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ABSTRACT

APPROACH TO TYPICALITY IN QUANTUM SYSTEMS

August 2011

Shawn Dubey, B.S., Northeastern University
M.S., University of Massachusetts Boston

Directed by Assistant Professor Kurt Jacobs

The study of quantum mechanics has greatly broadened since its inception in the early

twentieth century. Recent research has focused on the emergence of thermalization in

quantum many-body systems. In this thesis I will demonstrate the approach to typicality-

the notion that for specific sets of objects, most of the objects share a common property-in

a single, many-body spins chain of spin half particles. Thisnotion of typicality is new. But

it serves as a good explanation for the emergence of thermalization.
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CHAPTER 1

INTRODUCTION

1.1 Direction

This presentation will be focused primarily on matters of statistical mechanics. We

hope to understand the mechanisms and conditions for thermalization in quantum systems.

We examine non-integrable Hamiltonians. Our discussion focuses on a concept known as

typicality: the idea that almost all elements in a set have a common property. The concept

of eigenvector typicality is explored and is used to help understand the idea of Eigenstate

Thermalization Hypothesis (ETH)

In the first section of the first chapter, classical statistical mechanics is discussed. Sev-

eral imporant topics in statistical mechanics are touched upon: phase space, Newton’s

Equations, Liouville’s Theorem, temperature, ergodicityand other concepts. They are used

to help reach an understanding of an ensemble and distribution which describe systems in

thermal equailibrium. They are the Boltzmann Distributionand microcanonical ensemble.

The second part of the first chapter is dedicated to recastingthe classical statistical

mechanics into the language and paradigm of quantum mechanics and realizing the form

of the Boltzmann Distribution. These are what we want to recover after we postulate ETH.

The second chapter elaborates on the idea and background of Eigenstate Thermaliza-

tion Hypothesis and how it can be understood through the lensof typicality. We build up

from the work of previous reserachers. We show we can approximate pure states of the
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universe as the appropriate thermal state. The concepts of the previous chapter are invoked

to understand typicality and ETH.

The third chapter focuses on the numerical results and how they support Eigenstate

Thermalization Hypothesis and the approach to typicality in quantum systems.

1.2 Motivations from Statistical Mechanics

It is our intention here to first motivate the results in chapters two and three with con-

cepts from classical statistical mechanics. We begin this here by by first examining a simple

example and continue with this in section 1.2. Then we connect to quantum mechanics in

section 1.3.

Consider a system, a box for example, which is isolated from the larger universe. It is

a closed system. Also consider an ensemble of particles contained within this box (the box

has rigid walls, and completely elastic collisions). The box is partitioned and the particles

are contained in one half of the box initially (with a fixed volume).

Given some time after the partition is removed, the system will go to an equilibrium

(macro)state. It is unlikely that one would be able to measure the trajectories and proper-

ties of each particle and gain information from them. It is favorable to employ statistical

mechanics to solve this problem.

The particles will fill the box, with equal density everywhere. This equilibrium state

cannot be reversed, in other words the approach to equilibrium is an irreversible process.

This is a process which happens spontaneously and by definition is not allowed to go in

reverse [1]. For specific processes, such as the approach to equilibrium, the entropy maxi-

mum is seen at equilibrium. This is an example of thermodynamic irreversibility [1].

The standard procedure in studying dynamical systems is to determine the positions and

momenta of the particle (i.e. phase space) or rather the trajectories in phase space of the
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particles. Both position (q, a generalized position) and momenta (p) are 3N dimensional,

where N is the number of degrees of freedom.

Solving Newton’s Equation’s

ṗ = F (q) (1.1)

q̇ =
p

m
(1.2)

would also be too complex. Given the number of particles, it would simply be too difficult.

As such we would like to be able to get information from the particles en masse.

In our classical systems, chaotic behavior will remove any knowledge we may have had

about the initial conditions in the first place. The only thing we then will know about the

system are the constants of motion, in this case the energy. Let us assume that energy is the

only quantity required to describe the system at equilibrium. If we follow this assumption,

we arrive at the familiar microcanonical ensemble in statistical mechanics [2].

We want to use this knowledge to obtain the microcanonical average.

First, we define the functionΩ(E) as the phase space volume of an energy "shell" [2]

(E, E+δE), divided byδE:

Ω(E)δE =

∫

E<H(p,q)<E+δE

dpdq (1.3)

We average over states in the shell and take the limit asδE goes to zero:

〈A〉E =
1

Ω(E)δE

∫

E<H(p,q)<E+δE

Adpdq (1.4)

What has been done was to average over states in phase space for a restricted energy

shell on an energy surface. In doing this we have implicitly assumed that all states are

equally likely [2].

Next we note systems of point particles obeying the Newton’sLaws (excluding dissi-
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pation) are to be considered examples of Hamiltonian dynamical systems (these systems

are energy conserving) [2]. We can then recover Newton’s Laws of Motion providing we

invoke Hamilton’s equations:

ṗ = −
∂H

∂q
(1.5)

q̇ =
∂H

∂p
(1.6)

In our quest to understand equilibrium statistical mechanics it is instructive to introduce

Liouville’s Theorem. This states that a probability density, P, in phase space is incompress-

ible, i.e. the probability density is conserved [2]. This probability density may be deformed

in phase space but it always retains its original volume. Mathematically this is (from the

continuity equation for a probability current in phase-space)

dP

dt
=
∂P

∂t
+

3N
∑

i=1

∂P

∂qi
q̇i +

∂P

∂pi
ṗi + P

q̇i

qi
+ P

ṗi

pi
= 0 (1.7)

the total time derivative carries the phase space volume to itself at all times (phase space

volume is a constant). Inserting Hamilton’s equations intothis continuity equation we get

the final form of Liouville’s Theorem [2]:

dP

dt
=
∂P

∂t
+

3N
∑

i=1

∂P

∂qi
q̇i +

∂P

∂pi
ṗi = 0 (1.8)

As a consequence of this, (for Hamiltonian systems) there will be no preferred states

to which any system will settle. If a system is momentarily inone state it will quickly

leave [2]. This is equivalent to equilibrium in statisticalmechanics. That is, in the assump-

tion of all states of the system being equal, it is implied that the system spends no more

time in one state than any other, and if it does, its time thereis fleeting as time evolution
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will carry it from that temporarily preferred state.

To proceed further we define a new term, ergodic, whose definition we adapt from

Boltzmann’s original: a system in which the path of every point in phase space passes

arbitrarily close to every other point on a constant energy surface [2].

Another consequence of Lioville’s Theorem in Hamiltonian systems is the time-independence

of the microcanonical ensemble. Since energy is conserved,a uniform density in phase

space is bound to stay uniform throughout time, on a path, fora small range of energies [2].

Invoking ergodicity, we can then say that the density will beuniform througout the energy

surface.

Following from these is the idea that time averages are equalto microcanonical aver-

ages. Since the microcanonical ensemble is time independent the time average is equal to

the ensemble average. This implies-since the time average is constant-for ergodic systems,

the ensemble average is the time average at all places [2].

Now that we have a background in classical statistical mechanics, it is now possible

to move on and understand the quantum mechanics needed to analyze our systems. These

concepts will be important in interpreting our results in the coming chapters.

For a more in depth discussion of the preceding section, consult Sethna [2].

1.3 Connecting to Quantum Mechanics

Let us now try to understand a significant part of the previoussection in the language

of quantum mechanics and quantum states, as we will be using it to describe our quantum

systems later in this exposition.

Suppose one had a system of particles and the only information available to any exper-

imenter are properties of this system, e.g. total energy, number of particles, volume, pres-

sure, et cetera. States of the system described by these properties are known as macrostates.

5



As an simpler, more concrete example, suppose one had a basket of apples; some are peeled

some are not. An example of the macrostate of this apple-system would being knowing that

there are five peeled and five unpeeled apples.

Each macrostate has associated with it a number of microstates. From the apple-system

above, knowing the microstates would mean knowing the stateof each apple. If we knew

specifically which apples were peeled and which were not, we would know the microstate

of each apple. In quantum mechanics microstates are described by mutually orthogonal

quantum states [1]. These are the states in which a system maybe in, given a particular

macrostate. As is always the case in quantum mechanics, one works in Hilbert Space. The

dimensionality of Hilbert Space for the systems consideredhere is equal to the number of

microstates, given a particular macrostate and having all of the properties fixed (for a many

body system this Hilbert Space is large and consists of many microstates). This can be an

extremely large number and as such any person doing measurements on the system does

not have access to the individual microstates, only the macrostates.

We now make a large and important leap in our understanding ofstatistical mechanics.

Using the definition of microstates we come to the fundamental postulate of statistical

mechanics, that of assigned equal a priori probability [3].From Jacobs, this states: ”all the

accessible microstates of a closed system are equally likely.” [1]. This can be interpreted

in two ways: the first being the system will spend as much time in one microstate as any

other, regardless of which microstate in which the system was initially. This means (similar

to the previous discussion) that the system is usually in oneof the ”typical” states [1] i.e.

subsets of states which contain most of the microstates. This can also be interpreted as the

assumption of an equal mixture of microstates which will give rise to specific properties of

the system [1].

The question quickly arises: how does this help one understand the approach to equi-

librium, or thermalization? To see, let us briefly consider the familiar concepts of entropy
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and temperature.

The microcanonical ensemble dictates that given an energy E, the equilibrium behavior

of a system is an equal weighting of all possible states of that system. Let us define the

number of microstates of a systemΩ, as being those states having equal probability (this is

the fundamental postulate of statistical mechanics), of a system of fixed energy. It is more

convenient to work with the logarithm of the number of microstates,Ω, though:

Sth = kBln(Ω) (1.9)

This is the familiar Boltzmann entropy of a system, withkB being the Boltzmann constant.

It is the entropy of a system in equilibrium. We will refer to it as the equilibrium entropy,

it is an extensive quantity, i.e. it scales with the size of the system. In thermodynamics

this can be thought of a measure of ”disorder” or in a more information-theoretic sense, the

uncertainty in the knowledge that an experimenter has aboutthe system [1]. This entropy

can be thought of as the number of possible microstates in which a given macrostate can

be, given the state of knowledge of the system. In these senses we can identify the thermo-

dynamic entropy with the von Neumann entropy (characterizing our state of knowledge of

the system) [1]

Sth = Sv (1.10)

We can extend the definition of thermodynamic entropy to microstates which are not

equally likely. This does not contradict the fundamental postulate of thermodynamics as

that applies to closed, isolated systems. If there are N systems interacting but they are

isolated from the rest of the universe, the microstates of the total, combinated system are

still equally likely; those of the subsystems are not [1]. Then we want a thermodynamic

entropy for a system that has different probabilities for being in different states. Suppose
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we have N systems which are in an arbitrary mixture of severalorthogonal states. We can

still find out the total number of microstates of the large combined system, consisting of the

N subsystems (this large system’s state is thus a mixture of all of the orthogonal states of

the subsystems and each state has its own probability of occurring) [1]. As the number of

subsystems increases, the probability of the large system to be in anyone one of the number

of typical states (states within the set that contains most of the microstates) increases while

the probability of being in any atypical state goes to zero [1].

As the number of systems grow, these typical states become more likely and as the

number of particles N goes to infinity all become equally likely.

The entropy of this large, combined system is the sum of the entropies of the smaller

subsystems. These entropies are all weighted by the number of typical states in our sub-

systems:

S =
∑

n=1

pnln(pn) (1.11)

wherepn is the probability of being in a particular state.

With this, we define the temperature, at constant volume and number, via the following

relation:
1

T
=
∂S

∂E
(1.12)

This inverse temperature describes the rate and direction of heat flow between sys-

tems [2]. When systems reach thermal equilibrium there is virtually no heat flow between

them and their entropy must by definition, be at a maximum.

This is easy to describe, as the system has evolved to a particular macrostate in which it

will spend most of its time. This will be the macrostate containing most of the microstates

(the typical states). As the entropy is the natural logarithm of the number of microstates,

this is then the maximum entropy macrostate, i.e. the state in which the system is in thermal
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equilibrium.

The temperature then, can be defined as:

T =
∂E

∂S
(1.13)

at constant volume, because in changing volume, work is being done and energy is chang-

ing irrespective of the entropy [2]. This temperature is fixed by the external environment

of the system, the heat bath. One can then show that if a systemis coupled to a large bath,

the equilibrium behavior of the bath is dependent only on thetemperature of the bath [3].

If we now take a system and put it in contact with a large thermal bath (the total system-

bath being known as the universe, with total energy Et) at temperature T, we will obtain

a distribution from which all properties of systems in equilibrium can be derived. This

distribution is know as the Boltzmann Distribution.

Briefly sketching the derivation: we assume all quantum microstates of the universe

(with associated energy E), are equally likely and then posethe question: what is the prob-

ability of finding a system microstate|s〉 (with associated energy Es) [1]? This will be

proportional to the amount of bath states that have energy Et-Es, which is the energy E of

the bath states we wish to find [1]. This boils the quest down tofiguring out the number

of such statesns. Given our assumption that the temperature T of the bath is fixed, we can

also declare that∂S
∂E

is fixed [1]. The entropy will be linear in energy and thus the number

of states will be exponential in E [1]:

S = So +
∂S

∂E
E (1.14)

We also recall that the entropy is the natural logarithm of the number of microstates.
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Equating the two (when the bath has energy E), we have:

−KBln(ns) = So +
∂S

∂E
E (1.15)

−KB ln(ns) = So +
E

T
(1.16)

ln(ns) = −
So

KB

−
E

KBT
(1.17)

ns = e
−So
KB

+ −E
KBT (1.18)

ns = noe
−E

KBT (1.19)

We now realize the form of the Boltzmann Distribution. This Boltzmann distribution

is known as the canonical ensemble, as we have assumed energyexchange between the

system and bath [2]. One may still derive the Boltzmann Distribution from the micro-

canonical regime if one considers a large system comprised of numerous subsystems. The

large system functions as a bath for the subsystems [1] and this large system was in the

microcanonical ensemble i.e. the equal a priori probability scheme.
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CHAPTER 2

EIGENSTATE THERMALIZATION HYPOTHESIS AND TYPICALITY

2.1 Typicality

With a thorough background in classical statistical mechanics and quantum mechanics,

we are now in a position to rethink notions of equilibrium andstudy them in quantum

systems. It is now possible to quickly discuss ergodicity and typicality and how they relate

to thermalization.

Chronologically, von Neumann’s ergodic theorem for macroscopic systems was a first

step forward in statistical mechanics in quantum systems. But it does not hold for all ob-

servables in a closed system [4]. To acquire a more general ergodic theorem, it is suggested

that random perturbations should be induced to accomplish this [4]. This is why the need

to couple to a bath was introduced. This brings the system to equilibrium and brings the

system to the bath temperature [4].

However, there is another approach [5] which brings us to theresult we will call "Eigen-

state Thermalization Hypothesis" (ETH) [6]. In this approach, every eigenstate of an

appropriate system (usually non-integrable systems) gives a thermal state, meaning each

eigenstate gives expectation values in agreement with microcanonical ensemble. Stated

differently, each eigenstate of the Hamiltonian reproduces the microcanonical average of

an observable [7]. This reproduces results from statistical mechanics in closed systems. It

is now irrelevant whether or not we are decomposing into a system-bath scheme (but will

be helpful in explaining typicality).
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A way to understand ETH is through typicality. The notion of typicality in general

simply means that nearly all members of a large set share a common property. We look at

eigenvectors of a Hamiltonian which share a common property: as we increase the dimen-

sion of the examined sectors (particular subspaces), they put the system into a state with

the correct population of up-spin states as predicted by statistical mechanics.

To clarify, a sector is just a particular subspace of a system. As an example, recall

our apple-basket system. If we now have a basket which can hold ten pieces of fruit, we

place in it five apples and five oranges. The number of ways we can arrange the apples and

oranges in the basket constitutes one sector. We could also have seven apples and three

oranges and the number of ways to arrange those in the basket is another sector. For the

purposes of this paper, we deal with sectors of chains of qubits/spins, in which there are

certain number of them in the up state.

With all of this knowledge in mind, we need to have a better understanding of foun-

dations of statistical mechanics. Here we emphasize the work of Popescu et al [3]. This

work shows we can replace the fundamental postulate of statistical mechanics: assume

equal probabilities of the pure states of the universe a priori, by a principle that focuses on

individual states [3]. This will be the first rigorous introduction to typicality.

2.1.1 A First Mathematical Justification for Typicality

Consider a system and a bath, where the dimension of the bath larger is than that of

the system and with dimensionalitiesDs andDb respectivly. The state of the system-

bath universe in constrained by a global constraint C [3] (which would be the fixed total

energy of the combined system-bath universe in statisticalmechanics) which can be seen

in quantum mechanics by:

HC ⊆ Hs ⊗Hb (2.1)
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whereHC is a subspace of the full Hilbert spaceHs ⊗Hb.

We define the universe when it is in a maximally mixed state as [3]:

φC =
1

DC

IC (2.2)

whereIC is the identity matrix andDC is the dimensionality ofHC . The maximally mixed

state is by definition proportional to the identity.

The quantum state of the system when the universe is inφC , is (termed a "canonical

state")

∆s = TrbφC (2.3)

Then assume the universe to be in a pure state|ψ〉 and then show that the reduced state

of the system:

Ψs = Trb |ψ〉 〈ψ| (2.4)

is extremely close to∆s for most of the∆s [3], i.e.:

Ψs ≈ ∆s (2.5)

Restated this means that for most|ψ〉 ∈ HC the system in consideration acts as if it

were in an equiprobable state,φC [3]. This statement is redefined in [3] "Given a suffi-

ciently small subsystem of the universe, almost every pure state of the universe is such that

the subsystem is approximately the canonical state∆s". This can be extended to thermal

systems [3]: "Given that the total energy of the universe is approximately E, interactions

between the system and the rest of the universe are weak, and that the density of states

of the environment increases approximately exponentiallywith energy, almost every pure

state of the universe is such that the state of the system alone is approximately equal to the
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thermal canonical statee
−Hs
kbT , with temperature T (corresponding to energy E) [3]". This

assumes that the Hamiltonian for the entire universe is:

Hu = Hs +Hb +Hint (2.6)

whereHint is the Hamiltonian for the interaction between the system and bath.

Now the idea is to create some distance measure in which they show that the distance

between∆s andΨs, which is how easy it is to tell∆s andΨs apart [3]. The main theorem is

that the volume V, of states in the constrained subspace, which are far from the "canonical"

state, decreases exponentially with the dimension of the constrained subspace. This is

stated this mathematically as [3]:

V [(|ψ〉 ∈ HC |d(Ψs(ψ),∆s) ≥ δ)]

V [(|ψ〉 ∈ HC)]
≤ δ′ (2.7)

where

d(Ψs(ψ),∆s) =
1

2

√

(Ψs − ∆s)†(Ψs − ∆s) (2.8)

δ = ǫ+
1

2

√

Ds

D
eff
b

(2.9)

and

δ′ = 4e−KDCǫ2 (2.10)

for ǫ > 0, where K is a positive constant and

D
eff
b =

1

Tr∆2
b

≥
DC

Ds

(2.11)

To prove this Levy’s Lemma is invoked [3]. Levy’s Lemma is a lemma from high-

dimensional geometry which states that for most points P, ona hypersphere of dimension
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D ≫ 1 and area A[(P)] and all functions f which are not quickly changing, |∇f | ≤ 1, f(P)

is approximately equal to the mean value〈f〉. Specifically:

A[(Pf(P ) − 〈f〉 ≥ ǫ)]

A[(P )]
≤ 4e−( 1

9π3
)(D+1)ǫ2 (2.12)

This clarifies, mathematically, our notion of (canonoical)typicality, in which almost

all states of the universe are approximately equal to the thermal state, by considering the

universe in a system-bath setup. This allows one to recover the equilibrium results in sta-

tistical mechanics. We specifically look at Hamiltonian typicality, in which the eigenstates

of the most Hamiltonian are states which put subsystems in thermal equilibrium.

2.2 Eigenstate Thermalization Hypothesis

We now seek to clarify the concept of eigenstate thermalization [5, 6, 7], which need

not invoke the system-bath setup. Let us consider eigenstates of a HamiltonianĤ.The

eigenstates are:

|Ψ(t)〉 = e−iĤt |Ψ(0)〉 =
∑

i

Cie
−iEit |φi〉 (2.13)

whereEi are the eigenstate energies andCi = 〈Ψi|Ψ(0)〉.

For an observable, represented by an operator in quantum mechanics,Ô, the mean is

given by:

〈 ˆO(t)〉 ≡ 〈Ψ(t)|Ô|Ψ(t)〉 =
∑

ij

C∗
i Cje

i(Ei−Ej)tOij (2.14)

In the long-time limit, the mean is:

〈 ˆO(t)〉 = lim
t→+∞

1

t

∫ t

0

〈Ψ(t)|Ô|Ψ(t)〉 dt. =
∑

i

|Ci|
2Oii (2.15)

This has been described as the "diagonal ensemble" which is identifed as exactly the gen-
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eralized canonical ensemble, provided that the constants of motion are the projectors:

P̂i = |Ψi〉 〈Ψi| [7].

If a system equilibrates, it will be to this average. When settling to a steady-state,

the time-dependent off-diagonal terms in our average goes to zero in time because of the

dephasing effects [7].

If a system equilibrates at all it should also equilibrate tothe appropriate ensemble av-

erage. This statement simply means the previous equation should equal the microcanonical

average [5]:

〈 ˆO(t)〉t =
∑

i

|Ci|
2 〈Ô〉Ei

(2.16)

i.e. a weighted sum of the averages, where the weights are theprobabilities of being in

any macroscopic state. We state this as:

∑

i

|Ci|
2Oii =

1

NEo,∆E

∑

i

Oii (2.17)

with the condition,|Eo − Ei| < ∆E [7]. N is a normalization factor; it is the number of

states in the energy window[Eo − ∆E,Eo + ∆E] whereEo is the average energy of an

initial state and∆E is the half width of the energy window [7]. This is analogous to the

idea presented in chapter one’s discussion of microcanonical averages. There we averaged

over states in phase space given an energy shell. Here we choose an energy range such that

the range contains a non-zero number of eigenstates [7].

There exists an interesting interpretation to this analysis, especially equation 2.17. It

can be interpreted to mean that theOii ("eigenvalue expectation values") [7] do not change

(or change only slightly) between eigenstates [7]. From theprevious analysis then, we

have shown that every state in which we begin the system, we will always recover the
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microcanonical average.

Recall the earlier discussion on classical statistical mechanics. One of the goals was

to use the idea of ergodicity to arrive at the microcanonicalaverage. The same idea has

been done in this section, though in a less obvious and not fully understood way. We have

recovered the notion of ergodicity in quantum mechanics in that each eigenstate gives back

the correct microcanonical averages.

It is conjectured that for initial states in a narrow energy windowOii, do not fluctuate

between eigenstates close in their energies [7]. In this case equation 2.5 holds.

But what of time dynamics? It is revealed that they play merely an anscillary role [7].

As stated before, there is initally coherence between eigenstates but time evolution destroys

it through dephasing revealing thermalization [7]. We see that in quantum mechanical

systems every eigenstate gives a thermal state for the system. This is in constrast to the

classical idea of ergodic motion in phase space through timeevolution, producing results

given by microcanonical predictions (see discussion in chapter one). Rigol et al provide

more information on this [7].

To elaborate, we start with a bare Hamiltonian,H = Ho, which describes our unper-

turbed quantum mechanical system. To this we add our random Hamiltonian,Hr, so we

can recover statistical mechanics.Hr is, for the time being, a Gaussian random matrix, par-

ticularly one whose elements are drawn from a distribution with zero mean and varience

one, the Gaussian Orthogonal Ensemble (GOE). This has been well motivated since the

time when Wigner postulated that the energy spectrum of nuclei is well described by ran-

dom maricies and reproduces the Wigner-Dyson distribution. These random matrices (the

Hamiltonians) are real-symmetric matrices [8]. We will again use real-symmetric matrices

in our analysis to provide results consistent with statistical mechanics as Wigner did.

The full Hamiltonian is then:
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i i + 1

Figure 2.1: Chain of qubits with nearest-neighbor interaction.

H = Ho +Hr (2.18)

We can also expect similar results whenHr is replaced by a two-body, nearest-neighbor

interaction Hamiltonian [5],Hi. The interaction examined in this paper is between nearest-

neigbor qubits (fig. 2.1). The Hamiltonian is then:

H = Ho +Hi (2.19)

We shall see this demonstrated in the results section. The Hamiltonians discussed are real-

symmetric matrices.

Ergodicity is given by the eigenvectors. We induce small butnon-negligable interaction.

In the limit of arbitrarily small interactions, it is as if there is no system-bath coupling and

thus no thermal behavior. The eigenvectors mix with random phases and we note two

things: the distribution of eigenvectors of the Hamiltonian in the basis where the non-

interacting Hamiltonian is diagonal is exponential in the inverse of the interaction strength

and that deviations from microcanonical predictions decrease exponenetially with number

of degrees of freedom due to the small, non-negligable interactions [5].
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2.2.1 Example of ETH Applicability

As a brief aside, let us take note of other classes of systems that thermalize, separate

from the ones we just described, so as to get an example of how ETH applies.

It has been shown that any quantum mechanical system whose classical counterpart is

chaotic will exhibit eigenstate thermalization [7]. More interestingly, systems which follow

from Berry’s conjecture thermalize in the semiclassical limit [6].

Berry’s conjecture states that locally, eigenfunctions ofchaotic system behave like a

random superposition of plane waves [6]. This condition is (in the example of a box of

hard spheres confined to a particular region of the box, with 3N momentum and position:

P,X):

Ψi(X) = Ki

∫

d3NPAi(P)δ(P2 − 2mUi)e
iP•X

~ (2.20)

whereKi is determined through normalization:

∫

d3NXΨi(X) = 1 (2.21)

In the example, the amplitudesA(P), with the property

A∗(P) = A(−P) (2.22)

are Gaussian random and this condition equates to Berry’s conjecture. For his system, it is

possible to recover thermal predictions and eigenstate thermalization [6].

Eigenstate thermalization is not soley confined to our Hamiltonian system with random

perturbations. Indeed, it it can be shown to arise for many other classes of systems like the

one presented.
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2.2.2 Focus of Results

The class of Hamiltonians for which we want to demonstrate eigenstate thermalization

are non-integrable hamiltonains. Here integrability means a system which is exactly solv-

able. It is typically thought that quantum integrable systems do not exhibit thermalization.

This is essentially correct. We see though, that thermalization is induced in integrable sys-

tems which are weakly perturbed, which is the reason for the introduction of Hamiltonians

with Gaussian random perturbations, or two-body, nearest-neighbor interations acting as

perturbations.

To study non-integrable Hamiltonians we shall invoke the use of chains of quantum bits

(qubits) and their spin states. Qubits are highly relevant in quantum information theory and

their properties allow one to understand some basic concepts as well as perform numerical

calculations easier.
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CHAPTER 3

NUMERICAL RESULTS FOR TYPICALITY

3.1 Classifying Systems and Results

Now we discuss the background and results of our numerical experiments, demonstrat-

ing the notion of eigenvector typicality. This is the property of typicality we wish our

Hamiltonians to exhibit; that each of the eigenvectors of the Hamiltonian places a qubit in

a particular spin state (up) with the correct frequency. Forexample, we want to realize the

probability of 0.5 for even number qubit spin-chains with half of the qubits in the up state.

And we check for a calculated probability (ratio) for odd number qubit spin chains (given

below).

Put another way, our main objective is to check whether, if wehave a spin chain of four

qubits with two in the up state, does this occur with a probability of 0.5 or does the deviation

from 0.5 decrease with increasing sector dimensionality? We gather this information from

the eigenvectors of a sector Hamiltonian.

We show from numerical simulations that the root mean square(rms) deviation from

predicted values decreases as a power-law for odd numbered spin chains (as the dimension-

ality of the sector increases). For even numbered spin chains there is no deviation. This

means the eigenvectors are perfectly typical, due to some symmetry (though it is not clear

exactly what symmetry). This implies eigenstate thermalization.

The analysis will show the deviation from the thermal state scales as an inverse power

with the dimension of the sector. A sector is merely the subspace of the full system, whose
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elements are all the permutations of the spins with a particular number of spins in the up

state.

Again, for our purposes we chose to examine a chain of spin-1
2

(qubits) particles with

open boundary conditions. Our model is an Ising model, wherethe usual form is:

H =
∑

i

σi
zσ

i+1
z (3.1)

whereσz is the usual Pauli z-spin operator. This is the same as our earlier Ho, the un-

perturbed Hamiltonian. To model the weak perturbations we choose a nearest-neighbor

interaction:

H = Jz

∑

i

σi
zσ

i+1
z + Jx

∑

i

σi
xσ

i+1
x (3.2)

whereσx is the usual Pauli x-spin operator andJz andJx are constants which we have

defined asJz = cos2θ andJx = sin2θ with θ = 0.375π

We want to analyze our model in some way. We examine eigenvector typicality, as

stated previously. This examines the probability of our spin chain being in a particular

configuration.

We characterize the deviationδ, as the rms deviation in probability from what one

would expect for a given configuration of qubits in the spin-chain. Explicitly the expected

probability, or ratio, is:

ratio =

(

q−1
j

)

(

q−1
j

)

+
(

q−1
q−j

) (3.3)

where q is the number of qubits in the spin-chain and j is the number of qubits in the up-

state. Equation 3.1 takes into account that in the C++ code the qubits are being bit-flipped

starting at the end of the spin-chain.

In short, we have our real-symmetric Hamiltonian which we diagonalize and obtain a

unitary matrix U. U diagonalizes the Hamiltonian and is not an evolution operator. The
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columns are the eigenvectors, the elements of which are the amplitutes of the states of the

sector. We look at the probability that each qubit is in the "up" state by looking at the basis

states of an eigenvector, which are the possible configurations of the system in a sector.

Looking at the first qubit in each sector element-a configuration of the spin-chain-we look

to see if the qubit is in the up state, if it is, we sum its probability (the columns in our

unitary matrix are the coefficients/amplitudes of the basisstates, therefore their squares

are the probability). This gives us the total probability ofthe first qubit is in the up state.

We compare it to the previously described ratio to make sure the qubit is in the correct

population (e.g. for half of the qubit in the up state, so we see how far the sum deviates

from the ratio of 0.5, the ideal case). Numerically, this canbe described as:

δ =

√

∑

i

∑

j [〈Ti|Sj〉 − ratio]2

q ∗
(

q

j

) (3.4)

or

δ =

√

√

√

√

∑

i

∑

j[〈Ti|Sj〉 −
j

q
]2

q ∗
(

q

j

) (3.5)

whereTi are the vectors whose elements are the square moduli of the elements of the

eigenvectors (columns of U),Sj is the vector whose i-th element is the state of the qubit

(up-denoted numerically as 1, down-denoted numerically as0) in all the i-th basis state, q is

the number of qubits in the spin chain and
(

q

j

)

is the number of eigenvectors. Numerically,

theSj pick out the up-state of the i-th qubit in all of the sector elements andTi gives their

probabilities:
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Figure 3.1: Example of Numerical Method

To put it more simply we want to see if a particular spin-chainconfiguration happens

with a certain probability (the ratio, described above). Wedo this by seeing how the prob-

ability of each qubit in the spin-chain being in the up-state, deviates from the expected

probability (ratio). For each eigenvector, we go through each qubit, we get a final rms de-

viation in probability. The rms deviations getting smallerimplies that each sector happens

with a probability closer that predicted by statistical mechanics.

Since it is the eigenvectors of the sector Hamiltonian that give us the probability (through

Ti, above), we expect virtually all eigenvectors of a given sector Hamiltonian to give a de-

viation consistent with statistical mechanics, i.e. goes to zero to be consistent with thermal

predictions. This is the concept of eigenvector typicality, described through the rms devia-

tion, δ and implies eigenstate thermalization.

This procedure is done for even qubit chains and odd qubit chains. It was of particular

interest to monitor the rms deviations for when half of the qubits are in the up state; this
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would be the maximally mixed state and maximum entropy state. The dimension of these

"half-up" sectors are the largest dimensions of any sector because of the combinatorics

of the system. Again, as the dimension of the sector gets larger, the deviations discussed

earlier should approach zero, giving no deviation from the ideal case.

For odd-numbered chains, we fix as "half" floor(n
2
), where n is the number of qubits in

the spin chain and floor() denotes the largest integer less than the argument. For example

if there are 7 qubits in the spin chain, then the number of themin the up state is floor(7
2
) =

floor(3.5) = 3 qbuits in the up state.

3.2 Hamiltonian Construction

We now explain how a Hamiltonian for a given sector is constructed numerically. Cal-

culations using the full Hamiltonian are possible. But as the spin chain grows, the dimen-

sionality of the full Hamiltonian grows as a power of two. Forsufficiently large spin chains,

the computing resources needed for diagonalizing the full Hamiltonian and computing be-

come too large. This why it is important to construct the sector Hamiltonians in a way that

is less computationally intensive.

As a specific example lets first define the up and down states in the spin-1
2

system:

up = |1〉 =







1

0






(3.6)

down = |0〉 =







0

1






(3.7)

For computational reasons, it is desirable to work with the Hamiltonians for each indi-

vidual sector, where a sector is a particular configuration of the system. An example would

be a four-qubit spin chain with two of the qubits in the up state. All possible permutations
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of the spin chain constitutes a sector. When we diagonalize the Hamiltonains for the sec-

tors, we recover our eigenvectors and calculate our rms deviation, describled previously.

We do this procedure each time a qubit is added, again noting the sector of interest is the

half-spin-up s, maximally-mixed sector.

One could, in priciple, find the full Hamiltonain and extractthe Hamiltonians for the in-

dividual sectors, however that becomes impractical as the dimensionality of the full Hamil-

tonian goes as2n where n is the number of qubits in the spin chain.

It is possible to construct the Hamiltonians for the sectorsbased only on the knowledge

of how the Pauli gates operate on our|1〉, |0〉 states. Explicitly they are:

σx |1〉 = |0〉 (3.8)

σx |0〉 = − |1〉 (3.9)

σy |1〉 = i |0〉 (3.10)

σy |0〉 = −i |1〉 (3.11)

σz |1〉 = − |1〉 (3.12)

σz |0〉 = |0〉 (3.13)

where i is the imaginary unit.

Take as an example the Hamiltonian:H = Jz

∑

i ZiZi+1 and we examine a four-qubit

spin chain with two qubits in the up state; the elements of thesector are 0011, 0101, 0110,

1010, 1100, 1001, where 1 represents the up state and 0 the down state.

To construct an element of the Hamiltonian for this sector weuse the 0011 state (in
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bra-ket notation):

〈0| 〈0| 〈1| 〈1|Z ⊗ Z ⊗ I ⊗ I |0〉 |0〉 |1〉 |1〉+

〈0| 〈0| 〈1| 〈1| I ⊗ Z ⊗ Z ⊗ I |0〉 |0〉 |1〉 |1〉+

〈0| 〈0| 〈1| 〈1| I ⊗ I ⊗ Z ⊗ Z |0〉 |0〉 |1〉 |1〉

=

〈0|Z|0〉 〈0|Z|0〉 〈1|I|1〉 〈1|I|1〉+

〈0|I|0〉 〈0|Z|0〉 〈1|Z|1〉 〈1|I|1〉+

〈0|I|0〉 〈0|I|0〉 〈1|Z|1〉 〈1|Z|1〉

=

〈0|0〉 〈0|0〉 〈1|1〉 〈1|1〉+

〈0|0〉 〈0|0〉 〈1| − |1〉 〈1|1〉+

〈0|0〉 〈0|0〉 〈1| − |1〉 〈1| − |1〉

=

− 1

(3.14)

where I is the 2x2 identity matrix.

This is one of the (diagonal) matrix elements in the Hamiltonian for the particular sector

being observed, without the scaling of the constantJz. We can repeat this procedure to

construct any Hamiltonian for any sector, rapidly.

For the integrable case, the HamiltonianH = Jz

∑

i ZiZi+1 is exactly solved by the

Bethe ansatz and it is known that these classes of systems (integrable) do not thermalize

but non-integrable Hamiltonians such as the one we have seenpreviously (2.19) do. Recall,

the extra term is a small perturbation which is expected to bring our system to equilibrium.
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3.3 Results and Conclusion

Our results can be summarized as follows:

Table 3.1: Even Qubit Spin Chains
qubits up qubits Sector Dimension RMS Deviation

4 2 6 0
6 3 20 0
8 4 70 0
10 5 252 0
12 6 924 0
14 7 3432 0
16 8 12870 0

Table 3.2: Odd Qubit Spin Chains
qubits up qubits Sector Dimension RMS Deviation

3 1 3 0.170255
5 2 10 0.112704
7 3 35 0.0812252
9 4 126 0.0616182
11 5 462 0.0488317
13 6 1716 0.0399212
15 7 6435 0.0334508
17 8 24310 0.0285675

The results displayed in Table 1 were unexpected. We thoughtthe deviations would

decrease exponentially in the dimensionality of the sector. As one can see the rms deviation

is always zero for the maximally mixed state, meaning that the probability of finding the

system in one of the completely mixed states is exactly what one would expect it to be from

theoretical predictions, that is, all the states are typical states.

It is important to note that the deviation decreases as a power-law whose power is -

0.13510, in the sector dimension, as the number of spins increases to infinity (asymptotic

power), giving increased typicality. This is easily seen graphically. Clearly we can see in
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Figure 3.2: RMS Deviation-odd qubit chain

Fig. 3.4 (below) the power-law nature ofδ. The deviations from the expected probability

decrease with increasing spin-chain size.

The deviationsδ, a measure of eigenvector typicality, indicate that the eigenvectors of

a sector Hamiltonian are increasingly typical. That is, therms deviation in probability

(given by the eigenvectors), in finding the system in one of the configurations of the spin-

chain in a sector, decreases. It decreases with increasing sector size. This, the typicality

of the eigenvectors, our smoking gun, is our implication forEigenstate Thermalization

Hypothesis.

This idea of typicality goes a long way in remolding our understanding of statistical

mechanics. We can show typicality numerically and it gives us a new platform from which

to study the approach to equilibrium in quantum systems.
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3.4 Technical Information

The simulations were done with code written in C++ on a Linux platform. Code execu-

tion took place on a Linux cluster at the University of Oregon, with 128 gigabytes of shared

random access memory (RAM), provided by Daniel Steck. The cluster was necessary as

there were large matrices to be diagonalized, the largest ofwhich was 24310 x 24310.

3.5 Suggestions for Further Research

This data gives numerical evidence for the eigenstate thermalization hypothesis through

the measure of eigenvector typicality. This method can easily be extended to qutrits, hope-

fully reproducing the same results. Another avenue of investigation would be to look at

eigenstate thermalization through the lens of many-body localization. It would also be of

interest to be able to reproduce these results in a laboratory setting.
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APPENDIX A

C++ CODE

# inc lude < ios t ream >

# inc lude < c s t d l i b >

# inc lude < fs t r eam >

# inc lude <cmath >

# inc lude < iomanip >

# inc lude < a lgo r i t hm >

# inc lude < c s t r i n g >

# inc lude <complex >

# inc lude < vec to r >

# inc lude <ct ime >

# inc lude < f u n c t i o n a l >

# inc lude <numer ic >

us ing namespace s t d ;

ex tern "C" {

/ / −−−−−−−− LAPACK r o u t i n e s

/ / / / d i a g o n a l i z e s y m m e t r i c r e a l

void dsyev_ (c o n s t char∗ choose , c o n s t char∗ uplow , long i n t ∗ N, double ∗

A, long i n t ∗ rownum , double ∗ Evals , double ∗ WORK, long i n t ∗ LWORK,

long i n t ∗ INFO ) ;

}
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long i n t b in ( long i n t n , long i n t k ) ; / / B in o mia l c o e f f s , CF

vec to r <i n t > XXActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h ) ;

vec to r <i n t > ZZActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h ) ;

vec to r <i n t > XZActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h ) ;

vec to r <i n t > ZXActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h ) ;

double computeXX (long i n t col_num , vec to r <i n t > &arrayZZ , vec to r <i n t > &

arrayTemp ) ;

double computeZZ (long i n t col_num , vec to r <i n t > &arrayZZ , vec to r <i n t > &

arrayTemp ) ;

double computeXZ (long i n t col_num , vec to r <i n t > &arrayXZ , vec to r <i n t > &

arrayTemp ) ;

double computeZX (long i n t col_num , vec to r <i n t > &arrayZX , vec to r <i n t > &

arrayTemp ) ;

long i n t d i a g o n a l i z e _ r e a l (long i n t Dim , double ∗ Mat , double ∗ Eva ls ) ; / /

KJ

i n t main ( i n t argc , char∗ argv [ ] )

{

i n t maxQubit ;

c o n s t double A = −0.3827;/ / −0.3827;

c o n s t double B = 0 . 9 2 3 9 ;/ / 0 . 9 2 3 9 ;

c l o c k _ t s t a r t = c l o c k ( ) ;

maxQubit = 18 ;

33



vec to r <double > d a t a ; / / Data sa ved h ere

vec to r <i n t > sp inDa t ;

vec to r <double >Udat ;

vec to r <i n t >num_spins ;

f o r ( i n t s p i n s =13; s p i n s <= maxQubit ; s p i n s = s p i n s + 2)

{

num_spins . push_back ( s p i n s ) ;

vec to r <i n t > f l i p s ;

/ / I n i t i a l i z e s y s t e m t o a l l " down " ( 0 )

f o r ( i n t k =0 ; k< s p i n s ; k++)

{

f l i p s . push_back ( 0 ) ;

}

/ / F l i p s p i n s one−by−one , s t a r t a t t h e end o f t h e a r r a y

f o r ( long i n t j = sp ins−1; j >−1; −− j )

{

f l i p s [ j ] = 1 ;

/ / D imen s io n s o f " m a t r i x "

long i n t c o l s = s p i n s ;

long i n t rows = b in ( sp ins , j ) ;

/ / Other d e c l a r a t i o n s

vec to r <i n t > s t o r e ;
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/ / d o u b le elemXZ ;

/ / d o u b le elemZX ;

double elemXX ; / / XX e l e m e n t o f su b sp a ce

double elemZZ ; / / ZZ e l e m e n t o f su b sp a ce

/ / d o u b le SelemXZ ;

/ / d o u b le SelemZX ;

double SelemXX ; / / s c a l e d XX e l e m e n t o f su b sp a ce

double SelemZZ ;/ / s c a l e d ZZ e l e m e n t o f su b sp a ce

/ / v e c t o r <i n t >storeTempXZ ;

/ / v e c t o r <i n t >storeTempZX ;

vec to r <i n t >storeTempXX ;

vec to r <i n t >storeTempZZ ;

/ / v e c t o r <i n t >storeTemp2XZ ;

/ / v e c t o r <i n t >storeTemp2ZX ;

vec to r <i n t >storeTemp2XX ;

vec to r <i n t >storeTemp2ZZ ;

/ / v e c t o r <i n t >storeTemp3XZ ;

/ / v e c t o r <i n t >storeTemp3ZX ;

vec to r <i n t >storeTemp3XX ;

vec to r <i n t >storeTemp3ZZ ;

double ∗ Evs = new double [ rows ] ;

vec to r <double >Hs ; / / Subspace H a m i l t o n i a n

/ / v e c t o r <double > Hxz ;

/ / v e c t o r <double > HxzTemp ;
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/ / v e c t o r <double > Hzx ;

/ / v e c t o r <double > HzxTemp ;

vec to r <double > Hxx ;

vec to r <double > HxxTemp;

vec to r <double >Hzz ;

vec to r <double >HzzTemp ;

/ / Keep ing t h i s as a m a t t e r o f p r i n c i p l e

s o r t ( f l i p s . beg in ( ) , f l i p s . end ( ) ) ;

i f ( j == ( ( s p i n s / 2 ) +1) )

{

do

{

f o r ( i n t x =0 ; x< c o l s ; x++)

{

s t o r e . push_back ( f l i p s [ x ] ) ;

}

}

whi le ( n e x t _ p e r m u t a t i o n ( f l i p s . beg in ( ) , f l i p s . end ( ) ) ) ;/ / Permute and

s t o r e a l l p o s s i b l e p e r m u t a t i o n s row a t a t i m e

/∗ i f ( s p i n s == 7 )

{
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f o r ( i n t n =0; n<rows ; n++)

{

f o r ( i n t m=0; m<c o l s ; m++)

{

cout <<s t o r e [ n∗ c o l s+m]<<" " ;

}

cou t <<e n d l ;

}

} ∗ /

/ / Beg in Hxx

f o r ( i n t l =0 ; l < co l s−1; l ++)

{

f o r ( i n t q =0 ; q<rows∗ c o l s ; q = q+ c o l s )

{

storeTemp2XX . r e s i z e ( c o l s ) ;

copy ( s t o r e . beg in ( ) + q , s t o r e . beg in ( ) + q+ c o l s , storeTemp2XX . beg in

( ) ) ;

XXActOn ( l , storeTemp2XX , storeTempXX , c o l s ) ;

f o r ( i n t i n c1 =0 ; inc1 <rows∗ c o l s ; i nc1 = inc1 + c o l s )/ / A f t e r lo o p

c o m p l e t e s t h e lo o p c o n d i t i o n , g i v e s 1 column

{

storeTemp3XX . r e s i z e ( c o l s ) ;

copy ( s t o r e . beg in ( ) + inc1 , s t o r e . beg in ( ) + inc1 + c o l s ,

storeTemp3XX . beg in ( ) ) ;

elemXX = computeXX ( co l s , storeTempXX , storeTemp3XX ) ;

SelemXX = B∗B∗elemXX ;

HxxTemp . push_back ( SelemXX) ;
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storeTemp3XX . c l e a r ( ) ;

}

storeTemp2XX . c l e a r ( ) ;

storeTempXX . c l e a r ( ) ;

}

i f ( l == 0)

{

f o r ( i n t i t 2 =0 ; i t 2 <HxxTemp . s i z e ( ) ; i t 2 ++)

{

Hxx . push_back ( HxxTemp[ i t 2 ] ) ;

}

}

e l s e

{

t r a n s f o r m ( HxxTemp. beg in ( ) , HxxTemp. end ( ) , Hxx . beg in ( ), Hxx . beg in ( ) ,

p l u s <double > ( ) ) ;

}

HxxTemp . c l e a r ( ) ;

} / / End Hxx

/ / Beg in Hzz

f o r ( i n t l =0 ; l < co l s−1; l ++)

{

f o r ( i n t q =0 ; q<rows∗ c o l s ; q = q+ c o l s )

{
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storeTemp2ZZ . r e s i z e ( c o l s ) ;

copy ( s t o r e . beg in ( ) + q , s t o r e . beg in ( ) + q+ c o l s , storeTemp2ZZ . beg in

( ) ) ;

ZZActOn ( l , storeTemp2ZZ , storeTempZZ , c o l s ) ;

f o r ( i n t i n c1 =0 ; inc1 <rows∗ c o l s ; i nc1 = inc1 + c o l s )

{

storeTemp3ZZ . r e s i z e ( c o l s ) ;

copy ( s t o r e . beg in ( ) + inc1 , s t o r e . beg in ( ) + inc1 + c o l s ,

storeTemp3ZZ . beg in ( ) ) ;

elemZZ = computeZZ ( co l s , storeTempZZ , storeTemp3ZZ ) ;

SelemZZ = A∗A∗elemZZ ;

HzzTemp . push_back ( SelemZZ ) ;

storeTemp3ZZ . c l e a r ( ) ;

}

storeTemp2ZZ . c l e a r ( ) ;

storeTempZZ . c l e a r ( ) ;

}

i f ( l == 0)

{

f o r ( i n t i t 2 =0 ; i t 2 <HzzTemp . s i z e ( ) ; i t 2 ++)

{

Hzz . push_back ( HzzTemp[ i t 2 ] ) ;

}

}

e l s e

{
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t r a n s f o r m ( HzzTemp . beg in ( ) , HzzTemp . end ( ) , Hzz . beg in ( ), Hzz . beg in ( ) ,

p l u s <double > ( ) ) ;

}

HzzTemp . c l e a r ( ) ;

} / / End Hzz

t r a n s f o r m ( Hzz . beg in ( ) , Hzz . end ( ) , Hxx . beg in ( ) , Hxx . begin ( ) , p l u s <

double > ( ) ) ;

/ / t r a n s f o r m ( Hxx . b e g i n ( ) , Hxx . end ( ) , Hxz . b e g i n ( ) , Hxz . b e g i n ( ) , p l u s <

double >( ) ) ;

/ / t r a n s f o r m ( Hxz . b e g i n ( ) , Hxz . end ( ) , Hzx . b e g i n ( ) , Hzx . b e g i n ( ) , p l u s <

double >( ) ) ;

f o r ( i n t p =0 ; p<Hxx . s i z e ( ) ; p++)

{

Hs . push_back ( Hxx [ p ] ) ;

}

Hzz . c l e a r ( ) ;

Hxx . c l e a r ( ) ;

d i a g o n a l i z e _ r e a l ( rows , &(Hs [ 0 ] ) , Evs ) ;/ / D i a g o n a l i z e s Hs , Hs comes

back as u n i t a r y f o r t h e subspace , Evs s t o r e s e v a l s

/ / S q u a res e l e m e n t s o f t h e u n i t a r y

t r a n s f o r m ( Hs . beg in ( ) , Hs . end ( ) , Hs . beg in ( ) , Hs . beg in ( ), m u l t i p l i e s <

double > ( ) ) ;
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double t o t a l 2 = 0 . 0 ;

double d e l t a = 0 . 0 ;

double t 1 = b in ( sp ins−1, j ) ;

double t 2 = b in ( sp ins−1, j ) ;

double t 3 = b in ( sp ins−1, sp ins− j ) ;

double r a t i o = ( t 1 / ( t 2 + t 3 ) ) ;

/ / C a l c u l a t i o n s

f o r ( long i n t b =0 ; b<rows ; b++)/ / I n d e x e s e−vec

{

f o r ( long i n t c =0 ; c<rows ; c ++)

{

Udat . push_back ( Hs [ b∗ rows+c ] ) ;

}

double d = 0 . 0 ;

f o r ( long i n t m=0; m< c o l s ; m++)/ / I n d e x e s q u b i t

{

f o r ( long i n t n =1 ; n<=rows ; n++)

{

sp inDa t . push_back ( s t o r e [m + ( n−1)∗ c o l s ] ) ;

}

double sum = 0 . 0 ;

double i n i t = 0 . 0 ;

sum = i n n e r _ p r o d u c t ( Udat . beg in ( ) , Udat . end ( ) , sp inDa t . beg in ( ) ,

i n i t ) ;
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d = d + ( sum− r a t i o )∗ ( sum − r a t i o ) ;

sp inDa t . c l e a r ( ) ;

}

t o t a l 2 = t o t a l 2 + d ;

Udat . c l e a r ( ) ;

}

d e l t a = s q r t ( t o t a l 2 / ( c o l s∗ rows ) ) ; / / Data p o i n t s / d e v i a t i o n s

d a t a . push_back ( d e l t a ) ;

s t o r e . c l e a r ( ) ;

} / / end f o r i f ( j == . . )

/ / Ending Ta sks

d e l e t e [ ] Evs ;

Hs . c l e a r ( ) ;

}

f l i p s . c l e a r ( ) ;

} / / End o f maxQubit f o r−l o o p

/ / Save data

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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o f s t r e a m m y f i l e _ b i n ( " odd2 . b in " , i o s : : b i n a r y | i o s : : b i n ar y ) ; / / W r i t e d a ta

t o b i n a r y f i l e

i f ( m y f i l e _ b i n . i s_open ( ) )

{

f o r ( i n t s =0 ; s < d a t a . s i z e ( ) ; s ++)

{

m y f i l e _ b i n << d a t a [ s ]<< " " ;

}

m y f i l e _ b i n . c l o s e ( ) ;

}

e l s e

{

cout <<" Unable t o open f i l e "<< end l ;

}

o f s t r e a m my f i l e2 ( " odd2 . t x t " ) ;/ / W r i t e d a ta t o t e x t f i l e

i f ( my f i l e2 . i s_open ( ) )

{

f o r ( i n t s =0 ; s < d a t a . s i z e ( ) ; s ++)

{

my f i l e2 << d a t a [ s ] << end l ;

}

my f i l e2 . c l o s e ( ) ;

}

e l s e

{

cout <<" Unable t o open f i l e "<< end l ;

}
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o f s t r e a m m y f i l e _ b i n 1 ( " s p i n s o 2 . b in " , i o s : : b i n a r y | i o s : :b i n a r y ) ; / / W r i t e

d a ta t o b i n a r y f i l e

i f ( m y f i l e _ b i n 1 . i s_open ( ) )

{

f o r ( i n t s =0 ; s <num_spins . s i z e ( ) ; s ++)

{

m y f i l e _ b i n 1 << num_spins [ s ] <<"" ;

}

m y f i l e _ b i n 1 . c l o s e ( ) ;

}

e l s e

{

cout <<" Unable t o open f i l e "<< end l ;

}

o f s t r e a m my f i l e3 ( " s p i n s o 2 . t x t " ) ;/ / W r i t e d a ta t o t e x t f i l e

i f ( my f i l e3 . i s_open ( ) )

{

f o r ( i n t s =0 ; s <num_spins . s i z e ( ) ; s ++)

{

my f i l e3 << num_spins [ s ]<< end l ;

}

my f i l e3 . c l o s e ( ) ;

}

e l s e

{

cout <<" Unable t o open f i l e "<< end l ;

}

/ /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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c l o c k _ t ends = c l o c k ( ) ;

cout <<" Runtime : "<< ( ( c l o c k ( ) − s t a r t ) / (double )CLOCKS_PER_SEC ) <<

" seconds "<< ’ \ n ’ ;

re turn 0 ;

}

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−A d d i t i o n a l R o u t i n e s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

long i n t b in ( long i n t n , long i n t k )

{

long i n t num ;

long i n t den ;

long i n t i =1 ;

i f ( n<k )

{

re turn 0 ;

}
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e l s e i f ( k == 0)

{

re turn 1 ;

}

e l s e

{

den = 1 ;

f o r ( i = 1 ; i <= k ; i = i +1)

{

den = i∗den ;

num = 1 ;

}

f o r ( i = n ; i >=(n−k +1) ; i−−)

{

num = i∗num ;

}

re turn ( num / den ) ;

}

}

vec to r <i n t > XXActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h )

{

f o r ( long i n t k =0 ; k< l e n g t h ; k++)

{

arrayTemp2 . push_back ( a r r a y [ k ] ) ;

}
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i f ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 0 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 0)

{

arrayTemp2 [ a ] = 1 ;

arrayTemp2 [ a +1] = 1 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 1 ;

arrayTemp2 [ a +1] = 0 ;

}

e l s e / / ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a+1] == 0 )

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 1 ;

}

re turn arrayTemp2 ;

}

vec to r <i n t > XZActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h )

{

f o r ( long i n t k =0 ; k< l e n g t h ; k++)

{

arrayTemp2 . push_back ( a r r a y [ k ] ) ;
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}

i f ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] =−1;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 0)

{

arrayTemp2 [ a ] = 1 ;

arrayTemp2 [ a +1] = 0 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 1 ;

arrayTemp2 [ a +1] =−1;

}

e l s e / / ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a+1] == 0 )

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 0 ;

}

re turn arrayTemp2 ;

}

vec to r <i n t > ZXActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h )

{

f o r ( long i n t k =0 ; k< l e n g t h ; k++)

{
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arrayTemp2 . push_back ( a r r a y [ k ] ) ;

}

i f ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] =−1;

arrayTemp2 [ a +1] = 0 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 0)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 1 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 0 ;

}

e l s e / / ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a+1] == 0 )

{

arrayTemp2 [ a ] =−1;

arrayTemp2 [ a +1] = 1 ;

}

re turn arrayTemp2 ;

}

vec to r <i n t > ZZActOn ( long i n t a , vec to r <i n t > &ar ray , vec to r <i n t > &

arrayTemp2 , i n t l e n g t h )

{
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f o r ( long i n t k =0 ; k< l e n g t h ; k++)

{

arrayTemp2 . push_back ( a r r a y [ k ] ) ;

}

i f ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] =−1;

arrayTemp2 [ a +1] =−1;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 0)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] = 0 ;

}

e l s e i f ( arrayTemp2 [ a ] == 0 && arrayTemp2 [ a +1] == 1)

{

arrayTemp2 [ a ] = 0 ;

arrayTemp2 [ a +1] =−1;

}

e l s e / / ( arrayTemp2 [ a ] == 1 && arrayTemp2 [ a+1] == 0 )

{

arrayTemp2 [ a ] =−1;

arrayTemp2 [ a +1] = 0 ;

}

re turn arrayTemp2 ;

}
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double computeXX (long i n t col_num , vec to r <i n t > &arrayZZ , vec to r <i n t > &

arrayTemp )

{

double dummy = 1 . 0 ;

double p i e c e = 1 . 0 ;

i n t i t r ;

f o r ( i t r =0 ; i t r <col_num ; i t r ++)

{

i f ( ( a r rayZZ [ i t r ] == 0 && arrayTemp [ i t r ] == 1) | | ( a r rayZZ [ i t r] == 1

&& arrayTemp [ i t r ] == 0) )

{

p i e c e = 0 ;

}

e l s e i f ( a r rayZZ [ i t r ] == 0 && arrayTemp [ i t r ] == 0)

{

p i e c e = 1 ;

}

e l s e i f ( a r rayZZ [ i t r ] == 1 && arrayTemp [ i t r ] == 1)

{

p i e c e = 1 ;

}

dummy = p i e c e∗dummy ;

}

re turn dummy ;

}
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double computeZZ (long i n t col_num , vec to r <i n t > &arrayZZ , vec to r <i n t > &

arrayTemp )

{

double dummy = 1 . 0 ;

double p i e c e = 1 . 0 ;

double i n i t = 0 . 0 ;

i n t i t r ;

f o r ( i t r =0 ; i t r <col_num ; i t r ++)

{

i f ( a r rayZZ [ i t r ] == −1 && arrayTemp [ i t r ] == 1)

{

p i e c e = −1;

}

e l s e i f ( a r rayZZ [ i t r ] == 0 && arrayTemp [ i t r ] == 0)

{

p i e c e = 1 ;

}

e l s e i f ( a r rayZZ [ i t r ] == 1 && arrayTemp [ i t r ] == −1)

{

p i e c e = −1;

}

e l s e i f ( ( a r rayZZ [ i t r ] == 0 && arrayTemp [ i t r ] == 1) | | ( a r rayZZ [ i t r]

== 1 && arrayTemp [ i t r ] == 0) )

{

p i e c e = 0 ;

}

e l s e i f ( ( a r rayZZ [ i t r ] == 0 && arrayTemp [ i t r ] == −1) | | ( a r rayZZ [ i t r ]

== −1 && arrayTemp [ i t r ] == 0) )

{

p i e c e = 0 ;
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}

e l s e i f ( a r rayZZ [ i t r ] == −1 && arrayTemp [ i t r ] == −1)

{

p i e c e = 1 ;

}

e l s e i f ( a r rayZZ [ i t r ] == 1 && arrayTemp [ i t r ] == 1)

{

p i e c e = 1 ;

}

dummy = p i e c e∗dummy ;

}

re turn dummy ;

}

double computeXZ (long i n t col_num , vec to r <i n t > &arrayXZ , vec to r <i n t > &

arrayTemp )

{

double dummy = 1 . 0 ;

double p i e c e = 1 . 0 ;

i n t i t r ;

f o r ( i t r =0 ; i t r <col_num ; i t r ++)

{

i f ( ( arrayXZ [ i t r ] == 0 && arrayTemp [ i t r ] == 1) | | ( arrayXZ [ i t r] == 1

&& arrayTemp [ i t r ] == 0) )

{

p i e c e = 0 ;

}

e l s e i f ( arrayXZ [ i t r ] == 0 && arrayTemp [ i t r ] == 0)
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{

p i e c e = 1 ;

}

e l s e i f ( arrayXZ [ i t r ] == 1 && arrayTemp [ i t r ] == 1)

{

p i e c e = 1 ;

}

e l s e i f ( arrayXZ [ i t r ] == 0 && arrayTemp [ i t r ] == −1)

{

p i e c e = 0 ;

}

e l s e i f ( arrayXZ [ i t r ] == 1 && arrayTemp [ i t r ] == −1)

{

p i e c e = −1;

}

/ / / /

e l s e i f ( arrayXZ [ i t r ] == −1 && arrayTemp [ i t r ] == 0)

{

p i e c e = 0 ;

}

e l s e i f ( arrayXZ [ i t r ] == −1 && arrayTemp [ i t r ] == −1)

{

p i e c e = 1 ;

}

e l s e i f ( arrayXZ [ i t r ] == −1 && arrayTemp [ i t r ] == 1)

{

p i e c e = −1;

}

dummy = p i e c e∗dummy ;

}
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re turn dummy ;

}

double computeZX (long i n t col_num , vec to r <i n t > &arrayZX , vec to r <i n t > &

arrayTemp )

{

double dummy = 1 . 0 ;

double p i e c e = 1 . 0 ;

i n t i t r ;

f o r ( i t r =0 ; i t r <col_num ; i t r ++)

{

i f ( ( arrayZX [ i t r ] == 0 && arrayTemp [ i t r ] == 1) | | ( arrayZX [ i t r] == 1

&& arrayTemp [ i t r ] == 0) )

{

p i e c e = 0 ;

}

e l s e i f ( arrayZX [ i t r ] == 0 && arrayTemp [ i t r ] == 0)

{

p i e c e = 1 ;

}

e l s e i f ( arrayZX [ i t r ] == 1 && arrayTemp [ i t r ] == 1)

{

p i e c e = 1 ;

}

e l s e i f ( arrayZX [ i t r ] == −1 && arrayTemp [ i t r ] == 0)

{

p i e c e = 0 ;

}

e l s e i f ( arrayZX [ i t r ] == −1 && arrayTemp [ i t r ] == 1)

{
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p i e c e = −1;

}

/ / /

e l s e i f ( arrayZX [ i t r ] == 0 && arrayTemp [ i t r ] == −1)

{

p i e c e = 0 ;

}

e l s e i f ( arrayZX [ i t r ] == −1 && arrayTemp [ i t r ] == −1)

{

p i e c e = 1 ;

}

e l s e i f ( arrayZX [ i t r ] == 1 && arrayTemp [ i t r ] == −1)

{

p i e c e = −1;

}

dummy = p i e c e∗dummy ;

}

re turn dummy ;

}

long i n t d i a g o n a l i z e _ r e a l (long i n t Dim , double ∗ Mat , double ∗ Eva ls ) {

/ / The u n i t a r y U comes back as Mat

/ / I f t h e i n p u t m a t r i x i s Mat = H, t h e n

/ / H = U d ia g ( E v a l s ) U^T

/ / and H U = U d ia g ( e i g ) so t h a t t h e co lumns o f U a re t h e

e i g e n v e c t o r s

long i n t i n f o = 0 ;

c o n s t char∗ do_vecs = "V" , ∗up = "U" ;
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double work_dummy [ 1 ] ;

/ / q u ery t o s e e what t h e o p t i m a l work s i z e i s

long i n t lwork = −1;

dsyev_ ( do_vecs , up , &Dim , Mat , &Dim , Evals , work_dummy , &lwork , &i n f o ) ;

lwork = s t a t i c _ c a s t < long i n t >(work_dummy [ 0 ] ) ;

double ∗ work = new double [ lwork ] ;

/ / c a l c u l a t e t h e e i g e n v a l u e s and e i g e n v e c t o r s o f A

dsyev_ ( do_vecs , up , &Dim , Mat , &Dim , Evals , work , &lwork , &i n f o ) ;

d e l e t e [ ] work ;

re turn i n f o ;

}
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