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Abstract

Both climate change and technical change are uncertain. In this paper we show the importance

of including both uncertainties when modeling for policy analysis. We then develop an approach

for incorporating uncertainty of technical change into climate change policy analysis. We define

and demonstrate a protocol for bottom-up expert assessments about prospects for technologies. We

then describe a method for using such assessments to derive a probability distribution over future

abatement curves, and to estimate random return functions for technological investment in different

areas. Finally, we show how these analytic results could be used in a variety of energy-economic

models for policy analysis.

JEL classification: D81;O32; Q54; Q55; Q58

Keywords: Climate change; Technology R&D; Uncertainty; Environmental policy
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1 Introduction

Much of the work investigating the relationship between environmental policy and technical change has

considered deterministic technical change in response to deterministic environmental damages. Both

technical change and environmental damages (especially in relation to climate change), however, are un-

certain. In this paper we review some papers that indicate the importance of incorporating uncertainty

in technical change and uncertainty in climate change. We then develop an approach for incorporating

uncertainty in technical change into policy analysis. In particular, we address three key issues: (1) both

technical change and climate change are uncertain; (2) the decision problem is dynamic; and (3) the

uncertainty in technical change is endogenous.

Understanding the relationship between technical change, climate change, and policy is important

on a number of different levels. First, assumptions about technical change can have major impacts on

optimal near term abatement (we define abatement as a reduction in emissions below a business-as-usual

reference case). For example, optimistic assumptions about technical change lead to climate change

”solving itself” (Popp, 2006). If technical change is assumed to result from focussed R&D expenditure,

this usually implies slightly lower abatement in the near term, since R&D expenditures and abatement

expenditures are substitutes (Goulder and Mathai, 2000); if technical change is assumed to result from

learning by doing, this usually implies more abatement in the near term, since this leads to more technical

change (Goulder and Mathai, 2000; Grubb, 1996). Second, assumptions about technical change impact

the optimal policy instrument (Montero, 2002). Third, the success (and welfare impacts) of technology

policy, including direct government R&D, R&D subsidies, and technology standards, clearly depends

on understanding the relationships between technical change, climate outcomes, and policy.

We argue that explicitly including uncertainty in both technical change and in climate damages

is important for understanding the relationship between technical change, climate change, and policy.

First, we note that there is considerable uncertainty on both fronts. Regarding climate damages, in
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Nordhaus (1994a) we see that expert assessments of the probability of a catastrophe range from less than

1% to greater than 35%. Regarding technical change, it is clear that no one can predict exactly which

technologies will be successful and widely adopted in the future. Second, the type of technologies used

in the future will depend on both technical change and climate damages. Incremental improvements

in solar energy, for example, will have only a small impact on the economy if climate change damages

turn out to be mild, inducing only small amounts of abatement. These improvements, however, will

have widespread impacts on the economy if climate damages turn out to be severe, thus inducing a

high level of abatement. On the other hand, incremental improvements in the efficiency of coal-fired

electricity generators will have a significant impact on the cost of abatement if damages are relatively

small, but virtually no impact if damages are severe, since it is unlikely that coal will be efficient in that

scenario. In Section 2 we discuss a number of papers that include endogenous technical change and/or

uncertainty. These papers taken as a whole indicate that optimal policy is different — especially in the

presence of endogenous technical change — when uncertainty is taken into account.

Incorporating endogenous uncertainty in technical change has been challenging for three reasons.

First, technical change involves a finite set of idiosyncratic technologies, whose detailed features affect

how they can be deployed in future scenarios. Characterization of uncertainties about a varied range of

technologies require subjective judgments that have simply not yet been solicited. Second, it is generally

challenging to incorporate bottom-up data into top-down models. Third, there are computational

challenges to modeling endogenous technical change.

Our framework for incorporating uncertainty in technical change into climate policy models, pre-

sented in Section 3, addresses these challenges as follows. First, we present a protocol for assessing

probabilistically the level of future success that will result from R&D on various technologies. Second,

we focus on translating bottom-up technological detail into the impacts on the marginal abatement cost

curve (MAC). In Baker et al. (2006) we illustrated that the variety of assumptions about technical
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change in analytical and top-down models lead to a variety of impacts on the MAC; and, furthermore,

that this variety of impacts has implications for policy analysis. Focusing on the MAC has the benefit

of putting a number of diverse technologies on an even footing; being easily implemented in theoretical

models; and being usable for parameterization in more detailed top-down economic models. Third, we

provide a method for constructing (random) functions that relate R&D expenditures to probabilistic

technical success. Thus, our framework provides a method for modeling endogenous uncertainty. That

is, the probability distribution over outcomes depends on how much is invested and in which technolo-

gies. For example, it seems reasonable that the probability of achieving a given level of technical success

will be higher if more resources are invested toward that goal. There may be some probability of tech-

nical change even with no investment, but most people would put the probability considerably higher

if money is spent on a goal, and most likely, the probability will increase with increased expenditures.

This idea has not been widely incorporated in the climate change literature. In Section 4 we discuss

how our framework provides tools to incorporate such endogenous uncertainty into a variety of models,

and therefore improve the state of policy recommendations. We conclude in Section 5.

2 Uncertainty in Technical Change and Climate Damages

In this section we review papers in the climate change literature that include technical change and

uncertainty. We first cover a number of papers that discuss technical change in a deterministic world;

and a selection of papers that include uncertainty in climate damages but no endogenous technical

change. We go on to the main focus of this section, which are papers that include both uncertainty

and endogenous technical change. We divide these papers into three groups: papers with (1) climate

uncertainty only; (2) technological uncertainty only; and (3) climate and technological uncertainty

combined.

There is a growing body of work on endogenous technological advance in the context of climate
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change. This literature covers technological change that is in some way induced by policy, generally by

the indirect effect on market actors, but also as a control variable. On the modeling front, this literature

includes, among others, Buonanno et al. (2003), Goulder and Mathai (2000), Goulder and Schneider

(1999), Manne and Richels (2004), Nordhaus (2002), Popp (2004),(2006), Schneider and Goulder (1997),

Sue Wing (2003), and van der Zwaan et al. (2002). On an empirical front, this literature includes Newell

(1997), and Newell et al. (1999). For surveys of the literature see Clarke and Weyant (2002), Jaffe, et

al. (2001), Gillingham et al. (2006), Grubb et al. (2002), Loschel (2004), and Clarke et al. (2006a,

2006b).

There is a large body of research that considers the impacts of uncertainty and learning on optimal

near-term abatement levels (See for example Baker, 2005a ; Gollier, 2000; Karp and Zhang, 2006; Keller

et al., 2004; Kolstad, 1996; Manne, 1996; Pizer, 1999; Ulph & Ulph, 1997; Webster, 2002).

There is a selection of papers that investigate the impact of climate uncertainty on (deterministic)

technical change. Van der Zwaan and Gerlagh (2006) use sensitivity analysis to compare the relative

importance of energy savings and non-fossil energy use in a model with learning by doing. They

find that energy savings first increases then decreases in importance as the stringency of the carbon

target increases. Bosetti and Gilotte (2005) use a modified version of the DICE model and consider

two alternative technologies for abatement — one persistent and one not persistent. They find that

uncertainty in climate damages makes the less persistent technology more attractive. Baker et al. (2005)

show that the socially optimal investment in alternative technologies increases with some increases in risk

in climate damages, while the socially optimal investment in conventional technologies decreases. Baker

(2005b) builds on the analytical results in the previous paper to show that in many cases abatement

and alternative R&D act as ”risk-substitutes”: changes in risk that induce an increase in one, induce

a decrease in the other. Specifically, alternative R&D tends to decrease in a Mean-Preserving Spread

(MPS) that stretches the tail of the distribution; and increase in an MPS near the mean. Farzin and

6



Kort (2000) consider investment in abatement technology under a random carbon tax. Their work

suggests that uncertainty in the magnitude of a carbon tax is more important than uncertainty about

the timing. Baker and Shittu (2005) show that firms that can flexibly substitute from carbon to non-

carbon energy may increase R&D into alternative technologies when the uncertainty surrounding a

carbon tax is increased; otherwise firms will tend to decrease investment into R&D in an increase in

uncertainty. These papers together suggest that including uncertainty in climate damages, particularly

in the magnitude of climate damages, has a significant impact in models with endogenous technical

change.

There is an emerging literature considering the interplay of technology and policy when technical

change is uncertain. Baudry (2000) models a (fixed) new technology arriving at a random time, condi-

tional on a fixed investment being made, and shows that there is a value to waiting for pollution levels

to rise before investing in the new program. He does not investigate how the amount of uncertainty in

the timing of the new technology impacts the result. Bohringer and Rutherford (2006) use stochastic

programming to analyze the optimal policy mix between emission taxes and R&D for a given cumula-

tive emissions limit when there is an ”advanced” carbon free technology that may (or may not) become

available at a future date. In this model R&D deterministically reduces the cost of both the current

and the advanced carbon free technologies; but it does not impact the possibility or the timing of the

arrival of the advanced technology. They find that in this framework R&D is an attractive substitute

to emissions taxes. The emissions tax only rises when either the advanced technology arrives OR it

becomes clear that the advanced technology is never going to arrive. That is, in the absence of the

advanced technology, the emissions tax is very expensive. It is only used to either spur the usage of the

advanced technology once it arrives; or as a last resort as it becomes apparent that the technology will

not arrive. This suggests that the optimal carbon tax in the face of uncertain technical change is lower

than if technical change is either deterministically available or deterministically unavailable.
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Bosetti and Drouet (2005) also apply stochastic programming, using the RICE-FEEM model to

consider uncertainty in the effectiveness of knowledge creation. They consider technical change through

two avenues — a decrease in the output elasticity of energy and a decrease in the carbon intensity of

energy. Technical change can be achieved through both investments in R&D and through Learning-by-

Doing (LBD). They model uncertainty in the effectiveness of R&D to add to the knowledge stock; and

the effectiveness of increased abatement to add to the stock of knowledge from LBD. Thus, similar to

Bohringer and Rutherford (2006) above, the uncertainty is independent of R&D investments. They find

that R&D expenditures are higher and abatement is slightly lower when they consider stochastic techni-

cal change as compared to a model in which they just use central values to approximate the effectiveness

of learning. This result is particularly strong when the objective is to minimize the cost of reaching a

pre-determined emissions concentration. This group of papers suggests that policy recommendations

are different when uncertainty in technical change is modeled than when it is not.

Finally, in Baker and Adu-Bonnah (2005) we have combined uncertain technical change with un-

certain damages to analyze the socially optimal portfolio of technology projects. Unlike the two papers

above, R&D investment in this model impacts the probability distribution over the outcome of technical

change. We found that the socially optimal investment in alternative technologies is higher for riskier

projects than less-risky projects, where the opposite is true for conventional technologies. However,

as we consider riskier climate damages, in terms of a higher probability of a great-depression-sized

catastrophe, less-risky alternative technologies, and more-risky conventional technologies become more

attractive. Thus, the relationship between uncertainty in technology and uncertainty in damages is

complex, and has an impact on optimal policy.
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Figure 1: A two-stage model of decision making under uncertainty.

3 Framework

In this section we provide a framework for incorporating endogenous uncertainty in technical change into

policy models. The framework has three key steps. The first is to gather data on potential uncertain

technical change through probability assessments with experts in the appropriate field. The second step

is to translate this raw, bottom-up data into impacts on the MAC. The third step involves representing

this data in compact functional form so that it can be easily implemented in models and understood by

policy makers. We start by describing a simple, conceptual model of dynamic decision making under

uncertainty that informs the development of the framework.

3.1 Conceptual Model

The conceptual framework is a two-stage model of sequential decision making under uncertainty and

learning (See the influence diagram in Figure 1). In the first stage, the decision maker selects a set of

technology R&D projects in which to invest in order to improve the abatement cost curve. The resulting

future abatement cost curve is uncertain, depending on the success of the various projects. The climate

damage curve is also uncertain. The second stage is at some future point in time after learning takes

place, when the decision maker chooses a level of abatement that minimizes second stage costs, equal
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to the sum of abatement costs and damage costs. The first stage objective is to minimize the sum of

expected second stage costs and R&D costs.

The value of any particular technology will depend on the eventual abatement level; the abatement

level depends on both the marginal cost of abatement and the marginal damages. Thus, it is crucial to

understand the impact of technology on the marginal abatement cost curve (MAC). Put another way,

the effect of a single technology on societal cost is not inherent in the technology alone, but instead must

be understood through the technology’s effect on the MAC as it interacts with the eventual damage

curve.

3.2 Expert Assessments of Technical Change

R&D poses a difficult problem. The results of investments are in the future and are often highly

uncertain. The projects themselves are not very repeatable. Unlike the weather or stock prices, there

does not appear to be a single stochastic process that underlies all R&D programs, or all energy R&D

programs, or even all solar R&D programs. Thus we must forecast the future through ”subjective”

means, although forecasts may be informed by past experience, e.g., learning curves or experience curves

can be fitted and used to project future incremental improvements in performance (IEA, 2000). Expert

judgments about probability distributions are a key ingredient to understanding technical change.

Decision Analysis (DA) techniques are often used to quantify uncertainties in the form of subjective

probabilities and probability distributions (Raiffa, 1968), and these techniques have been extensively

validated (Winterfeldt and Edwards, 1986). These techniques involve recognizing and to the extent

possible removing known psychological biases in judgment (Tversky and Kahneman, 1974), along with

incorporating consistency checks and to the extent possible structuring the variables to be estimated in

such a way that experts are left with cognitively simple assessment questions. Probability assessments

are a main component of decision analytic practice. There have been numerous efforts, for example,
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to apply DA assessment techniques to characterize possible climatic conditions. Such efforts have syn-

thesized the views of multiple experts, e.g., Nordhaus (1994a) , Morgan et al. (2001), Vaughn and

Spouge (2002). Moreover, DA has been used widely in R&D portfolio management in the private sector

(Clemen and Kwit, 2001; Keefer et al., 2004). Our previous work Keisler (2004) showed that R&D

portfolio value can be substantially improved by improving estimates of project value.

Industry practice for R&D portfolio decision analysis has several standard steps (Sharp and Keelin,

1998). For each possible R&D project, analysts work with engineering experts to formulate a precise

definition of success and then assess a subjective probability of success and an estimate of economic

impact given that success is achieved. These quantities are assessed at one or more specified funding

levels for each project. If a successful technology requires the resolution of a combination of several

technical challenges, subjective probabilities are assessed for each of the challenges, and then overall

probability of success is computed (rather than assessed directly). A separate model then calculates

the value of a successful project, e.g., the profit per unit produced times the number of units produced.

Finally, an efficient R&D funding frontier is identified by sorting projects in order of the ratio of their

expected value to their R&D cost.

Our portfolio of technologies can be assessed in a manner similar to industry applications of decision

analysis, with some unique challenges. A key complication in our problem is that climate change

technology values are interdependent on each other and on the eventual realization of climate damages,

so our approach must ultimately consider curves and not just scalar variables in order to ”look at

supply and demand interactions under uncertainty” (Marks, 2002). In analogous efforts, Whitfield

and Wallsten (1989), Whitfield et al. (1996), and Winkler et al. (1995) demonstrated assessment

methods for constructing stochastic response curves for health impacts resulting from lead exposure.

Our assessment protocol is designed to address the four following issues.

1. Identifying which technologies to include in the portfolio for explicit assessment. We ask experts
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in each of the major areas to name the technologies that are not deployed at all or not yet widely

deployed, but could be deployed within 20-50 years; or technologies that are currently widely

deployed but may be subject to considerable improvement.

2. Defining technical success unambiguously enough that experts can meaningfully estimate a prob-

ability of success and that we can determine the value of the key parameters needed to calculate

the impact of the technology on the MAC. We ask experts what technical performance must

be achieved before the R&D program could reasonably be considered a success, for example, a

non-toxic compound must be discovered that will match current performance of a cadmium based

photovoltaic materials, or a reliable wind tower platform must be built sufficiently far offshore for

public acceptance while still using a variation of an existing lower-cost platform technology.

3. Defining funding scenarios where the funding is provided and expended on a national or worldwide

level, rather than simply as a budget authorized by one unitary decision maker for the use of

another. Our approach is to start by asking about what the current funding plans are, and then

asking for a scenario (or two) which would provide a fair chance for the technology to be proven.

4. Engaging experts in a way that avoids potential psychological biases that are of special concern

due to the issues being considered. For example, individual scientists will tend to self-select to

work in areas they believe are promising. Furthermore, scientists face motivational biases, in

particular, they commonly champion their areas in order to seek funding, or, alternatively, they

might self-censor if their identities will be publicly associated with their assessments. Finally,

experts may need to consider highly unlikely events, and events some distance in the future, and

so it is especially important to help experts take a broad enough view that they don’t over- or

underweight these events. Peer review and use of multiple experts can reduce some of these

biases. We preview questions with experts prior to interviews in order to alert them to potential
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psychological biases and allow them to review sources in advance. During interviews we use

common assessment techniques such as asking for both probability of success and probability

of failure (to counter framing biases), and we use follow-up communications after interviews to

further check consistency.

Ultimately, for each technology, we define a set of criteria (from which we derive parameters needed

for MiniCAM to compute the impact on the abatement curve) that must be met for success and a

baseline funding trajectory (and, possibly, trajectories for scaled up or scaled down funding). We then

assess the probability that the funding trajectory will result in success. These assessments will ultimately

be used to obtain a research productivity measure (e.g., expected impact per dollar invested). For a

given relationship between cost, impact and probability, such a productivity measure is robust to minor

variations in the specific definitions of funding and success. This enables us to interview one expert in

depth in order to define the basis for assessment, but to efficiently solicit probabilities from multiple

experts by using the same assumptions about funding and impact.

Using this process, we have piloted these assessments in three technology areas (solar power, wind

power, and carbon capture and storage) and will be conducting more assessments in these and other

areas. In each area so far, experts have found it relatively straightforward to identify the key dimensions

and levels to define success (typically referencing their areas’ technical literature). For example, in the

area of post-combustion carbon capture and sequestration (CCS) for coal burning plants, success was

defined as a technology which would result in plant availability of 90% with derating of no more than

30%, at a cost of no more than $25 per ton avoided, and usable on at least 50% of available coal. We

then translate these terms into the MiniCAM input parameters of parasitic energy requirements, and

additional capture cost for a given capture rate.

It takes some effort to list the different sources and users of research funding. For CCS, we focused

on U.S. funding and estimated that approximately $15M was spent on pure research for 2006. Once
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this is done, it is not difficult for experts to identify reasonable trends in the current trajectory and

whether these will be sufficient to cover most of the potential work in the area. For CCS, we defined

a baseline scenario where government funding starts at current levels and doubles in real terms over

the next ten years after which it remains level for five years and then terminates. Because most of

the interesting avenues receive funding under this scenario, we didn’t add another, but for a different

technology (organic solar photovoltaics) current funding trends leave many efforts unfunded and we felt

it was necessary to also define an increased funding scenario for comparison.

Much of our effort has gone into structuring the sequence of challenges and tasks that must be

completed for each technology. With post-combustion CCS, for example, our experts said the technology

would succeed if any of six promising methods (a: metal solvents, b: alternative solvents, c: cryogenics,

d: stimulus, e: amine-based membranes, and f : ammonia-based membranes) under investigation would

lead to the targeted levels of performance. We determined that methods a and b were strongly correlated,

as were methods e and f . The actual assessment of numeric probabilities was not so difficult here, as we

were able to compare target levels to current levels - it can also help to calibrate by looking at analogous

advances. Given the assumed funding trajectory and the definition of success, experts estimated the

probability of success with (a or b) = 0.70, c = 0.35, d = 0.40, (e or f) = 0.20. We then calculated the

probability that at least one of these methods would work as 0.91 = 1 − (1 − 0.70) ∗ (1 − 0.35) ∗ (1 −

0.4) ∗ (1 − 0.2). Our experts then confirmed that this was essentially a high-probability, incremental

improvement technology. For other technologies, we structured different paths to success.

Overall, this adaptation of standard decision analytic assessment methodology provides a more

rigorous and data-driven basis for broader simulation models involving this segment of the economy.
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3.3 The Impact of Technical Change on the Marginal Cost of Abatement

In order to make the raw data useful in theoretical models and portfolio optimization models we must

translate technology-specific information into a metric that can be compared across technologies. As

shown in Baker et al. (2006), the crucial point is how technical change impacts the MAC. Our framework

employs a technologically-detailed integrated assessment model (MiniCAM) to translate the raw data

into impacts on the global abatement cost function.

MiniCAM is a global IAM that looks out to 2095 in 15-year timesteps. It is a partial-equilibrium

model, with 14 world regions that includes detailed models of land-use and the energy sector. MiniCAM

explicitly represents a range of electricity-generating technologies including various generations of nu-

clear power, multiple fossil generating technologies, solar and wind power, and electricity from biomass.

The model is specifically designed to represent the forces that drive the availability of, and interactions

between, technologies.1

Technology characteristics in MiniCAM are inputs to the model; the model does not include learning

curves or other approaches to induced technological change. Electricity technology efficiencies and non-

energy costs are specified for each model period. These technology characteristics are generally assumed

to improve over time to capture technological advance.

To produce MACs for a particular set of technology assumptions, the following approach can be

used. MiniCAM is run to meet a series of increasingly stringent carbon price pathways. For each of

these pathways, MiniCAM produces an associated emissions level in each of its 15-year time steps. For

each time step, the associated relationship between prices and abatement levels relative to a no policy

case traces out an abatement cost function. Figure 2 is an example of a reference and a high technology

MAC.

A number of methodological and conceptual issues must be addressed to develop these cost functions.

1See Brenkert et al. (2003) and Edmonds et al. (2005) for more discussion of the model.
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Figure 2: The marginal cost of abatement for a reference case and a high-tech case that includes higher
fossil fuel efficiencies.

At a conceptual level, ability to abate in any period depends on actions that were taken in previous

periods. For example, the more stringent was emissions policy in earlier periods, the lower will be the

price of fossil fuels because less would have been used in previous periods. Similarly, the more stringent

was emissions policy in previous periods, the greater will be the deployment of low-emitting capital,

which provides abatement in the present period. Because of these conceptual issues, the abatement cost

functions derived through MiniCAM are stylistic representations of marginal costs.

The interlinking of past and present raises the question of the appropriate emissions pathways to use

for generating MACs in any period. The approach used for this analysis was to posit an emissions price

that increases over time at the rate of interest (i.e., consistent with a Hotelling approach to resource

extraction), but modified by the rate of ocean uptake. This approach is understood to be optimal in the

climate context (see, for example, Peck and Wan, 1996). Another approach would be to posit a constant

carbon value over time, but this approach is so inconsistent with economically optimal abatement that it

was not deemed to be a meaningful alternative. Hence, the MACs generated from this exercise represent
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the relationship between carbon prices and abatement in a particular period given a carbon price that

rises over time roughly in line with the discount rate.

3.4 Compact Representations

The step above will produce numerical before- and after- MACs. In this section we discuss ways to

organize this data to make it easier to interpret and to implement in models. We start by discussing

a method for parameterizing and categorizing the impacts of technical change on the MAC. We then

discuss two methods for reducing the cognitive and computational requirements for analysis. The first

method involves hypothesizing funding orders within each category; the second method builds on the

funding orders to develop a returns-to-R&D-investment function (denoted RR function from now on) for

each category. These simplifications have the benefit of making the problem computationally feasible,

while at the same time providing an organization for the data which allows decision-makers to process

it. Just as computers have difficulty processing 230 portfolios, with over 2× 1014 outcomes, the human

mind cannot really grasp such a problem. People can, however, quickly and easily grasp a funding

order. Similarly, an RR function provides a great deal of information in a way that is easy to grasp.

Thus, even when the proposed two-stage decision structure is too limiting, the RR representation helps

to clarify differences between portfolios.

3.4.1 Parameterize and Categorize

Here we present a simple method for representing the change in the abatement cost curve using one, or a

combination of, 4 parameters — a shift down αD, a shift right αR, a pivot down αPD, or a pivot right αPR.

A shift indicates that the entire cost curve is shifted to the right or down, and a pivot indicates that one

end of the curve shifts down or right while the other end remains anchored. For example, assume that

the original abatement cost curve can be represented as c (μ) where μ is the fraction of emissions abated
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Figure 3: Potential shifts to the abatement cost curve (on the left) and the associated shifts to the
marginal abatment cost curve (on the right).

below the business as usual level. Table 1 shows how each of the shifts can be represented in terms of

both the cost curve and the MAC;2 and Figure 3 illustrates each of the shifts, assuming α = 0.4. Using

numerical analysis, we can determine which parameter, or combination of parameters, best represents

the observed impact on the MAC. If needed this framework can be extended to piece-wise shifts.

Type of Adjustment Representation of

Abatement Cost

Curve

Representation of MAC

Shift Right c (μ− αR) c0 (μ− αR)

Pivot Down (1− αPR) c (μ) (1− αPD) c
0 (μ)

Shift Down c (μ)− αD c0 (μ)

Pivot Right c
³
μ−αPD
1−αPD

´
1

1−αPR c
0
³
μ−αPR
1−αPR

´
Table 1: Representation of shifts and pivots to the abatement cost curve

and the MAC.

Technologies can then be

categorized according to type

of impact they have on the

abatement cost curve. For ex-

ample, all technologies that

primarily pivot the curve to

the right can be grouped to-

gether. We expect that the

technologies will be grouped

in intuitive ways, with, for ex-

ample all the very low-carbon

2In each case except ”pivot down” the cost of abatement is zero for μ ≤ α.
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technologies in one group and all increases in efficiency of carbon-technologies in another. Categorizing

technologies in this way will allow for general insights (for example which technologies are the closest

substitutes) and will allow for simplifications of the data that will allow us to implement it in models.

3.4.2 Funding Order Rule for Portfolio Selection

A funding order is a rule that assigns a rank to each technology within a cluster; technologies within that

cluster are then funded in that order. We build on the funding orders described in this section to develop

simple returns to R&D functions that can be used in theoretical and top-down computational models.

Additionally, assigning a funding order has the benefit of greatly reducing the number of portfolios that

need to be considered, thus providing a computationally feasible method for a portfolio analysis decision

support tool. For example, consider 3 categories with 10 technologies per category, combined with just

2 possible climate outcomes. Without categorization we have 230 fundable portfolios and over 4× 1014

possible combinations of MACs and climate damages. Once a funding order has been established, we

have only 11 possible portfolios in each category: the null portfolio, a one-project portfolio, a two-project

portfolio, up to a 10-project portfolio. Using this method, we have only 113 = 1331 portfolios and 17

billion outcomes. It is computationally feasible to evaluate 113 portfolios using Monte Carlo simulation.

Since our previous work has indicated that the risk-profile of R&D programs is important (Baker

and Adu-Bonnah, 2003), we focus on this aspect. Consider technology i in category j. We represent

the shift of this technology as αij , the probability of success as pij , and the investment cost as Iij .

We define the expected return per dollar as EVij ≡ pijαij
Iij

. The funding orders can be parameterized

by a risk-profile factor γ, ranging from −1, indicating a high risk portfolio, to 1 indicating a low risk

portfolio. For a given value of γ ≤ 0, the projects in category j are ranked in order of the following

quantity:

(1 + γ)EVij − γαij (1)
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If γ > 0:

(1 + γ)EVij + γpij

For example, consider the four technologies described in Table 2. For γ = −1 (high risk) they will

be funded in order 3,2,4,1; that is project 3 would be funded first, project 2 second, etc. For γ = 0

(mean-value) they will be funded in order 2,1,4,3; and for γ = 1 (low risk) they will be funded in order

1,2,4,3. Using this method, different funding orders can be compared to determine which is best for

that category. For example, under a low-risk damage scenario society may be better off with a riskier

alternative-energy portfolio and a less-risky conventional-energy portfolio.

3.4.3 Random Returns to R&D Function

Technology 1 2 3 4

Investment Cost 1 2 3 2.5

Probability of Success 40% 20% 5% 18%

Shift, if successful .04 .2 .65 .18

Table 2: A description of four technologies in one

category.

The data and the funding orders described above

are used to develop RR functions for each category

and risk-profile. For each category and each risk

factor we develop a random function

α (I) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αL (I) pL

αM (I) pM

αH (I) pH

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

where α (·) is the shift in the abatement cost curve,

I is the overall investment in the category, and pr is the probability of function αr (·) attaining, r =

L,M,H.

First, each curve is generated numerically. Given a funding order, we simulate a number of outcomes

for each possible funding level. For example, consider the technologies described in Table 2, using

the mean-value funding order. The possible levels of investment correspond to funding 0,1,2, 3, or 4
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Figure 4: Random return curves showing shift in the abatement cost curve as a function of overall
investment in a technology category.

technologies, and are equal to I = 0, 2, 3, 5.5, and 8.5 respectively. For each given investment level I,

αL (I) is set equal to the Lth percentile of the randomly generated values of α given an investment of

I, αM is the 50th percentile, and αH the Hth percentile. The numerical curves have value as a visual

way to compare different portfolios within the same category. Figure 4 illustrates the random return

functions for low, medium, and high risk funding orders for the data in Table 2 using L = 10 and

H = 95.

The numerical curves can then be approximated by functions for use in computational models. If the

numerical curves appear to be of a similar family, then they may be described by one varying parameter,

so that the uncertainty can be described with only one parameter. This has the benefit of reducing the

outcome space considerably. Continuing the above example, there is only one random variable with 3

outcomes for each category; giving us a total of 54 possible outcomes (including the 2 possible damage

outcomes). It is computationally feasible to use stochastic programming with this number of outcomes.

If the curves do not appear to be of a similar family, however, then indicator random variables can be

used to select the proper curve.

This approximation involves losing a considerable amount of detail. Even so, it provides a better
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basis for estimating random returns than the current state of the art. The simplicity of the parameterized

curves will be useful for high-level analysis and provide a method for analyzing the optimal overall

amount of investment into R&D (rather than using a portfolio-budget approach).

4 Applications of the Framework

The data and data structures derived from our framework will be applicable to theoretical economic

models, to Integrated Assessment Models (IAMs),3 and to portfolio analysis models. First, the raw

data from the assessments in Section 3.2 can be used directly in bottom-up or technologically detailed

top-down models such as MiniCAM. A common representation in top-down IAMs involves technical

change impacting some parameter(s) within a CES production function (See for example Popp, 2004

and 2006; Gerlagh and van der Zwaan, 2003, 2004, and 2006 ; van der Zwaan et al., 2002; Farzin and

Kort, 2000; Sue Wing, 2003; Goulder and Schneider, 1999; MacCracken et al., 1999; Manne et al., 1993;

and Peck and Teisberg, 1999; Jacoby and Sue Wing, 1999; Gerlagh and van der Zwaan, 2006; Nordhaus

and Boyer, 2000). The method described in McFarland et al. (2004) for translating raw, bottom-up

data into impacts on capital, labor, and energy inputs can be extended to implement the raw data

into these CES-based models, and the probabilities can be used for sensitivity or simple probabilistic

analysis.

Second, our data structures will facilitate use of common portfolio techniques in a portable, man-

agerially oriented decision support tool. Specifically, a two-stage decision model with simplified curves

can be used to calculate expected values to identify an efficient frontier in terms of expected value

versus cost; the funding order heuristic from 3.4.2 can be used to balance risk against return; and the

parametric characterization of technologies’ impact on the abatement curve can account for synergies

3These models integrate the science of climate change with the economic causes and impacts of climate change (Weyant,
1993 and 1999).
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and dis-synergies. Planners at the firm level, the technology area level, or the national level can use

similar models to answer questions about different facets of technology development.

Finally, the RR functions from Section 3.4.3 can inform the theoretical literature on environmental

innovation, which often begins with assumptions regarding the impacts of technological advance on the

cost or marginal cost of abatement (See e.g. Downing and White, 1986; Goulder and Mathai, 2000; and

Fischer et al., 2003; Jung et al., 1996; Milliman and Prince, 1989; Montero, 2002; Parry, 1998). There

has been only limited understanding–and virtually no formal exploration–of what kinds of technical

change will lead to what kinds of changes in the abatement cost function (Baker et al., 2006). Our

framework and the resulting random return functions will allow for better representation of technical

change in such models, and an easy way of representing the uncertainty. For example, consider the

model in Montero (2002). The cost of abatement is C (q − e), where q represents the level of emissions

absent abatement and e is the targeted level of emissions after abatement. An investment of K results

in a new abatement cost function kC (q − e) where k = f (K). This technical change is equivalent to

the pivot down in the table above. Thus, two benefits could be derived directly from our framework.

First, the results in the Montero paper could be interpreted in terms of the actual technologies that

cause the cost curve to pivot down. Second, one could examine explicitly the impacts of a random

return on investment K, using the RR functions derived for the pivot down technologies. Moreover,

other types of technical change could also be investigated using the base model. For example, if we

wanted to explore the impacts of technical change that pivots the cost curve down, the new abatement

function would be C
³
q(1−k)−e
q(1−k)

´
.

Similarly, the RR can be implemented directly in the simplest IAMs, such as DICE (Nordhaus,

1994b; and FUND, 1999), since they use an abatement cost function.
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5 Conclusion

We have presented a literature review that implies that uncertainty in both the damages from climate

change and in technical success impacts optimal policy. Thus, modelers need to find a way to implement

both kinds of uncertainty in order to provide insights and specific policy recommendations. We go on

to present a framework for incorporating uncertainty in technical change into policy analysis models.

Our framework has three key steps, each of which provide different kinds of data or insights for use at

different levels of policy analysis. The first step is a formal expert elicitation relating R&D investments

to the probability of technical success. This raw, engineering-based data will be directly useful in

more technologically detailed models. The second step is to translate the raw data into impacts on

the marginal abatement cost curve. This step provides insights into how improvements in specific

technologies interact with climate damages to impact abatement, and therefore the technologies likely

to be in use. The third step is to translate the numerical MACs into compact representations that can

be used in a variety of models. Specifically, we propose risk-based funding orders that can be used in

decision analytic portfolio models; and random returns to R&D functions that can be used in models

that use an abatement cost curve.
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