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ABSTRACT

SUPERSYMMETRIC ORIGINS OF THE PROPERTIES OF SECH-PULSES AND

SINE-GORDON SOLITONS

June 2011

Andrew Koller, B.S., Massachusetts Institute of Technology
M.S., University of Massachusetts Boston

Directed by Professor Maxim Olshanii

In this thesis, we show that the members of a class of reflectionless Hamiltonians, namely,

Akulin’s Hamiltonians [1], are connected via a supersymmetric (SUSY) chain. While the

reflectionless property in question (vanishing reflection coefficients at all values of the

spectral parameter, e.g. energy) has been mentioned in the literature for over two decades

[1, 2], the enabling algebraic mechanism was previously unknown. We show that the su-

persymmetric connection of the Akulin’s Hamiltonians to a potential-free Hamiltonian is

the origin of this property. As the first application for our findings, we show that the SUSY

decomposition of Akulin’s Hamiltonians explains a well-known effect in laser physics:

when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form

V (t) = (n~/τ)/ cosh(t/τ), with n an integer and τ the pulse duration, it remains in the

ground state after the pulse has been applied, for any choice of the laser detuning. The sec-

ond application concerns the sine-Gordon equation: we demonstrate that the first member

of the Akulin’s chain is related to the L-operator of the Lax pair for the one-soliton solution

of the sine-Gordon equation: its reflectionless nature is now explained by supersymmetry.
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CHAPTER 1

INTRODUCTION

In general, waves reflect when they encounter a change in their medium. Two well-

known examples are electromagnetic waves reflecting at the interface of two dielectrics,

and quantum-mechanical plane waves reflecting off of a potential. In both cases, destructive

interference can lead to the absence of reflected waves, i.e., perfect transmission. A Fabry-

Perot interferometer with thickness a, for example, will not reflect waves of wavelengths

λn = 4a/n, with n an integer, and can thus be used as an anti-reflection coating [3]. The

exact same phenomenon occurs when scattering plane waves off of a finite square well

potential in 1D quantum mechanics [4]. In these cases, perfect transmission only occurs

for specific wavelengths.

It is natural to ask whether it is possible to engineer a system that perfectly transmits

waves of all wavelengths. In other words, does reflectionless scattering exist? Is it possible

to construct a piece of glass whose index of refraction varies continuously throughout its

thickness, or a quantum-mechanical potential whose depth changes smoothly in space, in

such a way that every reflected wave is destroyed by interference, regardless of its wave-

length?

Kay and Moses addressed this problem in their classic paper [5] and found that the

answer was yes, reflectionless scattering is possible, and that the problem is equivalent for

classical electromagnetic waves and for the scattering of quantum-mechanical plane waves.

They found that the simplest reflectionless potentials in quantum mechanics are

VN(x) = −N(N + 1)

cosh2(x)
, (1.1)
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Figure 1.1: Reflectionless Potential V (x) = −2sech2(x): Waves of all energies are per-
fectly transmitted without reflection.

with N an integer, and ~ = 2m = 1, the first of which is shown in Figure 1.1. In fact, they

discovered a more general family of reflectionless potentials, all related to the basic shape

of (1.1). These generalized reflectionless potentials, which we refer to as “Schrödinger

Camels" due to their shape, are discussed in detail in Section 2.2.2.

The next natural question is if reflectionless potentials are simply an interesting coin-

cidence, or whether something more fundamental is responsible for their unique proper-

ties. The answer is that they have a deep algebraic connection to “free space" via what is

called quantum-mechanical supersymmetry (QMSUSY or just SUSY) [6]. Free space is

inherently reflectionless, and the supersymmetric connection between free space and these

special potentials guarantees that they will exhibit reflectionless scattering.

It was later discovered that reflectionless potentials of the form (1.1) are intimately con-

nected to the inverse scattering method (ISM) used to solve the initial value problem for

the Korteweg-de Vries (KdV) equation [7]. The KdV equation is a nonlinear partial dif-

ferential equation (NPDE) describing the time evolution of a field U(x, t). Interestingly,

an initial value of U(x, 0) = −VN(x), where VN(x) is one of the reflectionless potentials

given in (1.1), leads to an N-soliton solution of the KdV equation, where at t = 0 all of

the solitons are located at the origin. Solitons are self-reinforcing nonlinear waves which

maintain their shape and scatter elastically off one another as they propagate through space,

and are a central feature of integrable nonlinear PDE’s. In general, when the inverse scat-
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tering method is used to solve the initial value problem for a NPDE, a reflectionless direct

scattering problem leads to soliton solutions for the nonlinear PDE in question [7]. This

connection will be explored in detail in Section 2.3.

The case described above can be summarized as follows. A supersymmetric connection

to free space is responsible for potentials exhibiting reflectionless scattering in 1D quan-

tum mechanics. The same phenomenon of reflectionless scattering leads to multi-soliton

solutions of the KdV equation, and is thus deeply connected to KdV’s integrability:

Known Case:

SUSY → Reflectionless Scattering for Potentials VN(x)→ Soliton Solutions of KdV

The central objective of this thesis is to present a second, previously unknown case that

parallels this connection between supersymmetry, reflectionless scattering, and integrable

nonlinear PDE’s. We consider a family of Hamiltonians Hn, which we refer to as Akulin’s

Hamiltonians. Akulin’s Hamiltonians are a family of 2 × 2 matrix differential operators

given by

Hn = σz∂x − σxn/ cosh(x) (1.2)

n = . . . , −3, −2, −1, 0, +1, +2, +3, . . .

When a scattering problem is defined for these Hamiltonians, as described in Section 2.2.1,

it is found that their reflection coefficients vanish for every eigenvalue, thus the Hn’s are

reflectionless. Like the example of reflectionless potentials in quantum mechanics (1.1),

we show that this property of the Hamiltonians Hn can be explained by a supersymmetric

connection to free space (Section 3.2). It is important to note that Akulin’s Hamiltoni-

ans represent a new case of reflectionless scattering, and cannot be mapped to the known

reflectionless potentials in 1D quantum mechanics.

To complete the analogy with the previously-known case, Akulin’s Hamiltonians Hn

generate reflectionless direct scattering initial conditions for the inverse scattering method

3



applied to the sine-Gordon equation. In particular, the Hamiltonians H∓1 lead to the single

kink and anti-kink soliton solutions of sine-Gordon. We were unable to verify if each

Hn leads to a multi-soliton solution at the time of the writing of this thesis, but such a

connection is highly suspected:

New Case:

SUSY → Reflectionless Scattering for Hn → Soliton Solution(s) of sine-Gordon

This thesis begins by developing the relevant background material related to supersym-

metry in Section 2.1, from its field theory origin to its application to quantum mechanics.

The details of the phenomenon of reflectionless scattering are examined in Section 2.2, in-

cluding a description of the cases for which SUSY is the known origin of the reflectionless

scattering (Section 2.2.2), and those cases for which the cause of the reflectionless scatter-

ing is unknown (Section 2.2.3). The implicit question is whether SUSY will eventually be

understood as the generator of all cases of reflectionless scattering. The inverse scattering

method is then examined in detail in Section 2.3, with emphasis on the cases of KdV and

sine-Gordon.

We then examine the scattering problem for Akulin’s Hamiltonians in Section 3.1,

showing explicitly that they are reflectionless. Their connection to free space via a (non-

unique) supersymmetric chain is given in Section 3.2. An application to laser physics is

examined in Section 4.1, and the connection to sine-Gordon solitons is explained in Sec-

tion 4.2. We conclude with a (long) list of unanswered questions and directions for future

work in Chapter 5. It should be clear by the end of this thesis that there is a deep con-

nection between supersymmetry, reflectionless scattering, and integrability that is far from

completely-understood.

4



CHAPTER 2

BACKGROUND

2.1 Supersymmetry

Supersymmetry (SUSY) is a symmetry between bosonic and fermionic degrees of free-

dom that first arose in field theory. The fundamental properties of bosons and fermions

are determined by their creation and annihilation operators, which commute for bosonic

degrees of freedom and anti-commute for fermionic degrees of freedom. Supersymmetry

unites bosons and fermions via a Lie superalgebra, which contains both commutation and

anti-commutation relations [6, 8, 9]. In the past 25 years there has been extensive research

applying supersymmetry to problems in quantum mechanics, where it is referred to as quan-

tum mechanical supersymmetry (QMSUSY). In quantum mechanical supersymmetry, two

Hamiltonians, Ĥ0 and Ĥ1 are unified in the same way that bosons and fermions are unified

in the original field theory SUSY. The two Hamiltonians, known as supersymmetric part-

ners, share spectra (except for a single bound state energy), and are transformed into each

other via linear differential operators [6]. These powerful relationships between Ĥ0 and

Ĥ1 are what have generated so much interest in QMSUSY. Outside of the initial descrip-

tion of supersymmetry in field theory, we use the terms “supersymmetry" and “quantum

mechanical supersymmetry" interchangeably.

2.1.1 SUSY Formalism

Creation and annihilation operators for bosons and fermions are at the foundation of the

algebraic structure of supersymmetry. Consider such operators b+, b−, f+, and f−, which
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change the occupation numbers of a bosonic or fermionic state by ±1. They obey [8]:

[b−, b+] = 1; {f−, f+} = 1; [b, f ] = 0 (2.1)(
f+

)2
=

(
f−

)2
= 0. (2.2)

Relation (2.2) is known as nilpotency, and is the property of fermionic creation and annihi-

lation operators that allows for construction of a supersymmetric algebra.

Imagine we have operatorsQ+ andQ−, known as supercharges, that transform fermionic

states to bosonic states and vice versa:

Q+ : f ⇒ b,∼ b+f−; Q− : b⇒ f,∼ b−f+. (2.3)

Since the supercharges contain fermionic creation or annihilation operators, they are also

nilpotent:

(
Q+

)2
=

(
Q−

)2
= 0 (2.4)

Now define new charges Q1, Q2, and a Hamiltonian H as :

Q1 ≡ Q+ +Q−; Q2 ≡ −i
(
Q+ −Q−

)
(2.5)

H ≡ (Q1)
2 = (Q2)

2 = {Q+, Q−}. (2.6)

It is easy to verify that this Hamiltonian commutes with all the charge operators Q±1,2,

[Q,H] = 0, (2.7)

and is therefore invariant under transformations between fermions and bosons, as a conse-

quence of (2.6) and the nilpotency of the supercharges (2.4). We now have a closed algebra

6



defined by

{Qi, Qj} = 2δijH; [Qi,H] = 0. (2.8)

The algebra defined in (2.8) is known as a Lie superalgebra, and contains both commutator

relations describing continuous symmetries and anti-commutator relations describing dis-

crete symmetries. In contrast, a Lie algebra contains only commutator relations describing

continuous symmetries [8]. The unification of discrete and continuous symmetries into a

single superalgebra is how supersymmetry unifies bosonic and fermionic degrees of free-

dom.

We now consider a simple realization of supersymmetry:

Q+ =

 0 B̂

0 0

 ; Q− =

 0 0

Â 0

 ; (2.9)

Q1 =

 0 B̂

Â 0

 ; Q2 = −i

 0 B̂

−Â 0

 ;

H = (Q1)
2 = (Q2)

2 = {Q+, Q−}

=

 B̂Â 0

0 ÂB̂

 =

 Ĥ0 0

0 Ĥ1

 .

Hamiltonian H contains Hamiltonians Ĥ0 and Ĥ1, known as supersymmetric partners. H

acts on two components objects, the first component representing a bosonic degree of free-

dom and the second component representing a fermionic degree of freedom. Ĥ0 is the

Hamiltonian for the bosonic degree of freedom and Ĥ1 is the Hamiltonian for the fermionic

degree of freedom. Note that the action of the supercharges on a state behaves in the way

7



expected by the original definition of the supercharges (2.3):

Q+

 0

α

 =

 B̂α

0

 : f ⇒ b (2.10)

Q−

 β

0

 =

 0

Âβ

 : b⇒ f,

that is, Q+ transforms a fermionic degree of freedom into a bosonic degree of freedom, and

Q− transforms a bosonic degree of freedom into a fermionic degree of freedom [6, 8, 9].

It is straightforward to show that the levels of the supersymmetric Hamiltonian H are

doubly degenerate as long as the eigenvalue λ 6= 0. This degeneracy will play a fundamen-

tal role in supersymmetric quantum mechanics. Since Q1 commutes with H they can be

simultaneously diagonalized:

Q1ψ1 = λψ1; Hψ1 = Q2
1ψ1 = λ2ψ1. (2.11)

Define ψ2 ≡ Q2ψ1. We use {Q1, Q2} = 0, i.e., Q1Q2 = −Q2Q1 to diagonalize ψ2:

Q1ψ2 = Q1Q2ψ1 = −Q2Q1ψ1 (2.12)

= −λQ2ψ1 = −λψ2.

Thus ψ1 6= ψ2 as long as λ > 0. But since [H, Q2] = 0,

Hψ2 = HQ2ψ1 = Q2Hψ1 = λ2Q2ψ1 = λ2ψ2, (2.13)

meaning ψ1 and ψ2 are both eigenvectors of H with the same eigenvalue λ2, i.e, H is doubly

degenerate for eigenvalues greater than zero [6, 8, 9].

8



2.1.2 Supersymmetric Quantum Mechanics

We now apply the results of Section 2.1.1 to non-relativistic quantum mechanics, fol-

lowing the conventions of Sukumar [6]. Two deviations will be made from the formalism

developed in Section 2.1.1. First, the Hamiltonians Ĥ0 and Ĥ1 are necessarily Hermitian,

so we send B̂ → Â†. It is important to note, however, that the underlying algebra of SUSY

does not require Ĥ0 and Ĥ1 to be Hermitian. Later in this thesis we will relax the Hermitic-

ity of Ĥ0 and Ĥ1. Additionally, (2.11) and (2.13) imply that the energy levels of H are

greater than or equal to zero. This is true in field theory, but not in non-relativistic quantum

mechanics where the absolute energy scale is arbitrary. We will thus add a constant, called

the factorization energy, to the factorizations of Ĥ0 and Ĥ1.

In one dimensional stationary quantum mechanics, the Hamiltonian and corresponding

energy eigenvalue equation ares given by

Ĥ = −1

2
∂2x + V (x); Ĥψ = Eψ (2.14)

with ~ = m = 1. The Hamiltonian can always be factored1 into

Ĥ = Â†Â+ ε, (2.15)

where ε is the factorization energy and

Â† =
1√
2
(+∂x +W (x)) ; Â =

1√
2
(−∂x +W (x)) . (2.16)

The functionW (x) is known as the superpotential, and combining (2.14), (2.15), and (2.16)

we see that it satisfies the nonlinear differential equation

W ′(x) +W 2(x) = 2 (V (x)− ε) . (2.17)

1This result can be generalized to higher dimensions. See [6].

9



It can be shown that (2.17) has a family of solutions W (x, ε, λ) given by

W (x, ε, λ) =
d

dx
lnψ(x, ε) +

1/ψ2(x, ε)

λ+
∫ x

−∞ dz/ψ
2(z, ε)

(2.18)

where λ is an arbitrary parameter, and ψ(x, ε) satisfies the Schrödinger equation withE = ε

[6]. The factorization energy must be less than or equal to every energy eigenvalue of Ĥ ,

since

E = 〈ψ|Ĥ|ψ〉 = 〈ψ|Â†Â+ ε|ψ〉 = 〈ψ|Â†Â|ψ〉+ ε (2.19)

= 〈Âψ|Âψ〉+ ε,

and the quantity 〈Âψ|Âψ〉 ≥ 0. Thus ε ≤ Eg, where Eg is the ground state energy of Ĥ .

This result is distinct from supersymmetric field theory, where the Hamiltonian is required

to be positive semi-definite, leading to a zero ground state energy. In quantum mechanics,

however, operators of the form Â†Â are positive semi-definite, but the Hamiltonian is not,

because the energy scale can be shifted arbitrarily.

Often the factorization energy is chosen so that ε = Eg. In this case the operator Â

annihilates the ground state of Ĥ:

Â|ψg〉 = 0, (2.20)

which follows immediately from (2.19). We will use the convention that ε = Eg for the

remainder of the discussion of supersymmetry in one-dimensional quantum mechanics.

The most important results of supersymmetry are the relationships between the factor-

ized Hamiltonian Ĥ0 and its supersymmetric partner Ĥ1. If Ĥ0 is factorized in the way

described above, then its superpartner is found by combining Â and Â† in the opposite

10



order:

Ĥ0 = Â†Â+ ε = −1

2
∂2x + V0(x); Ĥ1 = ÂÂ† + ε = −1

2
∂2x + V1(x). (2.21)

If Â and Â† do not commute, then Ĥ0 6= Ĥ1, i.e., V0(x) 6= V1(x). It is straightforward to

show that if |ψα
0 〉 is an eigenstate of Ĥ0 with energy α, Ĥ0|ψα

0 〉 = α|ψα
0 〉, then Â|ψα

0 〉 is an

eigenstate of Ĥ1 with the same energy:

Ĥ1

(
Â|ψα

0 〉
)

=
(
ÂÂ† + ε

)(
Â|ψα

0 〉
)

(2.22)

= Â
(
Â†Â

)
|ψα

0 〉+ εÂ|ψα
0 〉 (2.23)

= Â
(
Ĥ0 − ε

)
|ψα

0 〉+ εÂ|ψα
0 〉

= Â
(
Ĥ0|ψα

0 〉
)
= α

(
Â|ψα

0 〉
)

⇒ |ψα
1 〉 ∝ Â|ψα

0 〉. (2.24)

In (2.24), equality is withheld since Â|ψα
0 〉 is not guaranteed to be normalized. Similar

arguments show that if |ψβ
1 〉 is an eigenstate of Ĥ1 with energy β, Ĥ1|ψβ

1 〉 = β|ψβ
1 〉, then

Â†|ψβ
1 〉 is an eigenstate of Ĥ0 with the same energy:

|ψβ
0 〉 ∝ Â†|ψβ

1 〉. (2.25)

From (2.24) and (2.25) we see that Ĥ0 and Ĥ1 have the same spectrum of energy eigenval-

ues, and the operators Â and Â† transform energy eigenstates of Ĥ0 to Ĥ1 and vice versa.

The exception is the ground state of Ĥ0 since (2.20) implies that Â|ψg
0〉 = 0 and thus Ĥ1

does not share this eigenvalue with Ĥ0. The picture that emerges from the analysis is that

Ĥ0 and Ĥ1 have identical spectra except that Ĥ0 has an extra bound state, as illustrated in

Figure 2.1. This is exactly the two-fold degeneracy of H found in section Section 2.1.1

[6, 8].
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Figure 2.1: Equivalent Spectra of H0 and H1: A possible alignment of the eigenvalues
of supersymmetric partners H0 and H1: their spectra are equivalent except for the ground
state of H0.

From the factorizations (2.21) it follows that Ĥ0, Ĥ1 are related by

Ĥ1Â = ÂĤ0 (2.26)

Â†Ĥ1 = Ĥ0Â
†. (2.27)

When two Hamiltonians are related by (2.26) and (2.27), we refer to Â and Â† as the

intertwiners of Ĥ0 and Ĥ1. More specifically, Â in (2.26) is the right intertwiner and Â† in

(2.27) is the left intertwiner2. Interestingly, equation (2.26) alone implies that Â transforms

eigenstates of Ĥ0 to eigenstates of Ĥ1:

Ĥ1

(
Â|ψα

0 〉
)
=

(
Ĥ1Â

)
|ψα

0 〉 =
(
ÂĤ0

)
|ψα

0 〉 = α
(
Â|ψα

0 〉
)
, (2.28)

and similarly, equation (2.27) alone implies that Â† transforms eigenstates of Ĥ1 to eigen-

states of Ĥ0:

Ĥ0

(
Â†|ψβ

1 〉
)
=

(
Ĥ0Â

†
)
|ψβ

1 〉 =
(
Â†Ĥ1

)
|ψβ

1 〉 = β
(
Â†|ψβ

1 〉
)
, (2.29)

without any reference to the underlying supersymmetric structure of Ĥ0 and Ĥ1. Super-

2Unless stated otherwise, in this thesis the term “intertwiner" refers to the right intertwiner, which is
essential to understanding the origin of scattering without reflection.
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symmetry implies the existence of intertwiners, but it is unclear whether intertwiners imply

the existence of supersymmetry. This question will be addressed in Section 2.1.7. The ex-

istence of a right intertwiner, (2.26), is essential for understanding why SUSY partners of

potential-free Hamiltonians (i.e. free space) show reflectionless scattering at all energies.

Quantum mechanical supersymmetry can be thought of as a generalization of the ladder

operator method for solving the quantum harmonic oscillator. The harmonic oscillator is

the simplest nontrivial case of quantum mechanical supersymmetry: if Ĥ0 is the Hamil-

tonian for a harmonic oscillator, then its supersymmetric partner Ĥ1 is another harmonic

oscillator with its energy scale shifted upwards by ~ω, i.e. V1(x) = V0(x) + ~ω [9].

The harmonic oscillator is the only nontrivial case where the potentials differ by only a

constant: typically the functional forms of V0(x) and V1(x) are quite different. The power

of QMSUSY is apparent given the small number of exactly solvable quantum mechanical

systems. For every case where an exact solution is known, supersymmetric factorization

yields another exactly solvable Hamiltonian. In short, SUSY doubles the number of quan-

tum mechanical systems that can be solved exactly.

2.1.3 QMSUSY Factorization of Non-Hermitian Operators

Outside of the usual quantum mechanics, the Hamiltonians Ĥ0 and Ĥ1 need not be Her-

mitian. For these situations we can have B̂ 6= Â†, but most of the relationships developed

in 2.1.2 will remain. In particular, if Ĥ0 and Ĥ1 are given by

Ĥ0 = B̂Â+ ε; Ĥ1 = ÂB̂ + ε, (2.30)
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then the intertwining and eigenstate relationships of Ĥ0 and Ĥ1 will be the same as in

Section 2.1.2:

Ĥ1Â = ÂĤ0; Ĥ0B̂ = B̂Ĥ1 (2.31)

Â | ψ0〉 ∝| ψ1〉; B̂ | ψ1〉 ∝| ψ0〉

where | ψ0〉 is an eigenstate of Ĥ0 and | ψ1〉 is an eigenstate of Ĥ1 with the same eigenvalue.

Relaxing the Hermiticity of the factorized operators opens up a larger class of problems to

which QMSUSY can be applied. In particular, in this thesis we study the SUSY factoriza-

tion of a family of non-Hermitian operators given by

Hn = σz∂x − σxn/ cosh(x) (2.32)

n = . . . , −3, −2, −1, 0, +1, +2, +3, . . .

We refer to these operators as the Akulin Hamiltonians, after a set of exactly-solvable two-

level time-dependent quantum-mechanical systems described by Akulin [1]. In this case

the label of “Hamiltonian" does not imply Hermiticity3.

3Additionally, we often refer to factorized operators as “Hamiltonians" Ĥ to distinguish them from their
SUSY factors Â and B̂.

14



2.1.4 SUSY Chains

Consider a sequence of supersymmetric relationships:

Ĥ0 = B̂0Â0 + ε0 = Â1B̂1 + ε1 (2.33)

Ĥ1 = B̂1Â1 + ε1 = Â2B̂2 + ε2

...

Ĥm = B̂mÂm + εm = Âm+1B̂m+1 + εm+1

...

Ĥn = B̂nÂn + εn = . . . .

Eigenstates of Ĥn will be linked to eigenstates of Ĥm via the intertwiner Υ̂n←m:

| ψn〉 ∝ B̂nB̂n−1 · · · B̂m+1 | ψm〉 (2.34)

Υ̂n←m = B̂nB̂n−1 · · · B̂m+1 .

2.1.5 An Example: Free Space Hierarchy

We now illustrate an important example, which is the hierarchy obtained by starting

with Ĥ0 = − d2

dx2 , representing a potential-free Hamiltonian, i.e., free space (with ~ =

2m = 1). Letting εn = −n2, Ân = ∂x + n tanh (x), B̂n = Â†n, and setting an arbitrary

position shift equal to zero at each stage generates the chain [6]

Ĥn = − d2

dx2
− n (n+ 1)

cosh2 (x)
,

where, for any positive integer n, the potentials

Vn (x) = −n (n+ 1)

cosh2 (x)
(2.35)
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are reflectionless at all energies [10]. As described earlier, and explained in detail in Sec-

tion 2.2.1, a reflectionless potential is one for which the reflection coefficient, defined in

terms of asymptotic solutions of the eigenvalue problem, is identically zero for any eigen-

value (energy). The case n = 1 for the potentials described above (2.35) is the famous

Pöschl-Teller potential. As discussed in Chapter 1, potentials of the form (2.35) were also

discovered by Kay and Moses [5] by considering the possibility of perfect transmission of

electromagnetic waves through a dielectric at all wavelengths. The first three members of

this hierarchy are shown in Figure 2.2. Interestingly, the potential Vn(x) admits n bound-

states, which are also plotted in Figure 2.2.

The eigenstates of each potential (2.35) are linked to eigenstates of Ĥ0 (which are sim-

ply plane-waves) via the intertwiner

| ψn〉 ∝ B̂nB̂n−1 · · · B̂1|ψ0〉 = Υ̂n←0|ψ0〉. (2.36)

Each of the operators B̂m = − d
dx

+m tanh(x) asymptotically becomes a differential oper-

ator with constant coefficients at x → ±∞, as does the product Υ̂n←0. Therefore, the map

between eigenstates locally converts plane waves to plane waves conserving the direction

of momentum. If one of the members of the supersymmetric chain exhibits a lack of reflec-

tion at all energies, as does Ĥ0 in this case, then every member of the chain will likewise

be reflectionless. In general, if a Hamiltonian is linked to a potential-free Hamiltonian via

a supersymmetric chain, it is reflectionless because of the intertwiner (2.36).

2.1.6 Cases Solved via QMSUSY

Supersymmetry has been used to solve the 1D and 3D quantum harmonic oscillator

(as discussed in Section 2.1.2), the Coulomb, Morse, Scarf II (hyperbolic), Rosen-Morse II

(hyperbolic), Eckart, Scarf I (trigonometric), Pöschl-Teller (discussed in Section 2.1.5), and

Rosen-Morse I (trigonometric) potentials [9], as well as additional reflectionless potentials
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Figure 2.2: First Three Members of Free Space Hierarchy: Read multiplication or-
der “away" from potential in question. (a) Free space Hamiltonian H0 = −∂2x, (b)
H1 = −∂2x − 2sech2(x), (c) H2 = −∂2x − 6sech2(x). The potential Vn(x) admits n bound-
state solutions, plotted in red.

discussed in section 2.2. SUSY has been used to solve the problem of an electron in a

magnetic field [8], as well as a spin-1/2 electron bound to a magnetic wire [11]. In the latter

case, SUSY is extended to multi-component wavefunctions and the associated operators

are 2×2 matrices. This is similar to the SUSY factorization of the Akulin Hamiltonians

described in Section 3.1, where the Hamiltonian and SUSY factors are 2×2 matrices of

differential operators.

2.1.7 Do SUSY-Free Intertwiners Exist?

It is clear that if two Hamiltonians are part of the same SUSY chain, then they are in-

tertwined via (2.35). It is unknown, however, if SUSY-free intertwiners exist, i.e., if two

Hamiltonians can be intertwined without being linked via a supersymmetric chain. The

question of whether SUSY-free intertwiners exist is important for several reasons. First,

it is often easier to find intertwiners than it is to SUSY-factorize Hamiltonians. In our in-

vestigation of the Akulin Hamiltonians, for example, we found the intertwiner between Ĥ1

and Ĥ0 before finding their SUSY connection. If SUSY-free intertwiners do not exist, then

finding an intertwiner immediately implies the existence of supersymmetry. Furthermore, a

proof that SUSY-free intertwiners do not exist would represent a major step towards under-

standing why supersymmetry is so intimately related to reflectionlessness and integrability.
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2.2 Reflectionless Scattering

2.2.1 Definition of the Scattering Problem

The direct scattering problem is one of cataloging solutions of the eigenvalue problem

for a linear differential operator H:

Hψ = λψ. (2.37)

The operator H contains one or more potentials u(x), any order of derivatives, and any

number of components. For example, if H is of the form of the Schrödinger operator

H = −∂2x + u(x), (2.38)

then our eigenvalue equation (2.37) is the Sturm-Liouville problem for u(x) [7]:

ψxx + (λ− u)ψ = 0. (2.39)

This is the situation analyzed in quantum mechanics. Asymptotic solutions to (2.39) will

take the form of linear combinations of e±ikx with λ = k2. The case when λ > 0 is known

as the continuous spectrum. We are free to define the scattering problem as follows:

ψ ∼

 eikx +R(k)e−ikx x→ −∞

T (k)eikx x→ +∞,
(2.40)

that is, a wave a modulus one is incident from x = −∞ on the potential, and T (k) andR(k)

give the reflected and transmitted amplitudes, respectively. Physically, from conservation

of norm we have

|T (k)|2 + |R(k)|2 = 1. (2.41)
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Figure 2.3: Definition of the Scattering Problem: eikx is incident on a potential from
x = −∞; R(k) and T (k) give the amplitudes of the reflected and transmitted waves,
respectively.

In the mathematics literature the continuous scattering problem is often defined as a plane

wave of modulus one, moving to the left, incident from x = +∞. We choose the above

convention because it is more in line with the physics literature.

Similarly, eigenvalues λ < 0 permit a set decaying solutions as x → ±∞, known as

the discrete spectrum, cataloged by their eigenvalues and asymptotic amplitudes:

ψn ∼

 c̃ne
κnx x→ −∞

cne
−κnx x→ ∞.

(2.42)

Physically, these are the tails of the bound-state solutions [7]. The bound-state spectrum

is discrete because the boundary conditions place heavy restrictions on the form of the

eigenfunctions with λ < 0, that is, these solutions must decay exponentially instead of

growing exponentially.

The second type of scattering problem we are interested in is when the differential

operator H is a 2×2 matrix and the eigenfunctions ψ have two components. In particular,

the Akulin Hamiltonians have the form Hn = σz∂x − σxq(x):

H =

 ∂x −q(x)

−q(x) −∂x

 , ψ =

 ψ1(x)

ψ2(x)

 . (2.43)
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We wish to solve the eigenvalue problem

Hψ = iλψ, (2.44)

where the eigenvalue is defined as iλ because of a transformation of the original statement

of the eigenvalue problem (see Section 4.1). We take k = λ and write four asymptotic

solutions of (2.44) [7]:

ψ+(x) ∼ eikx

 1

0

 ; ψ̃+(x) ∼ e−ikx

 0

1

 , x→ +∞ (2.45)

ψ−(x) ∼ eikx

 1

0

 ; ψ̃−(x) ∼ e−ikx

 0

1

 , x→ −∞.

These solutions are linearly independent, so we can write the asymptotic solutions at +∞

as linear combinations of the asymptotic solutions at −∞:

ψ+ = T (k)ψ− +R(k)ψ̃−; ψ̃+ = R̃(k)ψ− + T̃ (k)ψ̃−, (2.46)

which we can write in terms of a scattering matrix S:

Ψ+ = Ψ−S; S =

 T R̃

R T̃

 , (2.47)

and

Ψ+ =

 ψ+1 ψ̃+1

ψ+2 ψ̃+2

 ; Ψ− =

 ψ−1 ψ̃−1

ψ−2 ψ̃−2

 . (2.48)

Here the subscripts 1 and 2 on ψ± refer to the first and second components. Notice that

the H in (2.43) contains two first-order derivatives, differing in sign, acting on different
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components of ψ. This implies that the sign of k (the direction of momentum), is uniquely

tied to a component of ψ (its internal state). Indeed, from (2.45) wee see that right-moving

waves eikx are tied to the internal state
 1

0

, and left-moving waves e−ikx are tied to the

internal state
 0

1

.

Reflectionless scattering is a unique phenomenon where reflection coefficients vanish

for all values of k, that is, R(k) = 0 and R̃(k) = 0. The classical analogy is perfect

transmission of electromagnetic waves through a dielectric medium at every wavelength.

As discussed in Chapter 1, this was the problem investigated by Kay and Moses [5], who

discovered potentials of the form (2.35).

2.2.2 SUSY as the Mechanism for Reflectionless Scattering: Known Cases

Supersymmetry is responsible for reflectionless scattering in most of the known cases

[6, 12, 13, 14, 15]. As described in Section 2.1.5, a Hamiltonian will be reflectionless if it

is linked to a potential-free Hamiltonian via a supersymmetric chain. We now discuss the

known cases where SUSY is the mechanism for reflectionless scattering.

We have already seen that in stationary quantum mechanics, potentials of the form

(2.35) are reflectionless due to their SUSY connection to free-space. This problem is worth

examining in more detail. We can start with a potential for the Schrödinger equation

u(x) = −U0sech
2(x), (2.49)

where U0 is a constant. The Sturm-Liouville equation

ψ′′ + (λ+ U0sech
2(x))ψ = 0 (2.50)

becomes the associated Legendre equation

d

dT

{
(1− T 2)

dψ

dT

}
+

(
U0 +

λ

(1− T 2)

)
ψ = 0, (2.51)
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under the substitution T = tanh(x). The normalizable solutions of the associated Leg-

endre equation are the associated Legendre functions, P n
N(T ), with the condition that

U0 = N(N + 1), where N is a positive integer, λ = −n2, and n = 1, 2, . . . , N .

For the continuous spectrum, λ = k2, and the solutions to (2.51) which behave like

ψ ∼ eikx as x→ ∞ are

ψ(x) = T (k)2ik(sech(x))−ikF (ã, b̃; c̃; z), (2.52)

where F (ã, b̃; c̃; z) is the hypergeometric function, and

ã = 1
2
− ik + (Uo +

1
4
)1/2; b̃ = 1

2
− ik − (U0 +

1
4
)1/2 (2.53)

c̃ = 1− ik; z = 1
2
(1− T ).

Here T (k) is the transmission coefficient (not T ≡ tanh(x)). The asymptotic solutions as

x→ −∞ are

ψ(x) ∼ Γ(c̃)Γ(ã+ b̃− c̃)

Γ(ã)Γ(b̃)
eikx +

Γ(c̃)Γ(c̃− ã− b̃)

Γ(c̃− ã)Γ(c̃− b̃)
e−ikx, (2.54)

and thus from the definition of the reflection and transmission coefficients (2.40)

T (k) =
Γ(ã)Γ(b̃)

Γ(c̃)Γ(ã+ b̃− c̃)
; R(k) =

T (k)Γ(c̃)Γ(c̃− ã− b̃)

Γ(c̃− ã)Γ(c̃− b̃)
. (2.55)

Using the identity that Γ(1
2
− z)Γ(1

2
+ z) = π/ cos(πz) it follows that the reflection coeffi-

cient R(k) = 0 for all k if U0 = N(N + 1), where N is a positive integer [7]. Thus we see

that the class of potentials u(x) = −U0sech
2(x) has scattering states that can be solved ex-

actly in terms of hypergeometric functions, and that, for a discrete set when U0 = N(N+1)

the reflection coefficient vanishes for all values of k. U0 = N(N + 1) are also the special

values when the bound states of u(x) are expressible in terms of associated Legendre func-
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tions P n
N(x) and the bound state energies are given by λ = −n2. Mathematically, the

existence of this set of integrable potentials appears as a curious coincidence. Beneath the

mess of special functions, however, is a supersymmetric mechanism supplying the integra-

bility. A similar story will play out in the discussion of the Akulin Hamiltonians.

There is another class of reflectionless potentials for the 1-D Schrödinger equation,

which we refer to as the “Schrödinger camels" after their shape (see Fig. 2.4). The

Schrödinger camels are obtained by allowing a spatial shift at every step of the super-

symmetric chain originating from free-space (see Section 2.1.5). They are also intimately

connected to the Korteweg-de Vries (KdV) equation [16, 17]. For the KdV equation, it is

known that an initial condition of

u(x, 0) = −N(N + 1)sech2(x), (2.56)

with N a positive integer, results in an N-soliton solution4, where each of the N solitons

moves at a different speed. The Schrödinger camels are simply u(x, t), where those N

solitons are allowed to evolve for time t and separate spatially, with a general asymptotic

form [7]

u(x, t) ∼ −2
N∑

n=1

n2sech2{n(x− 4n2t)∓ xn}, (2.57)

and asymptotic phases

xn =
1

2
ln


N∏

m=1
m6=n

|n−m

n+m
|sgn(n−m)

 , (2.58)

where ∓xn is the phase as t → ±∞. Properties of the inverse scattering transform guar-

antee that the N-soliton solution u(x, t) of the KdV equation will remain a reflectionless

4Normally for KdV, the field u(x, t) is the negative of the potential for the Schrödinger equation. To avoid
confusion, in this discussion we use the alternate form of KdV where u → −u so that u(x, t) is equal to the
potential for the Schrödinger equation, with no minus sign.
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Figure 2.4: Reflectionless “Schrödinger Camel" Potential and 3-Soliton Solution of KdV:
The reflectionless potential u(x, 0) = −12sech2(x), shown in (a), evolves in time via KdV
to a 3-soliton solution u(x, t), shown in (b), an example of a reflectionless “Schrödinger
camel" potential. Notice the nonlinear effect: the amplitude of (a) is much less than the
combined amplitudes in (b).

potential for the Schrödinger equation for all times t [16, 17, 18], as will be discussed in

more detail in Section 2.3.2.

The relativistic Dirac equation in scalar and pseudoscalar external potentials is also

shown to exhibit cases of reflectionless scattering [15, 19, 20]. These reflectionless systems

have a SUSY mechanism equivalent to SUSY in one-dimensional quantum mechanics.

Lastly, the reflectionless family of the Akulin Hamiltonians, analyzed in this thesis,

are another example of Hamiltonians whose reflectionless nature is explained by a SUSY

factorization.

2.2.3 Cases of Reflectionless Scattering Without Known SUSY Mechanism

The first case of reflectionless scattering without a known SUSY interpretation was

studied by Ablowitz. Reflectionless time-dependent perturbations to the time-dependent

Schrödinger equation were used to generate multi-soliton solutions of the Kadomtsev-

Petviashvili-I equation [21]. Note that in this case, unlike in all other known cases, the

reflectionless problem is set in two spatial dimensions.

There is also a reflectionless system describing excitations on top of the ground state

of a 1D attractive Bose condensate, known as the bosonic Bogoliubov-de Gennes system
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[22, 23]. The dynamics of the gas is described by the Non-Linear Schrödinger Equation

(NLSE):

i~
∂

∂t
ψ(z, t) =

[
− ~2

2m

∂2

∂z2
+ gN |ψ(z, t)|2

]
ψ(z, t) (2.59)∫ +∞

−∞
dz ψ(z, t) = 1; g < 0,

where N is the number of bosons in the condensate. Bosons interact via V (z1, z2) =

gδ(z1 − z2). Here we use ~ = m = 1. If we define G̃ ≡ |g|N , we get

i
∂

∂t
ψ(z, t) =

[
−1

2

∂2

∂z2
− G̃|ψ(z, t)|2

]
ψ(z, t) (2.60)∫ +∞

−∞
dz ψ(z, t) = 1; G̃ > 0.

The NLSE has a solitonic steady state:

φ(z) =
1√
2l

1

cosh(z/l)
, (2.61)

where l = 2
G̃
, µ = −1

8
G̃2, and φ(z) obeys the stationary Nonlinear Schrödinger Equation,

[
−1

2

∂2

∂z2
− G̃|φ(z)|2

]
φ(z) = µφ(z). (2.62)

The steady state generates the following solution of the time-dependent NLSE (2.60):

ψ(z, t) = φ(z)e−iµt. (2.63)

Around the stationary solution (2.61), solutions of the time-dependent NLSE can be de-

composed onto a sum of the stationary solution and a small correction,

ψ(z, t) = [φ(z) + δψ(z, t)]e−iµt, (2.64)
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where the correction obeys

i
∂

∂t

 δψ(z, t)

δψ∗(z, t)

 ≈ L̂

 δψ(z, t)

δψ∗(z, t)

 , (2.65)

with

L̂ =

 L̂ M̂

−M̂ † −L̂

 (2.66)

called the Bogoliubov-de Gennes Liouvillian (BdG), and

L̂ = −1

2

∂2

∂z2
− 2G̃|φ(z)|2 = −1

2

∂2

∂z2
− 2

l2 cosh(z/l)
(2.67)

M̂ = −G̃|φ(z)|2 = − 1

l2 cosh(z/l)
.

The eigenstate-eigenvalue problem for the BdG system is:

L̂|wℵ�= εℵ|wℵ� . (2.68)

Its solutions are positive “energy” eigenstates:

|wk+�=
1√
2π

1

(kl)2 + 1


(kl + i tanh[z/l])2

1/ cosh2[z/l]

× exp[+ikz], (2.69)

with εk+ = k2

2
− µ, and negative “energy” eigenstates:

|wk−�=
1√
2π

1

(kl)2 + 1


1/ cosh2[z/l]

(kl − i tanh[z/l])2

× exp[−ikz], (2.70)
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with εk− = −k2

2
+ µ = −εk+. These solutions demonstrate that L̂ is reflectionless, since

they do not “mix" left and right-moving waves. Physically this reflectionless property

means that small excitations pass through the ground state of the gas unperturbed.

A supersymmetric decomposition is of the Bogoliubov-de Gennes Liouvillian is cur-

rently unknown, but suspected. We have found an intertwiner connecting L̂ to a potential-

free Liouvillian (discussed further in Section 5.3), which is strong evidence of a SUSY

connection.

The BdG system is interesting because it represents the third stage of simplification

at which a system of attractive bosons exhibits scattering without reflection. In the full,

many-body interaction the integrability is due to the Bethe ansatz. In the mean-field ap-

proximation, the system obeys the Non-Linear Schrödinger Equation, a known integrable

PDE whose soliton solutions provide the lack of reflection. And finally, the linearized

mean-field approximation, the BdG system, still has the reflectionless property. Whether

SUSY is responsible for the reflectionless nature of the system at the level of linearized

mean-field is not yet known.

2.3 Integrable Partial Differential Equations, Solitons, and the Inverse

Scattering Method

2.3.1 The Inverse Scattering Method

The inverse scattering method (ISM) is a method developed for solving the initial value

problem of integrable nonlinear partial differential equations (NPDE’s). Given the initial

profile u(x, 0) one can use the ISM to find the time-evolved profile u(x, t).

Associated with each integrable NPDE are two linear differential operators, L̂ and M̂ .

The solution u(x, t) of the NPDE appears as a parameterizing field in L̂ and M̂ [18, 7]:

L̂ = L̂(u(x, t)); M̂ = M̂(u(x, t)). (2.71)
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Associated with L̂ is a Hamiltonian Ĥ that defines a spectral problem

Ĥψ = λψ;
∂

∂t
λ = 0, (2.72)

i.e., Ĥ is time-independent in the Schrödinger representation. In the case of KdV, L̂ = Ĥ .

For sine-Gordon, L̂ = σ̂z(Ĥ − λ) [24] . The fact that the eigenvalues of ψ do not change

in time, even as the potential u(x, t) in L̂ evolves in time, was one of the key discoveries

leading to the ISM [18]. The eigenvector ψ evolves in time through M̂ :

ψt = M̂ψ, (2.73)

i.e., M̂ is time-dependent in the Schrödinger representation. The Lax equation, or Lax rep-

resentation of the integrable NPDE, is the Heisenberg equation of motion for L̂, generated

by M̂ :

∂

∂t
L̂ = [M̂, L̂] =⇒ PDE-in-question[u(x, t)]. (2.74)

These relationships suggest a procedure for finding u(x, t) given u(x, 0). First, find the

scattering data at t = 0, S(0), for Ĥ(u(x, 0)), consisting of the set {R(k; 0), κn, cn(0)},

where R(k; 0) are the reflection coefficients at time t = 0, cn(0) are the tails of the bound

states at t = 0, and κn are the discrete eigenvalues (independent of time), as described in

Section 2.2.1:

S(0) = {R(k; 0), κn, cn(0)}. (2.75)

Next, use the time evolution of ψ, ψt = M̂ψ, to find the scattering data at time t, S(t):

S(t) = {R(k; t), κn, cn(t)}. (2.76)
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Lastly, invert the scattering data at time t to find u(x, t). This last step is the true “inverse

scattering" problem, that is, determining the potential from the scattering data. As Drazin

and Johnson explain, “in physical terms the problem is essentially finding the shape (or

perhaps mass distribution) of an object which is mechanically vibrated, from a knowledge

of all the sounds that it makes, i.e., from the energy or amplitude at each frequency [7]."

The inversion formulae were discovered by Gel’fand and Levitan in 1955 [18], and recast in

the form presented here by Marchenko [7]. Inversion of the scattering data involves solving

a nontrivial integral equation, usually referred to as the Marchenko equation, whose kernel

is constructed from the scattering data [7]:

K(x, z; t) + F (x+ z; t) +

∫ ∞
x

K(x, y; t)F (y + z; t)dy = 0. (2.77)

The function F is defined as

F (X; t) =
N∑

n=1

cn(t)
2e−κnX +

1

2π

∫ ∞
−∞

R(k; t)eikXdk, (2.78)

and the potential at time t is:

u(x, t) = −2
d

dx
K(x, x; t). (2.79)

The above analysis is correct for the KdV equation which has one component (first-order

in time). For two-component (second-order in time) nonlinear PDE’s like the sine-Gordon

equation, the Marchenko integral equation becomes a vector equation with two-components

[7].

The inverse scattering method is very similar to the use of Fourier transforms to solve

linear partial differential equations [7]. To solve a linear PDE, the initial profile u(x, 0) is

projected onto a Fourier basis A(k) using a Fourier Transform (FT). Each Fourier compo-

nent evolves in time as A(k)e−iω(k)t, where ω(k) is given by the dispersion relation for the

29



Figure 2.5: Comparison of Fourier Transform and Inverse Scattering Method: (a) Fourier
transform method for solving linear PDE’s and (b) inverse scattering method for solving
nonlinear PDE’s.

PDE in question. The inverse Fourier transform (IFT) can then be used to find u(x, t). A

comparison of the two methods is illustrated Figure 2.5

2.3.2 Korteweg-de Vries equation

The KdV equation is given by:

∂

∂t
U + 6U

∂

∂x
U +

∂3

∂x3
U = 0; U = U(x, t), (2.80)

where we have sent u → U . The Ĥ operator is the Hamiltonian of the time-independent

Schrödinger equation, and Ĥ = L̂:

L̂ = Ĥ = −(d2/dx2) + V (x |t); V (x |t) = −U(x, t). (2.81)

The notation V (x |t) and ψ(x|t) signifies that t is simply a parameter of the potential

V (x|t) and eigenvector ψ(x|t), unlike the field U(x, t) which is truly evolving in time

under the KdV equation. Furthermore, “time" here is not the “time" that appears in the
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time-dependent Schrödinger equation.

The direct scattering problem for Ĥ is equivalent to the energy-eigenvalue problem for

1D quantum mechanics:

Ĥψ = λψ; ψ = ψ(x |t). (2.82)

The M̂ -operator for the KdV equation is given by:

M̂ = −4
∂3

∂x3
− 3

{
U
∂

∂x
+

∂

∂x
(U ·)

}
, (2.83)

which time-evolves the scattering states as

∂

∂t
ψ(x, t) = M̂ψ(x, t); ψ(x, t) ≡ ψ(x |t). (2.84)

The Lax representation of the KdV equation is [18, 7, 24]:

∂

∂t
L̂ = [M̂, L̂] =⇒ ∂

∂t
U + 6U

∂

∂x
U +

∂3

∂x3
U = 0. (2.85)

The inverse scattering problem for the KdV equation is particularly confusing for those

familiar with quantum mechanics. In quantum mechanics, the Hamiltonian determines

the energy eigenvalues and generates the time evolution of eigenfunctions. In the Lax

formulation for KdV, Ĥ for the time-independent Schrödinger equation is the Ĥ operator

which defines the scattering problem, but the scattering states are evolved in “time" by

another operator M̂ which has nothing to do with quantum mechanics. Again, “time" does

not even mean the same thing here as it does in non-stationary quantum mechanics.
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2.3.3 sine-Gordon equation

The sine-Gordon equation is given by:

∂2

∂ζ∂η
Φ = sin(Φ), (2.86)

where we have sent u→ Φ; x→ ζ; t→ η. The covariant form of sine-Gordon is:

∂2

∂x̃2
U − ∂2

∂t̃2
U = sin(U), (2.87)

with the connection between the two versions being:

U(x̃, t̃) = Φ(ζ =
1

2
(x̃+ t̃), η =

1

2
(x̃− t̃)). (2.88)

The Ĥ operator for sine-Gordon is

Ĥ = (d/dζ) σ̂z − v(ζ |η) σ̂x; v(ζ |η) = 1

2

∂

∂η
Φ(ζ, η), (2.89)

defining the scattering problem:

Ĥψ = λψ; ψ =

 ψ1(ζ |η)

ψ2(ζ |η)

 . (2.90)

For sine-Gordon there is a family of L-operators:

L̂ = L̂(λ) = σ̂z(Ĥ − λ), (2.91)

and a family of M -operators:

M̂ = M̂(λ) =
1

4λ
{cos[Φ]σ̂z − sin[Φ]σ̂x} , (2.92)
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since L̂ and M̂ depend on λ. The Lax equation is:

∂

∂η
L̂(λ) = [M̂(λ), L̂(λ)]

∀λ
=⇒ ∂2

∂ζ∂η
Φ = sin(Φ), (2.93)

and the scattering states evolve in time as:

∂

∂η
ψ(ζ, η) = M̂ψ(ζ, η); ψ(ζ, η) ≡ ψ(ζ |η), (2.94)

where M̂ and ψ are taken at the same λ [24].

2.3.4 Reflectionless Ĥ Operators, Solitons, and Supersymmetry

If the Ĥ operator for a NPDE is reflectionless, then R(k) = 0 for all time in the direct

scattering problem. In this case, the Marchenko integral equation (2.77) greatly simplifies

[7, 18]. The function F (X, t) (2.78) contains only a sum over the discrete eigenvalues of

ψ, and the Marchenko equation reduces to a system of algebraic equations.

Furthermore, the solutions to the nonlinear PDE in question are solitons, which are

particle-like solitary waves which propagate without dispersion and scatter elastically off

one another. For the KdV equation, for example, an initial profile u(x, 0) = N(N +

1)sech2(x), generating a reflectionless Ĥ operator (the Schrödinger operator with V (x) =

−u(x, t)), leads to an N -soliton solution. Supersymmetry can thus be used to generate

these multi-soliton solutions of the KdV equation, since potentials of the form V (x) =

−N(N + 1)sech2(x) are linked by a supersymmetric chain [6, 12, 13, 14].

It is unknown if supersymmetry can be used to generateN -soliton solutions of other in-

tegrable NPDE’s. Interestingly, the n = 1 member of the Akulin Hamiltonians is a version

of the Ĥ operator for the one-soliton solution of the sine-Gordon equation. We suspect that

the nth Akulin Hamiltonian will lead to an n-soliton solution of the sine-Gordon equation,

but we were unable to confirm this hypothesis by the time this thesis was written.
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CHAPTER 3

AKULIN’S HAMILTONIANS

3.1 Scattering Properties of Akulin’s Hamiltonians

We now analyze the family of Hamiltonians

Hn = σz∂x − σxn/ cosh(x) . (3.1)

n = . . . , −3, −2, −1, 0, +1, +2, +3, . . . ,

which we refer to as Akulin’s Hamiltonians. We will show that the family is linked by a

supersymmetric chain and since H0 is reflectionless, every other member of the chain is

also reflectionless.

We first consider the scattering problem for Hn when n is not necessarily an integer.

This is similar to how Akulin first analyzed the problem1 [1]. We will find the scattering

states in terms of hypergeometric functions and demonstrate that when n is an integer, Hn

is reflectionless. The purpose is to illustrate the analogy between the Hamiltonians Hn and

potentials of the form V (x) = −U0sech
2(x) in normal quantum mechanics, discussed in

Section 2.1.5. In the latter case, we also found the scattering states in terms of hypergeo-

metric functions which became reflectionless when U0 → N(N+1), where N is a positive

integer.

We wish to solve the scattering problem

Hnψ = iλψ. (3.2)
1Akulin analyzed a time-dependent two-level system, not a spatial scattering problem, but the two prob-

lems are formally analogous.
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We let λ→ k, q(x) = n/ cosh(x), ψ =
 u

v

 and rearrange the problem to yield

 u′

v′

 =

 ik q

−q −ik


 u

v

 ; ⇒ ψ′ = Lψ. (3.3)

Here we briefly summarize the strategy for finding solutions to (3.3), omitting the details.

It is actually much easier to solve the problem by transforming L → L−ikI . The solutions

will transform ψ → e−ikxψ. In the new system, we combine the two first-order equations

into a single second order equation, and change variables to z = 1
1+e2x

. The resulting

differential equation has solutions in terms of hypergeometric functions. Transforming

back, we find that the four asymptotic solutions of (3.2) are:

ψ+ =

 u+

v+

 =

 F
(
n,−n; 1

2
− ik; 1

1+e2x

)
eikx

(u′+ − iku+)/q

 (3.4)

ψ− =

 u−

v−

 =

 F
(
n,−n; 1

2
+ ik; 1

1+e−2x

)
eikx

(u′− − iku−)/q


ψ̃+ =

 ũ+

ṽ+

 =

 −(ṽ′+ + ikṽ+)/q

F
(
n,−n; 1

2
+ ik; 1

1+e2x

)
e−ikx


ψ̃− =

 ũ−

ṽ−

 =

 −(ṽ′− + ikṽ−)/q

F
(
n,−n; 1

2
− ik; 1

1+e−2x

)
e−ikx

 ,

where F is the hypergeometric function. For each of these solutions, it is cleaner to give the

second component in terms of the first component, rather than write the second component

out explicitly. The solutions (3.4) are given in the form described in (2.45) so that we can

analyze the scattering properties of Hn. We will analyze one of the two sets of reflection

and transmission coefficients. Recall that

ψ+ = T (k)ψ− +R(k)ψ̃−; ⇒ u+ = T (k)u− +R(k)ũ−. (3.5)
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From the definition of the asymptotic solutions, we know that as x → ∞, u+ → 1, and

ũ− → 0. This implies that

T (k) =
1

lim
x→∞

u−
=

1

F (n,−n; 1
2
+ ik, 1)

=
Γ(1

2
+ ik − n)Γ(1

2
+ ik + n)

Γ(1
2
+ ik)2

. (3.6)

After some trigonometric manipulations [1] we find:

|T (k)|2 =
2 cosh2(πk)

cosh(2πk) + cos(2πn)
(3.7)

|R(k)|2 = 1− |T (k)|2 = sin2(πn)

cosh2(πk)
,

and we see that if n is an integer, |T (k)| → 1 and |R(k)| → 0, i.e., Hn is reflectionless

for all k. Just like the case of the −N(N + 1)sech2(x) potentials, the “coincidence" of

reflectionlessness is a manifestation of an underlying SUSY mechanism.

3.2 Akulin’s Chain and its Intertwiners

We found a (non-unique) supersymmetric chain connecting all the Hamiltonians of the

form (3.1). These Hamiltonians are not directly linked, however; there is an intermediate

Hamiltonian, which we refer to as Hn+1/2, between Hn and Hn+1. In other words, Hn is

the SUSY partner of Hn+1/2, and Hn+1/2 is the SUSY partner of Hn+1:

. . . Hn ⇐⇒ Hn+1/2 ⇐⇒ Hn+1 . . . (3.8)

We found many ambiguities in generating such a chain, especially in the form of the in-

termediate Hamiltonians Hn+1/2. We used several symmetries of the Hamiltonians Hn to
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remove many of these ambiguities. Consider the following four transformations:

TI ≡ © (3.9)

Tx ≡ R̂σx · © · σ−1x R̂−1

Ty ≡ (iσx) · © · (iσy)−1

Tz ≡ R̂σz · © · σ−1z R̂−1.

R̂ refers to the operation x→ −x. Under these actions, the Hamiltonians transform as

Hn
Tx↔ +Hn (3.10)

Hn
Ty↔ −Hn

Hn
Tz↔ −Hn .

Forming the group Z2 × Z2 = Dih2, consisting of 180◦ rotations about coordinate axes. If

we define

sT =
T [H]

H
, (3.11)

then we can write the following set of four chains for the Akulin system:

(3.12)

Hn = . . . = sT

(
T [B

(+)
n ]T [A

(+)
n ] + ε

(+)
n

)
Hn+1/2 = sT

(
T [A

(+)
n ]T [B

(+)
n ] + ε

(+)
n

)
= sT

(
T [A

(−)
n+1]T [B

(−)
n+1] + ε

(−)
n+1

)
Hn+1 = sT

(
T [B

(−)
n+1]T [A

(−)
n+1] + ε

(−)
n+1

)
= . . .
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where T can be chosen from {TI , Tx, Ty, Tz}. The untransformed SUSY factors are

B(+)
n =

 1 −1
2
n/ cosh(x)

(−1)n cosh(x)− sinh(x) −∂x − 1
2
((−1)n(n+ 1) + tanh(x))

(3.13)

A(+)
n =

 +∂x − 1
2
((−1)n(n+ 1) + tanh(x)) −1

2
n/ cosh(x)

(−1)n cosh(x)− sinh(x) 1


A(−)

n = (−1)×

 −∂x + 1
2
((−1)n(n− 1)− tanh(x)) +1

2
n/ cosh(x)

(−1)n cosh(x) + sinh(x) 1


B(−)

n =

 1 +1
2
n/ cosh(x)

(−1)n cosh(x) + sinh(x) ∂x +
1
2
((−1)n(n− 1)− tanh(x))

 ,

with factorization constants

ε(+)
n = (−1)n(n+

1

2
) (3.14)

ε(−)n = (−1)n(n− 1

2
) .

We also used the following transformation property of the Hamiltonians to help fix the form

of the SUSY factors (3.13):

Hn

Tinv.↔ −H−n; Tinv. ≡ R̂© R̂−1. (3.15)

Requiring that the A’s and B’s transform as

B
(+)
+n

Tinv.↔ +B
(−)
−n

A
(+)
+n

Tinv.↔ −A(−)
−n ,

(3.16)
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makes the symmetry in (3.15) manifest. Including inversion with the transformations (3.9)

forms the group Z2 × Z2 × Z2, whose actions are combinations of inversion and the 180◦

rotations about the coordinate axes.

The intertwiners linking eigenstates of Hn to eigenstates of Hn+1 (Υn+1←n), and the

intertwiners linking eigenstates ofHn to eigenstates ofHn−1 (Υn−1←n) have the following

defining relationships:

Hn+1Υn+1←n = Υn+1←nHn (3.17)

Hn−1Υn−1←n = Υn−1←nHn .

From the chain (3.12) we see that the intertwiners are given by

Υn+1←n = vT

(
T [B

(−)
n+1]T [A(+)

n ]
)
; Υn−1←n = vT

(
T [B

(+)
n−1]T [A(−)

n ]
)
, (3.18)

where

vT =
T [Υ]

Υ
. (3.19)

The intertwiners have the form:

Υn+1←n = ∂x − (n+
1

2
) tanh(x) +

1

2
(iσy)/ cosh(x)

Υn−1←n = ∂x + (n− 1

2
) tanh(x)− 1

2
(iσy)/ cosh(x) , (3.20)
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and transform under the T operations as

Υn±1←n
Tx↔ −Υn±1←n (3.21)

Υn±1←n
Ty↔ +Υn±1←n

Υn±1←n
Tz↔ −Υn±1←n

Υn±1←n

Tinv.↔ −Υ−n∓1←−n . (3.22)

Fixing the inversion properties of the SUSY factors (3.16) is also responsible for the inver-

sion symmetry of the intertwiners, (3.22).

The picture that emerges from the preceding discussion is the following. Using the

symmetries of our Hamiltonians, we are able to link them all through four different super-

symmetric chains, with each individual chain resulting from one of the symmetry opera-

tions under which they are invariant (up to a constant ±1). Each of the four chains links

Hn to Hn+1 via a different intermediate Hamiltonian Hn+1/2. The results are summarized

in Fig. 3.1.

It is a mystery why the intertwiners (3.20) have such a simple form, and why there

is only one intertwiner connecting Hn to Hn+1, given that there are four supersymmet-

ric chains connecting Hn to Hn+1. Since the eigenstates of Hn are doubly-degenerate, a

one-to-one map between eigenstates of Hn and Hn+1 is not necessary. It is possible that

the simplicity of the intertwiners is the result of more hidden symmetries or relationships

between the SUSY factors.

Discovery of any such relationships between the A’s and B’s is of the utmost impor-

tance for future SUSY work, since it might allow for the reduction of the factorization prob-

lem into a smaller number of steps. For instance, factorizing a Hamiltonian in 1D quantum

mechanics is greatly simplified by writing the Hamiltonian in the form H = A†A+ ε. The

problem of factorization is then reduced to finding solutions to a single differential equa-

tion for the superpotential W (x) (see Section 2.1.2). We were unable to find any similar
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HTy n+1/2Ty
−1

H n+1/2

HTx n+1/2Tx
−1

H n+1

H n
x

Tz n+1/2Tz
−1

y

z

H

Figure 3.1: Four SUSY Chains for the Akulin Hamiltonians: Thick arrows correspond to
the QMSUSY connections. The 180◦ rotations about the coordinate axes OX , OY , and
OZ correspond to the transformations Tx ≡ R̂σx · © · σ−1x R̂−1, Ty ≡ (iσx) · © · (iσy)−1,
and Tz ≡ R̂σz · © · σ−1z R̂−1 respectively.
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relationships between the SUSY factors (3.13) for Akulin’s SUSY chain, but they may still

exist. Certainly the mystery of the intertwiners described above, as well as some ambigu-

ities discussed in Section 5.1 suggest that there is more to Akulin’s SUSY chain than we

currently understand.
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CHAPTER 4

APPLICATIONS

4.1 Application 1: Inversionless Laser Pulse for a Two Level Atom

The first system to which we can apply our SUSY decomposition of the Akulin Hamil-

tonians comes from atomic physics. This system is the one analyzed by Akulin. Consider

a two-level atom subjected to a time-dependent pulse of the form Veg(t) = V/ cosh (t/τ)

and detuning ∆. Here V is the amplitude of the pulse, τ is its duration, and |e〉 and |g〉

are the excited and ground states, respectively. The time-dependence of this system can

be solved exactly in terms of hypergeometric functions (the analysis is identical to that in

Section 3.1), and it is known that for specific values of the pulse amplitude, the transition

probability is zero regardless of the detuning choice ∆ [1]. These amplitudes are given by

V = n~/τ , where n is an integer. If we represent the probability amplitudes of the ground

and excited states by ψg and ψe, respectively, the dynamics of the system will obey

i
d

dt
ψg = +

∆

2
ψg +

n

τ cosh (t/τ)
ψe (4.1)

i
d

dt
ψe = +

n

τ cosh (t/τ)
ψg −

∆

2
ψe .

The remarkable property of this pulse is that if the population is prepared entirely in the

ground state ψg at t → −∞, then the whole population will return to the ground state for

t → +∞, for any non-zero value of ∆. Now, we can regard the excited state population

after the pulse is applied (generally present, but absent in our case) as a reflected wave in a

scattering problem. Similarly, the ground state populations before and after the pulse can be
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regarded as the transmitted and incident waves, respectively (note the order). To formalize

the analogy, we make the substitution x = −t/τ , u = ψg, v = −ψe, λ = ∆τ/2. (Note

that x is a dimensionless coordinate.) Now the dynamics of the system can be rewritten as

a two-component spatial eigenvalue problem involving a 2× 2 Hamiltonian, Hlp:

 −i d
dx

n
cosh(x)

− n
cosh(x)

i d
dx


 u

v

 = λ

 u

v

 (4.2)

⇒ Hlpψlp = λψlp.

The subscript lp is meant to indicate the meaningful objects in the laser-pulse problem.

Let us look at the case when n = 1. We will classify the eigenstates by their wavevector

k and by the eigenvalues of Ĥ . For each k we have two eigenvalues λ = ±k:

|ψk〉(λ=+k) ∝

 ik − tanh(x)
2

−i
2 cosh(x)

 eikx

|ψk〉(λ=−k) ∝

 −i
2 cosh(x)

ik − tanh(x)
2

 eikx . (4.3)

We can see from the eigenstates that Ĥ is reflectionless. If one replaced the off-diagonal

perturbation 1
cosh(x)

in (4.2) by a perturbation of a general position, the scattering state

|ψk〉(λ=+k) (whose incident internal state is
 1

0

) would show a reflected wave,
 0

1

e−ikx,

corresponding to the internal state
 0

1

. The peculiar property of the 1
cosh(x)

perturbation

is exactly the absence of the reflected wave. The second scattering state, |ψk〉(λ=−k), shows

the same phenomenon, with the internal states reversed.

We can apply a simple transformation to map the laser-pulse eigenvalue problem to the

eigenvalue problem associated with the Akulin Hamiltonians, Hn discussed at length in
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Section 3.1:

Hn = iUHlpU
−1; ψn = Uψlp; U =

 1 0

0 −i

 , (4.4)

and U−1 = U †. Under these transformations the two eigenvalue problems are equivalent:

Hlpψlp = λψlp ⇐⇒ Hnψn = iλψn. (4.5)

The supersymmetric chains (3.12) linking each member Hn to the inherently reflectionless

Hamiltonian H0 completely explains the inversionless property of the two-level atomic

system discussed above.

4.2 Application 2: One-soliton Solution of Sine-Gordon Equation

As described in Section 2.3.3, the Ĥ operator for sine-Gordon is

Ĥ = (d/dζ) σ̂z − v(ζ |η) σ̂x; v(ζ |η) = 1

2

∂

∂η
Φ(ζ, η), (4.6)

defining the scattering problem:

Ĥψ = λψ; ψ =

 ψ1(ζ |η)

ψ2(ζ |η)

 . (4.7)

It is well-known that the sine-Gordon equation is integrable, and it supports many-soliton

solutions; each such solution, if substituted to the scattering problem (4.7), generates a

family of reflectionless problems, parametrized by η [25]. The simplest example is a single-

soliton (antikink) solution:

Φ(ζ, η) = 4 arctan(exp(αζ + η/α)) .
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Interestingly, after a trivial substitution ζ = x/α, η = 0, the single-soliton Hamiltonian for

sine-Gordon (4.6), becomes exactly the Akulin Hamiltonian with n = 1:

Ĥone−soliton(SG)
ζ=x/α,η=0−−−−−−→ Ĥ1(Akulin). (4.8)

Similarly, the case when n = −1 results in the single kink-soliton solution. Recall, from

Section 2.3.4 that it is the reflectionless property of particular Ĥ operators that lead to

soliton solutions of NPDE’s; (4.8) shows that supersymmetry (3.12) is responsible for the

reflectionless nature of the one-soliton Ĥ operators for sine-Gordon.
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CHAPTER 5

AREAS OF FUTURE RESEARCH

5.1 Ambiguities in Factors of SUSY Chain for Akulin’s Hamiltonians

We were unable to remove all of the ambiguities in defining the supersymmetric chain

(3.12), even after fixing the property (3.16). The following replacements would not affect

Hn, the intertwiners, nor the property (3.16): For each group of the for SUSY operators,

B
(+sign(n))
n , A(+sign(n))

n , B(−sign(n))

n+sign(n)
, A(−sign(n))

n+sign(n)
,

• T → T|n+sign(n)/2| ;

•

B
(+sign(n))
n → B

(+sign(n))
n P

B
(−sign(n))

n+sign(n)
→ B

(−sign(n))

n+sign(n)
P

A
(+sign(n))
n → P−1A

(+sign(n))
n

A
(−sign(n))

n+sign(n)
→ P−1A

(−sign(n))

n+sign(n)
,

where P is any 2× 2 constant matrix.

It is also not clear how to make the “rotation” properties of the Hamiltonians and inter-

twiners, (3.11) and (3.22), manifest; either using the remaining ambiguities, or by a clever

analysis of the relationships between the suggested A’s and B’s (3.13).

5.2 n-Soliton Solutions of Sine-Gordon Equation

As discussed in Section 2.3.4, SUSY chains for reflectionless Ĥ operators of the KdV

equation generate multi-soliton solutions, where at t = 0 all of the solitons are located at the

47



Figure 5.1: Reflectionless initial conditions for sine-Gordon, corresponding to the n =
1, 2, 3 Akulin Hamiltonians. (a) Plots the “potentials" v(ζ 0) = n/ cosh(ζ) in red that
appear in the direct-scattering matrix H . (b) Plots the initial values of the field Φ(ζ, 0) =
−4n tan−1(eζ) in blue which will evolve under sine-Gordon. The n = 1 case is the well-
known anti-kink soliton; it is unknown if higher values of n lead to multi-soliton solutions.

origin. We demonstrate in Section 4.2 that the n = 1 member of the Akulin Hamiltonians is

the Ĥ operator for the sine-Gordon equation associated with the one-soliton solution when

η = 0, and the soliton is located at the origin. Using KdV as a guide [6, 12, 13, 14], we

suspect that each member of the Akulin chain Ĥn is the Ĥ operator for n-soliton solutions

of sine-Gordon. The first three corresponding “potentials" and initial conditions are shown

in Figure 5.1. We were unable to find the appropriate n-soliton solutions (many are known)

to match the forms of Hn. Furthermore, we have not yet been able to propagate the initial

state contained inHn via the inverse scattering method to see if an n-soliton solution results.

We also suspect that it might be possible to use SUSY at the level of the Lax formulation

to generate soliton solutions of any integrable PDE.

5.3 Bogoliubov-de Gennes System for 1D attractive Bose Condensate

As described in Section 2.2.3 the BdG system for a solitonic Bose Condensate is reflec-

tionless [22, 23]. While it is unknown if a SUSY decomposition exists, we have found an
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intertwiner between the Liouvillian L̂ and a potential-free Liouvillian L̂0. The Liouvillian

is defined in (2.66), and for simplicity we set l = 1. We get

L̂ =

 −1
2
∂2x − 2sech2(x) + 1

2
−sech2(x)

sech2(x) 1
2
∂2x + 2sech2(x)− 1

2

 . (5.1)

L̂ is intertwined with a potential-free Liouvillian L̂0, via

L̂Υ = ΥL̂0, (5.2)

where

L̂0 =

 −1
2
∂2x +

1
2

0

0 1
2
∂2x − 1

2

 , Υ =

 f̂ ĝ

ĝ f̂

 , (5.3)

and

f̂ = ∂4x + (1− 2 tanh(x))∂3x + (tanh(x)− 1)2∂2x + (1− sech2(x)− 2 tanh(x))∂x + tanh2(x)

ĝ = −sech2(x)(∂2x + ∂x + 1). (5.4)

5.4 Akulin’s Hamiltonians as Linearizations

Just as the bosonic Bogoliubov-de Gennes Liouvillian represents the linearization of the

nonlinear Schrödinger equation, it is possible that one or more of the Akulin Hamiltonians

are a linearization of an integrable NPDE. It is even possible, of course, that this integrable

PDE has not yet been discovered.
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5.5 Do all Cases of Scattering Without Reflection Have a SUSY

Mechanism?

The ultimate question is, of course, whether SUSY is responsible for all cases of scat-

tering without reflection. As discussed in Section 2.1.7, a major step towards answering

this question would be a proof that there are no SUSY-free intertwiners. If supersymme-

try is responsible for all cases of scattering without reflection, it might reflect a deeper

connection between SUSY and integrability.
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CHAPTER 6

CONCLUSION

We have presented a new case demonstrating the connection between supersymmetry,

reflectionless scattering, and soliton solutions of an integrable nonlinear partial differen-

tial equation. In the previously-known case, a supersymmetric connection to free space

explains the reflectionless nature of quantum-mechanical potentials of the form VN(x) =

−N(N + 1)sech2(x). These potentials lead to N -soliton solutions of the KdV equation

when they are used as its initial values U(x, 0). For the case of Akulin’s Hamiltonians Hn

presented in this thesis, a supersymmetric connection to free space is also the mechanism

responsible for their reflectionless scattering. Furthermore, each Hn represents a reflec-

tionless direct-scattering problem for the sine-Gordon equation, and at least in the case of

n = ±1, leads to soliton solutions. We suspect that every other Hn leads to multi-soliton

solutions of sine-Gordon. Additionally, the SUSY connection of the Hamiltonians Hn to

free space explains why laser pulses of the form V (t) = (n~/τ)/ cosh(t/τ) result in no

population inversion for a two-level atom, for any value of the laser detuning.

What we have accomplished, however, is only a further demonstration of the connec-

tion between SUSY, reflectionless scattering, and integrable NPDE’s. We still do not know

if SUSY is responsible for all cases of reflectionless scattering, or why the cause is su-

persymmetry and not simply a SUSY-free intertwiner. We understand that SUSY explains

reflectionless scattering, and that reflectionless scattering leads to solitons of NPDE’s, but

we do know if the connection originates at a deeper level. It does appear that supersymmet-

ric chains are related to multi-soliton solutions for integrable nonlinear PDE’s; perhaps this
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mechanism can be understood at the level of the Lax formulation of the inverse scattering

method. There are likely more reflectionless Hamiltonians to be discovered, and definitely

more integrable nonlinear PDE’s to be examined for a SUSY-soliton connection. Certainly,

the subject is ripe for future research.
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