactions among contaminants Economic impact evaluation	50% 50%	Cost-effective long- term monitoring equipment Improved treatment or removal	62% 62%
Coastal hazards	46%	Shoreline characterization Risk attitudes, values, perceptions	86% 86%	Socioeconomic impact assessments	71%	Alternative shoreline protection	71%
Marine debris	20%	Ecological impacts Perceptions and behaviors linked to sources	67% 67%	Debris inventory Public outreach and education	67% 67%	GPS tracking	100%

6-15 Maryland's Priorities

The two top-ranked management topics that Maryland (Table 6-15) considers to be very important or important over the next five years are habitat change and *land use* (100%).

The top-ranked research and information needs for habitat change are *cumulative impact* assessment, effectiveness of restoration/protection techniques (80%), and trends analysis (80%). The technology need is habitat restoration BMPs (80%).

The top-ranked research and information needs identified for land use change are *identifying* cumulative effects of development (60%), quantifying the impact of land use change on water quality (60%) and data access, retrieval, and analysis (80%). The technology need is improved modeling (60%).

Table 6-15. Top-ranked Responses from Maryland

Management I Ranked Very Importan	portant	Top-ranked Researc	h Need	Top-ranked Inform Need	nation	Top-ranked Tech Need	nology
Habitat change	100%	Cumulative Impact Assessment Evaluate effectiveness of restoration/protecti on technique	80% 80%	Trends analysis	80%	Habitat restoration BMPs	80%
Land use	100%	Identify cumulative effects of development Quantify impact of land use on water quality	60% 60%	Data access, retrieval, and analysis	80%	Improved models	100%
Sediment management	80%	Prioritize restoration/ protection based on max benefit for cost	75%	Sediment transport patterns	75%	Improved models Containment and stabilization technologies	75% 75%
Nonindigenous species	60%	Early detection of species	100%	Ecosystem inventory	67%	Treatment technologies	100%
		Human behaviors leading to introductions	100%	Success stories	67%	Prevention techniques	100%
Nutrient enrichment	60%	Cumulative impact assessments Spatial and temporal trends analysis	67% 67%	BMP effectiveness or CBA	100%	Improved treatment technologies	100%
Nonindigenous species	40%	Early detection of species Human behaviors leading to introductions	100% 100%	Ecosystem inventory Success stories	67% 67%	Treatment technologies Prevention techniques	100% 100%
Coastal hazards	40%	Risk and valuation assessment	100%	Design standards State of knowledge reports	100% 100%	Alternative shoreline protection technologies	100%
Environmental contamination	20%	Cumulative impact assessment ID sources Public health risk assessment	100% 100% 100%	Epidemiology of contaminants TMDL guidelines Economic impact evaluations	100% 100% 100%	Improved models Cost-effective long-term monitoring equipment	100% 100%
		20000		0.0.00.0		Improved treatment or removal tech	100%

Management Ranked Very Im or Importa	portant	Top-ranked Researd	ch Need	Top-ranked Info Need	rmation	Top-ranked Tech Need	inology
Ocean management	20%	Cumulative impact assessment	62%	Geospatial data for GIS State of	100%	Models than simulate and predict	100%
				knowledge reports		Low-cost remote vessel tracking	100%

6-16 New Jersey's Priorities

New Jersey ranks *land use* (100%) as the top management topic to address over the next five years (Table 6-16). *Habitat change* is ranked the next highest (86%).

The most important research needs for land use are to identify the cumulative effects of development and socioeconomic cost benefit analysis of land use options (71%). The information needs are land use change analysis and build out/infill analysis (57%). The major technological need is identified as affordable remote sensing (71%).

The top research and information needs for habitat change are *cumulative impact assessment* (83%) and *trends analysis* (100%), respectively. *High resolution remote sensing*, *low cost remote sensing*, and *long-term monitoring equipment* (67%) are the top technology needs.

Table 6-16. Top-ranked Responses from New Jersey

Management Is Ranked Very Imp or Importar	oortant	Top-ranked Researcl	n Need	Top-ranked Inform Need	mation	Top-ranked Tech Need	nology
Land use	100%	Identify cumulative effects of development Socioeconomic CBA of land use options	71% 71%	Land use change analysis Build out/infill analysis	57% 57%	Affordable remote sensing	71%
Habitat change	86%	Cumulative impact assessment	83%	Trends analysis	100%	High resolution remote sensing Low cost remote sensing	67% 67% 67%
Coastal hazards	71%	Risk and vulnerability assessments	80%	Design standards Geomorphologic studies	60% 60%	Long term monitoring equipment Alternative shoreline protection	80%
Environmental contamination	72%	Cumulative impact assessments Source identification	60% 60%	Explanation of interactions among	60%	technologies Rapid/real time detection Cost effective	60% 60%
				contaminants Remediation options	60%	long term monitoring equipment Improved remote sensing technologies	60%
Nonindigenous species	57%	Early detection of species	100%	Ecosystem inventory	50%	Rapid detection and	100%
-		Human behaviors leading to introductions	100%	Land use assessment Success stories	50% 50%	monitoring Prevention techniques	100%
Ocean management	57%	Cumulative impact assessments	75%	Case studies	100%	Improved models Mapping and data acquisition	75% 75%
Sediment management	62%	Improved beneficial uses Effects from dredging	60% 60%	Improved methods and models for quantifying sediment budgets	100%	Methods for quantifying sediment budgets	80%
Nutrient enrichment	43%	Cumulative impact assessment Source ID	100% 100%	Short-term forecasts of nutrient loading	100%	Long-term monitoring/ sampling	100%

Management Ranked Very Im or Importa	portant	Top-ranked Resea	rch Need	Top-ranked Info Need	rmation	Top-ranked Tec Need	hnology
						equipment	
Marine debris	29%	Public education effectiveness	100%	Public outreach and education	100%	Debris removal technology	100%

6-17 Virginia's Priorities

The three top-ranked management topics that Virginia (Table 6-17) considers to be very important or important over the next five years are *habitat change*, *land use*, *and environmental contamination* (89%).

The top-ranked research need identified for habitat change is *cumulative impact assessments* (75%). The information and technology needs are *trends analysis* (100%) and *low cost remote sensing platforms* (63%).

The top-ranked research need to address land use change is to *quantify the impacts of land use change on water quality* (88%). The information need is *land use change analysis* (75%). The top technology needs are *improved models* and *affordable remote sensing* (75%).

Table 6-17. Top-ranked Responses from Virginia

Management Is Ranked Very Imp or Importan	ortant	Top-ranked Rese Need	arch	Top-ranked Information	on Need	Top-ranked Technology Need	
Habitat change	89%	Cumulative Impact Assessment	75%	Trends analysis	100%	Low cost remote sensing platforms	63%
Land use	89%	Quantify impact of land use	88%	Land use change analysis	75%	Improved models Affordable remote sensing	75% 75%
Environmental contamination	78%	Identification of sources	71%	Bioassay numeric guidelines Remediation options	57% 57%	Real time/rapid detection	71%
Sediment management	77%	Improved beneficial uses Prioritize restoration	67% 67%	Sediment transport patterns	71%	Containment and stabilization technologies	86%
Coastal hazards	56%	Shoreline characterizations	100%	Design standards	100%	Improved models Alternative shoreline protection technologies	100% 100%
Nutrient enrichment	67%	Source identification	100%	BMP effectiveness of CBA	83%	Improved models Improved treatment technologies	83% 83%
Nonindigenous species	44%	Early detection of species Susceptibility factors	100% 100%	Success stories	100%	Rapid detection	100%
Ocean management	44%	Ecological characterizations	75%	More geospatial data for GIS Case studies	75% 75%	Improved models	75%

6-18 Florida's Priorities

Florida's priority coastal management issue areas are *habitat change* (100%) and *land use* (94%), which match the national results.

The top-ranked research, information, and technology needs for habitat change are *cumulative impact assessment* (69%), *trends analysis* (81%), and *high resolution remote sensing* (81%).

For land use, the top-ranked research, information, and technology needs are to *quantify the impact* of land use on water quality (73%), land use change analysis and land suitability analysis (53%), and affordable remote sensing (86%).

Table 6-18. Top-ranked Responses from Florida

umulative impact assessments uantify impact of land use on water quality arly detection of species ource	73%	Trends analysis Land use change analysis Land suitability	53%	High resolution remote sensing Affordable remote sensing	81%
of land use on water quality arly detection of species		change analysis Land suitability			86%
species		analysis	0070		
ource	75%	Ecosystem inventory	90%	Rapid detecting and monitoring	92%
identification/ tracking	75%	BMP effectivene ss or cost/ benefit analysis	75%	Improved models that simulate and predict Cost effective long-term monitoring/sampling equipment	58% 58%
nproved beneficial uses	67%	Improved methods and models for quantifying sediment budgets	67%	Improved models that simulate or predict Methods for quantifying sediment budgets	67% 67%
lentification of sources	75%	Economic impact evaluations	63%	Rapid/real time detection	75% 51%
conomic assessments	100%	More geospatial data for GIS	100%	Mapping and data acquisition	71%
horeline characterizations	67%	More geospatial data for GIS	100%	Improved models that simulate and predict	83%
cological impacts	100%	Public outreach and education	100%	Debris removal technology GPS tracking systems for potential sources of debris Disposal or reuse	100% 100% 100%
•	characterizations	characterizations	characterizations geospatial data for GIS cological 100% Public impacts outreach and	characterizations geospatial data for GIS cological 100% Public 100% impacts outreach and	characterizations geospatial data for GIS cological 100% Public 100% Debris removal impacts outreach and GPS tracking systems education for potential sources

6-19 Georgia's Priorities

Georgia's priority coastal management issue areas over the next five years are *habitat change* (100%) and *land use* (100%), which match the national results, and also nutrient enrichment (100%) and environmental contamination (100%).

The top-ranked research, information, and technology needs for habitat change are *cumulative* impact assessment (75%), trends analysis (100%), and models that simulate and predict along with high resolution remote sensing and long-term monitoring equipment (50%).

For land use, the top-ranked research, information, and technology needs are *cumulative impact* assessments (75%) along with *indicators that link land use with ecosystem impact* (100%), *land use change analysis* (100%), and *models that predict and simulate* (100%).

Table 6-19. Top-ranked Responses from Georgia

Management Is Ranked Very Imp or Importan	ortant it	Top-Ranked Rese Need		Top-ranke Information N	Need	Top-ranked Technolog	
Habitat change	100%	Cumulative impact assessments	75%	Trends analysis	100%	Models that simulate and predict High resolution remote	50% 50%
						sensing Long-term monitoring equipment	50%
Land use	100%	Cumulative impact assessments Indicators that link land use with ecosystem impact	100% 100%	Land use change analysis	100%	Improved models that predict and simulate	100%
Nutrient enrichment	100%	Source identification	100%	Land use analysis	75%	Cost effective long-term monitoring/sampling equipment	75%
Environmental contamination	100%	Identification of sources	100%	Economic impact evaluations	75%	Reliable DNA fingerprinting	75%
Sediment management	75%	Cost/benefit analysis Effectiveness of	67% 67%	Sediment transport patterns	67%	Improved models that simulate or predict Methods for quantifying	67% 67%
		confinement techniques Effects from dredging	67%	Geospatial data for GIS	67%	sediment budgets	0170
Marine debris	50%	Perceptions and behaviors linked to sources	100%	Public outreach and education	100%	Debris removal technology GPS tracking systems for potential sources of debris	100% 100%
						Gear modifications to make less harmful to non-target species	100%
Nonindigenous species	25%	Early detection of species	100%	Ecosystem inventory	100%	Rapid detecting and monitoring	100%
		Cumulative impact assessments	100%	State-of- knowledge reports	100%	Treatment or removal technologies	100%
Coastal hazards	25%	Shoreline characterization	100%	Design standards for	100%	Improved models that simulate and predict	100%
		s Risk and	100%	shoreline management		Impact zone identification	100%
		vulnerability assessments Effects of climate	100%	technologies		Alternative shoreline protection technologies	100%

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
		change/global warming					
Ocean management	25%	Cumulative impact assessments	100%	State of knowledge	100%	Improved models that simulate and predict	100%
-		Identifying migration routes	100%	reports/case studies		No impact aquaculture techniques	100%
		State of knowledge reports/case studies	100%			Other	100%

6-20 North Carolina's Priorities

North Carolina's priority coastal management issue areas over the next five years are *land use* (100%) and *coastal hazards* (84%).

The top-ranked research, information, and technology needs for habitat change are to identify the *cumulative effects of development* (83%), *land use change analysis* (100%), and *customized GIS* (83%).

For coastal hazards, the top-ranked research need is *risk* and *vulnerability* assessments (100%). The priority information needs are *design* standards for shoreline management technologies along with state of knowledge reports/case studies and geospatial data for GIS (60%). Improved models that predict and simulate, impact zone identification, and alternative shoreline protection technologies (80%) are the top-ranked technology needs over the next five years.

Table 6-20. Top-ranked Responses from North Carolina

Management I Ranked Very Importan	oortant nt	Top-Ranked Researc		Top-ranko Information	Need	Top-ranked Technolog	
Land use	100%	Identify cumulative effects of development	83%	Land use change analysis	100%	Customized GIS	83%
Coastal hazards	84%	Risk and vulnerability assessments	100%	Design standards for shoreline	60%	Improved models that simulate and predict Impact zone identification	80% 80%
				manageme nt technologie s		Alternative shoreline protection technologies	80%
				State of knowledge reports	60% 60%		
				Geospatial data for GIS	60%		
Habitat change	66%	Cumulative impact assessments	100%	Trends analysis	100%	Habitat restoration BMPs	75%
		Evaluate effectiveness of restoration/ protection	100%				
Nonindigenous species	50%	Early detection of species	67%	Ecosystem inventory	67%	Treatment or removal technologies	100%
		Susceptibility factors for coastal invasive introductions Effectiveness of	67%	Geospatial data for GIS	67%		
		BMPs	67%				
Nutrient enrichment	50%	Source identification	100%	Short-term forecasts of	67%	Rapid benthic/pelagic community	67%
				nutrient loading	2=2/	assessment Cost effective long-	67%
				BMP effectivenes s or cost/ benefit analysis	67%	term monitoring/sampling equipment	
				Land use analysis	67%		
				More geospatial data for GIS	67%		

Management I Ranked Very Imp or Importa	portant	Top-Ranked Researc	h Need	Top-ranko Information		Top-ranked Technology Nee	
Ocean management	50%	Economic assessments	67%	Geospatial data for GIS	100%	Improved models that simulate and predict	67%
		State of knowledge reports/case studies	67%	State of knowledge reports/ case studies	100%	Mapping and data acquisition	67%
Marine debris	50%	Perceptions and behaviors linked to sources	100%	Public outreach and education	100%	Debris removal technology	100%
Sediment management	33%	Cost benefit analysis Improved beneficial uses	50%	Sediment transport patterns	100%	Improved models that simulate or predict Methods for quantifying	100% 100%
		Prioritize restoration/protectio n based on max benefit for cost	50%	Beach profile data	100%	sediment budgets	
		Effects from dredging Analysis of impacts of	50%				
		engineering solutions	50%				
		Other	50%				
Environmental contamination	17%	Identification of sources	100%	Explanation of	100%	Cost effective long term monitoring	100%
		Bioindicators	100%	interactions among contaminan ts		equipment Improved remote sensing/ sampling technologies	100%
				Economic impact evaluations Geospatial	100%	Improved treatment or removal technologies	100%
				data for GIS	100%		

6-21 South Carolina's Priorities

South Carolina's priority coastal management issue areas over the next five years are *land use* (93%) and *habitat change* (90%), which are similar to the national results.

For land use, the top-ranked research, information, and technology needs are to *quantify the impact* of land use on water quality (74%), land use change analysis (62%), and improved models that simulate and predict (80%).

The top-ranked research, information, and technology needs for habitat change are *cumulative impact assessment* (77%), *trends analysis* (64%) along with *ecological and physical baselines and inventories* (64%), and *models that predict and simulate* (58%).

Table 6-21. Top-ranked Responses from South Carolina

Management Is Ranked Very Imp or Importan	ortant	Research Ne	Top-Ranked Research Need		nation	Top-ranked Technolog	
Land use	93%	Quantify impact of land use on water quality	74%	Land use change analysis	62%	Improved models that simulate and predict	80%
Habitat change	90%	Cumulative impact assessments	77%	Trends analysis Ecological and physical baselines and inventories	64% 64%	Models that predict and simulate	58%
Sediment management	86%	Effects from dredging	72%	Sediment transport patterns	75%	Methods for quantifying sediment budgets	64%
Nutrient enrichment	69%	Cumulative impact assessment	70%	BMP effectiveness or cost/ benefit analysis	95%	Effective mitigation strategies	75%
Environmental contamination	62%	Identification of sources	74%	Remediation options	63%	Rapid/real time detection	68%
Coastal hazards	55%	Risk and vulnerability assessments	87%	Access retrieval and analysis of data Design standards for shoreline management technologies	63% 63%	Improved models that simulate and predict Impact zone identification	75% 75%
Marine debris	48%	Public education effectiveness	79%	Debris inventory	100%	Debris removal technology Disposal or reuse technologies	100% 100%
Nonindigenous species	45%	Early detection of species Human behaviors leading to introductions	69% 69%	Access, retrieval and analysis of data	69%	Treatment or removal technologies	77%
Ocean management	41%	Cumulative impact assessments	69%	More geospatial data for GIS Access, retrieval and analysis of data State of knowledge reports/studies	58% 58% 58%	Mapping and data acquisition	82%

6-22 Alabama's Priorities

Alabama's top two priority coastal management issues over the next five years are *habitat change* (100%) and *land use* (100%), which match the national results.

The top-ranked research, information, and technology needs for habitat change are *cumulative impact assessment* (78%), *trends analysis* (100%), and *models that simulate and predict* (67%).

For land use, the top-ranked research needs are to develop indicators that link land use with ecosystem impacts (78%) and quantify impact of land use on water quality (78%). Priority information needs include land use change analysis (67%) and geospatial data for GIS (67%). Top-ranked technology needs are improved models that simulate and predict (89%).

Table 6-22. Top-ranked Responses from Alabama

Management Issue Very Important Important	t or	Top-Ranked Research Need		Top-rank Information		Top-ranked Technology Need	
Habitat change	100%	Cumulative impact assessments	78%	Trends analysis	100%	Models that simulate and predict	67%
Land use	100%	Develop indicators that link land use with ecosystem impact	78%	Land use change analysis Geospatial data for	67% 67%	Improved models that predict or simulate	89%
		Quantify impact of land use on water quality	78%	GIS			
Nutrient enrichment	78%	Cumulative impact assessments	86%	BMP effectivene ss or cost/ benefit analysis	86%	Improved models that simulate and predict	86%
Sediment management	77%	Effects of dredging	71%	Sediment transport patterns Improved	57% 57%	Improved models that simulate or predict	86%
				methods and models for quantifying sediment budgets			
Environmental contamination	66%	Identification of sources	100%	Epidemiology of contamina nt	50%	Reliable DNA fingerprinting	67%
				Interactions among contami- nants	50%		
				Remediation options	50%		
Coastal hazards	66%	Shoreline characterization	83%	Design standards for shoreline manageme nt tech.	100%	Improved models that simulate and predict	100%
Nonindigenous species	55%	Early detection of species Cumulative impact	60% 60%	Access, retrieval and analysis of	100%	Rapid detecting and monitoring	100%

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-rank Information		Top-ranked Technolog	y Need
		assessment		data			
Ocean management	55%	Ecological characterization s	80%	Access, retrieval and analysis of data	100%	Improved models that simulate and predict	80%
Marine debris	22%	Source tracking Perceptions and	67% 67%	Debris inventory	100%	Debris removal technology	67%
		behaviors linked to sources		Public outreach and	100%	GPS tracking systems for potential sources of debris	67%
		Biodegradable products	67%	education		Gear modifications to make less harmful to non-target species	67%
						Disposal or reuse technologies	67%

6-23 Louisiana's Priorities

Louisiana's priority coastal management issue areas over the next five years are *habitat change* (100%) and *sediment management* (100%).

The top-ranked research needs for habitat change are to evaluate the effectiveness of restoration/protection techniques (75%) and the valuation of social, ecological, and economic factors (75%). Trends analysis (75%) and state of knowledge reports/case studies (75%) were the priority information needs for habitat change. The top-ranked technology need is new restoration techniques (75%).

For sediment management, the top-ranked research, information, and technology needs are improved beneficial uses (100%), sediment transport patterns (75%) along with improved methods and models for quantifying sediment budgets (75%), and engineering solutions (75%).

Table 6-23. Top-ranked Responses from Louisiana

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-rank Information	Need	Top-ranked Technolog	
Habitat change	100%	Evaluate effectiveness of restoration/protectio n techniques Valuation of social, ecological, and economic factors	75% 75%	Trends analysis State of knowledge reports/cas e studies	75% 75%	New restoration techniques	75%
Sediment management	100%	Improved beneficial uses	100%	Sediment transport patterns Improved methods and models for quantifying sediment budgets	75% 75%	Engineering solutions	75%
Land use	75%	Provide socioeconomic c/b analysis of various land use options	67%	Land suitability analysis	67%	Affordable remote sensing Customized GIS	67% 67%
		Develop indicators that link land use with ecosystem impact	67%				
		Quantify impact of land use on water quality	67%				
Ocean management	75%	Cumulative impact assessments Economic	100% 100%	Geospatial data for GIS	67%	Energy technology	100%
		assessments		Data access, retrieval and analysis	67%		
				State of knowledge reports	67%		
Nonindigenous	50%	Early detection of	50%	State of	100%	Rapid detecting and	100%
species		species Cumulative impact assessment Effects of climate	50% 50%	knowledge reports/ success stories		monitoring Treatment and removal technologies	100%

Management I Ranked Very Imp or Importar	oortant	Top-Ranked Researc	h Need	Top-rank Information		Top-ranked Technolog	y Need
		change Rapid assessment techniques and analysis	50%	Geospatial data for GIS	100%		
		Effectiveness of BMPs	50%				
		Human behaviors leading to introductions	50%				
Environmental contamination	50%	Effectiveness of remediation	100%	Remediation options	100%	Rapid/real time detection	100%
		techniques		C/B analysis of remediatio n	100%	Improved treatment or removal technologies	100%
Coastal hazards	50%	Effects of climate change	100%	Geomorph. studies	100%	Alternative shoreline protection technologies	100%
Nutrient enrichment	25%	Source identification/trackin	100%	State of knowledge reports	100%	Cost effective long term monitoring and sampling equipment	100%
		Understanding factors that trigger	100%	Land use analysis	100%	Improved treatment technologies	100%
		HABs Efficacy of education and outreach	100%	Geospatial data for GIS	100%	Effective mitigation strategies	100%
Marine debris	25%	Source tracking Perceptions and behaviors linked to	100% 100%	State of knowledge reports/	100%	GPS tracking systems for potential sources of debris	100%
		sources Biodegradable	100%	case studies Public	100%	Gear modifications to make less harmful to	100%
		products		outreach and education	100%	non-target species Disposal or reuse technologies	100%

6-24 Mississippi's Priorities

Mississippi's priority coastal management issue areas are land use (100%), environmental contamination (100%), and coastal hazards (100%).

For land use, the top-ranked research needs are to identify the cumulative effects of development (67%) and quantify impact of land use on water quality (67%). The top information needs are access, retrieval and analysis of data (67%), land use change analysis (67%), and land suitability index (67%). Technology needs include improved models that simulate and predict (67%), affordable remote sensing (67%), and customized GIS (67%).

The top-ranked research needs for environmental contamination are *cumulative impact assessments* and *toxicity analysis* (67%). *Explanations of interactions among contaminants* (67%) was the top information need. The top-ranked technology needs are *improved models that simulate and predict*, *reliable DNA fingerprinting*, and *improved remote sensing/sampling technologies* (67%).

Table 6-24. Top-ranked Responses from Mississippi

Management Is Ranked Very Imp or Importan	ortant	Top-Ranked Res Need	earch	Top-ranke Information N		Top-ranked Technology	Need
Land use	100%	Identify cumulative effects of development	67%	Access, retrieval and analysis of data	67%	Improved models that predict and/or simulate Affordable remote sensing	67% 67%
		Quantify impact of land use on	67%	Land use change	67%	Customized GIS	67%
		water quality		analysis Land suitability index	67%		
Environmental contamination	100%	Cumulative impact	67%	Explanation of interactions	67%	Improved models that simulate and predict	67%
		assessment Toxicity analysis	67%	among contaminants		Reliable DNA fingerprinting Improved remote sensing/sampling technologies	67% 67%
Coastal hazards	100%	Shoreline characteriza- tions Risk and vulnerability	100%	Design standards for shoreline management technologies	67%	Improved models that simulate and predict	100%
		assessments					
Habitat change	67%	Cumulative impact assessments Identify causes of loss/gain	100%	Geospatial data for GIS	100%	Models that predict and simulate	100%
Marine debris	67%	Source tracking Perceptions and behaviors	50% 50%	Public outreach and education	100%	GPS tracking systems for potential sources of debris	167%
		linked to sources Public education	50%			Gear modifications to make less harmful to non-target species	67%
		effectiveness Biodegradable products	50%			Disposal or reuse technologies	67%
Nonindigenous species	67%	Susceptibility factors for	100%	Ecosystem inventory	100%	Rapid detection and monitoring	100%
		coastal invasive introduction		•		Treatment or removal technologies	100%

Management Ranked Very Im or Importa	portant	Top-Ranked Res Need	Top-Ranked Research Need		ed Need	Top-ranked Technology Need	
Nutrient enrichment	66%	Source identification/ tracking	100%	Short term forecasts of nutrient loading	100%	Improved models that simulate and predict Cost effective long term monitoring and	100% 100%
				BMP effectiveness or cost/ benefit analysis	100%	sampling	
Sediment management	33%	Test and validate assessment	100%	Access, retrieval and	100%	Improved models that simulate and predict	100%
		techniques Effectiveness of		analysis of data		Containment and stabilization	100%
		confinement techniques Effects from	100%	Sediment transport patterns	100%	technologies Remote sampling	100%
		dredging	100%	Shoreline characteriza- tions	100%		
Ocean management	33%	Effects of changes in	100%	More geospatial	100%	Improved models that simulate and predict	100%
		community composition on		data for GIS Access.	100%	Nondestructive bottom fishing gear	100%
		historic use and values Cumulative		retrieval and analysis of data		No impact aquaculture techniques	100%
		impact assessments Marine managed	100%				
		area effectiveness	100%				

6-25 Texas' Priorities

Texas' priority coastal management issue areas over the next five years are habitat change (100%), land use (100%), sediment management (100%), environmental contamination (100%), and nutrient enrichment (100%).

The top-ranked research needs for habitat change are to *identify causes of loss/gain* (63%) and the *rate of freshwater inflow* (63%). *Trends analysis* (88%) is the priority information needs for habitat change. The top-ranked technology needs are *models that simulate and predict* (63%) and *high resolution remote sensing* (63%).

For land use, the top-ranked research, information, and technology needs are to *develop indicators* that link land use with ecosystem impact (100%), land use change analysis (75%), and change detection sensors along with affordable remote sensing technology (75%).

Table 6-25. Top-ranked Responses from Texas

Management Is Ranked Very Impo Important	rtant or	Top-Ranked Research Need		Top-ranke Information N	Need	Top-ranked Technology	
Habitat change	100%	Identify causes of loss/gain Rate of freshwater inflow	63% 63%	Trends analysis	88%	Models that simulate and predict High resolution remote sensing	63% 63%
Land use	100%	Develop indicators that link land use with ecosystem impact	100%	Land use change analysis	75%	Change detection sensors Affordable remote sensing	75% 75%
Sediment management	100%	Improved beneficial uses	86%	Sediment transport patterns	86%	Improved models that simulate and predict	86%
Environmental contamination	100%	Identification of sources	63%	Explanation of interactions among contaminants C/B analysis of remediation	57% 57%	Reliable DNA fingerprinting	71%
Nutrient enrichment	100%	Source identification/ tracking Effects on species/ communities Bioindicators	50% 50% 50%	BMP effectiveness or C/B analysis Land use analysis	75% 75%	Improved treatment technologies	63%
		Efficacy of education and outreach efforts	50%				
Nonindigenous species	76%	Early detection of species	100%	Ecosystem inventory	100%	Treatment and removal technologies	100%
Marine debris	75%	Ecological impacts Public education effectiveness Biodegradable products	60% 60% 60%	Public outreach and education	100%	Disposal or reuse technologies	100%
Coastal hazards	63%	Risks and vulnerability	80%	Design standards for	80%	Improved models that simulate and predict	100%

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need		
		assessments Effects of climate change	80%	shoreline management tech.		Alternative shoreline protection technologies	100%	
Ocean management	38%	Cumulative impact	100%	Access, retrieval and	100%	Improved models that simulate and predict	50%	
-		assessments s		analysis of data		Nondestructive bottom fishing gear	50%	
						No impact aquaculture techniques	50%	
						Energy technology	50%	
						Mapping and data acquisition	50%	

6-26 Alaska's Priorities

Alaska's priority coastal management issue areas over the next five years are *land use* (86%) and *habitat change* (85%).

The top-ranked research needs for land use are to *identify cumulative effects of development* and to *develop indicators that link land use with ecosystem impacts* (67%). *Land use change analysis* (67%) and *geospatial data for GIS* (67%) are the priority information needs for land use. The top-ranked technology need is *models that simulate and predict* (67%).

For habitat change, the top-ranked research needs are *cumulative impact assessment* (57%) and to evaluate the effectiveness of restoration/protection techniques (67%). The priority information needs are trends analysis and ecological and physical baselines and inventories (86%). Low cost remote sensing and habitat restoration BMPs (57%) are the top-ranked technology needs.

Table 6-26. Top-ranked Responses from Alaska

Management Issue Ranked Very Important or Important		Top-Ranked Research	Need	Top-ranke Information N		Top-ranked Technology	y Need
Land use	86%	Identify cumulative effects of development Develop indicators that	67% 67%	Land use change analysis Geospatial	67% 67%	Improved models that simulate and predict	67%
		link land use with ecosystem impact		data for GIS			
Habitat change	85%	Cumulative impact assessment	57%	Trends analysis	86%	Low cost remote sensing platforms to	57%
		Evaluate the effectiveness of restoration/protection techniques	57%	Ecological and physical baselines and inventories	86%	measure change Habitat restoration BMPs	57%
Coastal hazards	72%	Risks and vulnerability assessments	60%	Geospatial data for GIS	80%	Improved models that simulate and predict	80%
		Shoreline characterizations	60%			Alternative shoreline protection	80%
						technologies Impact zone ID	80%
Environmental contamination	71%	Identification of sources	83%	TMDL guidelines Economic impact evaluation	40% 40%	Rapid/real time detection	83%
				Remediation options	40%		
Sediment management	58%	Cost benefit analysis Test and validate	50% 50%	Beach profile data	75%	Improved models that simulate and predict	75%
·		assessment techniques	500/	Shoreline characteri-	75%	Methods for quantifying sediment budgets	75%
		Prioritize restoration/ protection based on C/B analysis	50%	zations			
		Analysis of impacts of engineering solutions	50%				
Ocean management	57%	Effects of changes in community composition on historic	80%	Geospatial data for GIS Anecdotal/	75%	Mapping and data acquisition	75%
		use and values		traditional data	75%		

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranke Information		Top-ranked Technology Need		
Nutrient enrichment	28%	Source identification/ tracking	100%	Access, retrieval and analysis of	67%	Improved models that simulate and predict Rapid community assessment	67% 67%	
				data		Cost-effective long-term	67%	
				Short term forecasts of nutrient loading	67%	monitoring/ sampling	0170	
				BMP effectivenes s or C/B analysis	67%			
Nonindigenous species	28%	Early detection of species	100%	Ecosystem inventory	79%	Rapid detection and monitoring	100%	
·		Effectiveness of BMPs	100%	,		Prevention techniques	100%	
Marine debris	28%	Ecological impacts Transport of debris	50% 50%	Debris inventory	50%	Debris removal technology	100%	
		Other	50%	Public outreach and	50%	37		
				education				

6-27 California's Priorities

California's priority coastal management issue areas are *habitat change* (94%), *land use* (88%), and *nonindigenous species* (88%).

The top-ranked research, information, and technology needs for habitat change are to evaluate the effectiveness of restoration/protection techniques (80%), ecological and physical baselines and inventories (80%), and rapid ecological assessment and evaluation technology (57%).

For land use, the top-ranked research, information, and technology needs are to *quantify the impact* of land use on water quality (79%), geospatial data for GIS (64%), and customized GIS (58%).

Table 6-27. Top-ranked Responses from California

Management Is Ranked Very Imp or Importan	ortant	Top-Ranked Research Need		Top-ranked Infor Need	mation	Top-ranked Technology	Need
Habitat change	94%	Evaluate effectiveness of restoration/ protection techniques	80%	Ecological and physical baselines and inventories	80%	Rapid ecological assessment and evaluation technology	57%
Land use	88%	Quantify impact of land use on water quality	79%	Geospatial data for GIS	64%	Customized GIS	58%
Nonindigenous species	88%	Early detection of species Effectiveness of BMPs	50% 50%	Ecosystem inventory	79%	Treatment or removal technologies	86%
Environmental contamination	69%	Cumulative impact assessments	82%	TMDL guidelines Explanation of interactions among contaminants	55% 55%	Cost effective long term monitoring equipment	73%
Nutrient enrichment	63%	Source identification/ tracking Effects on species/ communities	60%	BMP effectiveness or cost/ benefit analysis	90%	Effective mitigation strategies	60%
Sediment management	62%	Effects from dredging	70%	Sediment transport patterns	80%	Methods for quantifying sediment budgets	75%
Coastal hazards	44%	Trends analysis	57%	Design standards for shoreline management technologies	57%	Improved models that simulate and predict Alternative shoreline protection technologies	67% 67%
Ocean management	31%	Marine Managed Area effectiveness	80%	Geospatial data for GIS	80%	Improved models that simulate and predict Nondestructive bottom fishing gear Low cost remote vessel tracking	60% 60% 60%
Marine debris	26%	Source tracking Ecological impacts Public education effectiveness	75% 75% 75%	Debris inventory	100%	Debris removal technology	100%

6-28 Oregon's Priorities

Oregon's priority coastal management issue areas are *habitat change* (100%) and *land use* (100%), which match the national top-ranked results.

The top-ranked research, information, and technology needs for habitat change are *valuation of social, ecological, and economic factors* (83%), *ecological and physical baselines and inventories* (100%), and *high resolution remote sensing* (67%).

For land use, the top-ranked research, information, and technology needs are to *identify cumulative* effects of development (50%), land use change analysis (83%), and affordable remote sensing (60%) along with others (60%).

Table 6-28. Top-ranked Responses from Oregon

Management I Ranked Very Imp or Importa	portant	Top-Ranked Researc	Top-ranke Information		Top-ranked Technology Need		
Habitat change	100%	Valuation of social, ecological, and economic factors	83%	Ecological and physical baselines and inventories	100%	High resolution remote sensing	67%
Land use	100%	Identify cumulative effects of development	50%	Land use change analysis	83%	Affordable remote sensing Other	60% 60%
Sediment management	83%	Prioritize restoration/ protection based on max. benefit for cost	60%	Improved methods and models for quantifying sediment budgets	80%	Methods for quantifying sediment budgets	100%
Coastal hazards	66%	Risk and vulnerability assessments	75%	Geomorph. studies	100%	Impact zone identification	75%
Nonindigenous species	50%	Early detection of species Susceptibility factors for coastal invasive introductions	67% 67%	Ecosystem inventory State of knowledge reports and success stories	100%	Rapid detecting and monitoring	100%
Ocean management	50%	Marine Managed Area effectiveness	100%	Geospatial data for GIS Anecdotal/ traditional data Access, retrieval and analysis of data	100% 100% 100%	Nondestructive bottom fishing gear	100%
Nutrient enrichment	33%	Source identification/trackin g	100%	Short term forecasts of nutrient loading	100%	Improved models that simulate and predict Cost effective long-term monitoring/sampling equipment Rapid measurements	50% 50% 50%
						of concentration Enhanced remote sensing	50%

Management Issue Ranked Very Important or Important		Top-Ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need	
Environmental contamination	17%	Identification of sources Public health risk	100% 100%	Epidemiology of contaminant	100%	Improved models that simulate and predict Rapid/real time	100% 100%
		assessment Test and validate assessment techniques	100%	s Explanation of interactions among contaminant s Other	100%	detection Improved remote sensing/ sampling technologies	100%
				0 11 101	100%		

6-29 Washington's Priorities

Washington's priority coastal management issue areas are *land use* (100%) and *habitat change* (80%), which match the national top-ranked results, along with nutrient enrichment (80%), environmental contamination (80%).

The top-ranked research, information, and technology needs for land use are to quantify the impact of land use on water quality (80%), geospatial data for GIS (60%), and improved models that simulate and predict along with affordable remote sensing (80%).

For habitat change, the top-ranked research, information, and technology needs are to evaluate the effectiveness of restoration/protection techniques (100%), ecological and physical baselines and inventories (75%), and high resolution remote sensing (75%).

Table 6-29. Top-ranked Responses from Washington

Management I Ranked Very Imp or Importa	oortant	Top-Ranked Research	h Need	Top-rank Information		Top-ranked Technolog	y Need
Land use	100%	Quantify impact of land use on water quality	80%	Geospatial data for GIS	60%	Improved models that predict and simulate Affordable remote sensing	80% 80%
Habitat change	80%	Evaluate the effectiveness of restoration/ protection techniques	100%	Ecological and physical baselines and inventories	75%	High resolution remote sensing Habitat restoration BMPs	75% 75%
Nutrient enrichment	80%	Source identification/trackin g	100%	Short term forecasts of nutrient loading BMP effectivene ss of C/B analysis	75% 75%	Effective mitigation strategies	100%
Environmental contamination	80%	Public health risk assessment Effectiveness of remediation techniques Remediation options	75% 75% 75%	Economic impact evaluations	63%	Improved remote sensing/ sampling Improved treatment or removal	75% 75%
Nonindigenous species	60%	Effectiveness of BMPs	100%	Ecosystem inventory State of knowledge report/ success stories	100%	Rapid detecting and monitoring Treatment or removal	100% 100%
Sediment management	60%	Effectiveness of confinement techniques	100%	State of knowledge report and case studies	100%	Engineering solutions Treatment technologies	100% 100%
Ocean management	40%	Marine Managed Area effectiveness	100%	More geospatial data for GIS State of knowledge reports and case studies	100%	Nondestructive bottom fishing gear	100%

Management I Ranked Very Im or Importa	portant	Top-Ranked Research Need		Top-rank Information		Top-ranked Technology Need	
Marine debris	40%	Ecological impacts	100%	State of knowledge reports and	100%	GPS tracking systems for potential sources of debris	100%
				success studies		Gear modifications to make less harmful to non-target species and habitat	100%
Coastal hazards	20%	Littoral cell inventories	100%	Design standards	100%	Improved models that simulate and predict	100%
		Shoreline characterizations	100%	Geomorph. Studies	100%	Alternative shoreline protection	100%
		Effects of climate change	100%	Geospatial data for GIS	100%	·	

6-30 American Samoa's Priorities

The nine top-ranked management topics that American Samoa (Table 6-30) considers to be very important or important are *habitat change*, *land use*, *nutrient enrichment*, *nonindigenous species*, *environmental contamination*, *coastal hazards*, *ocean management*, *sediment management*, *and marine debris* (100%). Land use and habitat change match the national top-ranked topics.

The top-ranked research needs identified for land use are to understand demographic changes and cultural influences on development, to calculate pollutant removal efficiencies, and to identify growth patterns and land use conversion patterns (100%). The top information needs are land use classification, land use change analysis, and geospatial data for GIS (100%). Technology to address land use issues includes change detection sensors, affordable remote sensing, and customized GIS (100%).

Habitat change top-ranked research needs are *cumulative impact assessment*, *ecological characterizations*, and *valuation of social*, *ecological and economic factors* (100%). Information needs include *trends analysis*, *ecological and physical baselines and inventories*, and *geospatial data for GIS* (100%). Top-ranked technology needs are *high resolution remote sensing*, *new restoration techniques*, and *rapid ecological assessment and evaluation technology* (100%).

Table 6-30. Top-ranked Responses from American Samoa

Management I Ranked Very Importai	portant	Top-ranked Research Need		Top-ranked Inform Need	ation	Top-ranked Techr Need	ology
Land Use	100%	Understand demographic	100%	Land use classification	100%	Change detection sensors	100%
		changes and/or cultural influences		Land use change analysis	100%	Affordable remote sensing	100%
		on development patterns		Geospatial data for GIS	100%	Customized GIS	100%
		Develop methodologies to calculate pollutant removal efficiencies	100%				
		Identify growth patterns/ land use conversion patterns	100%				
Habitat change	100%	Cumulative impact assessment	100%	Trends analysis Ecological and	100% 100%	High resolution remote sensing	100%
		Provide ecological characterization	100%	physical baselines and inventories		New restoration techniques	100%
		Valuation of social, ecological, economic factors	100%	Geospatial data for GIS	100%	Rapid ecological assessment and evaluation technology	100%
Nutrient enrichment	100%	Cumulative impact assessments	100%	Short term forecasts of nutrient loading	100%	NO RESPON	SE
		Source tracking/ identification	100%	Land use analysis Geospatial data for	100% 100%		
		Spatial and temporal trends analysis	100%	GIS			
Environmental contamination	100%	Cumulative impact assessments	100%	Economic impact evaluations	100%	Cost effective long term	100%
		Identification of Sources	100%	Geospatial data for GIS	100%	monitoring equipment	
		Public health risk assessment	100%			Improved remote sensing/ sampling technologies	100%
						Reliable public health testing	100%

Management Is Ranked Very Imp or Importar	ortant	Top-ranked Researc	h Need	Top-ranked Inform Need	ation	Top-ranked Techn Need	ology
Nonindigenous species	100%	Cumulative impact assessment	100%	Ecosystem inventory	100%	Treatment or removal	100%
		Vector identification	100%	Land use assessment	100%	technologies	
				Geospatial data for GIS	100%		
Coastal	100%	Shoreline	100%	Spatial and	100%	Improved models	100%
hazards		characterizations Risk assessments	100%	temporal demographics		Impact zone identification	100%
		Trends analysis	100%	Geospatial data for GIS	100%	Advanced detection	100%
Sediment management	100%	Effectiveness of confinement	100%	Sediment transport patterns	100%	Engineering solutions	100%
		techniques Prioritize restoration	100%	Shoreline characterizations	100%	Methods for quantifying	100%
		Phontize restoration	100%	Geospatial data for	100%	sediment	
				GIS		budgets	
						Containment and stabilization technologies	100%
Ocean management	100%	Changes in community	100%	Geospatial data for GIS	100%	Improved models Mapping and	100% 100%
· ·		composition		Anecdotal/traditional	100%	data acquisition	
		Ecological characterizations	100%	data			
		Marine Managed Area effectiveness	100%				
Marine debris	100%	Source tracking	100% 100%	Geospatial data for GIS	100%	Gear modifications	75%
		Ecological impacts	100%	Debris inventory	100%	mounications	
				Public outreach and education	100%		

6-31 Commonwealth of the Northern Marianas Islands' Priorities

The top-ranked management topics that Northern Marianas Islands (Table 6-31) considered to be very important or important are *habitat change*, *land use*, *nutrient enrichment*, *coastal hazards*, *ocean management*, and *marine debris* (100%).

The top-ranked research and information needs identified for habitat change are *cumulative impact* assessment, effectiveness of restoration techniques, valuation of socioeconomic and ecological factors, and trends analysis (100%). Models that simulate and predict, high resolution remote sensing, and habitat restoration BMPs are rated the highest in terms of the technologies needed to address habitat change (100%)

Land use change's top-ranked research need is to *identify cumulative effects of development* (100%). Access and analysis of data, land use classification, and land use change analysis ranks as the top information need (67%), and *customized GIS* is the highest ranked technology need (100%)

Table 6-31. Top-ranked Responses from Northern Marianas Islands

Management I Ranked Very Importan	oortant nt	Top-ranked Rese Need		Top-ranked Inform Need		Top-ranked Technolog	
Habitat change	100%	Cumulative impact assessment	100%	Trends analysis	100%	Models that simulate and predict	67%
		Effectiveness of restoration	100%			High resolution remote sensing	67%
		techniques Valuation of socioeconomic and ecological	100%			Habitat restoration BMPs	67%
Land use	100%	factors Identify cumulative effects of	100%	Access and analysis of data	67%	Customized GIS	100%
		development		Land use classification	67%		
				Land use change analysis	67%		
Nutrient enrichment	100%	Source ID Bioindicators	100% 100%	Access and analysis of data	100%	Rapid community assessment	100%
				BMP effectiveness or CBA	100%	Rapid measurements of concentration	100%
Coastal hazards	100%	Risk and vulnerability assessments	100%	Design standards for shoreline management technologies	100%	Impact zone identification	100%
Ocean management	100%	Cumulative impact assessments	100%	Access, retrieval, and analysis of	100%	Improved models to simulate and predict	33%
				data		Low-cost vessel tracking	33%
						Mapping/data acquisition	33%
Marine Debris	100%	Source tracking Biodegradable products	100% 100%	Public outreach and education	100%	Debris removal technology	100%
Environmental contamination	100%	Identification of sources	100%	Economic impact evaluations	100%	Reliable DNA fingerprinting	67%
		Effectiveness of remediation techniques	100%	Remediation options	100%	Improved treatment or removal technologies	67%
Sediment management	67%	Effectiveness of confinement techniques	100%	Sediment transport patterns	100%	Containment and stabilization techniques	100%
		Effects from dredging	100%	pattorno		Commiqueo	

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Information Need		Top-ranked Technology Need		
Nonindigenous species	33%	Early detection Susceptibility factors	100%	Other	100%	Rapid detection Treatment or removal Prevention techniques	100% 100% 100%	
		Human behaviors leading to introductions	100%			·		

6-32 Guam's Priorities

The eight top-ranked management topics that Guam (Table 6-32) considers to be very important or important are land use, habitat change, nutrient enrichment, ocean management, nonindigenous species, environmental contamination, coastal hazards, and sediment management (100%).

The top-ranked research and information needs identified for land use change are *identifying cumulative* effects of development (100%), success stories, more geospatial data for GIS, and other (100%). The technology needs are change detection sensors, affordable remote sensing, and customized GIS (100%).

The top-ranked research and information needs for habitat change are *cumulative impact assessments*, evaluation of the effectiveness of restoration techniques, valuation of socioeconomic and ecological factors, trends analysis, baselines and inventories, and more geospatial data for GIS (100%). The technology needs are high resolution remote sensing, low cost remote sensing platforms, and long term monitoring equipment (100%).

Table 6-32. Top-ranked Responses from Guam

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Inforn Need	nation	Top-ranked Technology Need	
Land use	100%	Identify cumulative effects of development	100%	Success stories More geospatial data for GIS Other	100% 100% 100%	Change detection sensors Affordable remote sensing	100% 100%
						Customized GIS	100%
Habitat change	100%	Cumulative Impact Assessment	100%	Trends analysis Baselines and	100% 100%	High resolution remote sensing	100%
		Evaluate the effectiveness of restoration	100%	inventories More geospatial data for GIS	100%	Low cost remote sensing platforms	100%
		techniques Valuation of socioeconomic and ecological factors	100%			Long term monitoring equipment	100%
Nutrient enrichment	100%	Source ID Effects on species or communities	100% 100%	BMP effectiveness or CBA Success stories	100% 100%	Cost effective long term monitoring	100%
		Trends analysis	100%	Other	100%	equipment Improved treatment technologies	100%
						Effective mitigation strategies	100%
Ocean management	100%	Economic assessments Feasibility of	100% 100%	More geospatial data for GIS Data	100% 100%	No impact aquaculture techniques	100%
		alternative energy sources	100 /6	access/analysis Case studies	100%	Low cost remote vessel tracking	100%
		Other	100%			Energy technology	100%
Nonindigenous species	100%	Early detection of species	100%	Ecosystem inventory	100%	Rapid detection and monitoring	100%
		Susceptibility factors	100%	Success stories Other	100% 100%	Treatment technologies	100%
		Effectiveness of BMPs	100%			Prevention techniques	100%
Environmental contamination	100%	Source ID Bioindicators	100% 100%	TMDL guidelines Remediation	100% 100%	Rapid/real time detection	100%
		Public health risk assessment	100%	options CBA of	100%	Improved remote sensing	100%
				remediation		Improved	100%

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Inforn Need	Top-ranked Information Need		nology
						treatment or removal technologies	
Coastal hazards	100%	Risk and vulnerability	100%	Data access/analysis	100%	Improved models Alternative	100% 100%
		assessments Effects of climate change	100%	Socioeconomic impact assessments	100%	shoreline protection technologies	
		Other	100%	More geospatial data for GIS	100%	Advanced detection	100%
Sediment management	100%	Cost benefit analysis	100%	Sediment transport patterns	100%	Improved models Containment and	100% 100%
•		Effects from dredging	100%	Quantification of sediment	100%	stabilization technologies	
		Analysis of impacts of engineered solutions	100%	budgets Other	100%	Treatment technologies	100%

6-33 Hawaii's Priorities

Hawaii ranks *land use* (100%) as the top priority issue to address over the next five years followed by *habitat change*, *environmental contamination*, *nutrient enrichment*, *nonindigenous species*, *ocean management*, *sediment management* and *coastal hazards* (50%) as the top management topics (Table 6-33).

The most important research needs for land use are identifying cumulative effects of development, develop indicators that link land use with ecosystem impact, determining the impact of land use on water quality, calculating pollutant removal efficiencies, and identifying growth or land use pattern change (50%). The most important information need is land use change analysis (100%). The major technological need is identified as customized GIS (100%).

The most important research needs for habitat change are identification of indicators of habitat health, valuation of socioeconomic and ecological factors, and determining the effects of scale on data and analysis (100%). The most important information needs are data access/analysis, trends analysis, and developing baselines and inventories (100%). The major technological needs are identified as improved models that simulate and predict, rapid assessment and evaluation technology and long term monitoring equipment (100%).

Table 6-33. Top-ranked Responses from Hawaii

	Top-ranke Technology	nation	Top-ranked Inforn Need	n Need	Top-ranked Research	ortant	Management Is Ranked Very Imp or Importar
100%	Customized GIS	100%	Land use change analysis	50%	ID cumulative effects of development	100%	Land use
				50%	Indicators that link land use with ecosystem impact		
				50%	Impact of land use with water quality		
				50%	Calculate pollutant removal		
				50%	efficiencies Identify growth or land use patters		
100%	Improved	100%	Data	100%	Identify indicators of	50%	Habitat change
	models		access/analysis		habitat health		
100%	Rapid	100%	Trends analysis	100%	Valuation of		
	assessment	100%	Baselines and		socioeconomic and		
	and		inventories		ecological factors		
	evaluation			100%	Effects of scale on		
100%	technology				data and analysis		
	Long term				-		
	monitoring						
	equipment						
100%	Improved	100%	Epidemiology of	100%	Source ID	50%	Environmental
	remote		contaminants	100%	Toxicity analysis		contamination
	sensing	100%	Explanation of	100%	Public health risk		
100%	Improved		interactions		assessment		
	treatment or		among				
	removal		contaminants				
	technologie	100%	Remediation				
100%	S		options				
	Reliable						
	public						
	health						
100%		100%	Data	1000/	Cumulativa impact	E00/	Mutriant
100%		100%		100%		5 0%	
100%		100%	,	100%			em icinnent
100%		10076					
		100%		100 /0	,		
		100 /0	Lanu use analysis				
	testing Improved models Cost effective long term monitoring equipment	100% 100% 100%	Data access/analysis BMP effectiveness or CBA Land use analysis	100% 100% 100%	Cumulative impact assessments Source ID Efficacy of education and outreach efforts	50%	Nutrient enrichment

Management Is Ranked Very Imp or Importan	ortant	Top-ranked Researc	h Need	Top-ranked Inform Need	ation	Top-rank Technology	
						Effective mitigation strategies	100%
Nonindigenous species	50%	Rapid assessment and analysis	100%	Data access/analysis	100%	Rapid detection	100%
		Effectiveness of BMPs	100%	Ecosystem inventory	100%	and monitoring	
		Human behaviors leading to introductions	100%	More geospatial data for GIS	100%	Rapid response techniques	100%
						Treatment or removal technologie s	100%
Ocean management	50%	Economic assessments	100%	More geospatial data for GIS	100%	Mapping and data	100%
· ·		Marine Managed Area effectiveness	100%	Anecdotal/traditional use data	100%	acquisition Other	100%
		Risk assessments	100%	Data access/analysis	100%		
Sediment management	50%	Improved beneficial uses	100%	Beach profile data Shoreline	100% 100%	Improved models	100%
· ·		Prioritization of restoration/protecti	100%	characterizations		Engineering solutions	100%
		on based on max benefit for cost				Remote sampling	100%
		Analysis of impacts of engineering solutions	100%				
Coastal hazards	50%	Shoreline characterizations	100%	Data access/analysis	100%	Improved models	100%
		Risk and vulnerability assessments	100%	Socioeconomic impact	100%	Alternative shoreline	100%
		Trends analysis	100%	assessments More geospatial data for GIS	100%	protection technologie s	100%
				data ioi Gio		Advanced detection or warning	10070

6-34 Puerto Rico's Priorities

The top-ranked management topics that the Puerto Rico (Table 6-34) considers to be very important or important are *habitat change*, *land use*, *environmental contamination*, and *sediment management* (100%).

The top-ranked research needs identified for habitat change are *cumulative impact assessments*, *rate of freshwater inflow, and effects of human values and choices* (100%). The information and technology needs are *trends analysis* and *more geospatial data for GIS* (100%) and *improved models, low cost remote sensing platforms*, *and habitat restoration BMPs* (100%).

The top-ranked research needs to address land use change are to identify the cumulative effects of development, develop indicators that link land use with ecosystem impacts, and socioeconomic cost-benefit analyses of land use options (100%). The information needs are build out/infill analysis and land suitability analysis (100%). The top technology needs are improved prediction or simulation models and change detection sensors (100%).

Table 6-34. Top-ranked Responses from Puerto Rico

Management Issue Ranked Very Important or Important		Top-ranked Research Need		Top-ranked Informatio	n Need	Top-ranked Technology Need		
Habitat change	100%	Cumulative impact assessments	100%	Trends analysis More geospatial data	100% 100%	Improved models Low cost remote	100% 100%	
		Rate of freshwater inflow	100%	for GIS		sensing platforms		
		Effects of human values and choices	100%			Habitat restoration BMPs	100%	
Land use	100%	Identify cumulative effects of development	100%	Build out/infill analysis Land suitability analysis	100% 100%	Improved models Change detection sensors	100% 100%	
		Socioeconomic CBA of land use options	100%	,				
		Develop indicators that link land use with ecosystem impact	100%					
Environmental contamination	100%	Bioindicators Toxicity analysis Rate of freshwater	100% 100% 100%	Explanation of interactions among contaminants	100%	Improved models Cost effective long term monitoring	100% 100%	
		inflow	10070	More geospatial data for GIS	100%	equipment Improved	100%	
				CBA of remediation	100%	treatment or removal technologies	100 /6	
Sediment management	100%	Test and validate assessment	100%	Sediment transport patterns	100%	Improved models Quantification of	100% 100%	
· ·		techniques	4000/	Shoreline	100%	sediment		
		Effectiveness of confinement techniques	100%	characterizations Quantification of sediment budgets	100%	budgets Containment and stabilization	100%	
		Prioritize restoration/protec tion based on max benefit for cost	100%			technologies		