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ABSTRACT

APPROACH TO TYPICALITY IN QUANTUM SYSTEMS

August 2011

Shawn Dubey, B.S., Northeastern University
M.S., University of Massachusetts Boston

Directed by Assistant Professor Kurt Jacobs

The study of quantum mechanics has greatly broadened gsagception in the early
twentieth century. Recent research has focused on the enw@f thermalization in
guantum many-body systems. In this thesis | will demonstita¢ approach to typicality-
the notion that for specific sets of objects, most of the dbjslare a common property-in
a single, many-body spins chain of spin half particles. Hloison of typicality is new. But

it serves as a good explanation for the emergence of thezatiain.
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CHAPTER 1

INTRODUCTION

1.1 Direction

This presentation will be focused primarily on matters @aitistical mechanics. We
hope to understand the mechanisms and conditions for thieatian in quantum systems.
We examine non-integrable Hamiltonians. Our discussicnges on a concept known as
typicality: the idea that almost all elements in a set haveraraon property. The concept
of eigenvector typicality is explored and is used to helparsthnd the idea of Eigenstate
Thermalization Hypothesis (ETH)

In the first section of the first chapter, classical sta@dticechanics is discussed. Sev-
eral imporant topics in statistical mechanics are toucheehu phase space, Newton’s
Equations, Liouville’s Theorem, temperature, ergodiaityl other concepts. They are used
to help reach an understanding of an ensemble and distrbwthich describe systems in
thermal equailibrium. They are the Boltzmann Distributeord microcanonical ensembile.

The second part of the first chapter is dedicated to recagtimglassical statistical
mechanics into the language and paradigm of quantum mexshand realizing the form
of the Boltzmann Distribution. These are what we want to vecafter we postulate ETH.

The second chapter elaborates on the idea and backgroundesfsiate Thermaliza-
tion Hypothesis and how it can be understood through thedéngicality. We build up

from the work of previous reserachers. We show we can apmpiabel pure states of the
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universe as the appropriate thermal state. The concepte pfévious chapter are invoked
to understand typicality and ETH.
The third chapter focuses on the numerical results and hew shpport Eigenstate

Thermalization Hypothesis and the approach to typicatitguantum systems.

1.2 Motivations from Statistical Mechanics

It is our intention here to first motivate the results in cleapttwo and three with con-
cepts from classical statistical mechanics. We begin #ris hy by first examining a simple
example and continue with this in section 1.2. Then we comeeguantum mechanics in
section 1.3.

Consider a system, a box for example, which is isolated fltoerdrger universe. It is
a closed system. Also consider an ensemble of particlesicaat within this box (the box
has rigid walls, and completely elastic collisions). The partitioned and the particles
are contained in one half of the box initially (with a fixed uoie).

Given some time after the partition is removed, the systelhgeito an equilibrium
(macro)state. It is unlikely that one would be able to meashe trajectories and proper-
ties of each particle and gain information from them. It igof@ble to employ statistical
mechanics to solve this problem.

The particles will fill the box, with equal density everywbkerThis equilibrium state
cannot be reversed, in other words the approach to equitibis an irreversible process.
This is a process which happens spontaneously and by dafingtinot allowed to go in
reverse [1]. For specific processes, such as the approaduitdogum, the entropy maxi-
mum is seen at equilibrium. This is an example of thermodyoameversibility [1].

The standard procedure in studying dynamical systems istevmine the positions and

momenta of the particle (i.e. phase space) or rather thectajes in phase space of the



particles. Both position (g, a generalized position) andrmaota (p) are 3N dimensional,
where N is the number of degrees of freedom.

Solving Newton’s Equation’s

p=Fl(q) (1.1)
j== (1.2)
m

would also be too complex. Given the number of particlespiild simply be too difficult.
As such we would like to be able to get information from thetipbes en masse.

In our classical systems, chaotic behavior will remove amgvedge we may have had
about the initial conditions in the first place. The only thiwve then will know about the
system are the constants of motion, in this case the eneegydlassume that energy is the
only quantity required to describe the system at equilioritf we follow this assumption,
we arrive at the familiar microcanonical ensemble in stiaaémechanics [2].

We want to use this knowledge to obtain the microcanonicatagye.

First, we define the functiofR( £) as the phase space volume of an energy "shell" [2]

(E, E+E), divided bys E:

Q(E)YE = / dpdq (1.3)

E<H(p,q)<E+E

We average over states in the shell and take the limitagoes to zero:

1
—
< >E Q(E)(SE E<H(p,q)<E+0E

What has been done was to average over states in phase spacestricted energy

Adpdq (1.4)

shell on an energy surface. In doing this we have implicidguamed that all states are
equally likely [2].

Next we note systems of point particles obeying the Newtbaiss (excluding dissi-
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pation) are to be considered examples of Hamiltonian dyoainslystems (these systems
are energy conserving) [2]. We can then recover Newton’ssd.a@iMotion providing we

invoke Hamilton’s equations:

: OH
b= _6—(] (1.5)
OH
= 1.
1= (1.6)

In our quest to understand equilibrium statistical mectgitiis instructive to introduce
Liouville’'s Theorem. This states that a probability depdr, in phase space is incompress-
ible, i.e. the probability density is conserved [2]. Thislpability density may be deformed
in phase space but it always retains its original volume. hdatatically this is (from the
continuity equation for a probability current in phase<ga

P oP Xor ., oP. ¢ _p

dt 8t+i:1 8qu+8pr+ ql+ P (3.7)

the total time derivative carries the phase space volumeseétf at all times (phase space
volume is a constant). Inserting Hamilton’s equations thie continuity equation we get

the final form of Liouville’s Theorem [2]:

P _ 0P = oP i, OP
dt ot Zogt T oy

p=0 (1.8)

As a consequence of this, (for Hamiltonian systems) theliebeino preferred states
to which any system will settle. If a system is momentarilyoime state it will quickly
leave [2]. This is equivalent to equilibrium in statisticaéchanics. That is, in the assump-
tion of all states of the system being equal, it is implied tih& system spends no more

time in one state than any other, and if it does, its time tigefeeting as time evolution



will carry it from that temporarily preferred state.

To proceed further we define a new term, ergodic, whose definiwe adapt from
Boltzmann’s original: a system in which the path of everynpon phase space passes
arbitrarily close to every other point on a constant energfase [2].

Another consequence of Lioville’s Theorem in Hamiltonigatems is the time-independence
of the microcanonical ensemble. Since energy is conseevehiform density in phase
space is bound to stay uniform throughout time, on a patlg mnall range of energies [2].
Invoking ergodicity, we can then say that the density wilm&form througout the energy
surface.

Following from these is the idea that time averages are equaicrocanonical aver-
ages. Since the microcanonical ensemble is time indepétiteetime average is equal to
the ensemble average. This implies-since the time avesagmstant-for ergodic systems,
the ensemble average is the time average at all places [2].

Now that we have a background in classical statistical m@cbkait is now possible
to move on and understand the quantum mechanics neededyaeoar systems. These
concepts will be important in interpreting our results ie toming chapters.

For a more in depth discussion of the preceding sectionutb8sthna [2].

1.3 Connecting to Quantum Mechanics

Let us now try to understand a significant part of the prevergdion in the language
of quantum mechanics and quantum states, as we will be udimgléscribe our quantum
systems later in this exposition.

Suppose one had a system of particles and the only informatiailable to any exper-
imenter are properties of this system, e.g. total energybaur of particles, volume, pres-

sure, et cetera. States of the system described by thessrpes@are known as macrostates.



As an simpler, more concrete example, suppose one had & béakples; some are peeled
some are not. An example of the macrostate of this applesysbuld being knowing that
there are five peeled and five unpeeled apples.

Each macrostate has associated with it a number of micesstétom the apple-system
above, knowing the microstates would mean knowing the stadéach apple. If we knew
specifically which apples were peeled and which were not, waldvknow the microstate
of each apple. In quantum mechanics microstates are deddp mutually orthogonal
quantum states [1]. These are the states in which a systenbeniy given a particular
macrostate. As is always the case in quantum mechanics, aks wm Hilbert Space. The
dimensionality of Hilbert Space for the systems considée@ is equal to the number of
microstates, given a particular macrostate and having gllegproperties fixed (for a many
body system this Hilbert Space is large and consists of maogostates). This can be an
extremely large number and as such any person doing measoi®ion the system does
not have access to the individual microstates, only the oséates.

We now make a large and important leap in our understandistpgitical mechanics.
Using the definition of microstates we come to the fundameraatulate of statistical
mechanics, that of assigned equal a priori probability F3gm Jacobs, this states: "all the
accessible microstates of a closed system are equally.lik&]. This can be interpreted
in two ways: the first being the system will spend as much timenie microstate as any
other, regardless of which microstate in which the systesiiniially. This means (similar
to the previous discussion) that the system is usually inadribe "typical” states [1] i.e.
subsets of states which contain most of the microstates. cém also be interpreted as the
assumption of an equal mixture of microstates which wilkgise to specific properties of
the system [1].

The question quickly arises: how does this help one undaidtee approach to equi-

librium, or thermalization? To see, let us briefly consider familiar concepts of entropy
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and temperature.

The microcanonical ensemble dictates that given an enerthetequilibrium behavior
of a system is an equal weighting of all possible states dfshistem. Let us define the
number of microstates of a systéimas being those states having equal probability (this is
the fundamental postulate of statistical mechanics), gktes of fixed energy. It is more

convenient to work with the logarithm of the number of micedss 2, though:

This is the familiar Boltzmann entropy of a system, withbeing the Boltzmann constant.
It is the entropy of a system in equilibrium. We will refer taas the equilibrium entropy,

it is an extensive quantity, i.e. it scales with the size @ #lystem. In thermodynamics
this can be thought of a measure of "disorder” or in a morermgtion-theoretic sense, the
uncertainty in the knowledge that an experimenter has abeutystem [1]. This entropy

can be thought of as the number of possible microstates inhadnigiven macrostate can
be, given the state of knowledge of the system. In these sevisean identify the thermo-

dynamic entropy with the von Neumann entropy (charactaginiur state of knowledge of
the system) [1]

Sin = Sy (1.10)

We can extend the definition of thermodynamic entropy to ositates which are not
equally likely. This does not contradict the fundamentadtptate of thermodynamics as
that applies to closed, isolated systems. If there are NeBysiinteracting but they are
isolated from the rest of the universe, the microstates @tdbal, combinated system are
still equally likely; those of the subsystems are not [1].efiltwe want a thermodynamic

entropy for a system that has different probabilities fangen different states. Suppose



we have N systems which are in an arbitrary mixture of sevathbgonal states. We can
still find out the total number of microstates of the large bamed system, consisting of the
N subsystems (this large system’s state is thus a mixturé of the orthogonal states of
the subsystems and each state has its own probability ofroegu[1]. As the number of
subsystems increases, the probability of the large systdra in anyone one of the number
of typical states (states within the set that contains miosteomicrostates) increases while
the probability of being in any atypical state goes to zejo [1

As the number of systems grow, these typical states become ikely and as the
number of particles N goes to infinity all become equallyliyke

The entropy of this large, combined system is the sum of thepies of the smaller
subsystems. These entropies are all weighted by the numibgpical states in our sub-

systems:

S=> " puln(pn) (1.11)

wherep,, is the probability of being in a particular state.
With this, we define the temperature, at constant volume anaber, via the following

relation:

1 s
=55 (1.12)

This inverse temperature describes the rate and direcfidreat flow between sys-
tems [2]. When systems reach thermal equilibrium therertsi@ily no heat flow between
them and their entropy must by definition, be at a maximum.

This is easy to describe, as the system has evolved to ayartmacrostate in which it
will spend most of its time. This will be the macrostate camtay most of the microstates
(the typical states). As the entropy is the natural logarithf the number of microstates,

this is then the maximum entropy macrostate, i.e. the statdich the system is in thermal
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equilibrium.

The temperature then, can be defined as:

_OE

T— =
oS

(1.13)

at constant volume, because in changing volume, work iggdame and energy is chang-
ing irrespective of the entropy [2]. This temperature isdixg the external environment
of the system, the heat bath. One can then show that if a systemapled to a large bath,
the equilibrium behavior of the bath is dependent only onténeperature of the bath [3].

If we now take a system and put it in contact with a large thébath (the total system-
bath being known as the universe, with total energydE temperature T, we will obtain
a distribution from which all properties of systems in etium can be derived. This
distribution is know as the Boltzmann Distribution.

Briefly sketching the derivation: we assume all quantum astates of the universe
(with associated energy E), are equally likely and then ploseguestion: what is the prob-
ability of finding a system microstate) (with associated energyE[1]? This will be
proportional to the amount of bath states that have enefdig,Evhich is the energy E of
the bath states we wish to find [1]. This boils the quest dowiigiaring out the number
of such states,. Given our assumption that the temperature T of the bathesl fiwe can
also declare tha§% is fixed [1]. The entropy will be linear in energy and thus thenter

of states will be exponential in E [1]:

S
S =5, + 5= (1.14)

We also recall that the entropy is the natural logarithm efriamber of microstates.



Equating the two (when the bath has energy E), we have:

08

—KBl'rL(TLS) = SO + a—EE (115)
E

—Kpgln(ns) =S, + - (1.16)
S, E

In(ng) = ——> — 1.17

—So —E_
ns = eXs ' KpT (1.18)
—E_
ng = nye XBT (12.19)

We now realize the form of the Boltzmann Distribution. Thislmann distribution
is known as the canonical ensemble, as we have assumed enetggnge between the
system and bath [2]. One may still derive the Boltzmann khstron from the micro-
canonical regime if one considers a large system comprisedroerous subsystems. The
large system functions as a bath for the subsystems [1] asdatige system was in the

microcanonical ensemble i.e. the equal a priori probatsitheme.
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CHAPTER 2

EIGENSTATE THERMALIZATION HYPOTHESIS AND TYPICALITY

2.1 Typicality

With a thorough background in classical statistical measand quantum mechanics,
we are now in a position to rethink notions of equilibrium astddy them in quantum
systems. It is now possible to quickly discuss ergodicity gypicality and how they relate
to thermalization.

Chronologically, von Neumann’s ergodic theorem for macopsc systems was a first
step forward in statistical mechanics in quantum systenus.itRloes not hold for all ob-
servables in a closed system [4]. To acquire a more gengadiiertheorem, it is suggested
that random perturbations should be induced to accomgiisH4]. This is why the need
to couple to a bath was introduced. This brings the systengudilerium and brings the
system to the bath temperature [4].

However, there is another approach [5] which brings us todkelt we will call "Eigen-
state Thermalization Hypothesis" (ETH) [6]. In this apmioaevery eigenstate of an
appropriate system (usually non-integrable systems)sgvihermal state, meaning each
eigenstate gives expectation values in agreement withocacionical ensemble. Stated
differently, each eigenstate of the Hamiltonian reproguite microcanonical average of
an observable [7]. This reproduces results from statistiegchanics in closed systems. It
is now irrelevant whether or not we are decomposing into gesysath scheme (but will
be helpful in explaining typicality).

11



A way to understand ETH is through typicality. The notion gpitality in general
simply means that nearly all members of a large set share encomproperty. We look at
eigenvectors of a Hamiltonian which share a common propegyve increase the dimen-
sion of the examined sectors (particular subspaces), thethp system into a state with
the correct population of up-spin states as predicted higstal mechanics.

To clarify, a sector is just a particular subspace of a syst&s an example, recall
our apple-basket system. If we now have a basket which cahtbolpieces of fruit, we
place in it five apples and five oranges. The number of ways wagcange the apples and
oranges in the basket constitutes one sector. We could aisodeven apples and three
oranges and the number of ways to arrange those in the baskebtiher sector. For the
purposes of this paper, we deal with sectors of chains oftgfigpins, in which there are
certain number of them in the up state.

With all of this knowledge in mind, we need to have a betterarathnding of foun-
dations of statistical mechanics. Here we emphasize thk wioPopescu et al [3]. This
work shows we can replace the fundamental postulate ofstali mechanics: assume
equal probabilities of the pure states of the universe aiphg a principle that focuses on

individual states [3]. This will be the first rigorous intnaction to typicality.

2.1.1 A First Mathematical Justification for Typicality

Consider a system and a bath, where the dimension of the &ajkr lis than that of
the system and with dimensionalitiés, and D, respectivly. The state of the system-
bath universe in constrained by a global constraint C [3]i¢tvlvould be the fixed total
energy of the combined system-bath universe in statistieahanics) which can be seen

in quantum mechanics by:

He C Hy® H, (2.1)
12



whereH is a subspace of the full Hilbert spage @ H,.

We define the universe when it is in a maximally mixed state3as [

1

bc = D—CIC (2.2)

wherel is the identity matrix and)¢ is the dimensionality o{~. The maximally mixed
state is by definition proportional to the identity.

The quantum state of the system when the universe ¢g ins (termed a "canonical
state")

AS = TTbeC (23)

Then assume the universe to be in a pure statand then show that the reduced state

of the system:

Uy =Ty |¢) (| (2.4)

is extremely close ta\, for most of theA, [3], i.e.:

U, ~ A (2.5)

Restated this means that for m¢s} € H. the system in consideration acts as if it
were in an equiprobable staig; [3]. This statement is redefined in [3] "Given a sulffi-
ciently small subsystem of the universe, almost every piatte ®f the universe is such that
the subsystem is approximately the canonical state This can be extended to thermal
systems [3]: "Given that the total energy of the universepigraximately E, interactions
between the system and the rest of the universe are weakhanthé density of states
of the environment increases approximately exponentiaillly energy, almost every pure

state of the universe is such that the state of the systers @approximately equal to the
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—Hg
thermal canonical state*” , with temperature T (corresponding to energy E) [3]". This

assumes that the Hamiltonian for the entire universe is:
Hu :H5+Hb+Hint (26)

whereH,,,; is the Hamiltonian for the interaction between the systethlzth.

Now the idea is to create some distance measure in which tiwy that the distance
betweemA, andV¥,, which is how easy itis to telh, and ¥, apart [3]. The main theoremis
that the volume V, of states in the constrained subspacehvene far from the "canonical”
state, decreases exponentially with the dimension of tmstcained subspace. This is

stated this mathematically as [3]:

<9 (2.7)
VI(l¥) € He)l
where
1
A1), A5) = 5V/(¥s = A)H(T, - A, (2.8)
1 D
=€+ -\ —5 (2.9)
2 Dbff
and
§ = 4e~KPoe (2.10)
for e > 0, where K is a positive constant and
prf— 1 o Do (2.11)

b _TrAz_E

To prove this Levy’'s Lemma is invoked [3]. Levy’s Lemma is anl@a from high-

dimensional geometry which states that for most points B bypersphere of dimension

14



D > 1 and area A[(P)] and all functions f which are not quickly chag, |V f| < 1, f(P)

is approximately equal to the mean valye. Specifically:

A[(PF(P) =) Z )] _ | —(Lypne
< 4e” \or3 ‘ (2.12)
A[(P)]

This clarifies, mathematically, our notion of (canonoidgpicality, in which almost
all states of the universe are approximately equal to therthlestate, by considering the
universe in a system-bath setup. This allows one to rectreeequilibrium results in sta-
tistical mechanics. We specifically look at Hamiltonianitglity, in which the eigenstates

of the most Hamiltonian are states which put subsystemseimtal equilibrium.

2.2 Eigenstate Thermalization Hypothesis

We now seek to clarify the concept of eigenstate thermatiadb, 6, 7], which need
not invoke the system-bath setup. Let us consider eigesstfta Hamiltonian//.The

eigenstates are:

(U(t)) = e |W(0)) = D> Cie B |g) (2.13)

whereFE; are the eigenstate energies &rid= (V|0 (0)).

For an observable, represented by an operator in quanturnamies,O, the mean is
given by:
(O1) = (W()[O[w (1)) = Y C; 0o, (2.14)

ij

In the long-time limit, the mean is:

(O() = lim - / (W01 dr. = 3 IGO0 (2.15)

t——+oo t

This has been described as the "diagonal ensemble” whidengifed as exactly the gen-

15



eralized canonical ensemble, provided that the constdntsotion are the projectors:
Py = |0;) (W] [7).

If a system equilibrates, it will be to this average. Whertlisgf to a steady-state,
the time-dependent off-diagonal terms in our average goesrp in time because of the
dephasing effects [7].

If a system equilibrates at all it should also equilibrat¢éhi® appropriate ensemble av-
erage. This statement simply means the previous equattuidsbqual the microcanonical

average [5]:

(O), = IGI (O), (2.16)

i.e. a weighted sum of the averages, where the weights aprababilities of being in

any macroscopic state. We state this as:

Z Cil Oy = ! Z O (2.17)

Np,ap <

with the condition,|E, — E;| < AE [7]. N is a normalization factor; it is the number of
states in the energy windoliz, — AE, E, + AE]| whereFE, is the average energy of an
initial state andA F is the half width of the energy window [7]. This is analogoadtie
idea presented in chapter one’s discussion of microcaabanverages. There we averaged
over states in phase space given an energy shell. Here weeha@nergy range such that
the range contains a non-zero number of eigenstates [7].

There exists an interesting interpretation to this analysspecially equation 2.17. It
can be interpreted to mean that thg ("eigenvalue expectation values”) [7] do not change
(or change only slightly) between eigenstates [7]. Frompteyvious analysis then, we

have shown that every state in which we begin the system, Weakwiays recover the
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microcanonical average.

Recall the earlier discussion on classical statisticallraeics. One of the goals was
to use the idea of ergodicity to arrive at the microcanonéserage. The same idea has
been done in this section, though in a less obvious and ngtdnterstood way. We have
recovered the notion of ergodicity in quantum mechanichat €¢ach eigenstate gives back
the correct microcanonical averages.

It is conjectured that for initial states in a narrow energgdow O;;, do not fluctuate
between eigenstates close in their energies [7]. In this egaation 2.5 holds.

But what of time dynamics? It is revealed that they play meael anscillary role [7].
As stated before, there is initally coherence between stgéss but time evolution destroys
it through dephasing revealing thermalization [7]. We d®& in quantum mechanical
systems every eigenstate gives a thermal state for thensydithis is in constrast to the
classical idea of ergodic motion in phase space through évotution, producing results
given by microcanonical predictions (see discussion irptdraone). Rigol et al provide
more information on this [7].

To elaborate, we start with a bare Hamiltoni&h,= H,, which describes our unper-
turbed quantum mechanical system. To this we add our randamilténian, H,, so we
can recover statistical mechanids, is, for the time being, a Gaussian random matrix, par-
ticularly one whose elements are drawn from a distributidth wero mean and varience
one, the Gaussian Orthogonal Ensemble (GOE). This has bekkmwativated since the
time when Wigner postulated that the energy spectrum ofeniglvell described by ran-
dom maricies and reproduces the Wigner-Dyson distribufldvese random matrices (the
Hamiltonians) are real-symmetric matrices [8]. We will egase real-symmetric matrices
in our analysis to provide results consistent with stai@gdtmechanics as Wigner did.

The full Hamiltonian is then:

17



-

/7 N D+
/ \

¥ ¥
. . 0—©O O o - - -

Figure 2.1: Chain of qubits with nearest-neighbor intacect

l

H=H,+H, (2.18)

We can also expect similar results whéhn is replaced by a two-body, nearest-neighbor
interaction Hamiltonian [5]/;. The interaction examined in this paper is between nearest-

neigbor qubits (fig. 2.1). The Hamiltonian is then:

H=H,+H (2.19)

We shall see this demonstrated in the results section. Theltdaians discussed are real-
symmetric matrices.
Ergodicity is given by the eigenvectors. We induce smalhaut-negligable interaction.

In the limit of arbitrarily small interactions, it is as iféine is no system-bath coupling and
thus no thermal behavior. The eigenvectors mix with randdrasps and we note two
things: the distribution of eigenvectors of the Hamiltonia the basis where the non-
interacting Hamiltonian is diagonal is exponential in thedrse of the interaction strength
and that deviations from microcanonical predictions daseeexponenetially with number

of degrees of freedom due to the small, non-negligableactsms [5].
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2.2.1 Example of ETH Applicability

As a brief aside, let us take note of other classes of systeatshiermalize, separate
from the ones we just described, so as to get an example of Aidhalpplies.

It has been shown that any quantum mechanical system whassaal counterpart is
chaotic will exhibit eigenstate thermalization [7]. Morgerestingly, systems which follow
from Berry’s conjecture thermalize in the semiclassicaiti[6].

Berry’s conjecture states that locally, eigenfunctionslodotic system behave like a
random superposition of plane waves [6]. This conditionnstlije example of a box of
hard spheres confined to a particular region of the box, withmmentum and position:
P, X):

PeX

V(X)) = K; / d*NPA;(P)6(P? — 2mU;)e' + (2.20)

wherek; is determined through normalization:
/ PVXV;(X) =1 (2.21)
In the example, the amplitude P), with the property
A*(P) = A(—P) (2.22)

are Gaussian random and this condition equates to Berrgjeciire. For his system, it is
possible to recover thermal predictions and eigenstatentlezation [6].

Eigenstate thermalization is not soley confined to our Hami&n system with random
perturbations. Indeed, it it can be shown to arise for mahgrotlasses of systems like the

one presented.
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2.2.2 Focus of Results

The class of Hamiltonians for which we want to demonstragerstate thermalization
are non-integrable hamiltonains. Here integrability nseamsystem which is exactly solv-
able. It is typically thought that quantum integrable sgstelo not exhibit thermalization.
This is essentially correct. We see though, that thermiadizas induced in integrable sys-
tems which are weakly perturbed, which is the reason forritreduction of Hamiltonians
with Gaussian random perturbations, or two-body, nearegthbor interations acting as
perturbations.

To study non-integrable Hamiltonians we shall invoke theafschains of quantum bits
(qubits) and their spin states. Qubits are highly relevaquiantum information theory and
their properties allow one to understand some basic cosespivell as perform numerical

calculations easier.
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CHAPTER 3

NUMERICAL RESULTS FOR TYPICALITY

3.1 Classifying Systems and Results

Now we discuss the background and results of our numerigaraxents, demonstrat-
ing the notion of eigenvector typicality. This is the prageof typicality we wish our
Hamiltonians to exhibit; that each of the eigenvectors eftfamiltonian places a qubit in
a particular spin state (up) with the correct frequency. &@mple, we want to realize the
probability of 0.5 for even number qubit spin-chains witltflod the qubits in the up state.
And we check for a calculated probability (ratio) for odd ruenqubit spin chains (given
below).

Put another way, our main objective is to check whether, ihae a spin chain of four
gubits with two in the up state, does this occur with a proligtaf 0.5 or does the deviation
from 0.5 decrease with increasing sector dimensionalitg?g@ther this information from
the eigenvectors of a sector Hamiltonian.

We show from numerical simulations that the root mean sq(rame) deviation from
predicted values decreases as a power-law for odd numbarechsins (as the dimension-
ality of the sector increases). For even numbered spin shhgre is no deviation. This
means the eigenvectors are perfectly typical, due to somengjry (though it is not clear
exactly what symmetry). This implies eigenstate thernadian.

The analysis will show the deviation from the thermal sta@es as an inverse power
with the dimension of the sector. A sector is merely the sabspf the full system, whose
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elements are all the permutations of the spins with a pdaticwmber of spins in the up
state.
Again, for our purposes we chose to examine a chain of $fiubits) particles with

open boundary conditions. Our model is an Ising model, whreseisual form is:

H = Z olottt (3.1)
whereo, is the usual Pauli z-spin operator. This is the same as olieréf,, the un-

perturbed Hamiltonian. To model the weak perturbations h@se a nearest-neighbor

interaction:

H =, Z olo ™+, Z olottt (3.2)

whereo, is the usual Pauli x-spin operator add and J, are constants which we have
defined as/, = cos?0 and.J, = sin?0 with 0 = 0.3757

We want to analyze our model in some way. We examine eigeowégpicality, as
stated previously. This examines the probability of ounsghain being in a particular
configuration.

We characterize the deviatiol) as the rms deviation in probability from what one
would expect for a given configuration of qubits in the spih@io. Explicitly the expected

probability, or ratio, is: X
()
(1) + ()

where ¢ is the number of qubits in the spin-chain and j is thalwer of qubits in the up-

ratio = (3.3)

state. Equation 3.1 takes into account that in the C++ caoelgubits are being bit-flipped
starting at the end of the spin-chain.
In short, we have our real-symmetric Hamiltonian which wagdinalize and obtain a

unitary matrix U. U diagonalizes the Hamiltonian and is notexolution operator. The
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columns are the eigenvectors, the elements of which arentpéitates of the states of the
sector. We look at the probability that each qubit is in thg"'state by looking at the basis
states of an eigenvector, which are the possible configuratdf the system in a sector.
Looking at the first qubit in each sector element-a configomadf the spin-chain-we look
to see if the qubit is in the up state, if it is, we sum its prahigh(the columns in our
unitary matrix are the coefficients/amplitudes of the basiges, therefore their squares
are the probability). This gives us the total probabilitytieé first qubit is in the up state.
We compare it to the previously described ratio to make dueequbit is in the correct
population (e.g. for half of the qubit in the up state, so we lsew far the sum deviates

from the ratio of 0.5, the ideal case). Numerically, this bardescribed as:

. \/z@-zjums»—mm’o]? o
q* (%)
or
5 > 2 UTSy) — 22 (3.5)

g (§)
whereT; are the vectors whose elements are the square moduli ofaheerts of the
eigenvectors (columns of Uy; is the vector whose i-th element is the state of the qubit
(up-denoted numerically as 1, down-denoted numerical@) &sall the i-th basis state, q is
the number of qubits in the spin chain a(‘jk)l is the number of eigenvectors. Numerically,

the S; pick out the up-state of the i-th qubit in all of the sectomedmts and; gives their

probabilities:
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Figure 3.1: Example of Numerical Method

To put it more simply we want to see if a particular spin-chaamfiguration happens
with a certain probability (the ratio, described above). 8ehis by seeing how the prob-
ability of each qubit in the spin-chain being in the up-stateviates from the expected
probability (ratio). For each eigenvector, we go througthegubit, we get a final rms de-
viation in probability. The rms deviations getting smallaplies that each sector happens
with a probability closer that predicted by statistical imaaics.

Since itis the eigenvectors of the sector Hamiltonian theg gs the probability (through
T;, above), we expect virtually all eigenvectors of a givert@eklamiltonian to give a de-
viation consistent with statistical mechanics, i.e. goesaro to be consistent with thermal
predictions. This is the concept of eigenvector typicatigscribed through the rms devia-
tion, o and implies eigenstate thermalization.

This procedure is done for even qubit chains and odd qubihsh# was of particular

interest to monitor the rms deviations for when half of théitgiare in the up state; this
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would be the maximally mixed state and maximum entropy sfBite dimension of these
"half-up" sectors are the largest dimensions of any seacalse of the combinatorics
of the system. Again, as the dimension of the sector geteratige deviations discussed
earlier should approach zero, giving no deviation from tleal case.

For odd-numbered chains, we fix as "half" flopy(where n is the number of qubits in
the spin chain and floor() denotes the largest integer lessttie argument. For example
if there are 7 qubits in the spin chain, then the number of thretine up state is rooE() =

floor(3.5) = 3 gbuits in the up state.

3.2 Hamiltonian Construction

We now explain how a Hamiltonian for a given sector is corcdrd numerically. Cal-
culations using the full Hamiltonian are possible. But asghin chain grows, the dimen-
sionality of the full Hamiltonian grows as a power of two. Boifficiently large spin chains,
the computing resources needed for diagonalizing the fathHtonian and computing be-
come too large. This why it is important to construct the sektamiltonians in a way that
is less computationally intensive.

As a specific example lets first define the up and down statéeisgin system:

up = 1) = (36)

0
down = [0) = (3.7)
1

For computational reasons, it is desirable to work with tlenitonians for each indi-
vidual sector, where a sector is a particular configuratidh@system. An example would

be a four-qubit spin chain with two of the qubits in the upetaill possible permutations
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of the spin chain constitutes a sector. When we diagonadieéiamiltonains for the sec-
tors, we recover our eigenvectors and calculate our rmsateni describled previously.
We do this procedure each time a qubit is added, again ndimgector of interest is the
half-spin-up s, maximally-mixed sector.

One could, in priciple, find the full Hamiltonain and extrédo¢ Hamiltonians for the in-
dividual sectors, however that becomes impractical asithemsionality of the full Hamil-
tonian goes ag" where n is the number of qubits in the spin chain.

It is possible to construct the Hamiltonians for the sedb@sed only on the knowledge

of how the Pauli gates operate on oLy,

0) states. Explicitly they are:

s 1) = 10) (3.8)
0, |0) = —1[1) (3.9)
o, |1) = i0) (3.10)
0, ]0) = —i[1) (3.11)
o:|1) = —|1) (3.12)
0.10) =10) (3.13)

where i is the imaginary unit.

Take as an example the Hamiltoniali:= J, > . Z;Z,., and we examine a four-qubit
spin chain with two qubits in the up state; the elements os#wtor are 0011, 0101, 0110,
1010, 1100, 1001, where 1 represents the up state and O threstate.

To construct an element of the Hamiltonian for this sectoruse the 0011 state (in
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bra-ket notation):

O[O (1 (1] Z @ Z® I ©1]0)|0)[1) 1) +
O[O (AT © 2@ Z®1]0)|0)[1) 1)+

O[O AT Te 2z Z]0)|0)[1)]1)

(012]0) {01210) (1 }H]1) (L[1]1) +

(01110) {01210) (1] Z[1) (L[1]1) +

(01110) {0}110) (1]2]1) (1] 2]1)

(010) 0[0) (1[1) (1]1) +
(010) 0[0) (1] = [1) (1[1) +
(010) 0[0) (1 = 1) (1 = [1)

—1

where | is the 2x2 identity matrix.

(3.14)

This is one of the (diagonal) matrix elements in the Hamilarior the particular sector

being observed, without the scaling of the constant We can repeat this procedure to

construct any Hamiltonian for any sector, rapidly.

For the integrable case, the Hamiltonitih= J. ), Z,Z;, is exactly solved by the

Bethe ansatz and it is known that these classes of systetegr@ble) do not thermalize

but non-integrable Hamiltonians such as the one we havemeeiously (2.19) do. Recall,

the extra term is a small perturbation which is expecteditoglbwur system to equilibrium.
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3.3 Results and Conclusion

Our results can be summarized as follows:

Table 3.1: Even Qubit Spin Chains
qubits up qubits Sector Dimension RMS Deviation

4 2 6 0
6 3 20 0
8 4 70 0
10 5 252 0
12 6 924 0
14 7 3432 0
16 8 12870 0

Table 3.2: Odd Qubit Spin Chains
qubits up qubits Sector Dimension RMS Deviation

3 1 3 0.170255
5 2 10 0.112704
7 3 35 0.0812252
9 4 126 0.0616182
11 5 462 0.0488317
13 6 1716 0.0399212
15 7 6435 0.0334508
17 8 24310 0.0285675

The results displayed in Table 1 were unexpected. We thaightleviations would
decrease exponentially in the dimensionality of the seétsone can see the rms deviation
is always zero for the maximally mixed state, meaning thatgiobability of finding the
system in one of the completely mixed states is exactly whatweould expect it to be from
theoretical predictions, that is, all the states are tyitzes.

It is important to note that the deviation decreases as a plamewhose power is -
0.13510, in the sector dimension, as the number of spinsases to infinity (asymptotic

power), giving increased typicality. This is easily seeapiically. Clearly we can see in
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Figure 3.2: RMS Deviation-odd qubit chain

Fig. 3.4 (below) the power-law nature &f The deviations from the expected probability
decrease with increasing spin-chain size.

The deviation®, a measure of eigenvector typicality, indicate that themwgctors of
a sector Hamiltonian are increasingly typical. That is, tims deviation in probability
(given by the eigenvectors), in finding the system in one efdbnfigurations of the spin-
chain in a sector, decreases. It decreases with increasotgrsize. This, the typicality
of the eigenvectors, our smoking gun, is our implication Eoagenstate Thermalization
Hypothesis.

This idea of typicality goes a long way in remolding our ursdending of statistical
mechanics. We can show typicality numerically and it givesiumew platform from which

to study the approach to equilibrium in quantum systems.
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Figure 3.3: log-log RMS Deviation-odd qubit chain
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Figure 3.4: log-log RMS Deviation-reduced odd qubit chain
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3.4 Technical Information

The simulations were done with code written in C++ on a Linlatfprm. Code execu-
tion took place on a Linux cluster at the University of Oregaith 128 gigabytes of shared
random access memory (RAM), provided by Daniel Steck. Thetel was necessary as

there were large matrices to be diagonalized, the largeshizh was 24310 x 24310.

3.5 Suggestions for Further Research

This data gives numerical evidence for the eigenstate thieration hypothesis through
the measure of eigenvector typicality. This method canyebsiextended to qutrits, hope-
fully reproducing the same results. Another avenue of itigason would be to look at
eigenstate thermalization through the lens of many-bodglipation. It would also be of

interest to be able to reproduce these results in a labgragting.
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APPENDIX A

C++ CODE

#include<iostream >
#include<cstdlib >
#include<fstream >
#include<cmath>
#include<iomanip>
#include<algorithm >
#include<cstring >
#include<complex>
#include<vector >
#include<ctime >
#include<functional >

#include<numeric>

using namespace std;

extern "C" {

/| ————— LAPACK routines

/1 Il diagonalize symmetric real

void dsyev_(const charx choose, const charx uplow, long intx N, doublex
A, long intx rownum, doublex Evals, doublex WORK, long intsx LWORK,
long intx INFO );
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long int bin(long int n, long int k); //Binomial coeffs, CF

vector<int> XXActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length);

vector<int> ZZActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length);

vector<int> XZActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length);

vector<int> ZXActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length);

double computeXX(long int col_num, vector<€nt> &arrayZZ, vector<dnt> &
arrayTemp) ;

double computeZZ(ong int col_num, vector<€nt> &arrayZZ, vector<dnt> &
arrayTemp) ;

double computeXZ(ong int col_num, vector<€nt> &arrayXZ, vector<dnt> &
arrayTemp) ;

double computezX(ong int col_num, vector<€nt> &arrayZX, vector<dnt> &
arrayTemp) ;

long int diagonalize_reallong int Dim, doublex Mat, doublex Evals); //

KJ

int main(int argc, charx argv([])

{

int maxQubit;

const double A —-0.3827;/1 —0.3827;

const double B 0.9239;//0.9239;

clock_t start = clock();

maxQubit = 18;
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vector <double>data; //Data saved here
vector<int>spinDat;
vector <double>Udat;

vector<int>num_spins;

for(int spins=13; spins <= maxQubit; spins = spins + 2)

{

num_spins.push_back(spins);

vector<int> flips;

/l'Initialize system to all "down" (0)
for (int k=0; k<spins; k++)

{

flips .push_back(0);

/I Flip spins one—by—one, start at the end of the array
for (long int j=spins—-1; j>-1; —j)

{

flips[j]=1;

// Dimensions of "matrix"
long int cols = spins;

bin(spins, j);

long int rows

/1 Other declarations

vector<int>store;
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/1 double elemXZ;
// double elemzX;
double elemXX;//XX element of subspace

double elemzz;//ZZ element of subspace

// double SelemXZ;
/l double SelemzX;
double SelemXX;// scaled XX element of subspace

double SelemzZzZ;// scaled ZZ element of subspace

[l vector <int>storeTempXZ;
/Il vector <int>storeTempZX;
vector <int >storeTempXX;

vector <int>storeTempZZ;

/Il vector <int>storeTemp2XZ;
[/ vector <int>storeTemp2ZX;
vector <int >storeTemp2XX;

vector <int>storeTemp2ZZ;

/Il vector <int>storeTemp3XZ;
[/ vector <int>storeTemp3ZX;
vector <int >storeTemp3XX;

vector <int >storeTemp3ZZ;

doublex Evs = new double[rows];

vector <double>Hs;// Subspace Hamiltonian

/] vector <double> Hxz;

/Il vector <double> HxzTemp;
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[ %
{

/] vector <double> Hzx;

/I vector <double> HzxTemp;

vector <double> Hxx;

vector <double> HxxTemp;

vector <double>Hzz;

vector <double>HzzTemp;

// Keeping this as a matter of principle

sort (flips.begin(),flips.end());

if(j == ((spins/2)+1))
{

do
{

for (int x=0; x<cols; x++)

{
store . push_back(flips[x]);

}

while(next_permutation (flips.begin(),flips

.end())){/Permute and

store all possible permutations row at a time

if(spins == 7)
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for (int n=0; n<rows; n++)

{
for (int m=0; n<cols; mt+)
{
cout<<store[nxcols+tm/<<" ";
}
cout<<endl;
}
} o/
/1 Begin Hxx
for (int 1=0; I<cols—1; I++)
{
for (int q=0; g<rowsccols: q = g+cols)
{

storeTemp2XX.resize(cols);
copy(store.begin() + q, store.begin() + gq+cols , storeT@XX¥.begin

0):
XXActOn (1, storeTemp2XX, storeTempXX, cols);

for (int incl1=0; incl<rowscols; incl = incl+cols)/ After loop
completes the loop condition, gives 1 column

{
storeTemp3XX.resize (cols);
copy(store.begin() + incl, store.begin() + incl+cols ,

storeTemp3XX.begin());
elemXX = computeXX(cols, storeTempXX, storeTemp3XX);

SelemXX = Be«BxelemXX;

HxxTemp. push_back (SelemXX) ;
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storeTemp3XX.clear ();
}

storeTemp2XX. clear () ;

storeTempXX.clear () ;

}
if (I == 0)
{
for (int it2=0; it2 <HxxTemp.size(); it2++)
{
Hxx.push_back (HxxTemp[it2]);
}
}
else
{

transform (HxxTemp. begin () , HxxTemp.end (), Hxx.begin,()Hxx.begin (),
plus <double>());

HxxTemp. clear () ;

} //End Hxx
// Begin Hzz
for (int 1=0; I<cols—1; |++)
{
for(int g=0; g<rowsccols; q = g+cols)
{
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storeTemp2ZZ.resize(cols);
copy(store.begin() + q, store.begin() + gq+cols , storeTe@mpH.begin

0);
ZZActOn (|, storeTemp2ZZ, storeTempZZ, cols);

for (int incl1=0; incl<rowscols; incl = incl+cols)
{
storeTemp3ZZ.resize(cols);
copy(store.begin() + incl, store.begin() + incl+cols ,

storeTemp3ZZ.begin());

elemzZZ = computeZzZ(cols, storeTempZZ, storeTemp3ZZ);

SelemZzZ = AAxelemZZ;

HzzTemp. push_back(Selemzz);

storeTemp3ZZ.clear ();

storeTemp2zZ.clear ();

storeTempzZZ. clear () ;

}
if (I == 0)
{
for (int it2=0; it2<HzzTemp.size (); it2++)
{
Hzz.push_back (HzzTemp[it2]);
}
}
else
{
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transform(HzzTemp. begin (), HzzTemp.end () , Hzz.begin (Hzz.begin (),
plus <double>());

HzzTemp. clear () ;

}//End Hzz

transform(Hzz.begin (), Hzz.end (), Hxx.begin(), Hxx.bed), plus <
double>());

[l transform(Hxx.begin(), Hxx.end (), Hxz.begin(), Hxz.begin(), plus <
double>());

[l transform(Hxz.begin(), Hxz.end(), Hzx.begin(), Hzx.begin(), plus <
double>());

for (int p=0; p<Hxx.size (); p++)
{
Hs.push_back (Hxx[p]) ;

}

Hzz.clear () ;

Hxx. clear () ;

diagonalize_real(rows, &(Hs[0]), Evs);/ Diagonalizes Hs, Hs comes

back as unitary for the subspace, Evs stores evals
/1 Squares elements of the unitary

transform(Hs.begin(), Hs.end (), Hs.begin(), Hs.begin(multiplies <
double>());
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double
double
double
double
double

double

total2 = 0.0;

delta = 0.0;

tl = bin(spins—-1, j);

t2 = bin(spins-1, j);

t3 = bin(spins—1, spins—j);
ratio = (t1/(t2+t3));

/] Calculations

for (long int b=0; b<rows; b++)/Indexes e—vec

{

for (long int c=0; c<rows; c++)

{

}

Udat.push_back (Hs[trows+c]) ;

double d = 0.0;

for (long int m=0; m<cols; m++)Y/Indexes qubit

{

for (long int n=1; n<=rows; n++)

{
spinDat.push_back(store[m + {l)xcols]);

}

double sum = 0.0;

double init = 0.0;

sum = inner_product(Udat.begin (), Udat.end(),

init);
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d =d+ (sum— ratio)x(sum— ratio);

spinDat.clear ();

total2 = total2 + d;

Udat. clear () ;
}

delta = sqrt(total2 / (colsrows));//Data points/deviations

data.push_back(delta);

store.clear ();

}// end for if( j == ..)

/1 Ending Tasks

delete[] Evs;

Hs.clear ();

flips.clear ();

} //End of maxQubit for—loop

/] Save data
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ofstream myfile_bin("odd2.bin", ios::binary | ios::binw);//Write data

to binary file

if (myfile_bin.is_open())

{
for (int s=0; s<data.size(); s++)
{
myfile_bin << data[s]<<"";
}
myfile_bin.close ();
}
else
{
cout<<"Unable to_open,file "<<endl;
}

ofstream myfile2 ("odd2. txt")// Write data to text file

if (myfile2.is_open())

{
for (int s=0; s<data.size(); s++)
{
myfile2 << data[s] <<endl;
}
myfile2 .close () ;
}
else
{
cout<<"Unable,to_,open, file"<<endl;
}
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ofstream myfile_binl("spinso2.bin", ios::binary | ioshinary);// Write

data to binary file

if (myfile_binl.is_open())

{
for(int s=0; s<num_spins.size (); s++)
{
myfile_binl << num_spins[s] <<"";
}
myfile_binl.close ();
}
else
{
cout<<"Unable,to_open,file"<<endl;
}

ofstream myfile3("spinso2.txt")// Write data to text file

if (myfile3.is_open())

{
for(int s=0; s<num_spins.size (); s++)
{
myfile3 << num_spins[s]<<endl;
}
myfile3.close () ;
}
else
{
cout<<"Unable,to_,open, file"<<endl;
}
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clock_t ends = clock();
cout<<"Runtime; "<< ( ( clock() — start ) / (double)CLOCKS PER SEC ) <<

"_,seconds"<<'\n’;

return O;

/1 Additional Routines

long int bin(long int n, long int k)

{
long int num;
long int den;
long int i=1;
if (n<k)

return O;
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else if ( k == 0)

{
return 1,
}
else
{
den = 1;
for (i = 1; i <=k; i = i+1)
{
den = ixden;
num = 1;
}
for (i =n; i >=(n—-k+1); i—)
{
num = ixnum;
}
return(num/den);
}
}

vector<int> XXActOn(long int a, vector<dnt> &array, vector<dnt> &

arrayTemp2,int length)

{
for (long int k=0; k<length; k++)
{
arrayTemp2 . push_back(array[K]);
}
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if (arrayTemp2[a] == 1 & arrayTemp2[a+1l] == 1)
{
arrayTemp2[a] = O0;
arrayTemp2[a+1] = O;
}
else if (arrayTemp2[a] == 0 & arrayTemp2[a+1l] == 0)
{
arrayTemp2[a] = 1;
arrayTemp2[a+1] = 1;

}
else if (arrayTemp2[a] == 0 & arrayTemp2[a+1l] == 1)
{
arrayTemp2[a] = 1;
arrayTemp2[a+1l] = 0;
}
else// (arrayTemp2[a] == 1 && arrayTemp2[a+1] == 0)
{

arrayTemp2[a] = O0;
arrayTemp2[a+1l] = 1;
}

return arrayTemp2;

vector<int> XZActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length)

{

for (long int k=0; k<length; k++)

{
arrayTemp?2.push_back(array[k]);
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if (arrayTemp2[a] == 1 & arrayTemp2[a+1l] == 1)
{
arrayTemp2[a] = O0;
arrayTemp2[a+1] =-1;
}
else if (arrayTemp2[a] == 0 && arrayTemp2[a+1] == 0)
{
arrayTemp2[a] = 1;
arrayTemp2[a+1] = O;
}
else if (arrayTemp2[a] == 0 & arrayTemp2[a+1] == 1)
{
arrayTemp2[a] = 1;

arrayTemp2[a+1] =-1;

}
else// (arrayTemp2[a] == 1 && arrayTemp2[a+1] == 0)

{
arrayTemp2[a] = O0;
arrayTemp2[a+1] = O;
}

return arrayTemp?2;

vector<int> ZXActOn(long int a, vector<dnt> &array, vector<dnt> &
arrayTemp2,int length)

{
for (long int k=0; k<length; k++)

{
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arrayTemp?2 . push_back(array[K]) ;

}
if (arrayTemp2[a] == 1 & arrayTemp2[a+1] == 1)
{
arrayTemp2[a] =-1;
arrayTemp2[a+1] = O;
}
else if (arrayTemp2[a] == 0 && arrayTemp2[a+1] == 0)
{
arrayTemp2[a] = 0;
arrayTemp2[a+1] = 1;
}
else if (arrayTemp2[a] == 0 & arrayTemp2[a+1l] == 1)
{
arrayTemp2[a] = O;
arrayTemp2[a+1l] = O;
}
else// (arrayTemp2[a] == 1 && arrayTemp2[a+1] == 0)
{
arrayTemp2[a] =-1;
arrayTemp2[a+1l] = 1;
}

return arrayTemp2;

vector<int> ZZActOn(long int a, vector<dnt> &array, vector<dnt> &

arrayTemp2,int length)
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for (long int k=0; k<length; k++)

{
arrayTemp?2.push_back(array[k]);
}
if (arrayTemp2[a] == 1 & arrayTemp2[a+1] == 1)
{
arrayTemp2[a] =-1;
arrayTemp2[a+1l] =-1;
}
else if (arrayTemp2[a] == 0 & arrayTemp2[a+1l] == 0)
{
arrayTemp2[a] = O0;
arrayTemp2[a+1l] = 0;
}
else if (arrayTemp2[a] == 0 && arrayTemp2[a+1] == 1)
{
arrayTemp2[a] = O0;
arrayTemp2[a+1l] =-1;
}
else// (arrayTemp2[a] == 1 && arrayTemp2[a+1] == 0)
{
arrayTemp2[a] =-1;

arrayTemp2[a+1] = O;
}

return arrayTemp2;
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double computeXX(long

arrayTemp)

{
double dummy = 1.0;
double piece = 1.0
int itr;
for(itr=0; itr<col_num;
{

if ((arrayzz[itr]

& arrayTemp[itr]

{
piece = 0;
}
else if (arrayzz[itr]
{
piece = 1;
}
else if (arrayzzZ[itr]
{
piece = 1;
}

int col_num,

itr++)

0 && arrayTemp/[itr]

0))

dummy = piecedummy;

}

return dummy;

0 && arrayTemp[itr]

1 & arrayTemp[itr]

vector €nt > &arrayZZ, vector<dnt> &

== 1) || (arrayzzlitq ==

== O)

== 1)
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double computeZZ(ong int col_num, vector<€nt> &arrayZZ, vector<dnt> &
arrayTemp)

{

double dummy 1.0;

double piece = 1.0;
double init = 0.0;

int itr;

for (itr=0; itr<col_num; itr++)

{
if (arrayzz[itr] == —1 & arrayTemp[itr] == 1)
{
piece = —1;
}
else if (arrayzz[itr] == 0 & arrayTemp[itr] == 0)
{
piece = 1;
}
else if (arrayzz[itr] == 1 & arrayTemp[itr] == —1)
{
piece = —1;
}
else if ((arrayzzZ[itr] == 0 && arrayTemp/[itr] == 1) || (arrayzZZJ[it{
== 1 & arrayTemp/[itr] == 0))
{
piece = 0;
}
else if ((arrayzz[itr] == 0 && arrayTemp[itr] == —-1) || (arrayZZ[itr]
== —1 && arrayTemp[itr] == 0))
{
piece = 0;
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}

else if (arrayzz[itr] == —1 & arrayTemp[itr] == —1)
{

piece = 1;

}
else if (arrayzz[itr] == 1 & arrayTemp([itr] == 1)
{

piece = 1;

}

dummy = piecedummy;

}

return dummy;

double computeXZ(ong int col num, vector<«nt> &arrayXZ, vector<dnt> &

arrayTemp)

{

double dummy

1
=
o

double piece

1
=
o

int itr;

for (itr=0; itr<col_num; itr++)

{
if ((arrayXzZ[itr] == 0 & arrayTemp[itr] == 1) || (arrayXzZ[it] == 1
& arrayTemp[itr] == 0))
{
piece = 0;
}
else if (arrayXzZ[itr] == 0 & arrayTemp[itr] == 0)
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piece = 1;
}
else if (arrayXzZ[itr] == 1 & arrayTemp[itr] == 1)
{
piece = 1;
}
else if (arrayXzZ[itr] == 0 & arrayTemp[itr] == —-1)
{
piece = 0;
}
else if (arrayXZJ[itr] == 1 & arrayTemp[itr] == —1)
{
piece = —1;
}
111
else if (arrayXzZ[itr] == -1 && arrayTemp[itr] == 0)
{
piece = 0;
}
else if (arrayXzZJ[itr] == -1 && arrayTemp[itr] == -1)
{
piece = 1;
}
else if (arrayXZ[itr] == -1 && arrayTemp[itr] == 1)
{
piece = —1;
}

dummy = piecedummy;
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return dummy;

double computezZzX(ong int col num, vector<€nt> &arrayZX, vector<dnt> &
arrayTemp)

{

double dummy

(TR
=P
o O

double piece

int itr;

for (itr=0; itr<col_num; itr++)

{
if ((arrayzX[itr] == 0 & arrayTemp[itr] == 1) || (arrayzZX[itr] ==
& arrayTemp[itr] == 0))
{
piece = 0;
}
else if (arrayzX[itr] == 0 & arrayTemp[itr] == 0)
{
piece = 1;
}
else if (arrayzX[itr] == 1 & arrayTemp[itr] == 1)
{
piece = 1;
}
else if (arrayzXJ[itr] == -1 && arrayTemp[itr] == 0)
{
piece = 0;
}
else if (arrayzXJ[itr] == -1 && arrayTemp[itr] == 1)
{
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piece = —1;

}
11
else if (arrayzX[itr] == 0 & arrayTemp[itr] == —-1)
{
piece = 0;
}
else if (arrayzX[itr] == -1 & arrayTemp[itr] == —1)
{
piece = 1;
}
else if (arrayzX[itr] == 1 & arrayTemp[itr] == —-1)
{
piece = —1;
}
dummy = piecedummy;

}

return dummy;

long int diagonalize_reallong int Dim, doublex Mat, doublex Evals) {

/I The unitary U comes back as Mat

/1 If the input matrix is Mat = H, then

/1 H = U diag(Evals) U T

/1 and H U = U diag(eig) so that the columns of U are the

eigenvectors

long int info = O;

const charx do_vecs = "V", xup = "U";
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double work_dummy[1];
/1 query to see what the optimal work size is
long int lwork = —1;

dsyev_(do_vecs, up, &im, Mat, &im, Evals, work_dummy, &rk , &info);

Iwork = static_cast<long int>(work_dummy[0]) ;

doublex work = new double[lwork];

/1 calculate the eigenvalues and eigenvectors of A

dsyev_(do_vecs, up, &im, Mat, &im, Evals, work, &work, i&fo);

delete[] work;

return info;
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