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I. INTRODUCTION

Although the field of liquid extraction is of increasing importance 

in today’s chemical industry, the ternary-liquid data so necessary to 

the design and study of extraction operations are available in the 

literature only to a limited extent. During the twentieth century, 

approximately 120 ternary-liquid systems have been studied. However, 

limiting solubility data have been reported for approximately one-third 

of these systems, and about 30 per cent of the equilibria data reported 

for the remainder of these systems are incomplete or inaccurate.

Within limits, liquid equilibria data may be calculated for a 

ternary system from the properties of its constituents which are readily 

available in the literature. As binary equilibria data are comparatively 

plentiful in the literature, it is clearly desirable to predict the 

ternary-liquid characteristics from this media. The proper choice of 

computational method is as inherent to the accuracy of equilibria pre­

diction as the accuracy of the binary data used, and the physical proper­

ties of the ternary system itself.

A number of methods have been proposed in the past decade which 

could be useful in predicting the equilibria curves for ternary-liquid 

systems. It was believed that a comparison of the ternary-liquid 

equilibria data predicted for several systems by certain of these methods, 

with the experimental equilibria data obtained from the literature, would 

result in the development of rules governing the use and applicability 

of these prediction methods. Consequently, certain major prediction
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methods were chosen for study. These were: (l) the van Laar method,

(2) the Margules method, (3) the van Laar and Margules methods modi­

fied by the use of the Colburn constant, (4) the van Laar and Margules 

methods as modified by Wohl, and (5) the Scheibel and Friedland method.

The purpose of this investigation was to determine experimentally 

the ternary-liquid solubility and equilibria data for a previously 

unreported ternary-liquid system, and to compare these data, along with 

the equilibria data obtained from the literature, for other ternary 

systems with those data approximated by five major prediction methods.

The system chosen for experimental study consisted of methanol, water, 

and 1-nitropropane. Experimental systems reported in the literature and 

chosen for study were: (1) ethanol, ethyl acetate, water; (2) acetone, 

benzene, water; (3) acetic acid, benzene, water; (4) acetone, chloro­

form, water; and (5) cyclohexane, aniline, N-heptane. The results of 

this study were the formulation of a set of rules concerning the choice 

and application of methods for predicting ternary-liquid equilibria data.
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II. LITERATURE REVIEW

The literature was reviewed for the purpose of (1) listing the 

major sources of ternary-liquid equilibria and solubility data,

(2) studying the major methods in use for the prediction of ternary- 

liquid equilibria data, and (3) locating published systems for which 

the binary and ternary equilibria data were available so that the pre­

diction methods could be compared with actual experimental results.

Sources of Ternary Equilibria Data

During this century, approximately 120 ternary-liquid systems have 

been studied. However, about one-third of the systems reported in the 

literature include only the limiting solubility data and much of the 

reported equilibrium data is incomplete or inaccurate.

In 1910 Bo n n e r ^  made a list of all work done on ternary-liquid 

systems up to that time, and in 1929 the authors of the International 

Critical Tables^) did essentially the same thing; but in neither case 

was any distinction made between the complete diagrams and those merely 

listing the solubility curve. Also, the data available in the Inter­

national Critical Tables were so sketchy that all but four systems were 

presented graphically, and many of these were only partially complete.

As the extraction of liquids with other liquids became of great 

industrial importance, an interest in ternary-liquid equilibria data 

grew. Consequently, since 1929 a great deal of excellent work has been



- 4 -

done in this field. This increase in the number of systems available 

encouraged other authors to organize and list these data in a logical 

manner. A few partial lists were compiled by Bachman(^) in 1940, 

Brancker^ in 1940, Seidell^) in 1941, and Smith(52) in 1942.

Current listings became available with the advent of the yearly Unit 

Operations Review on Extraction in Industrial and Engineering Chemistry. 

Here, E l g i n ^5, 16, 17) iater Treybal(55*****66) presented the 

systems and associated references studied in the year which was reviewed. 

The latest and most complete bibliography of available ternary-liquid 

systems was published in 1959 at the University of Texas(25). in this 

bulletin, Himmelblau presented the sources of approximately 120 aqueous 

ternary systems and approximately 40 nonaqueous ternary systems.

Sources of Binary Equilibria Data

There is a wealth of data with which to calculate activity 

coefficients, and hence activities of binary solutions. Thus, extending 

the binary data to ternary systems becomes a powerful tool in predicting 

the usefulness of solvents in liquid extraction processes. A few of the 

many sources of binary vapor-liquid equilibrium data are: (l) The 

International Critical Tables(31), (2) The Chemical Engineers Hand­

b o ok^), and (3) Chu(^3), Excellent azeotropic data from which activity

coefficients may be calculated were compiled in 1952 by Horsley(26).
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Binary Solution Constants

Extraction operations depend upon the fact that solutions which form 

immiscible liquid phases are of necessity extremely nonideal. The extent 

to which solutions depart from ideality is manifested by deviations of 

the properties of the solution from certain standard characteristics. If 

the equilibria relationships are to be predicted for ternary-liquid 

systems from these deviations in properties of its related binary systems, 

methods of expressing the binary deviations in a manner than may be 

extended to the ternary case are necessary. The most useful methods of 

expressing deviations of binary solutions from ideality are those which 

depend upon vapor-liquid equilibria, boiling points of solutions, or the 

formation of azeotropes. This is true because considerable information 

on these properties has now been accumulated in the literature for many 

mixtures.

Activity Coefficients. The advantages of extending binary vapor- 

liquid equilibria data to predict the equilibrium between two phases of 

a ternary-liquid mixture have been explained many times in the litera- 

tup.(10, 19, 23, 41, 52, 54). It was noted that the major advantage of 

this technique is the comparative availability of binary vapor-liquid 

equilibria, data to ternary-liquid equilibria data. The customary manner 

of correlating binary vapor- liquid equilibria data, that is, to plot y, 

the mole fraction of the more volatile component in the vapor, against x, 

the mole fraction of the more volatile component in the liquid^?), 

results in curves which have little apparent order. Consequently, no 

convenient analytical method of expressing these relationships has been
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obtained for curves plotted in this manner. On the other hand, these 

data may be used to calculate the deviation factors from RaoultT s Law, 

termed activity coefficients, to arrive at an orderly array of curves.

Raoult1s Law states that the partial pressure of a component from a 

mixture is equal to the product of the vapor pressure of the pure 

component at the given temperature and mole fraction of the component 

in the mixture. When Raoult1 s Law holds, the mixture is considered ideal. 

When deviations are observed, the correction factor which is introduced 

into this relation is called the activity coefficient. The liquid 

composition, vapor composition, and equilibrium temperature data as 

reported for most binary vapor-liquid systems may be expressed as activity 

coefficients. Activity coefficients are defined by Equation 1.

& i 5=1 (p yi)/(*L Px) ^
where:

= activity coefficient, unitless

p-j_ =  vapor pressure of pure component at given 
temperature, pressure units

x^ *= composition of component in liquid, mole fraction 

y^ = composition of component in vapor, mole fraction 

P = total pressure on system, pressure units

The obvious advantages of this technique is that orderly and con- 

sistant curves result from a plot of the logarithm of the activity 

coefficient against the associated liquid composition. From these plots, 

binary constants relating the properties of the binary liquid system to 

the related ternary system may be obtained.

Margules Equation for Binary Systems. Starting from the Gibbs- 

Duhem Equation^), Margules^8) assumed that the relationship between
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activity coefficients and concentration could be expressed by a geo­

metric series expansion in terms of concentration, where the number of 

terms required would depend upon the degree of non-ideality of the binary 

system considered* A somewhat similar approach is given by Redlich, 

Kister, and Timiquist(^3)# However, the algegraic foxm of their final 

equation makes the determination of the constants more difficult. Also, 

the constants cannot be extended directly to the ternary-liquid case.

The original Margules equations were revised by Carlson and Colburn^) 

so the constants have the property of being equal to the terminal values 

of the logarithm of the activity coefficients. So expressed, the 

Margules equations are:

l°g g-j_ = - A) x *  +  a(A - B) x^3

log g^ * (2A - B) x ^  + k(B - a) xx3 (3)

where:

g = activity coefficient, unitless 

x = liquid composition, mole fraction 

A = constant for binary system, unitless 

B = constant for binary system, unitless.

It is observed that at x^-* 0, log g^ =  A and log g^ =  0, also at 
Xj^.1, log'g^ = 0 and log g = B. This form satisfies the limiting 

condition that Raoultfs Law holds for a component whose concentration 

approaches 100 mole per cent.

van Laar Equations for Binary Systems. Equations other than the 

Margules equations have been worked out on the basis of different 

assumptions with respect to the size of the molecular groups which affect 

the excess free energy, and the relative magnitudes of the molar volumes
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of the constituents of the solution^* '£1  > 36), The most important 

of these for present purposes are the van Laar equations as revised by- 

Carlson and Colbum(-^), These equations are:

log g1 = a /(1 + ( ^

log 8-^ "■ B/(l + Bx / a x ^  ^

where:

g = activity coefficient, unitless 

x  = liquid composition, mole fraction 

A = constant for binary system, unitless 

B = constant for binary system, unitless.

The van Laar equations may be derived by several methods. Robinson 

and Gilliland^6) cliscuss the theoretical approach used by van Laar and 

the empirical derivation is presented by Cooper (-^). Wohl(68) presents 

a generalized theoretical derivation.

Limitations. Although these equations, the Margules and the van Laar, 

represent satisfactorily a large share of existing reliable data, some 

precautions are necessary in their use. These have to be considered 

chiefly where the physical properties of the vapors depart appreciably 

from the ideal. In general, the Margules equations are quantitatively 

most useful for relatively symmetrical systems(53), that is, where the 

absolute value of A nearly equals the absolute value of B. The van Laar 

equations can satisfactorily follow data showing high values of A and B 

and greater dissymmetry than the Margules equations, but large ratios 

of A to B cannot be handled. The van Laar equations fit the cases where 

the ratio of a  to B is in the neighborhood of two better than the 

Margules equations(53),
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Calculation of Binary Constants from Azeotropic Data. When complete 

measurements of the equilibrium liquid and vapor compositions are lacking, 

one may estimate the binary constants for extrapolation to the ternary- 

liquid case from an azeotropic composition, A wealth of azeotropic data 

has been tabulated by Horsley1(^). Since the azeotropic liquid and 

vapor compositions are identical, the activity coefficients defined by 

Equation 1 simplify to:

f$L =  P/Pl (6)

g<  =  P /P *
(7)

where:

g = activity coefficient, unitless

P = total pressure, pressure units

p =  vapor pressure of pure component at given 
temperature, pressure units.

From these two values of activity coefficients and their associated 

concentrations, the binary constants A and B, may be calculated from the 

appropriate integrated Gibbs-Duhem equation. Greatest precision will 

result if the single datum is known at a liquid composition between 0.25 

and 0.75^^.

Calculation of Binary Constants from Vapor-Liauid Data. Vapor- 

liquid equilibria data are reported as liquid composition, vapor com­

position, and equilibrium temperature at a constant pressure. From such 

data and Equation 1, page 6, activity coefficients as a function of 

liquid composition may be calculated. Since the end value of the log of 

the activity coefficient is equal to one of the binary constants(^), the 

values of the binary constants, A and B, may then be determined by 

extrapolating a curve of log activity coefficient of component one as a
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function of composition of component one to the point -where the composition 

of component one equals unity* Similarly, at the point where the second 

composition equals unity, the other constant is found* This procedure, 

while simple and common, is not usually recommended since the values of 

the activity coefficients are most often in error in the low concentration 

ranges where the extrapolation is carried out(^).

A preferable method is to rearrange the appropriate equation to the 

standard point-slope form for a straight line(33) and extrapolate from 

the best straight line fit. Reid^ ^  suggests that the line should be 

drawn through the points resulting from the high concentrations, as at 

low concentrations the values often become erratic.

Calculation of Binary Constants from Mutual Solubility Data. Binary 

liquid systems frequently form two liquid phases over a range of com­

positions. Since the activity of a component is the same in each liquid 

phase at constant temperature, it is possible to calculate the binary 

constants from measurements of liquid-liquid solubility.

For systems which are mutually insoluble, the binary constants may 

be calculated by the method described in detail by Scatchard(^), 

Carlson^®), and Treybal(53). The basis for this method involves the 

principal that ”In any two phases at equilibrium, including two liquid 

phases, the fugacities of each component are the same in the two phases. 

Provided that the same standard state for a substance is chosen for its 

conditions in each phase, the activities of the substance in each phase

are also equal”(53).
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Prediction of Distribution

For the prediction of the distribution of a solute between 

partially miscible solvents from a minimum of data, the general pro­

cedure which could presumably be followed would be to establish values 

of activity coefficients in the three binary systems from the various 

types of binary data as described in the previous sections. From these 

binary activity coefficients, predictions of activity coefficients and 

activities in the ternary systems can be made by the use of the ternary 

integrated Gibbs-Duhem equations, or some other method justified by 

thermodynamics or empirical evidence. Equilibrium ternary-liquid layers 

then exist where activities of all three components are equal(52).

Unfortunately, the activity coefficient equations cannot be made 

explicit in terms of the liquid composition, and the location of the 

constant activity curves on the triangular extraction diagram is possible 

only by a lengthy series of interpolations. Location of the triple 

intersection points becomes an even more impractical and difficult trial 

and error procedure. On these grounds, the use of the ternary activity 

coefficient equations is limited to cases where the solubility curve of 

the ternary-liquid system is known. For such a situation, it is merely 

necessary to use some method to compute the activities of the solute 

along the known solubility curve and to join equal values on opposite 

sides of the curve by the tie lines. The problem is, in this case, to 

chose the most appropriate equation or method of calculating the activi­

ties of the solute along the solubility curve.

Previous Methods. Othmer and Tobias^*?) described a method of pre­

dicting the distribution of a solute between two immiscible solvents based
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on partial pressure data for the two binary solutions formed with the 

solute and the two solvents. Carlson and Colburn described a method 

for predicting the ternary equilibria data which they considered unsatis­

factory because it was not in agreement with the Gibbs-Duhem equation in 

a hypothetical case. Colburn and Schoehbom^l) found that this method 

of Carlson gave good agreement with the data for a ternary system 

involving one ideal binary mixture, but observed that it could not be 

applied where all three binary systems were non-ideal. White(69) applied 

the 2-suffix van Laar equation to the analysis of ternary equilibria 

data, and proposed methods for evaluating the necessary constants. The 

method was applied^*^ to three ternary systems which involved one ideal 

binary mixture and the agreement was good. However, it was not applied 

to systems where all of the binary systems were non-ideal. Treybal(^3) 

presented several of the simpler methods for predicting ternary-liquid 

distribution. However, he did not apply them to the same systems. There­

fore, very little comparison of their application was possible. Scheibel 

and Friedland^^ presented an interesting empirical method which gave good 

results on three systems. It should be pointed out that Treybal(^3) is 

the only one of the above mentioned authors whose chief concern was liquid- 

liquid systems. The remainder were primarily interested in ternary vapor- 

liquid equilibrium, and even though the themodynamic principles are the 

same, they just briefly mentioned liquid-liquid systems •

The most complete theoretical background on the various integrated 

forms of the Gibbs-Duehm equation is presented by Wohl(68) who showed 

that all of the major forms, as the van Laar and Margules equations, were 

merely modifications and simplifications of a more complicated equation.
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¥ohl termed this equation the ,Jqn equation. From this equation, which 

contains eleven binary constants and three ternary constants, other 

simpler forms may be derived. In a personal communication to Treybal^)* 

Colburn suggested an additional constant calculated from the binary 

activity coefficients to the standard 3-suffix van Laar equation. The 

use of this constant in the prediction of ternary-liquid distribution 

data, as well as the use of several of WohlTs equations, has not been 

reported in the literature.

The wqw Equation. The basic equation derived by Wohl(^) by relating 

the contributions to the excess free energy of interactions of unlike 

molecules in groups of two, three, four, etc., with the ultimate size of 

the groups considered characterizing the resulting equation, is termed 

the Kq” equation. If molecular groups of two and three are considered, 

a wthree-smffixM equation results. The most general “q*1 equation is a 

four-suffix equation which leads to subsequent simplifications. These 

simplifications have a smaller number of constants and thus are the more 

practical. The four-suffix nq" equation is given by Equation 8.
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log &L = Z22 C\z + §  - h2)J + Z32 \ 3 +

* h  z32 (A3i %  -  V  + ¥ 3  (Aa  §  + V  ' 

Z2Z3 u 32 § } +  %  <*31 8  - V  +

2Z32 Z2 U 32 %  - *23 &  Z2Z3 ° (1"2Z1 )

where:

z.
\ + 8 x 2 + i x3

g =  activity coefficient, unitless 

X = composition, mole fraction 

q =  arbitrary factor replacing the molal volume 

2 as effective volume fraction, unitless 

C =  constant from ternary equilibrium data 

A = binary solution constants

Subscripts:

1 =  solute

2 = solvent

3 =  carrier

The binary constants, A ^ ,  etc. are defined as follows

limit log g-̂  (x^-*0, Xg-^l) ~

limit log g-j_ (x-j^O, x ^ l )  =  A ^

limit log g2 ( x ^ O ,  x ^ l )  33 A ^

limit log g^ (x^-* 0, x ^ l )  =

limit log g^ (xy*0, x ^ l )  =  A ^

limit log g (x-* 0, x-~l) «  A
J  }  2 -?2

d o )
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The ttAw terns occurring in Equation 8 represent the limit of the 

logarithms of the binary activity coefficients as defined in Equation 10* 

These terms, known as binary solution constants, present a means of 

extrapolating binary equilibria data to the ternary-liquid case* The 

evaluation of the ternary constant, C, requires one known piece of 

ternary-liquid equilibrium data. However, Colburn(^*) suggested that as 

an approximation, C may be calculated in the following manner:

The Colburn constant, however, has not been previously applied to 

ternary-liquid equilibria data. If this constant is valid, it would be 

feasible to use it with various simplifications of the MqM equation to 

predict ternary distribution from the binary data and ternary-liquid 

solubility data. The MqM equation simplifies to various forms of the 

van Laar and Margules equations.

(11)

Ternary van Laar Equation. The ,Tq” equation is simplified to 

the van Laar equation by the addition of the van Laar conditions^®) 

These conditions are:

(qi/q2) =

(qi/q3) - (Ay/A^) 
(qii/q3) - (a^/a  )

(12)
(13)

(14)

A = binary constant, unitless 

q = effective molal volume, volume units

Subscripts 1, id, 3 correspond to the components 
of the mixture.

If these restrictions are substituted in the general equation,

Equation 8, for the various Mqn fractions, and the ternary constant, C,
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is set at zero, the standard 2-suffix van Laar equation for the 

ternary case will result. This resulting equation has been applied 

to the ternary-liquid case with moderate success(54)# jf these 

van Laar restrictions are substituted in the general equation and 

the ternary constant is allowed to remain, the 3-suffix van Laar 

equation for the ternary case will result. Although the 3-suffix 

van Laar equation has not been applied to the ternary-liquid case, 

it is supposed that the additional constant would lead to more 

accurate results. This introduces the question, would the 3-suffix 

van Laar equation combined with the ternary constant defined by 

Equation 11 be superior to the standard 2-suffix van Laar? It 

should be noted that the van Laar equations are restricted by the 

conditions defined in Equations 12, 13, and 14* This situation may 

be checked by the following equation:

(^13/4^) (^32/^3) = (̂ 12^21^
where:

A = binary constant, unitless

1 = solute, unitless

2 =  solvent, unitless

3 = carrier, unitless

If this relationship holds for a particular system, it is valid to 

use a van Laar expression to predict the ternary effects. How great 

the deviation can be without invalidating the van Laar equations is 

not known.

Ternary Margules Equations. The ternary Margules equation may 

be obtained from the general wqn equation, Equation 8, by the sub-



stitution of the following relationships for the wqn fractions:

ql/qii = ql/q3 = 1 (16)
where:

q =  effective molal volume, 
volume units

1 = solute, unitless

2 = solvent, unitless

3 = carrier, unitless

If the ternary constant, C, is considered, a 3-suffix Margules 

equation results. On the other hand, if the ternary constant is set 

at zero, a id-suffix Margules equation results. In these cases, the 

binary terms are entirely independent of each other so that the 

restrictions imposed on them by Equation 15, which limit the applica­

bility of the ternary van Laar equations from the start, do not exist 

for the Margules equations. As in the case of the van Laar equations 

the ternary constant, C, may be calculated from the equation of 

Colburn, Equation 11, page 15.

Empirical Method. Scheibel and Friedland predicted ternary vapor- 

liquid equilibria from equilibria data of the three binary systems 

composing the ternary system. This prediction was done by an empirical- 

graphical technique(7^). This graphical technique, when correlated with 

the ternary-liquid mutual solubility data for a two-phase liquid system, 

may be used to predict the equilibria distribution of components between 

the two phases. The basis of this empirical method, as presented by 

Scheibel and Friedland, resulted from Pa careful analysis of the equil­

ibria data presented in a previous paper.w(70) This method is merely a 
totally empirical method of interpolating binary activity coefficients to 

the ternary case.
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Scheibel and Friedland define three types of ternary mixtures on 

the basis of the deviation of the related binary systems from Raoult* s 

Law, and a different method of correlation is presented for each type.

The deviations from Raoult fs Law will result in activity coefficients 

which are either less than or greater than unity, and for these cases 

the deviations are defined as negative or positive, respectively.

Type I . Ternary systems that compose this type are made up 

of the three binary systems which all show the same deviations, 

either all positive or all negative.

Type II. Ternary systems that compose this type are made up of 

one ideal binary system and two non-ideal systems, both of which 

give the same qualitative deviations from Raoult Ts Law.

Type III. Ternary systems that compose this type are made up 

of three non-ideal binary systems, but one binary exhibits a different 

qualitative deviation from Raoultfs Law than the other two. That is, 

all of the binaries are non-ideal, but one of them shows a positive 

deviation from Raoult fs Law while the other two show negative devia­

tions or vice-versa.

Figure 1, page 19, shows a ternary diagram for components 1, 2, and 3* 

Line 1-2 represents the binary 1 and 2 with pure liquid 1 at point 1, and 

pure liquid 2 at point 2. Values of the activity coefficients of 

component 1 have been superimposed on the liquid composition coordinates 

of line 1-2. Similar reasoning applies to lines 1-3 and 2-3 • The 

method proposed by Scheibel and Friedland lays down empirical rules for 

drawing the lines of constant activity coefficients for all components.

To extend the method to ternary liquid-liquid systems, it is only
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1

Figure 1. Estimation of Constant Activity Coefficient 
Curve for Ternary Systems with Three Non- 
Ideal Binaries Having Similar Deviations 
From Raoult’s Law
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necessary to extrapolate the lines for the activity coefficients of the 

solute. The rules for extrapolating the activity coefficient lines are 

as follows:

Construction of Type I , Refer to Figure 1, page 19. To draw 

the constant activity coefficient lines, assume that the radial 

length from 1 between IF and 1G is proportional to the angle of the 

radial line. In other words, if the bisector of angle 2-1-3 is ID, 

the distance 1H is the mean of IF and 1G, Likewise, if lines 1L and 

LM are bisectors of angles 2-1-D and D-l-3, then distances 1J and 

IK are mean values of IF plus 1H and 1H plus 1G, respectively. The 

curve FJHKG represents the constant activity coefficient curve for 

one value. Other curves for different values of activity coefficients 

are drawn in a similar manner.

Construction of Type II. Refer to Figure 2, page 21. In this 

case, binary 1-2 exhibits values of activity coefficients always 

greater than or less than unity, and binary 1-3 is ideal. For the 

ideal case, the activity coefficient is unity, and independent of 

concentration. Thus, it is assumed that the activity coefficient 

of 1 is only a function of the amount of 2 present. So, the lines 

of constant activity coefficient for 1 will be parallel to side 1-3 

and drawn to intersect 1-2 at the appropriate concentration.

Construction of Type III. Refer to Figure 3# page 22. In this 

case, binary 1-2 shows positive deviations from Raoult* s Law, and 

binary 1-3 shows negative deviations. It is assumed that the 

bisector of angle 2-1-3 represents the constant activity coefficient 

line of unity, while lines QP and RS, parallel to ID, represent
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2

Figure 2. Estimation of Constant Activity Coefficient 
Curve for Ternary System With One Ideal 
Binary and 'Two Non-Ideal Binary Systems
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1

Figure 3 • Estimation of Constant Activity Coefficient 
Curves for Ternary Systems With One Binary 
System Having Deviations Opposite From Those 
of the Other Two Binary Systems•



- 23 -

constant activity coefficients of other values, greater than unity 

and less than unity respectively.

Once the lines of constant activity coefficients for the solute are 

drawn on the ternary diagram, the known mutual solubility curve is super­

imposed on the diagram. The problem is then resolved by computing 

activities around the solubility curve, and connecting the ends of tie 

lines to values of constant activity.

The value of the method described above for predicting ternary- 

liquid equilibria data has not been substantiated. It should be applied 

to several different systems and checked, for it has the obvious 

advantage of requiring no special techniques for calculation.
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I H .  EXPERIMENTAL

The experimental section of this thesis is composed of the follow­

ing: (1) purpose of investigation, (2) plan of investigation,

(3) materials, (4) apparatus, (5) method of procedure, (6) data 

and results, and (7) sample calculations. The nomenclature used is 

presented in Appendix A.

Purpose of Investigation

The purpose of this investigation was to experimentally determine 

the ternary-liquid solubility and equilibria data for a previously 

unreported ternary-liquid system, and to compare these data, along with 

equilibria data obtained from the literature, for other ternary systems 

with those data approximated by five major prediction methods. The 

system chosen for experimental study consisted of methanol, water, and 

1-nitropropane. Experimental systems reported in the literature and 

chosen for study were: (l) ethanol, ethyl acetate, water; (2) acetone, 

chloroform, water; (3) acetone, benzene, water; (4) acetic acid, 

benzene, water; and (5) cyclohexane, aniline, N-heptane. The results 

of this study were the formulation of a set of rules postulating the 

choice and application of methods for predicting ternary-liquid equilibria

data
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Plan of Investigation

The sequence of steps established for this investigation was:

(l) to review the literature for the purpose of ascertaining the princi­

pal methods of predicting ternary-liquid equilibria data, (2) to select 

five experimental systems which are reported in the literature, (3) to 

select a previously unreported ternary-liquid system, (4) to deter­

mine experimentally its equilibria and solubility data, and (5) to compare 

five major predictive methods with respect to their ability to describe 

the equilibria relationships of ternary-liquid systems.

Literature Review. The literature was reviewed for the purpose of

(1) listing the major sources of ternary equilibria and solubility data,

(2) studying the major methods utilized in predicting ternary-liquid 

equilibria data, (3) locating published systems for which the binary 

and ternary data were available so that the prediction methods could be 

compared with actual experimental results, and (4) studying various 

standard methods for experimentally determining the solubility and 

equilibria data for ternary-liquid systems.

Selection of Experimental Systems. Experimental data for five 

ternary-liquid systems were obtained from the literature. The data obtain­

ed on each system were: (l) ternary-liquid equilibria data,

(2) ternary-liquid solubility data, and (3) binary vapor-liquid equili­

bria data or binary mutual solubility data for each of the three binary 

systems composing a ternary system. The liquid systems used were:

(l) ethanol, ethyl acetate, water; (2) acetone, chloroform, water;

(3) acetone, benzene, water; (4) acetic acid, benzene, water; and 

(5) cyclohexane, aniline, N-heptane.
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Choice of Ternary-Liquid. System. A previously unreported ternary- 

liquid system was selected and its solubility and equilibria data were 

experimentally determined* The choice of the system was governed by the 

relative safety of the system with respect to toxicity and flammability* 

The system selected consisted of methanol, water, and 1-nitropropane.

Experimental Determination of Ternary-Liquid Relationships* The 

ternary-liquid solubility and equilibria data were experimentally deter­

mined for the system methanol, water, and 1-nitropropane at 25 °C and 

30 °C. The solubility data were determined by a modification of the 

”cloud point” method which is described in detail by Othmer^?) and 

Hand^*^. The synthetic method of Oth m e r ^ ^  was used to procure the 

equilibria data.

Comparison of Prediction Methods* Ternary equilibria data for five 

different liquid systems were predicted from binary vapor-liquid equili­

bria data by five different methods. These predicted data were compared 

with the experimental data reported in the literature. From these 

comparisons, a set of rules concerning the use and applicability of the 

prediction methods were formulated* The prediction methods studied weres 

(1) the 2-suffix van Laar method^10* (2) the 3-suffix Margules

method^8* 88\  (3 ) the 3-suffix van Laar equations and the 3-suffix

Margules equations modified with the Colburn constant^), (4) the 

3-suffix van Laar equations and the 3-suffix Margules equations modified 

with the Wohl constant^88^, and (5) the Scheibel and Friedland 

method^O).
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Materials

The materials used in the experimental work are listed in Appendix B.

Apparatus

The apparatus used in the experimental work are listed in Appendix B.

Method of Procedure

The procedures used in this investigation involved two major 

techniques: (l) the calibration and use of standard experimental equip­

ment, and (2) the programming and use of a digital computer* The 

first technique was employed in the determination of solubility and 

equilibria characteristics for a ternary-liquid system* The second 

technique was used in the prediction of ternary equilibria data.

Experimental Determination of Solubility Data* For the liquid 

system studied, methanol was the solute, water was the solvent, and 

1-nitropropane was the carrier. To determine the solvent lean portion 

of the solubility curve, 20 cubic centimeter mixtures of carrier and 

solute were made at 10 weight per cent increments from pure carrier to 

pure solute. These mixtures were placed in polyethylene containers, 

sealed from the atmosphere, and immersed in a constant temperature bath 

for approximately four hours. Each container in turn was opened and 

titrated with solvent which had been previously brought to a constant 

temperature. The end point or “cloud point” of the titration was the 

formation of turbidity in the mixture. From the knowledge of the quanti­

ties of solute and carrier in each mixture and the quantity of solvent
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necessary to produce turbidity in that mixture, a point of solubility 

data was calculated. The solvent-rich portion of the solubility curve 

was obtained by reversing the procedure. That is, prepared samples of 

solvent and solute were titrated with carrier until the turbidity was 

observed.

The vessel containing the mixture being titrated was continually 

agitated in the constant temperature bath during titration. The bath 

used for this purpose has a glass bottom with a light below the glass, 

thus allowing the end point of the titration to be observed while keeping 

the vessel in the constant temperature bath. This procedure was unlike 

those of 0thmer(37) and Hand(22) who removed their samples from the 

temperature bath to perform the titrations. The solubility curve was 

determined at 25 °G and 30 °C.

Determination of Experimental Equilibria Data. The equilibria data 

were determined experimentally by the synthetic method of Othmer(37),

This method involved, first, the recording of the refractive index at 

various points on the solubility curve. This established a curve of 

refractive index on the solubility curve as a function of solute concen­

tration. The next step was to make solutions consisting of all three 

components. These solutions were of such composition that they would be 

in the two-phase region. Six such mixtures were prepared at different 

compositions. These two-phase mixtures were then sealed in polyethylene 

containers and placed in the constant temperature bath. The containers 

were vigorously shaken each day for two weeks to insure that the mixtures 

would reach equilibrium. At the end of this two week period, each con­

tainer was removed from the constant temperature bath, the two phases



separated, and the refractive Index of each phase determined* As the 

end of each equilibrium tie-line must fall on the mutual solubility curve, 

a comparison of the refractive indices of the split phases with the curve 

of refractive index as a function of solute concentration on the solu­

bility curve established the tie-lines. The equilibria data for the 

system water, methanol, and 1-nitropropane at 25 °C were experimentally 

determined in this manner.

Calculation of Binary Constants. Experimental binary data were 

obtained from the literature for each binary system related to the 

ternary systems studied. The binary data obtained were of two types:

(1) vapor-liquid equilibria data reported at constant pressure., and

(2) mutual solubility data. From these data, binary solution constants, 

as defined for use in integrated forms of the Gibbs-Duhem equation, were 

calculated for each binary system. The binary constants are defined for 

the integrated forms as follows:

A-^ = limit of log g-̂  as X^-* 0 and X^-v 1 

= limit of log g^ as X ^ O  and X^-^l

(17)

(18)

where:

g = activity coefficient, unitless 

X = liquid composition, mole fraction 

A = constants for binary system, unitless 

Subscripts indicate component in mixture, unitless.

From Vapor-Liquid Data. The first step in calculating binary 

solution constants from total pressure vapor-liquid equilibria data 

was to transform the data to activity coefficients. Activity 

coefficients, as defined by Equation 1, page 6, were calculated from
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the total pressure data by the use of Program. II, Appendix C. The 

output from this computer program prints activity coefficients and 

the corresponding liquid compositions for both components of the 

binary solution* The binary solution constants were then evaluated 

from these activity coefficient-composition relationships by the 

method described by Reid(32). This method involved rewriting 

the integrated forms of the Gibbs-Duehm equation in the standard 

point-slope form for a straight line^^^, then calculating the 

binary constants by the method of least squares(34)# This was 

accomplished by the use of Program III, Appendix C*

From Mutual Solubility Data. The mutual solubility data report­

ed in the literature includes the composition of one of the compo­

nents in the two immiscible layers and the accompanying equilibrium 

temperature. This type of data was used only for systems where no 

vapor-liquid equilibria data were available. These systems were:

(l) benzene, water; (2) ethyl acetate, water; (3) water, 

1-nitropropane; (4) aniline, N-heptane; and (3) aniline, cyclo­

hexane. Binary solution constants were calculated for these systems 

from mutual solubility data by the method of Carlson^0).

Calculation of Ternary Activity Coefficients. Ternary activity 

coefficients were calculated for each liquid system studied from the 

binary solution constants and ternary mutual solubility data, by five 

major prediction methods. These methods were: (l) the 2-suffix van 

Laar method, (2) the 3-suffix Margules method, (3) the 3-suffix 

van Laar equations and the 3-suffix Margules equations modified with the 

Colburn constant, (4) the 3-suffix van Laar equations and the 3-suffix
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Margules equations modified with the Wohl constant, and (5) the 

Scheibel and Friedland method*

2-Suffix van Laar Equations* The general nqM equation, 

Equation 8, page 14, was transfomed to the 2-suffix van Laar 

equation by equating the ternary constant to zero and inserting the 

van Laar conditions. The van Laar conditions, as described by

The resulting 2-suffix van Laar equation was programmed for the 

digital computer* The complete program is Program V, Appendix C*

By using this program, ternary activity coefficients for all liquid 

systems studied were calculated from the binary solution constants 

and the ternary mutual solubility data*

3-Suffix Margules Equations* The general ,,qtl equation, 

Equation 8, page 14, was reduced to the 3-suffix Margules equation 

by the following equations;

W o h l ^ ^ ,  are:

where

A = binary constant, unitless

1 = solute, unitless

2 =  solvent, unitless

3 =  carrier, unitless

C =  0

(ql/q2) = (ql/q3) = 1 (16)

(19)

where

q = effective molal volume, volume units

C =  ternary constant, unitless

Subscripts 1, 2, 3» correspond to the 
separate components of the mixture, unitless*
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Ternary activity coefficients for all liquid systems studied were 

calculated from the 3-suffix Margules equation. The computer 

program for the solution of this equation is Program VI, Appendix C.

Integrated Forms with the Colburn Constant. Colburn suggested 

that the accuracy of the van Laar equations and the Margules 

equations could possibly be improved by the addition of an approxi­

mate ternary constant(H). The constant is defined in the following 

manner:

where:

C — g ( A
21

a _ +  
12 *13“ *31+ *32“ *23^ (11)

C = ternary constant, unitless 

A = binary constant, unitiess

1 = solute, unitless

2 — carrier, unitless.

The Colburn constant was calculated for each ternary-liquid system 

studied, then applied to both the van Laar and Margules equations. 

Program V, appendix C was used to solve the resulting van Laar 

equation, and Program VI, Appendix C was used to solve the Margules 

equation.

Integrated Forms with the Wohl Constant. A technique was 

derived to calculate the ternary constant found in Wohl’s nqllf 

equation, Equation 8, page 14« From one known equilibrium measure­

ment on each ternary system studied, the constant was calculated 

for the van Laar equations. The following is the derivation used

for the van Laar case:
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^  = ( g ' ^ U y  =

Represent the right hand member of the van Laar equation by V. 

log (gT̂ ) = V T ^or phase one

log (gn^) = V” for phase two

or
V» -\m

g* = 10 and g,s = 10v 1 1
Combine Equations 20 and 22 to obtain^  = (x'-jHio7*) = (r'1)(iov")
Rewrite in the form

(X*1)/(X«1) = 1 0 ^ ’ “

Take the logarithm of both sides to obtain 

log (X»1/X**1) ®  V" - V T

From Equation 8, page 14, for the van Laar Equation 

V” = -  C(W)M

V* = <4* -  C(W)f

where:

14 -  (Z22 A12+ V  ¥ A 2 +

Z2Z3A13 “ A2Z3K ^
W = (Z2Z3 -

Superscript T indicates phase one*

Superscript n indicates phase two.

Subtract V*’ - V T

V»* -  v* = *4" -  <4» -  C(W)« +  C(¥)» =

- c(W»* - tf»)

Combine Equations 25 and 27 to obtain

log (X'-j/X*^) =  4tf - (4* - C(W*f - W»)

Thus:

( 21)

( 22)

(23)

(24)

(25)

(26)

(20)

(27)

(28)
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Solve liquation 28 for G

(log X* /X«» ) - (Q« - <4») (29)
C --------- i-----------------

(w» - w *)

A computer program was written to compute the ternary constant, C, 

from Equation 29, for each of the liquid systems studied. Refer to 

Program IV, Appendix C for the complete program. The constant 

solved for at one point of known equilibrium, was then used to com­

pute activity coefficients for the entire range of points covered by 

the solubility curve.

Method of Scheibel and Friedland. The graphical-empirical 

method of Scheibel and Friedland^^ was applied to all systems 

studied. However, this was successful in only three of the cases.

The systems, ethanol, ethyl acetate, water, and acetic acid, benzene, 

water were correlated by calculations of Type I, page 20. The 

system acetone, chloroform, water was correlated by calculations of 

Type II, page 20.

Calculation of Ternary-Liquid Equilibrium. Once the solute activi­

ties as a function of solute compositions in each liquid phase were 

obtained, the method of Hildebrand^ ̂ 0  was applied to obtain the ternary- 

liquid equilibria data. This method involved plotting the values of 

solute mole fractions on the abcissa, as a function of solute activities 

on the ordinate. For a two-phase liquid system, two curves result on the 

same graph. One curve represented the concentration of the solute in one 

phase, while the other curve represented the concentration of the solute 

in the other phase. Values of solute concentration in equilibria in each 

phase were obtained by drawing lines of constant activity through the two 

curves and reading the two abcissa values of concentration.
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Data and Results

The first portion of this section deals with the data collected and 

the results obtained from the experimental determination of the ternary 

characteristics of the system water, methanol, and 1-nitropropane. The 

second portion of this section deals with the processing of binary data 

and the consequental prediction of ternary-liquid equilibria data for 

six different systems.

Experimental Work. The experimental values of the mutual solubility 

data and the ternary-liquid distribution data for the system water, 

methanol, and 1-nitropropane, are presented in Tables I, II, and III. 

These data are plotted on a triangular diagram in Figure 4* The experi­

mental data recorded in the laboratory are found in Appendix D.

Comparison of Prediction Methods. The binary solution constants for 

each system studied, as calculated from binary data obtained in the 

literature, are presented in Table IV. Tables V through X  present the 

comparisons of the experimental values of the ternary-liquid distri­

bution data for each system studied, with the values approximated by the 

prediction methods used. These comparisons are shown graphically in 

Figures 5 through 15* The sources of data obtained from the literature 

and the computer output for each system studied are found in Appendix D.



TABLE I

Experimental] y Determined Ternary-Liquid Solubility 

Data for the System Water. Methanol, 

and 1-Nitropropane at 30 CC

Composition Composition Composition
1-Nitropropane Water Methanol

Weight % Weight % Weight $

1.810 98.190 0.00
2*441 84.210 13.349
3.298 73.424 23.278
4.121 68.659 27.209
4.518 64.709 30.772
6.449 57.251 36.300
8.649 50.960 40.391

10.873 45.679 43.447
13-549 40.978 45.472
16.045 38.356 45.600
19.143 34.445 46.412
22.858 30.784 46.358
27.359 27.263 45-378
21.719 26.429 51.852
28.399 26.402 45.199
41.069 19.709 39.220
52.363 14.299 33.337
61.355 10.734 27.905
70.089 7.599 22.310
82.964 3.832 13.205
99.798 0.201 0.00
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TABLE II

Experimentally Determined Ternary-Liquid Solubility 

Data for the System Water. Methanol, 

and 1-Nitropropane at 25 °C

Composition Composition Composition
1-Nitropropane Water Methanol

Weight % Weight % Weight %

0.985 99.014 0.00
2.187 84.459 13.355
2.794 73.851 23.355
3.139 65.696 31.164
5*259 58.036 36.706
7.318 51.760 40.921
9.229 46.579 44.191

12.090 41.726 46.184
13.827 38.046 48.127
28.837 25.369 45.794
34.256 22.225 43.519
41.899 18.179 39.922
52.958 13.403 33.639
61.614 10.431 27.955
71.739 5.476 22.785
83.405 3.350 13.245
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TABLE III

Experimentally Determined Equilibria Distribution for the 

System Water. 1-Nitropropane. and

Methanol at

Water Phase

Weight per cent

A B C

3.00 77.10 19.9
3.15 73.95 22.9
3.65 68.05 28.30
4.56 63.13 32.31
6.04 56.05 37.91
8.37 49.32 42.31

1-Nitropropane Phase

Weight per cent

A B C

93.90 1.45 4.65
86.85 2.99 10.16
75.23 5.63 14.14
65.17 8.71 26.12
54.20 12.90 32.90
48.15 12.16 35.99

a = 1-Nitropropane 

B = Water

C =  Methanol
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C

Concentration of B, Weight Per Cent

Figure 4» Equilibria Data for the System Water, Methanol, 
1-Nitropropane at 25 #C



TABLE IV

Binary Solution Constants Obtained From 

Binary Data for Use in Ternary 

Prediction Equations

Ternary System Binary 3-2 Binary 2-1 Binary 3-1

A32 a23 A21 ^12 A31 A13

Acetic Acid (l) 
Benzene (2) 
Water (3)

3-48 4.55 0.348 0.439 0.666 0.0477

Source (3D (41) (21)

Ethanol (1) 
Water (2) 1.79 1.03 0.380 0.633 0.362 0.342
Ethyl Acetate (3) 
Source (31) (31) (46)

Cyclohexane (l) 
N-Heptane (2) 
Aniline (3)

1.29 1.359 (*) (*) 1.12 0.867

Source (30) (30)

Acetone (l) 
Water (2) 
Benzene (3)

4.55 3.48 0.655 0.890 0.176 0.176

Source (31) (9) (39)

Acetone (l) 
Chloroform (2) 
Water (3)

(*) (*) -0.344 -0.446 0.655 0.890

Source (41) (3 )

Methanol (l)
1-Nitropropane (2) 
Water (3)

0.241 0.356 (*) w 0.203 0.251

Source (71) (41)

* No data available
All tabular values unitless



TABLE V

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System Acetone. Benzene. 

and Water at 30 °C

Acetone in 
Benzene Phase

Acetone in Water Phase

Experimental'1' Experimental'1' 2-suffix 
van Laar

3-suffix2 
van Laar

Colburn*^ 
van Laar

3-suffix
Margules

Colburn^
Margules

Mole % Mole % Mole % Mole % Mole % Mole % Mole %

1.59 1.61 1.60 1.92 2.00 1.50 1.60
16.75 3*34 3*02 2.75 3*21 3*52 3*32
36.03 7*23 6.43 5*91 6.54 6.60 6.66
50.27 11.85 7*49 11.1 8.00 8.00 7*90
55*66 17*45 8.53 16.9 9*05 8.52 8.52
53*18 24*88 8.00 30.1 8.25 8.65 8.20

1. Data of Briggs, S. W. and E. W. Comings: Ind. Eng. Chem., 35* 411 (1943)
2. Ternary constant, C = 10.69, Calculated by method of Wohl from Data of Briggs 
3« Ternary constant, C = 0.43* Calculated by Colburn approximation
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Acetone in Water Phase, Mole Fraction

Figure 5. Comparison of the Experimental Ternary Distribution 
Data for the System Acetone, Benzene, Water., With 
Those Data Predicted by Three F o m s  of the van Laar 
Equation
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0 .0  0.1  0.2  0.3  0 .4

Acetone in Water Phase, Mole Fraction

Figure 6. Comparison of the Experimental Ternary Distribution 
Data for the System Acetone, Benzene, Water, With 
Those Data Predicted by Two Forms of the Margules 
Equation
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TABLE VI

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System Ethanol. Ethyl Acetate. 

and Water at 20 °C

Ethanol in 
Ethyl Acetate Layer

Ethanol in Water Layer

1
Experimental

1Experimental 2-suffix 
van Laar

3-suffix2 
van Laar

3Colburn 
van Laar

3-suffix
Margules

3Colbuirr
Margules

Mole % Mole % Mole % Mole % Mole % Mole % Mole %

3.30 1.72 1.30 1 .6 0 1 .7 0 1 .7 0 1.30
8.35 3.41 3.71 4.60 3.70 3.90 3.32

1 1 .1 0 4.82 4.80 6.20 4.70 4.91 4.23
13.6 0 6.30 5.50 7.40 3.40 6.00 3.23
1 6 .70 8.20 7.0 0 9.30 6.60 7 .2 1 6.23
17.30 10.41 7.40 10.4 7.0 0 7.30 7.0 0

1* Data of Beech, D. G., and S.Glasstone: J. Chem. Soc. (1938) 67
2. Ternary constant, C = -1.363, Calculated by method of Wohl from data of Beech and Glasstone 
3* Ternary constant, C = 0.2428, Calculated by Colburn approximation
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0.0 0.04 0.08 0.12 0.16

Ethanol in Water Phase, Mole Fraction

Figure 7. Comparison of the Experimental Ternary Distribution 
Data for the System Ethanol, Ethyl Acetate, Water 
With Those Data Predicted by Three Forms of the 
van Laar Equation
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0.0  0.04  0.08  0.12  0.16

Ethanol in Water Phase, Mole Fraction

Figure 8. Comparison of the Experimental Ternary Distribution 
Data for the System Ethanol, Ethyl Acetate, Water, 
With Those Data Predicted by Two Forms of the 
Margules Equation
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Figure 9. Comparison of the Experimental Ternary Distribution 
Data for the System Ethanol, Ethyl Acetate, Water, 
With Those Data Predicted by the Method of Scheibel 
and Friedland
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TABLE VII

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System, acetic Acid. Benzene. 

and Water at 30 °C

Acetic Acid in Acetic Acid in Water Layer
Benzene Layer

Exp erimental^ Experimental^ 2-suffix 3-suffix^ Colburn^
van Laar van Laar van Laar

Mole % Mole % Mole % Mole % Mole %

16.4 29.61 23.5 30.0 19.0
18.3 32.00 25.2 33.0 21.8
27.0 39.89 32.0 41.0 34.5
34.8 49.33 37.5 43.5 42.7
38.5 50.10 40.1 46.1 4 5.8
40.5 50.56 41.6 49.9 49.3
48.6 50.24 49.7 * 50.2

1. Data of Hand, D. B.: J. Phys. Chem., 34> 1961 (1930)
2. Ternary constant, C = 1.204, Calculated by method of Wohl from data of Hand 
3* Ternary constant, C =  -.8864, Calculated by Colburn approximation
* Prediction did not extend to this point.
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Acetic Acid in Benzene Phase, Mole Fraction

Figure 10* Comparison of the Experimental Ternary
Distribution Data for the System Acetic 
Acid, Benzene, Water, With Those Data 
Predicted by Tliree Forms of the van Laar 
Equation
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Acetic Acid in Benzene Phase, Mole Fraction

Figure 11. Comparison of the Experimental Ternary- 
Distribution Data for the System Acetic 
Acid, Benzene, Water With Those Data 
Predicted by the Method of Scheibel and 
Friedland
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TABLE VIII

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System Acetone. Chloroform 

and Water at 2Z

Acetone in Acetone in Chloroform Phase
Water Phase

Experimental^ Experimental 2-suffix 3-suffix2 qColburn^ 3-suffix Colburn-^
van Laar van Laar van Laar Margules Margules

Mole % Mole % Mole % Mole % Mole % Mole % Mole %

3.36 42.9 38.5 40.0 34.6 39.0 39.2
9.76 55.2 51.0 48.5 42.1 52.3 52.5

15.13 60.0 57.8 56.2 49.6 59.0 61.4
19.51 57.2 59.0 57.2 50.7 59.2 &
24.77 56.6 58.9 56.6 45.4 47.0 *
32.42 46.6 46.5 * * * *

1. Data of Hand, D. B.s J. Phys. Chem., 34. 1961 (1930)
2. Ternary constant C = -1.162, Calculated by method of Wohl from data of Hand 
3* Ternary constant C = 0.336, Calculated by Colburn approximation

* Prediction did not extend to this point
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Acetone in Water Phase, Mole Fraction

Figure 1 2 . • Comparison of the Actual Ternary Distribution 
Data for the System Acetone, Chloroform, and 
Water, With That Predicted by Various Forms 
of the van Laar Equation
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0.0 0.1 0.2 0.3 0.4

Acetone in Water Phase, Mole Fraction

Figure 13. Comparison of the Experimental Ternary-
Distribution Data for the System Acetone, 
Chloroform, Water, With Those Data Predicted 
by Various F o m s  of the Margules Equation
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Acetone in Water Phase, Mole Fraction

Figure 14• Comparison of the Actual Ternary Distribution 
Data for the System Acetone, Chloroform, and 
Water, With That Predicted by the Method of 
Scheibel and Friedland
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t a b u s i x

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System Cyclohexane. N-Heptane. 

and Aniline at 25 °C

Cyclohexane in Cyclohexane in the Aniline Layer
N-Heptane Layer

Experimental'1' Experimental1 2-suffix 3-suffix2 3Colburn^ 3-suffix
van Laar van Laar van Laar Margules

Mole % Mole % Mole % Mole % Mole % Mole %

21.0 1.66 3.13 3.22 4-02 4.05
45.3 6.84 9.31 8.20 8.76 9.42
35.0 4.53 6.20 5.81 6.05 7.04
64.9 13.9 15.0 13.9 14.2 16.5

1. Data of Hunter, T. G., and T. Brown: Ind. Eng. Chem. 39> 1343 (1947)
2. Ternary constant, C =  -I.67, Calculated by method of Wohl from data of Hunter and Brown
3. Ternary constant, C = -0.161, Calculated by Colburn approximation
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Cyclohexane in Aniline Phase, hole Fraction

Figure 15. Comparison of the Experimental Ternary Distribu­
tion Data for the System Aniline, Cyclohexane, 
N-Heptane, With Those Data Predicted by Three 
Forms of the van Laar Equation
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Cyclohexane in Aniline Phase, Mole Fraction

Figure 16. Comparison of the Experimental Ternary Distri­
bution Data for the System Aniline, Cyclohexane, 
N-Hept&ne, With Those Data Predicted by the 
3-suffix Margules Equation
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TABLE X

Comparison of the Predicted Liquid Distribution 

With the Actual Distribution for the 

System Methanol. Water, and 

1-Nitropropane at 25 °C

Methanol in 
Water Phase

Methanol in 1-Nitropropane Phase

Experimental Experimental 2-suffix 3-suffix^ Colburn1
van Laar van Laar van Laar

Mole % Mole % Mole % Mole % Mole %

14.71 21.74 23.96 29.18 23.07
18.77 27.62 28.43 36.34 27.92
22.08 40.13 36.06 39.92 36.62
27.10 43.64 40.91 40.91 41.03
31.77 48.02 46.27 43.11

1. Ternary constant, C = -0.163 by Colburn approximation
2. Ternary constant, C = -0-.481 by method of Wohl *

* Prediction did not extend to this point
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Methanol in the Water Phase, Mole Fraction

Figure 17* Comparison of the Experimental Ternary 
Distribution Data for the System 
Methanol, Water, 1-Nitropropane, With 
Those Data Predicted by Three F o m s  of 
the van Laar Equation
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TABLE XI

Comparison of the Experimental Distribution Data of Three 

Systems With Those Data Predicted by the 

method of Scheibel and Friedland

Ethanol in Water* 
Phase

Acetic Acid in Water* 
Phase

Acetone in Chloroform* 
Phase

Exp.^1^ Predicted Exp.^^ Predicted Exp.^-^ Predicted

1.72 1.69 29.6 29.2 42.9 40.1
3.41 3.37 32.0 32.4 55.2 52.1
4.S2 4.76 39.9 38.1 60.0 55.8
6.30 6.64 49.3 45.4 57.2 56.1
8.20 8.99 50.1 48.6 56.6 52.4

10.11 11.20 50.5 49 *4

* All Tabular values in mole per cent

1. Data of Beech, D. G., and S. Glasstone: J. Chem. Soc. 67, (1938)
2. Data of Hand, D. B.s J. Phya. Chem, 34. 1961, (1930)
3. Data of Hand, D. B.s J. Phys. Chem, 1961, (1930)
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Sample Calculations

The sample calculations presented cover the following basic phases 

of the computations: (l) calculation of ternary solubility data,

(2) calculation of ternary distribution data, (3) calculation of binary 

solution constants, (4) calculation of ternary constants, (5) pre­

diction and comparison of the values of ternary-liquid distribution data.

Calculation of Ternary Solubility Data. From experimental test 

number 16, Table XXII, Appendix D, one ternary solubility datum point 

was obtained for the system water, methanol, and 1-nitropropane. This 

calculation involved the pure component density data which are found in 

Table XX, Appendix D. The calculation was performed as follows:

Wn = weight of component n in solution, gm 

Wj. = weight of solution, gm

W% =  weight per cent of component n in solution, gm/gm

d-n =  density of component n, gm/cc

Vn =  volume of component n in solution, cc

W  = V d (30)
n n n

Wt =  V n

W> = (wn/wt)doo)
(31)

(32)

where:

thus:

Wt = (5.00)(1.002) + (10.00X0.7906) + (4.3S)(0.9928)
W t = 17.285 gm

W /W -  (5.010)/(17.285) =  28.837 wt % 1-nitropropane 1 t
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A similar calculation was performed for each point of cloud point 

datum in Tables XXI, and XXII, Appendix D. By this procedure, the 

ternary solubility curve for water, methanol, and 1-nitropropane was 

obtained#

Calculation of Ternary Distribution Data# From experimental test 

number 6, Table XXV, Appendix D, one ternary-liquid distribution datum 

point was calculated for the system water, methanol, and 1-nitropropane 

as follows:

From test number 6, Table XXV, Appendix D

refractive index of light phase = 1#34509 

refractive index of heavy phase = 1.37107 

The above values were used to obtain the concentration of methanol on 

the ternary solubility curve from Figure 23, Appendix D# This resulted 

in?

equilibrium concentration of methanol in the 
light phase =  42*31 wt %

equilibrium concentration of methanol in the 
heavy phase —  35*99 wt %

These two points determine the equilibrium line passing through the 

original one-phase mixture and terminating on the solubility curve. 

Thus, from the solubility data, Table II, the equilibrium mixtures are 

obtained as:

Light phase Heavy phase

8*37 wt % 1-nitropropane 48.15 wt % 1-nitropropane

49*32 wt % water 12.16 wt % water

42.31 wt % methanol 35*99 wt % methanol



- 63 -

Conversion of Data to Mole Fraction Units. As it was logical to 

work consistantly in one set of units, it was necessary to convert much 

of the data found in the literature from weight fraction units to mole 

fraction units. This was performed on the LGP-30 Digital Computer using 

the data format described for Program I, Appendix C. An example of the 

data input and computer output is shown in Table XII, page 64• This 

example uses the ternary distribution data for aniline, N-heptane, and 

cyclohexane, as reported by Hunter and Brown1(30)#

Computation of Binary Solution Constants. Binary solution constants 

were obtained from two sources: (l) vapor-liquid equilibria data, and 

(2) mutual solubility data. To calculate binary solution constants from 

vapor-liquid data, activity coefficients had to first be calculated.

Activity Coefficients. The vapor-liquid data, as reported, 

were converted to mole fraction units if necessary, then converted 

to activity coefficients by the use of Program II, Appendix C.

Program II was written to convert total pressure vapor-liquid 

equilibria data to activity coefficients using Raoult Ts Law as 

defined by Equation 1, page 6. An example of the data input and 

computer output for the binary vapor-liquid system benzene and 

acetic acid, as reported in Perry’s Handbook^^"), is shown in 

Table XIII, page 65.

Vapor-Liquid Equilibria Data. After the activity coefficients, 

as a function of liquid mole fractions, were obtained from Program II, 

al 1 points except those between 0.20 and 0.80 mole fraction were 

eliminated, as recommended by Reid(^). Program III, Appendix C, 

was then used to calculate the binary solution constants from the



- 64 -

TABLE XII

Sample Data Input and Output for Program I Using the 

LGP-30 Digital Computer, the Conversion of 

Weight Fraction Units to Mole 

Fraction Units

Data Input

9320 *+04-* 7190*+04- * 236 ’+03- * $93 ’+03-f 478»+03-*
73$ *+03-’34*+03-* $4 *+03- * 49 *+03-* 60 ’+03-* f*
660 ’+04-T 820 *+04- *130f+03-*93 *+03-*104*+03-*81 *+03-T 
839 *+03-*90$ *+03-*889 *+03~ * 92$ *+03- ’ f *

0 *+00-»1990 »+04- * 614 *+03- *314*+03-* 418 »+03- *
184 »+03- *127*+03- * 4L *+03- * 62*+03- *1$ ’+03- * f *
1002’+01- * 9312 ’+02- *8416 *+02- *100 *+02- ’
10 *+00-»100’-02-*100»-02-* f *

XI

Computer Output 

X2 X3

.92919$ .070804 .000000
•688$90 •084$02 .226906
.227170 .124131 .648698
•$$$8$7 *093794 •3$0397

• • •
• • •
• • •

Conversion from weight fraction to mole fraction of data reported by 
Hunter and B r o w n f o r  the system N-heptane (l), aniline (2), and 
cyclohexane (3)*
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TABLE XIII

Sample Data Input and Output for Program II Using the LGP-30 

Digital Computer, the Calculation of Activity 

Coefficients from Binary Total Pressure 

Vapor-Liquid Data

Data Input

273161+02- * 760 *4004 * 152860 *-02-* 7207 *+03-f 2111566»-03-* 
8278 !+03-t100 HOOt* 1 *4004*1-004*9 *40Q+*f *

3149 »+02-*3882*402- *4782*402-* 5776 *402-*
6443 *402-»6859 *402-»7421 *402- *7752*+02- * 8504f+02- * f *

647 f+02- * 8911+02-*1272*402- *1923 *402-»2497 *402-»
2993 *+02-»3804*402- ’4539 *402- *6451*+02- * f »

1095 *401-»1068 *401- *1037 *401-<9944*402-*9623 »+02-»
9399 *+02- * 9085 *402- * 8896 *402-»8472*+02-»f *

Computer Output

h
X2 g2

6.4699 2.2685 93.5299 .9677
8.9100 2.1679 91.0899 .9711

12.7200 2.0187 87.2799 .9604
19.2300•

1.7946
• 80.7699•

.9736•
•
•

•
•

•
•

•
•

Computation of activity coefficients for the binary system benzene and
acetic acid from vapor-liquid data'*^'.
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remaining points of activity coefficient data. The basis of 

Program III is a least-squares fit for the point-slope f o m  of the 

proper integrated binary Gibbs-Duehm equation. Program III can be 

used to calculate binary solution constants for either the van Laar 

case or the Margules case. An example of the data input and the 

computer output for the binary system benzene and acetic acid is 

shown in Table XIV, page 67*

Mutual Solubility Data. Binary solution constants were 

calculated directly from mutual solubility data using the binary 

f o m s  of the van Laar equation or the Margules equation as presented
(C'l)by Treybalw ^'. The following is an example of calculating the 

binary solution constants for the van Laar case for the system 

benzene and water.

From the International Critical Tables

(a ) Water Phase: 99*9664 mole %; 0.0346 mole %

(B) Benzene Phase: 0.29224 mole % ; 99*7023 mole %
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TABLE XIV

Sample Data Input and Output for Program III Using the LGP-30 

Digital Computer, the Calculation of Binary 

Solution Constants for Use in the 

van Laar Equations

Data Input

l t-K)0+r5t-K)0+t»t»* 11» tf t

64$1 f+02- * 4339 T+02-T 3804 T-K)2- * 2993 H02- * 2497 Y+02-* f '  

1149 '+03-T 1316 '+03-'1423 '+03-»1529 T+03-f 1617 T+03-f f '

Computer Output

Aba Aab

0.3222 0.4386

Calculation of the binary solution constants for the 
system acetic acid (a) and benzene (b), from the 
vapor-liquid equilibria data presented by Perry'k*'' •
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Computation of a Ternary Constant. The calculation of a ternary 

constant for use in the 3-suffix van Laar or the 3-suffix Margules 

equation, as defined by Wohl(^8), was performed for each system by two 

methods: (l) from one known ternary-liquid equilibrium datum point, 

and (2) from the binary solution constants by the Colburn approximation.

One Experimental Point. The ternary constant was calculated 

from one known point of ternary-liquid distribution data for each 

system studied by Program IV, Appendix C. An example of the data 

input and computer output for the system water, ethyl acetate, and 

ethanol, as reported by Beach and Glasstone, is shown in Table XV, 

page 70.

Colburn Approximation. A general ternary constant for use in 

the integrated forms presented by Wohl(^) was calculated for each 

system by the method suggested by Colbum(H). The following is an 

example of this calculation for the system ethyl acetate, ethanol, 

and water.

C ‘̂ A21 " A12 + A13 ~ A31 + ^32 “ A23^
C = |(1.788 - 1.030 +  0.3802 - 0.6334 + 0.3424 - O.3617) =

0.2428

(11)(39)
Computation of Activities from Integrated Forms. The integrated 

forms of the Gibbs-Duehm equation studied were the van Laar equations and 

the Margules equations. These equations yield activity coefficients of 

the solute in a ternary system as a function of liquid composition of the 

solute. Each activity coefficient was converted to activity as defined in 

Equation 20, page 33*



- 70 -

TABLE XV

Sample Data Input and Output for Program. IV Using the LGP-30 

Digital Computer, the Calculation of a Ternary 

van Laar Constant from One Experimental 

Ternary Equili brium Point

Computer Input

. 0005300»

6334’+04-13424f+04-f 1788 *+03-13617 f+04-* 3802T+04-T ̂ T Tl» *f» 

17 54 *+04-* 522 *+03- ’ 303 ’+03- 1 f f 

1034*+04- *847 T+03- *496 *+04-T f *

Computer Output

29116812.-08- 45^33559 .-*09- 5B950969 .+08-

13631265.-07- = C

Ternary constant for ethanol, ethyl acetate, and . 
water from data reported by Beech and Glasstone'^'.
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van Laar Equations. A general program to solve the 3-suffix 

van Laar equation from a knowledge of the ternary mutual solubility 

data and the binary solution constants is Program V in Appendix C.

The program is written so it -will also solve the 2-suffix van Laar 

equation if the ternary constant is equated to zero. For each of 

the ternary systems studied, Program V was used to compute activities 

of the solute as a function of the solute liquid composition for each 

of the following cases: (l) 2-suffix van Laar, (2) 3-suffix 

van Laar with the ternary constant computed from one experimental 

point of equilibria data, and (3) 3-suffix van Laar with the 

ternary constant computed by the Colburn approximation. An example 

of the data input and computer output format is shown in Table XVI, 

page 72. The example is for the ternary system ethanol, ethyl 

acetate, and water, using the solubility data of Beech and 

Glasstone(^), and a ternary constant evaluated by the Colburn approxi­

mation.

Margules Equation. A general program to solve the 3-suffix 

Margules equation from a knowledge of the ternary mutual solubility 

data and the binary solution constants is Program VI in Appendix C.

The program is written so it will also solve the 2-suffix Margules 

equation if the ternary constant is equated to zero. For each of 

the ternary systems studied, Program VI was used to compute activities 

of the solute as a function of the solute liquid composition for each 

of the following cases: (1) 2-suffix Margules, and (2) 3-suffix 

Margules with the ternary constant computed by the Colburn approxi­

mation. An example of the data input and computer output is shown



- 72 -

TABLE XVI

Sample Data Input and Output for Program V Using the LGP-30 

Digital Computer, the Solution of the 

3-Suffix van Laar Equation

Data Input

0 » »1718»-K)5-*355t'K)4-,473?+04-,645t+04-tS12f+04-f1034t+04*-t0« * 
330T-K)4-,837,+04-f1110t+04-,1368»+04-tl67S**K)4-t1754,-K)4-,ff
933 f+03-1966 »-K>3-f947 f-K>3-1932*+03-’ 909 *+03-f 886 »+03- 1847 T+03-1 
1321»+04-,1520»*K)4-t2055t-K)4-,2545t-K)4-t294T-K)3-,396T-K)3-,522,+03-tff
1738 T+05- ’1772f+05-f1939 f+05-T 2185 ’+05-T 263 $ *+0$-»335 T+04- 1496 H 04- f 
8679 *+04-f 815f+03-1711T+03-f 634f-K)3-f 569 *+03-♦437 *+03-’303’+03-f f f

6334f+04-’3802’+04-13424T+04-13617 f+04-11030 *403- *1788*+03-1 
2428*-04-»l»»f»

X Log

Computer Output

a

00000 .56467 3.67010 .00000
01718 •53492 3.42712 .05887
03350 .50061 3.16672 .10608
04730 .47015 2.95226 .13964

• • « •
• • • •

Solution of the 3-suffix van Laar equation for the system ethyl acetate, 
ethanol, and water, from the solubility data of Beech and Glass t o n e • 
The ternary constant, C =  0.2428, by the Colburn approximation.
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in Table XVII, page 74* The example is for the ternary system 

ethanol, ethyl acetate, and water using the solubility data of 

Beech and Glasstone in the 2-suffix Margules equation*

Computation of Activities by the Method of Scheibel and Friedland*

The empirical method of Scheibel and Friedland was applied successfully 

to three of the ternary systems studied* It would not apply to the 

other four. The systems correlated by this method were: (l) ethanol, 

ethyl acetate, and water; (2) acetic acid, benzene, and water; and 

(3) acetone, chloroform, and water. An example of this calculation is 

given for the ternary system acetone, chloroform, and water, as follows:

1* The binary vapor-liquid equilibria data for the system acetone 

and water1 -were converted to activity coefficients by the 

use of Program II, Appendix C. These activity coefficients 

were plotted by their respective liquid concentrations on side 

13 of a ternary concentration diagram* This is shown in 

Figure 18, page 75*

2. The binary vapor-liquid equilibria data for the system acetone 

and chloroform( ^  were converted to activity coefficients by 

the use of Program II, Appendix C. These activity coefficients 

were plotted by their respective liquid concentrations on side 

12 of a ternary concentration diagram. This is shown in 

Figure 19, page 76.

3* The ternary solubility data as reported by Hand(*^ were plotted 

on this ternary concentration diagram.

4. Lines perpendicular to the base, 23, of the ternary concentration 

diagram were drawn through each point of solubility data and 

extended to the side of the diagram.



TABLE XVII

Sample Data Input and Output for Program VI Using the LGP-30 

Digital Computer, the Solution of the 

3-Suffix Margules Equation

Data Input

0**1718 *405-*335 *+04-T473 ’+04- * 645 *+04-* 812 *404-11034f+04- * 0 1 * 
330*+04-*837*+04-*H10»+04-*1368*404-*l678»+04-*1754’+04-*f*

933 *403-*966 *403- * 947 *+03-* 932*+03-»909 *403-f 886 *403-1847 *+03-» 
1321»+04-*152Q*4O4-*2055*4O4-’2545*+04-*294*4O3-*396*+Q3-*522*+03-*f*

1738*+05-*1772*+05-*1939’+05-*2185*+05-*2635*+05-*355*+04-*496*+04-* 
8679 *404-*8151+03-f711*403- * 634 *+03-*569 *+03- *437 f+03- *303 T+03- * f »

6334*+04-*3802*404-*3424*+04-*3617 ’+04-*1030*403-*1788*+03-* 
Q»+00+»l»»f»

XI

Computer Output 

ac Activity

.00000 3.42469 .00000

.01718 3.67522 .06314

.03350 3.41943 .11455

.04730 3.22522 .15255
• « •
• • •
• • •

Solution of the 3-suffix Margules equation for the system ethyl acetat 
ethanol, and water, from the solubility data of Beech and Glasstone*^' 
The ternary constant, C =  0.
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1

Figure 18. Activity Coefficients of Acetone in the Binary 
System Acetone, Water Plotted on Ternary 
Concentration Diagram
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1

Figure 19 • Ternary Solubility Data and Binary Activity 
Coefficients for System Acetone, Chloroform, 
Water Plotted for Scheibel and Friedland 
Interpolation
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3* The ternary activity coefficient of the solute, acetone, was

then read at the intersection point of the perpendicular line

through the solubility point and the side of the triangular

diagram. For example, from Figure 20, page 78:

The perpendicular line through the solubility point

46.63 mole % acetone 
43*89 mole % water 

7*48 mole % chloroform

intersects the side 13 at an activity coefficient value of 

1.237.

6. A cross plot of binary activity coefficients as a function of 

binary liquid mole fractions was made to increase the accuracy 

of obtaining the ternary activity coefficients. Then each 

point of solubility data were used to obtain a point of ternary- 

liquid activity coefficient data.

7. Each ternary activity coefficient was multiplied by its 

respective solute mole fraction to obtain a point of ternary 

activity. For example, using the example sited in step 5:

(Mole fraction solute)(activity coefficient) =  (Activity)

(46.63/100) (1.237) =  (0.3778)

Computation of Ternary-Liquid Distribution. After the values of 

solute activity as a function of solute composition were obtained for 

each system studied by the van Laar equations, the Margules equations, 

and the Scheibel and Friedland method, the ternary-liquid distribution 

was calculated for each case by the method of Hildebrand^^-). This 

method involved plotting values of the solute activity as a function of 

solute mole fraction in each of the two phases. Equilibrium points were



Figure 2 0  $ Method of Scheibel and Friedland Applied to 
System Acetone, Chloroform, Water
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then read off this plot at values of constant activity in each phase*

For an example of this procedure involving the ternary systems acetic 

acid, benzene, and water as predicted by the 3-suffix van Laar with an 

experimental constant, refer to Figure 21, page 80. At a constant value 

of activity, a:

a — 0*4 (41)

=0.21$ mole fraction 

= 0*359 mole fraction

a =  0.2 ^ 2)

x  = 0.084 mole fraction 12
= 0.180 mole fraction
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Concentration Acetic Acid, Mole Fraction

Figure 21 Graphical Computation of Phase Equilibria 
from Activity-Concentration Data
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IV* DISCUSSION

The discussion section of this thesis is concerned -with the follow­

ing: (l) discussion of experimental procedure, (2) discussion of 

experimental results, (3) a comparison of five methods used to predict 

ternary distribution data, (4) recommendations, and (5) limitations.

Discussion of Experimental Procedure

The experimental procedures used to determine the solubility and 

equilibria data for a ternary system were modifications of those proce­

dures described in detail by H a n d ^ ^  and O t h m e r ^ ^ .  The modifications 

concerned: (l) titration at a constant temperature, (2) agitation 

time, and (3) titration near plait point.

Titration at a Constant Temperature. During the “cloud Point”

titrations used to determine ternary mutual solubility, Hand(^2) and 
(37)Othmerw  y removed their samples from the constant temperature bath.

In doing this, they ignored the effects of the ambient temperature and 

the heat of mixing on the mutual solubility, thus introducing error.

The mutual solubility data reported in this thesis were obtained without 

removing the sample from the temperature bath during titration. This was 

accomplished by using a glass bottomed constant temperature bath with a 

light below the glass, thus allowing the end point of the titration to be 

observed while keeping the sample in the bath.
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Agitation Time. A problem arose concerning the proper agitation time 

after the titration' of the two-phase mixture with the third component#

An erroneous cloud point results from this type of titration unless the 

mixture is agitated in the constant temperature bath for ten to fifteen 

minutes after each titration# This problem was solved by connecting the 

capped flask containing the three-component mixture to the shaft of a 

variable-speed laboratory mixer. The flask was then immersed in the 

constant temperature bath while the agitation motor was supported by a 

ripg stand.

Titration Near Plait Point. A problem occurred while attempting to 

obtain a cloud point in the concentration range of 25 to 30 weight per cent 

water. In this case the cloud point was indistinguishable. It should be 

observed on Figure 4> page 39, that there are no data points in this 

region of the curve. This situation occurred because this region is near 

the plait point. At this point, one phase cannot be distinguished from 

the other.

Discussion of Experimental Results

The mutual solubility data for the ternary-liquid system water,

methanol, and 1-nitropropane, were determined at two temperatures ----

25 °C and 30 *C. Table I, page 36, lists the solubility data at 30 °C, 

while Table II, page 37 lists the solubility data at 25 °G. The ternary 

distribution data for the system were determined at 25 °C. This is given 

in Table III, page 38.

Mutual Solubility Curve. From a study of Tables I and II, it was 

observed that the solubility relationships for this system do not change



- 83 -

appreciably -with temperature. Since this is true, the data at the two 

temperatures result in the same phase envelope. Figure 4, page 39, shows 

that this phase envelope resembles the anticipated curve. According to
(C2)Treybalw  this curve is in the class termed Type I, which means the 

solution forms but two immiscible phases over its entire concentration 

range.

Ternary Distribution Data. The ternary distribution data for the 

system methanol, water, and 1-nitropropane, was determined at 25 °C.

The validity of these data points was checked by the Othmer plot^-^ •

This method, which was derived from an empirical investigation of publish­

ed ternary-liquid systems, will result in a straight line plot if the data 

are valid. The Othmer plot, Figure 22, page 84, indicates that one 

experimental tie line is in error. That particular tie line is in the 

concentrated methanol range and intersects the solubility curve at 42.31 

weight per cent methanol in the water phase, and 35*99 weight per cent 

methanol in the 1-nitropropane phase.

It was observed that at the higher concentration of methanol, that 

is, above 30 weight per cent, in the combined phase mixture, the two 

phases separated very slowly. At lower concentrations of methanol, the 

phase split was much more rapid. This situation may be accounted for by 

a study of the tie line slopes. At the lower concentrations of methanol, 

a larger per cent of the methanol goes to the water phase than to the 

1-nitropropane phase, thus increasing the inherent density difference 

between water and 1-nitropropane. However, as the concentration of 

methanol in the original mixture increases, the ratio of the quantity 

going to each phase decreases. Thus, the density difference between the 

two phases decreases.



(
^
)
 / (^X 

- T)

- 84 -

Figure 22* Otianer Plot for System Methanol, Water, 
1-Nltropropaue at 25 *0
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Comparison of Methods Used to Predict Ternary Distribution Data

This section of the thesis is concerned -with a discussion of the 

ability of five major methods to predict the ternary equilibria data for 

liquids which form two immiscible phases. Each of the five methods were 

applied to six different liquid mixtures and the results compared with 

the experimental equilibria data for the respective system. The major 

prediction methods studied were: (l) the van Laar equations, (2) the 

Margules equations, (3 ) the van Laar and the Margules equations modi­

fied by the Colburn constant, (4) the van Laar and the Margules 

equations as modified by Wohl, and (5) the Scheibel and Friedland 

method. The liquid systems used were: (l) acetone, benzene, water;

(2) ethanol, ethyl acetate, water; (3 ) acetic acid, benzene, water;

(4) acetone, chloroform, water; (3) cyclohexane, N-heptane, aniline; 

and (6) water, methanol, 1-nitropropane.

Predictive Study of the System Acetone. Benzene, and Water. The 

values presented in Table XVIII, page 86, show the van Laar restrictions 

are satisfied by the system acetone, benzene, and water. This condition 

implies that the van Laar equations would result in a more acceptable 

approximation of the ternary-liquid distribution data for the system than 

the Margules equations. From Table XVIII, the ratios of the binary 

constants for each of the three binary systems involved in the ternary 

system are:
3.480

Benzene, Water ~ 0*765

Acetone, Water P.*§22 =  1*3$
0.653

Acetone, Benzene 0.176
0.175

1 .0 0
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TABLE XVIII

Application of the van Laar Conditions 

to Six Binary Solutions

Ternary System Binary Solution Constants van Laar Conditions

A13^A31 A1 2 /A21 V a 32 A13^A31 = A1 2 //a21 A 23^A32

Acetic Acid, 
Benzene, Water

Ethyl Acetate, 
Ethanol, Water

0.0477
0.6659

0.4386
0.3479

kiZtL
3-483

0 .0 716 =  1.65 

0.94S =  0.960

Acetone, 
Benzene, Water

0 -176
0 .1 7 6

O.89O
0.655

0.348
4.55

1 .0 0 =  1 .0 4

Acetone,
Chloroform, Water

0.890
0.655

-0.446 
—0 *344

(D* 1.35 =  1.30

N-hgptane, Aniline, 
Cyclohexane

O .867
1.120

(D* 1.359
1.290

0.775 «  1.05

Methanol, Water 
1-Nitropropane

0.251
0.203

(P* 0.356
0.241

1.24 ^  1.48

* No datum available
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These ratios indicate that the three associated binary systems are 

relatively symmetrical and, according to Wohl^^^, would be fit quite 

well by the Margules equations. While according to Perry(^), if the 

ratio of the binary constants is between 0.75 and 1.3, either the van Laar 

equations or the Margules equations may be used. It may further be 

postulated that if the binary systems cannot be fit by a particular equa­

tion, whether it be the van Laar or the Margules, then neither could the 

resulting ternary system. From the above infomation concerning the 

three binary systems, one wishing to predict the resulting ternary system, 

would probably choose the van Laar equations for the prediction*„

Acetone. Benzene, and Water by the van Laar liquations. In 

Table V, page 41, and Figure 5, page 42, the results obtained 

from predicting the ternary distribution of the acetone, benzene, 

and water system are compared with the actual experimental values 

of Briggs and Comings^). These values are compared on the basis 

of solute in the carrier phase at constant points of solute in the 

solvent phase. Figure 5, shows that both the 2-suffix van Laar and 

the Colburn van Laar equations fit the experimental data in the 

dilute range, up to 7 mole per cent acetone in the water phase.

Above 7 mole per cent acetone, the experimental data curve toward 

the hypotenuse while the van Laar equations continue their ascent.

The 3-suffix van Laar equation containing the experimental constant 

fits the experimental data at the higher concentration ranges of 

acetone in the water phase, while it deviates from the experimental 

values at the lower concentration range of below 7 per cent.
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Acetone. Benzene, and Mater by the Margules Equations. A 

comparison of the predicted values of ternary distribution, with 

the experimental values, is listed in Table V, page 41, and shown 

in Figure 6, page 43 • The 3-suffix Margules equation fits the 

experimental data in the dilute range, up to 7 mole per cent acetone 

in the water phase, better than ary of the van Laar equations. Yet, 

like the 2-suffix van Laar and Colburn van Laar equations, the 

3-suffix Margules equation will not fit the experimental curve that 

occures in the higher concentration range. There is no significant 

difference between the fit of the 3-suffix Margules and the Colburn 

Margules equations.

Acetone. Benzene, and Water by the Method of Scheibel and 

Friedland. The method of Scheibel and Friedland did not apply to 

the system acetone, benzene, and water. This situation arose 

because the binary activity coefficients of acetone in the benzene 

solution were of a completely different magnitude than the activity 

coefficients of acetone in the water solution. Under these condi­

tions, there was no way available to extrapolate to the ternary 

activity coefficients of acetone.

Predictive Study of the System Ethanol. Ethyl Acetate, and Water.

The values presented in Table XVXII, page 86, show that the ternary- 

liquid system ethanol, ethyl acetate, and water fits the van Laar 

restrictions quite well. This implies that the ternary distribution data 

for this system would be approximated by the ternary van Laar equations 

to an acceptable degree. From Table XVIII, the ratios of the binary 

constants for the three binary systems which compose the ternary system

are:
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Ethyl acetate, Ethanol =  0*946

Ethanol, Water =  1*67

Ethyl acetate, Water =  0*578

The ratio of the binary constants for the system ethyl acetate and 

ethanol proves the system to be symmetrical, indicating that it could be 

fit by either the Margules or the van Laar equations* The system ethyl 

acetate and water is unsymmetrical to the degree that the ratio of its 

binary constants is in the vicinity of 2. In this case, Treybal(53) 

states the binary system would best be fit by the van Laar equation* The 

system ethanol and water indicates a dissymmetry approaching 2, and would 

be best fit by the van Laar equation. Thus, it is shown that all quali­

tative examinations of the three binary systems indicate that the ternary 

system would be best fit by the van Laar equations.

Ethanol. Ethyl Acetate* and Water by the van Laar Equations*

In Table VI, page 44 > and Figure 7, page 45 > the values of ternary 

distribution for the system ethanol, ethyl acetate, and water, as 

predicted by the van Laar equations, are compared with the experi­

mental data of Beech and Glasstone^^* The comparison is based on 

constant values of solute in the solvent phase. The 2-suffix van Laar 

fits the experimental data in the dilute concentration range up to 5 

mole per cent ethanol in the water phase. Above 5 mole per cent the 

experimental data curves toward the hypotenuse, while the predicted 

curve continues upward. The Colburn van Laar fits the experimental 

data in the dilute range as well as the 2-suffix van Laar* However, 

the fit in the high concentration range, above 5 per cent ethanol



- 90 -

in the water phase, is not as good as that given by the 2-suffix 

van Laar. For example, at 17*50 mole per cent ethanol in the ethyl 

acetate phase, the experimental equilibrium concentration of ethanol 

in the water phase is 10.41 mole per cent. At this same datum point, 

the 2-suffix van Laar predicts an equilibrium concentration of 7*40 

mole per cent, and the Colburn van Laar predicts a concentration of 

7*00 mole per cent ethanol in the water phase. The 3-suffix van Laar 

with the experimental constant fits only the point of data used to 

determine the constant, while either the 2-suffix van Laar or the 

Colburn van Laar gives a better approximation of the experimental 

equilibria data over the remainder of the curve.

Ethanol. Ethyl Acetate, and Water, by the Margules Equations*

In Table VI, page 44, and Figure 8, page 46, the results obtained 

from predicting the ternary distribution of the ethanol, ethyl 

acetate, and water system are compared with the actual experimental 

values. The 3-suffix Margules equations do not fit the dilute 

range, above 5 per cent ethanol in the water phase, as well as the

2-suffix van Laar equations. However, on an average they fit the 

entire range of concentration more satisfactorily. This was not 

expected, as an analysis of the binary data indicated that the 

van Laar equation would be superior to the Margules equations for 

this system. The Colburn Margules, on the other hand, gives the 

worst fit for this system of any of the prediction equations.

Ethanol. Ethyl Acetate, and Water by the Method of Scheibel 

and Friedland. Figure 9, page 47, and Table XI, page 60, give the 

comparison of the experimental values of the ternary distribution
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data with those values predicted by the method of Scheibel and 

Friedland* The predicted curve gives an acceptable approximation 

of the experimental data over the entire range of concentrations*

As an over-all approximation of the actual data, the method of 

Scheibel and Friedland is superior to either the van Laar or 

Margules equations for this system*

Study of the System Acetic Acid, Benzene* and Water* From the 

values presented in Table XVIII, page 86, it is observed that the van 

Laar restrictions are not satisfied by the system acetic acid, benzene, 

and water. This condition indicates the van Laar equations would not 

result in an acceptable approximation of the ternary equilibria data for 

this system* From Table XVIII, the ratios of the binary constants for 

each of the three binary systems which compose the ternary system are:

Benzene, Water fecfri' =  0*765

Acetic acid, Water 0^659 =  0*0716

Acetic acid, Benzene Q*"3479 =  1*^6

These ratios show the systems benzene-water and acetic acid-benzene to 

be unsymmetrical to the same degree and the value of both ratios to be 

near unity. This indicates that the Margules equations would fit these 

two binary systems* The system acetic acid and water exhibits a large 

dissymmetry and cannot be fit by the Margules equations* Even the 

van Laar equations will not handle very large ratios of the binary con­

stants with accuracy. For this reason, the binary constants for the 

system acetic acid and water were obtained by plotting the composition 

as a function of the logarighm of the activity coefficient. The method
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of force-fitting the binary data into a point-slope form of the Margules 

or van Laar equations did not give acceptable results on this system.

This examination of the binary data indicates that the ternary system 

would not be fit by the van Laar equations, but the Margules equations 

might give an acceptable fit. Also, because the binary system acetic 

acid and water is not fit by either of the integrated forms, the pro­

bability of obtaining an acceptable approximation for the ternary system 

would be doubtful.

Acetic Acid. Benzene, and Water by the van Laar Equations. A 

comparison between the experimental ternary-liquid distribution 

data for the system acetic acid, benzene, and water, and that pre­

dicted by the van Laar equations is made in Table VII, page 48, and 

Figure 10, page 49* Neither the 2-suffix van Laar equation nor the 

Colburn van Laar equation fit the experimental data in an acceptable 

manner. Both equations appear to fit at the point 48.6 mole per cent 

acetic acid in the benzene layer. However, a study of Figure 10 will 

show that it is by mere chance as the predicted curves tend to cross 

on the experimental point in that range. The 3-suffix van Laar 

equation with the experimental constant gives a partially acceptable 

fit for the entire range of experimental values. This could be 

explained by considering the fact that all of the known experimental 

points are in the concentrated range from 29 mole per cent to 50 

mole per cent acetic acid in the water phase. Thus, if any equation 

containing three independent constants which did not fit the experi­

mental data at all, was given a forth constant which forced a fit 

through one point of experimental data, the over-all fit would be 

improved. This is, in effect, what the additional ternary constant did.
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Acetic Acid, Benzene, and Water by the Margules Equations* It 

■will be remembered that an analysis of the binary data indicated 

the Margules equations would result in a better fit for the system 

acetic acid, benzene, and water, than the van Laar equations. This 

was not the case, for on the plot of concentration of acetic acid 

versus predicted activity, the lines representing the two phases 

crossed. This is a physically impossible situatL on and could only 

indicate that the Margules equations do not represent this system.

Acetic Acid. Benzene, and Water by the Method of Scheibel and 

Friedland. Figure 11, page 50, and Table XI, page 60, shows the 

comparison between the actual ternary distribution data for the 

system acetic acid, benzene, and water with that data predicted by 

the method of Scheibel and Friedland. From a study of Figure 11, 

it is observed that the predicted curve gives an acceptable approxi­

mation of the experimental data. As an over-all approximation of 

the experimental data, the Scheibel and Friedland curve is superior 

to the curves obtained by either the 2-suffix van Laar or the 

Colburn van Laar. However, it is not as accurate in the high 

concentration range as the 3-suffix van Laar with the experimental 

constant•

Study of the System Acetone. Chloroform, and Water. The system 

acetone, chlorofom, and water satisfies the van Laar restrictions as 

shown in Table XVIII, page 86. This condition implies that the van Laar 

equations would result in a more acceptable approximation of the ternary- 

liquid distribution data for the system than the Margules equations.

From Table XVIII, the ratios of the binary constants for each of the 

three binary systems involved in the ternary system are:
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Acetone, Water = 1.35

Chloroform, Water Unity

Acetone, Chloroform ^'* ^ 7  = 1.30- o o 3 4

Thus, the two binary systems, acetone-water and acetone-chloroform, are 

shown to be relatively symmetrical and, according to Wohl^^)^ would be 

fit by the binary Margules equations. The binary system chloroform- 

water must be assumed as ideal since no binary data is available on this 

system. This assumption is the same as neglecting the effect of the 

solubility between these two components and can be justified by the classi­

fication system of Ewell^^). Following the preceding analysis of the 

binary data, it would not be easy to predict which of the equations would 

best fit the ternary system. The van Laar equations could be justified 

by the fact that the van Laar restrictions are fulfilled. However, the 

Margules equation could be justified, as the two binary systems are of 

the Margules form.

Acetone, Chloroform, and Water by the van Laar Equations. In 

Table VIII, page 51> and Figure 12, page 32, the results obtained 

from predicting the ternary distribution of the acetone, chlorofom, 

and water system are compared with the actual experimental values.

It is shown in Figure 12, that the 2-suffix van Laar equation fits 

the experimental points over the entire range of values, and is an 

excellent approximation of the ternary equilibria data. On the 

other hand, the Colburn van Laar equation does not result in an 

acceptable fit of the experimental points. The 3-suffix van Laar 

equation with an experimental constant fits the region where it was 

forced by the constant, but does not give an acceptable over-all fit.
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Acetone, Chloroform, and Water by the Margules Equations* A 

comparison of the predicted values of ternary distribution, -with the 

experimental values, is listed in Table VIII, page 51, and shown in 

Figure 13, page 53* Both the 3-suffix Margules and the Colburn 

Margules equations fit the experimental points better than any of 

the van Laar equations in the less concentrated range below 10 

mole per cent acetone in the water phase. The Margules equations, 

however, will not fit the curved portion of the distribution plot. 

Acetone, Chloroform, and Water by the Method of Scheibel and 

Friedland, Figure 14, page 54, and Table XI, page 60, shows the 

comparison between the actual ternary distribution data for the 

system acetone, chlorofom, and water, and that data predicted by the 

method of Scheibel and Friedland, Although the predicted curve 

attempts to follow the curve traced by the experimental data, it does 

not show the maximum represented by the experimental curve. This 

method results in a curve very similar to that given by the 3-suffix 

van Laar equations. However, it better approximates the experimental 

curve than the Margules equations which will not represent the curved 

portion of the experimental plot.

Study of the System Cyclohexane. N-Heptane, and Aniline. Working 

with the system cyclohexane, N-heptane, and aniline, is an example of 

attempting a prediction from an insufficient quantity of data. No vapor- 

liquid equilibria data were available for any of the three binaries, and 

the mutual solubility data could be found for only two of the binary 

systems. The binary constants for the N-heptane-aniline system and the 

aniline-cyclohexane system were calculated from the mutual solubility
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data, while the system N-heptane - cyclohexane was assumed to be ideal. 

From Table XVIII, page 86, the ratios of the binary constants for this 

system are:

Aniline, N-heptane if290 =

Aniline, Cyclohexane = 0.775

As the ratios are between 0*75 and 1.3> it was expected that either the 

Margules equations or the van Laar equations would fit equally well.

Cyclohexane. Aniline, and N-Heptane by the van Laar and Margules 

Equations. The predicted values of ternary-liquid equilibria data 

are compared with the experimental values in Table IX, page 55* The 

comparison of the experimental distribution data with the values 

predicted by the van Laar equations is shown in Figure 15> page 56, 

while the comparison with the values predicted by the Margules 

equation is shown in Figure 16, page 57* Neither of the standard 

equations, the 2-suffix van Laar nor the 3-suffix Margules, represent 

the experimental data accurately. The Colburn van Laar, while not 

acceptable, does give a closer fit than the two standard equations. 

The 3-suffix van Laar equation with an experimental constant results 

in the best over-all fit. This is to be expected as the 3-suffix 

van Laar was forced through one point of experimental data by the 

addition of the constant. Thus, its over-all accuracy was increased 

in the range of the constant.

nyeloheya-ne T Aniline, and N-Heptane by the Method of Scheibel 

and Friedland. The method of Scheibel and Friedland was not applied 

to the system cyclohexane, aniline, and N-heptane. There was not
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enough ternary solubility data available to sketch the phase enve­

lope, and the binary constants were calculated completely from 

binary solubility data. Thus, there was not enough information 

available to apply the Scheibel and Friedland method.

Predictive Study of the System Methanol. Water, and l-Nitronronane. 

The system methanol, water, and 1-nitropropane does not satisfy the 

van Laar restrictions. This is shown in Table XVIII, page 86. From 

Table XVIII, the ratios of the binary constants for each of the three 

binary systems which compare the ternary system are:

Methanol, Water q *203 = ^*^3

Methanol, 1-Nitropropane Unity

Water, 1-Nitropropane == 1*48

The ratio of the binary constants for the system methanol and water is 

less than 1*3• Thus, according to W o h l ^ ^ ,  the system would be fit quite 

well by the Margules equations. In contrast, the ratio of the binary 

constants for water and 1-nitropropane indicate the system would be best 

fit by the van Laar equations. The binary system methanol and 1- 

nitropropane must be assumed as ideal since no binary data is available 

on the system. Following the preceding analysis of the binary data, it 

would be very difficult to predict which of the equations would best fit 

the ternary system. The analysis of the individual binary systems results 

in no concrete justifications for picking either a van Laar or a Margules 

form. However, as the data on one system is unknown, one would assume 

that the accuracy of any prediction would be limited.
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Methanol. Water, and 1-Nitropropane by the van Laar Equations.

In Table X, page 58, and Figure 17, page 52, the results obtained 

from predicting the ternary distribution of the methanol, water, and

1- nitropropane system are compared with the experimental values. It 

is shown that the 2-suffix van Laar equation gives an approximate fit 

of the experimental points over the entire range of values. The

3-suffix van Laar equation with an experimental constant fits the 

region where it was forced by the constant, but does not give an 

acceptable over-all fit. The Colburn van Laar equation follows the

2- suffix equation up to 25 mole per cent methanol in the water phase, 

then continues to ascend at a steep slope.

Methanol. Water, and 1-Nitropropane by the Margules Equations.

The Margules equations, when applied to the system water, methanol, 

and 1-nitropropane, resulted in an eratic set of values for the 

ternary activities. This situation indicated that the Margules 

equations will not represent the system.

Methanol. Water, and 1-Nitropropane by the Method of Scheibel 

and Friedland. Since the binary activity coefficients for the methanol 

and 1-nitropropane system were not known, the method of Scheibel and 

Friedland did not apply to the system.

Discussion of Predictive Study. The material concerning the pre­

diction methods covered in the previous portion of the discussion has been 

summarized in Tabular form, Table XIX, page 99* From a study of this 

Table and the previously discussed conditions under which the predictions 

were made, the author has postulated:



TABLE XIX

Summary of Results Obtained from Comparison 

of Prediction Methods

* System Binary Coefficients 
Best Fit By

Fits van Laar 
Restrictions

Ternary Data 
Best Fit By

Dilute
Range

Over-All
Range

Acetic Acid, 
Benzene, Water

None No 2-suffix 
van Laar

Scheibel

Ethyl Acetate, 
Ethanol, Water

van Laar les 2-suffix 
van Laar

Scheibel

Acetone, 
Benzene, Water

Margules Yes 3-suffix
Margules

3-suffix 
van Laar

Acetone, Water, 
Chloroform

Margules Yes 3-suffix 
Margules

Scheibel

N-Heptane, Aniline, 
Cyclohexane

Margules No None None

Methanol, Water, 
1-Nitropropane

van Laar No 2-suffix 
van Laar

None
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1. The ratio of the binary constants are more indicative of which 

prediction method will best fit a ternary system than the van 

Laar restrictions.

2. If the integrated forms will not fit the binary data, they will 

not fit the ternary data.

3. Accurate predictions of ternary data will not generally result 

when mutual solubility data are used to obtain the binary constants.

4* The integrated equation which best fits the binary data will result 

in an acceptable approximation of the ternary system in the dilute 

range•

5* The Colburn constant when applied to the integrated forms does not 

aid the accuracy of the prediction.

6. The Wohl constant when applied to the integrated forms will increase 

the accuracy of the prediction only in the range of the experimental 

point used.

7. The method of Scheibel and Friedland is limited in application as 

it can not be used on all ternary systems. If the activity 

coefficients of the solute in one binary system are of a different 

order of magnitude than the activity coefficients in the other 

binary systems, the method will not apply.

• When the method of Scheibel and Friedland does apply, it will give 

an acceptable approximation of the ternary distribution data over 

the entire range of concentrations.

8
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Recommendations

The recommendations presented have evolved in the process of conduct­

ing this investigation and evaluating its results* They are concerned 

both with methods of improving the predictive comparisons mentioned in 

this thesis, and the possible extensions of the work through the use of 

more fundamental methods*

Method of Calculating Equilibrium Points from Activities. The 

present method of plotting solute activities as a function of solute con­

centrations, drawing lines of constant activity, and reading equilibrium 

points, is not completely satisfactory. To begin with, this method is 

mathematically unsound. As pointed out by Mickley(35), a plot on which 

the ordinate and abscissa are functions of the same variable is not 

reliable, for large discrepancies in the curve are minimized. Also, this 

method is the bottleneck in the predictive process in respect to both 

accuracy and time. The graph is slow to construct and read. Then too, 

the resulting accuracy to the prediction is limited by the size of graph 

paper used. It is recommended that a method be perfected whereby the 

entire operation could be performed on the digital computer. Possibly a 

series of simultaneous equations could be developed and programmed which 

would satisfy this condition.

Method of Obtaining Experimental Data. It is recommended that any 

future investigators attempting to obtain a working prediction method use 

only data from one source in their correlations. That is, all of the binary- 

vapor liquid data used to obtain the solution constants for a particular 

ternary system should come from one source, should be reliable, and should
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have been obtained, by the same experimental methods. Even -with the 

infallible prediction equation, the ternary distribution data approxi­

mated by it vail be no more accurate than the binary data from which it 

was obtained. The author feels very strongly that using binary data 

obtained from 40 years of chemical literature, most of which has been 

obtained by different experimental techniques, is expecting too much of 

any predictive method. True, this would be necessary upon occasion when 

the method was actually being used, but it is no way to test originally 

the validity of the method.

New Approach to Prediction. It is possible that working for methods 

to improve the approximate equations resulting from the Gibbs-Duhem 

equation is a stagnate approach to this problem of predicting ternary- 

liquid equilibria data. A more satisfactory solution to the problem

could, and probably does, lie in a new approach----that of numerical

analysis. The recent publication of Boberg and White(?2) could possibly 

be the starting point for such a solution and should be investigated.

Limitations

The experimental work presented in this thesis was limited to the 

measurement of the mutual solubility data and the ternary distribution 

data for the liquid system water, methanol, and 1-nitropropane. The 

portion involving the comparison of the validity of prediction methods was 

limited to the study of six different ternary-liquid systems. These 

were: (1) ethanol, ethyl acetate, water; (2) acetone, benzene, water; 

(3) acetic acid, benzene, water; (4) acetone, chloroform, water;

(5) cyclohexane, aniline, N-heptane; and (6) water, methanol, 

1-nitropropane•
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Temperature Limits. Mutual solubility data for the ternary system, 

water, methanol, and 1-nitropropane were determined at 25 °C and 30 °G 

only. As no noticable difference in the solubility data was observed at 

the two temperatures, the ternary-liquid equilibria data were determined 

at 25 °0 only.

Density Limitations. At high concentrations of methanol, that is, 

above 30 weight per cent methanol in a one-phase mixture of water and 

1-nitropropane, the two phases separated very slowly. This condition 

would make the system unsuitable for use in a countercurrent continuous 

liquid extraction unit.

Data Obtained from Literature. The binary solution constants were, 

in every case, calculated from data obtained in the literature and were 

assumed to be correct. Wherever possible, the data of the author was 

checked with that of other authors to see if it was consistent. The 

data on the system acetone-benzene were checked in three different sources, 

and three unrelated sets of data were found at one atmosphere pressure.

In this case the author chose the most recent w o r k ---that of Othmer •

Temperature Limitations on Binary Constants. The binary solution 

constants obtained from vapor-liquid data were obtained from constant 

pressure data. That indicates the resulting binary constants were assumed 

independent of temperature. This is not strictly true. However, in most 

cases it is a good approximation.
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V. CONCLUSIONS

The conclusions of this thesis pertain to: (1) the experimental 

determination of the ternary-liquid data for the system water, methanol, 

and 1-nitropropane; and (2) the comparison of six methods to predict 

ternary-liquid equilibria data. The conclusions are as follows:

1. The liquid system water, methanol, and 1-nitropropane forms but one

pair of partially miscible liquids over the entire concentration range. 

The mutual solubility data for this system were experimentally deter­

mined at two temperatures --  25 °C and 30 °C.

2. The liquid equilibria data for the ternary system water, methanol, and 

1-nitropropane were experimentally determined at 25 °C.

3. The equilibria data for six ternary-liquid systems were predicted by 

six different methods. The predicted data were compared with the 

experimental data for each system. On the basis of the mole per cent 

solute in the solvent phase, the prediction methods which resulted in

. the most accurate fit of the experimental data for each system are:

a. The equilibria data for the liquid system acetone, benzene, 

and water at 30 °C were best predicted by the 3-suffix 

Margules equation up to 7.23 mole per cent acetone and the

3-suffix van Laar equation from 7*23 to 17*5 mole per cent 

acetone. The Colburn Margules and the 2-suffix van Laar 

equations fit the data up to 3«34 mole per cent acetone. The 

method of Scheibel and Friedland did not apply to this system.

b. The equilibria data for the liquid system ethanol, ethyl 

acetate, and water at 20 °C were best predicted by the 2—suffix 

van Laar equation up to 4«$2 mole per cent ethanol and the
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Scheibel and Friedland method from 4*70 to 10*5 mole per cent 

ethanol. The Colburn van Laar, the 3-suffix Margules, and the 

Colburn Margules equations fit the data up to 3*70, 1.70, and 

3*41 mole per cent ethanol respectively.

c. The equilibria data for the liquid system acetic acid, benzene, 

and water at 30 °C were best predicted by the 3-suffix van Laar 

equation up to 49*3 mole per cent acetic acid and the Scheibel 

and Friedland method from 49*3 to 50.24 mole per cent acetic 

acid. The Colburn van Laar, the 3-suffix Margules, and the 

Colburn. Margules equations did not fit the experimental data.

d. The equilibria data for the liquid system acetone, water, and 

chloroform at 25 °C were best predicted by the 3-suffix Margules 

equation up to 19.51 mole per cent acetone and the method of 

Scheibel and Friedland from 19*51 to 32.42 mole per cent 

acetone. The Colburn van Laar, the 3-suffix van Laar, and the 

Colburn Margules equations fit the data up to 1.5, 5*50, and 

15.13 mole per cent acetone.

e. The equilibria data for the liquid system aniline, cyclohexane, 

and N-heptane were not approximated to an acceptable degree by 

any of the six methods used.

f. The equilibria data for the liquid system methanol, water, and 

1-nitropropane at 25 °C were best predicted by the 2-suffix 

van Laar equation up to 48.02 mole per cent methanol. The 

Colburn van Laar equation fit the data up to 41*03 mole per cent 

methanol. The remainder of the prediction methods used did not 

result in an accurate approximation of the data.
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VI. APPENDICES

This section is divided into four parts: (l) Appendix A, nomen­

clature used in the thesis; (2) Appendix B, list of materials and 

apparatus used in the experimental work; (3) Appendix C, programs for 

the Royal-McBee LGP-30 Digital Computer used to perform the calculations 

for the thesis; and (4) Appendix D, the data taken during the experi­

mental work and the output results of the computer.
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APPENDIX a 

Nomenclature

The nomenclature used in this thesis is as follows:

A = binary solution constant, unitless 

a = activity, mole fraction 

B = binary solution constant, unitless 

C = ternary solution constant, unitless 

°C = temperature, degrees Centigrade 

d = density, grams per cubic centimeter 

g = activity coefficient, unitless

K = A12 - A-]_3 - A32^A13^A31^ witless 
P = total pressure, pressure units 

p = vapor pressure, pressure units

* = Z^Z3(A12 + AI3) - W 13 ■ V 0  + \ z ‘
q = arbitrary factor replacing molal volume, volume units

V = right hand member of 3-suffix van Laar equation, unitless

= volume of component N in a mixture, volume units

W = ZgZj  -  unitless

= total weight, grams

=  weight of component N in solution, grams 

X  = liquid composition, mole fraction 

• Y =  vapor composition, mole fraction 

Z = effective volume fraction, unitless
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Subscripts.

1 = solute

2 = carrier

3 = solvent

N = component N in mixture 

Superscripts.

1 = phase one of two phases

ft = phase two of two phases

* =  degrees
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APPENDIX B 

Materials

This section contains a list of materials used in the performance 

of the experimental work for this thesis.

Alcohol. Methyl. G. P., over 90 % pure, Catalog No. NA-611. 

Obtained from Fisher Scientific Company, New York, 14, N. Y. Used 

as solute in ternary-liquid system.

1-Nitropropane. Purity by weight 99$ minimum. Specifications; 

specific gravity, 1 .003; acidity as acetic acid, % by weight, 0.2; 

water, % by weight, 0.2; color, APHA, max, 20. Obtained from 

Commercial Solvents Corporation, New York 1$, N. Y. Used as carrier 

in ternary-liquid system.

Water. Distilled. Purified by distillation unit in the Chemical 

Engineering Department of the University of Missouri School of Mines 

and Metallurgy. Used as solvent in ternary-liquid system.

Apparatus

The following apparatus was used in the experimental work for this 

thesis;

Balance. Analytical. Ainsworth Analytical Balance, Model BB 

with chainweight attachment, sensitivity of 0.05 milligram. Catalog 

No. V7074* Obtained from Aloe Scientific Company, St. Louis 3, 

Missouri. Used to calibrate glassware.
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Balance. Specific Gravity. Westphal type with Riemann Plummet, 

displaces 5 grams of distilled water at 20 °C, sensitivity 0.005 

gram. Catalog No. V'7320. Obtained from Aloe Scientific Company,

St. Louis 3, Missouri. Used to obtain specific gravity of ternary 

system.

Bottles. Polyethylene. Narrow mouth Boston round, no known 

solvent at room temperature. Catalog No. 2-923• Obtained from 

Kimble Laboratory Glassware Division of Owens-Illinois, Toledo 1, Ohio. 

Used to store mixtures of ternary system.

Bottles. Specific Gravity. Weld type, 80 mm high, capacity 

approximately 25 ml. Obtained from Kimble Laboratory Glassware 

Division of Owens-Illinois, Toledo 1, Ohio. Used to determine dinsity 

of pure components.

Buret. Straight glass, stopcock, Micro (Class A), meet require­

ments of Federal Specification DD-V581A, 10 ml. capacity, subdivision 

2/100 ml., tolerance ± 0.02. Obtained from Kimble Laboratory Glass­

ware Division of Owens-Illinois, Toledo 1, Ohio. Used to titrate 

known quantities of material.

Computer. Digital. LGP-30, desk size, stored program, medium 

scale capacity. Maximum memory of 409b words, drum rotates at 4000 

revolutions per minute, maximum access time 15 milliseconds. Manu­

factured by the Royal McBee Corporation, Port Chester, N. X. Used 

to process experimental data and predict ternary-liquid equilibria data.

Constant Temperature Control. For Refractometer. Precision, 

temperature control 15 to 100 °C ± 0.01 °C, pumping capacity 5 gal. 

per min., both capacity 2.25.gal. Heating capacity is 450 watts at
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115 volts, 60 cycle alternating current, single phase. Capacity is 

two and one-half gallons. Catalog No. VP 66600. Obtained from 

aloe Scientific Company, St. Louis 3, Missouri. Used for dipping 

refractometer constant temperature control.

Cylinder. Hydrometer. Heavy glass, diameter 25 mm., height 150 

mm., Capacity 50 ml. Obtained from Kimble Laboratory Glassware 

Division of Owens-Illinois, Toledo 1, Ohio. Used with Westphal 

Balance for specific gravity determinations.

Funnel. Separatory. Globe type, length of stem 175 mm., capacity 

60 ml. Obtained from Kimble Laboratory Glassware Division of Owens- 

Illinois, Toledo 1, Ohio. Used to separate two phase mixtures.

Heating Tank. Glass bo.ttom, illuminating mirror. Catalog No. 

V71410. Obtained from Aloe Scientific Company, St. Louis 3, Missouri. 

Used when performing cloud point titrations.

Jar. Cylindrical. Plain Pyrex, height 12 inches, diameter 12 

inches, capacity 4*5 gallons. Obtained from Aloe Scientific Company, 

St. Louis 3, Missouri. Used for constant temperature bath for bulk 

material.

Refractometer. Dipping. Bausch and Lomb. Range between 

refractive indices of 1*32 and 1*54, accuracy is 3*5 units in 5th 

decimal place. Catalog No. V71400. Obtained from Aloe Scientific 

Company, St. Louis 3> Missouri. Used to obtain refractive index of 

ternary mixture.

Thermoregulator. Constant temperature circulation, 750 watt 

heater, controls between 0 ®G and 100 °C, accuracy +  0.01 °C.

Obtained from Aloe Scientific Company, St. Louis 3, Missouri. Used 

for constant temperature control of bulk material.
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APPENDIX C 

Computer Programs

This appendix contains all programs for the Royal-McBee LGP-30 

Digital Computer used during the course of this investigation. Complete 

data input, data output, and coding sheet information are included with 

each program.
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This program was used to compute mole fractions from weight 

fractions of a three component system. The maximum capacity for this 

program is 32 mixtures of different compositions for any three component 

system.

Input. Via Data Input 24*2. Occupies portion of four con­

secutive tracks beginning with track 5000. Tracks 5000, 5100, 5200; 

N words per track arranged in tracks in order of Component A, 

Component B, Component C. Track 5300, seven words which are con­

stants for system. These words are arranged in sector order of mole 

weight A, mole weight B, mole weight C, one, number, N, of data 

words, minus one, and minus one. Maximum N is 32 data words.

Output. Via Data Output 24*2. Printout N times three words 

in the following order and form:

Mole fraction A Mole fraction B Mole fraction C 

.XXXXX .XKXXX .JQQQQC

Storage. Program occupies 67 locations of instructions 

beginning at track 5400 and 200 maximum location of data and 

temporary storage beginning at track 5000.

Time. 26 minutes for 18 mixtures

Program I
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Program. I Coding Sheet

50005400*/ooooooo*

r6300 »u0400 » i5000 »i5100*15200 *i5300 *u5448»2c0032»
2 i0 0 0 2 *2e0000* b5306*a5310»h5310* s5308 *t5 4 l6 *u 5 4 4 7 * 
2b5000»d5300»2h5000»2b5100»d5302f2h5100t2b5200*d5304t 
2h5200»2a5000 * 2a 5100 * r5 3 0 6 *h5320 * 2m5000 * 2h50001b5320 *
2m5100»2h5100*b5320 * 2m5200»2h5200»2b5000 * z0006 »d0000*
2b5100 * z0006»dOOOO12b5200 * z0006 *m0000* 2z5410»zOOOOT 
b5312»h5310»eOOOO»b 5 5 0 0 5407Tb 5 3 0 1 54091r6300» 
u0400*u0000* ,0000005»404020xj»1018602Q *xj102860 *20xj1038 *40400000* 
u5407Tz0032»z0000t.0005400*
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This program was used to compute activity coefficients as a function 

of liquid composition for a binary system from binary total pressure 

vapor-liquid equilibria data* The maximum capacity for this program is 

32 points of vapor-liquid equilibria data* A knowledge of the vapor 

pressure as a function of temperature relationships as defined by the 

Antoine equations'( 5 ® ) are necessary for the use of this program*

Input* Via Data Input 24*2* Occupies portion of four con­

secutive tracks beginning with track 5000* Track 5000, ten words 

which are constants for the system. These words are arranged in 

sector order of, 273*16, total pressure in mm Hg, A&, B&, A^, B^, 

100, one, minus one, N. Tracks 5100, 5200, 5300; N words per track 

arranged in tracks in order of, Ya in mole per cent, Xa in mole 

per cent, T in ®C. Maximum N is 32 data words.

Output* Via Data Output 24*2. Printout N times four words in 

the following order and form:

Mole fraction A Activity Mole fraction B Activity
coefficient A coefficient B

•xxxx .m  * m  * x m
Storage* Program occupies 66 locations of instructions and 

constants beginning at track 4900* Maximum of three tracks of data 

beginning at track 5100*

Time* 31 minutes for 32 points of vapor-liquid equilibria

Program II

data



Program II Coding Sheet

; 00049001/00000001

r6300»u0400»i5000»i5100*i5200»i5300t2c0032t2i0002» 
2e0000»b50l6 * a5014T h50l6»b5018 *s50l6 * t4956»2b5100 * 
2d5200»2h5500»2b5300*a5000 f 2h5400»b5004T2d5400»a5006 
hOOlO»2r5500 »m5002*2h5 500 * b5012»2s5200»2h5700»b5012» 
255100»2d5700 »m5002* 2h5800 * b5008»2d5400»a5010 *h00101 
2r5SOO»2h5800 ’rnOOOO »2b5200*z0004T dOOOO * 2b5500 *z0004T 
dOOOO»2b5700»z00041dOOOO*2b5800 * z0004TmOOOO12z4909T 
zOOOO1 •0004900T



- 117 -

Program III

This program was used to compute binary solution constants for the 

van Laar equations from activity coefficients obtained from binary total 

pressure vapor-liquid equilibria data- The maximum capacity for this 

program is 15 points of activity coefficient data- Use only data between 

0-25 and 0-75 mole fraction.

Input. Via Data Input 24*2- Occupies portion of three consecutive 

tracks beginning with track 4700- Track 4700, 6 words which are constants 

for the system- These words are arranged in sector order of one, number 

of data points, zero, zero, zero, zero- Track 4800, N data words, mole 

fractions of component A- 4900, N data words, activity coefficients of 

component A- Maximum N is 15*

Output. Via Data Output 24*2- Print out binary solution constants 

in the following order and form:

Aba Aab

o.xxxx o.xxxx
Storage- Program occupies 69 locations of instructions beginning at 

track 5000 and 40 maximum locations of data and temporary storage beginning 

at track 4700-

Time. 20 minutes
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Program III Coding Sheet

;0005000f /0000000f

r6300 *u0400 * u5100 * 2c0015f 2i0002 *2e0000»b4700 *2s4800 * 
2r4800 *14712»a4704T14712 Tm4712?a4706?2b4900 *nOOlO» 
bOOOO*rOOOO«r4700 * h4714* a4708 *b4714 fm4712f a4710»
2z5006 *b4704fm4708»d4702? h4714!14710? s4714* h4712*
14704fm4704Td4702* h4714f14706 *s4714f14714114712« 
d4714f h4712 *m4704T14714T14708 * s4714*14702 * h47141 
b4700 *d47141m4714114716T b4714TrOOOO *d4712 *14718? 
mOOOO *mOOOO *14716» z0003T dOOOO *b4718*z00031 zOOOO* 
uOOOO*,0000004T 404020a4f10b4a460 * 20a410a4f14000000 * u50031
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This program was used to evaluate the ternary constant as defined 

by W o h l ^ ^  for the 3-suffix van Laar equations. The data necessary to 

use this program are: (l) the binary solution constants and (2) one 

point of ternary-liquid equilibria data for the system under consider­

ation.

Input. Via Data Input 24*2. Occupies portions of three con­

secutive tracks beginning with track 3000. Track 3000; seven words 

arranged by sectors as, A_^, A ^ ,  A ^ ,  A ^ ,  two, one. Track

$100; three words, equilibria mole fractions in the solvent phase 

arranged by sectors as X^, X^> X^* Track $200; three words, 

equilibria mole fractions in the carrier phase arranged by sectors 

as X^, X^, X^. Subscripts indicate as follows: 1, solute; 2, carrier 

and 3> solvent.

Output. Via Data Output 24*2. Four words in the following 

order and form:

Factor K (XXXXXXXX. - OX -)

Factor P (XXXXXXXX. - OX -)

Ratio of mole fractions (XXXXXXXX. - OX -)

Ternary constant (XXXXXXXX. - OX — )

Storage. Program occupies 100 locations of instructions and 

constants beginning at track $300.

Program IV

Time. 4 minutes



Program IV Coding Sheet

;0005300f /00000001

r6300 »u0400»i$000»±5100 * i5200 »u5428»2c0000 * 2i0100 * 
2e0000»b500afd5000*h5014,b5006*d5002»h50l6»b5004f 
d5006 »m5002*h5018 * b5000 »a5002» s5018»h5018*b5014» 
2m5102» 2a5100»2h5106»b50l6*2tn5104t2a5106»2h5106»2b5100
2d5106»2h5108 * 2b5102 »m5014f 2d5106»2h5110 * 2b5104 fm50l 6» 
2d5106»2h5112»2b 5H 0»2tn511Q »m5000»2h5114f 2b511212m$112 
m5002* 2a5114f 2h5H 4’ 2b5110 * 2m5H2 »m5018*2 a 5 H 4 f 2h51141 
2b5110»2m5112 * 2h5118 * 2m5108 *m501O»2h5120»2b 511812s5120

2 h 5 H 6 »2z53231 b5114t s5214,b5020 * b51l6»s52l6»h5022t 
b5200T d$100* h5024f b5024f nOOlO* h50261 s5020 * d50221 
yOOOO* h5028f mOOOO * p5020f dOOOOf p$022f dOOOO1 p50241 
mOOOO »mOOOO * p$028»zOCXX)»eOOOO »b5436 *y5306»b54371 
y5308 * r6300 * u0400 »u5306 * zQ002»zOOQOf
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Program V

The function of this program is to compute the activity coefficients 

and activities of the solute in a three component liquid mixture at 

various points around the ternary solubility curve* The relationship 

between activity coefficients and liquid compositions used in this 

program is the 3-suffix van Laar equations as developed by W o h l ^ ^  •

The data necessary to use this program ares (l) the binary solution 

constants, (2) the ternary solubility curve, and (3) one ternary 

constant, C. The program is written so the 2-suffix van Laar results 

when the ternary constant, C, is assumed to be zero*

Input* Via Data Input 24*2* Occupies portion of four con­

secutive tracks beginning with track 3700* Track $700, $800, $900;

N words per track arranged in tracks as N points of solubility data 

in mole fraction units in order of solute, carrier, solvent. Track

6000, eight words arranged in sectors as A , A  „, A  , A , A  .* 12 21 13 31 23
A , C, one* Subscripts indicate as follows: 1, solute; 2, carrier;
32

and 3, solvent* Maximum N is 32 data words.

Output. Via Data Output 24*2 with Alpha-numeric table headings. 

Printout, N times four words in the following order and form:

Mole fraction Log activity
solvent coefficient

* x m x *xxm

Activity
coefficient

• x m x

Activity 

*XH2X

Storage* Program occupies 93 locations of instructions and 

constants beginning at track $100* Ten locations of temporary 

storage (track 6000, sectors 16 to 34)* N, the number of points of 

solubility data, must be typed into location 6100 in the form ZXXXN, 
maximum N is 32 data words.

Time* 12 minutes



Program V Coding Sheet

;000$100T/00000001

r63OO*uO4OO,i$7OO»i$8OO»i$9O0»i6OOOtu$223,eOOOO» 
b6100*y $1121 r6300 *u0400»2c000012i0002’ 2e0000»b60101 
m6004fd6006 »h6016 * b6000 »a6004T s60l6 »h60l6 *b6000 * 
d6002»h6018tb6004td6006*h6020»2b$800fd6018f2a$700t 
h6022»2b$900*d6020 * a6022f h6022* 2b $700 * d6022*h60241 

2b$800*d6018»d6022Th6026»2b$900»d6020»d6022fh6028» 
b6026 tm6026 »m6000*h6030»b6028»m6028 »m6004* a6030 * 
h6030»b6026 »m60<:8 »m60161 a6030f h6030T b6024f a6024*

s6014 f m6026 »m6028 »m60l2 * a6030»h6030f hOOlO»h6030 *
2b$700*z000$»dOOOO»b6030»z000$»dOOOO * b6032* z000$» 
dOOOO»2b$700 fm6032f z000$ »m0000» 2z $129 f zQOOO *uOOOO *
,000000$ *40402Gxj16020L810 '& )  g8zj 20 M 86Q2186O *10a44000*u$107
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Program VI

The function of this program is to compute the activity coefficients 

and the activities of the solute in a three component liquid mixture at 

various points around the ternary solubility curve. The relationship 

between activity coefficients and liquid compositions used in this 

program is the 3-suffix Margules equation as developed by Wohl(^). The 

data necessary to use this program are: (1) the binary solution con­

stants, (2) the ternary solubility curve, and (3) one ternary con­

stant, C. The program is written so the 2-suffix Margules results when 

the ternary constant, G, is assumed to be zero.

Input. Via Data Input 24*2. Occupies portion of four con­

secutive tracks beginning with track $600. Tracks 5600, 5700, 5800; 

N words per track arranged in tracks as N points of solubility data 

in mole fraction units in order of solute, carrier, solvent. Track 

5900, eight words arranged in sectors as A ^ >  A,^, A_^, A ^ ,  A ^ ,  

A ^ ,  C, one. Subscripts indicate as follows: 1, solute; 2, carrier 

and 3, solvent. Maximum N is 32 data words.

Output. Via Data Output 24*2 with Alpha-numeric table headings 

Printout, N times three words in the following order and form:

Mole fraction solvent Activity coefficient Activity

.n m  ,nnx .xmx
Storage. Program occupies 86 locations of instructions and 

constants beginning at track 4900. N, the number of points of 

solubility data, must be typed into 6100 in the form ZXXXN. Maximum 

N is 32 data words.

Time. 13 minutes
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Program VI Coding Sheet

; 0004900»/0000000»

r6300 *u0400»i5600»15700*i5800 *15900»u50l6»eOOOO1 
b6l00»y4912* r6300*u0400»2c0000 * 2i0002*2e0000*b 5914'r 
a5914Th6000 * b5902* s5900 »h6002* b5906»s5904fh6004* 
b5902ta5904ls5910»h6006»b59:LO»s5908»h6008*b6002»
2m5600 *m60Q0 * a5900 * 2m5700 * 2m5700 * h6010»b6004T 2m5600 * 
m6000»a5904f 2m5800*2m5800 »a6010 *h6010 »b6004* 2m5600*
m6000»a6006 * h60l2»b6008 *1116000 * 2m5800 * a6012 * h60121
2b 5600 ,m6000 * s5914*m59l2» a6012* 2m5700»2m5800 * a6010»

hOOlO *h6010 * 2m5600 * h6012»m0000 *m0000 * 2b5600 * z0005 *
dOOOO * b6010* z0005T dOOOO»b6012* z000512z49311zOOOO *
uQOOQ1,0000005*404020x0 *10186010 *a4c460a4f e4t4i4vo fi4t4y400*u49071.0004900*
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APPENDIX D

Experimental Data

This section of the thesis contains both the experimental data 

obtained in the literature, and the data processed by the LGP-30 

Digital Computer. Tables XX through XXV and Figure 23 are concerned 

with the experimental work, while Tables XXVI through XXX are concerned 

with the prediction studies.
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TABLE XX

Density of Pure Components Methanol and 

1-Nitropropane Determined by a 

Weld Pyemometer at 25 °C

Substance Density

grams per cc

Methanol 0.7906
1-Nitropropane 1.002
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t a b l e m

Experimental Cloud Point Data Used to Determine 

the Ternary Solubility Data for the 

System Water. Methanol, and 

1-Nitropropane at 30 °C

Test No. Volume of Volume of Volume of Water
1-Nitropropane Methanol at Cloud Point

cc cc cc

1 0.00 10.00 0.185
2 ^.00 10.00 0.291
3 4.00 10.00 0.451
4 0.00 10.00 0.179
3 3.00 10.00 0.604
6 6.00 10.00 0.701
7 8.00 10.00 1.131
8 10.00 10.00 1.704
9 12.00 10.00 2.390

10 14.00 10.00 3.320
11 13.00 10.00 4.200
12 17.00 10.00 5*5SO
13 19.00 10.00 7.453
14 21.00 10.00 10.076
13 2.00 0.54 5.00
16 4.00 1.36 5.00
17 6.00 2.39 5.00
18 10.00 4.63 5.00
19 13.00 6.06 5.00
20 0.00 0.01 5.00
21 4.00 1.22 7.00
22 2.00 0.46 10.00
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TABLE XXII

Experimental Cloud Point Data Used to Determine 

the Ternary Solubility Data for the 

System Water, Methanol, and 

1-Nitropropane at 25 ° C

Test No* Volume of Volume of Volume of Water
1-Nitropropane Methanol at Cloud Point

cc cc cc

1 0.10 0.00 10.00
2 0.26 2.00 10.00
3 0.38 4.00 10.00
4 0.48 6.00 10.00
5 0.91 8.00 10.00
6 1.42 10.00 10.00
7 1.99 12.00 10.00
8 2.91 14.00 10.00
9 3.65 16.00 10.00

10 5.00 2.00 0.38
11 5.00 4.00 1.26
12 5.00 6.00 2.16
13 5.00 8.00 3.23
14 7.00 4.00 1.18
15 10.00 2.00 0.40
16 5.00 10.00 4-38
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TABLE XXIII

Refractive Index Around the Ternary Solubility 

Curve of Methanol. Water, and 

I-Nitropropane at 25 °C

Test Composition
Methanol

Refractive
Index

Weight % Unitless

1 0.00 1.33335
2 13.355 1.33717
3 23.355 1.33901

Water 4 31.164 1.34184
Phase 5 36.706 1.34343

6 40.921 1.34478
7 44.191 1.34539
8 46.184 1.34707
9 48.127 1.34780

10 22.785 1.38396
11 33.639 1.37258

1-Nitropropane 12 39.922 1.36584
Phase 13 43.519 1.35604

14 27.955 1.37962
15 13.245 1.39211
16 45.793 1.35395
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Refractive Index, Unitles3

Figure 23. Refractive Index as a Function of Methanol 
Composition Around the Solubility Curve for 
the System Methanol, 1-Nitropropane, and 
Water at 25 *C
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TABU] XXIV

Experimental Data for the Determination of Liquid 

Equilibria in the Two-Phase System. Water. 

Methanol. 1-Nitropropane. at 25 °C

Test Composition
Water

Composition
1-Nitropropane

Composition
Methanol

Weight of 
Sample

Weight % Weight % Weight % Grams

1 40.913 51.021 8.0637 97.482
2 50.744 44.254 5.0015 78.596
3 48.327 42.146 9.5272 82.528
4 44.123 38.480 17.397 90.390
5 40.592 35.401 24.007 98.253
6 46.129 40.229 13.641 86.459
7 37.584 32.778 29.638 106.12
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TABLE m

Experimental Data for the Determination of 

Equilibria Distribution in the System 

1-Nitropropane. Methanol, and 

Mater at 25 °C

Composition of Refractive Index of
Original Mixture Light Phase Heavy Phase

Test Water 1-Nitropropane Methanol R. I. R. I.

Wt. % Wt. % Wt. % Unitless Unitless

1 46.129 40.229 13.641 1.33821 1.397a
2 44.123 38.480 17.397 1.33931 1.39362
3 40.392 33.401 24.007 1.34063 1.38662
4 37.584 32.778 29.638 1.34198 1.38032
5 34.215 30.823 34.962 1.34386 1.33301
6 34.79b 23.333 39.651 1.34309 1.37107



133

TABLE XVI

Equilibrium Data Obtained from the 

Literature Used in Comparison 

of Prediction Methods

Ternary System Ternary Distribution Data Binary Equilibria at
Atmospheric Pressure

Solute 1 Solvent 2 Solvent 3 Reference Temp, °C Binary 3-1 
Reference

Binary 2-1 
Reference

Binary 3-2 
Reference

Acetone Water Benzene (37) 43 (38 B (39)1 (40)2
Acetic Acid Benzene Water (41) 23 (43 (42)1 (40)^
Acetone Chlorofom Water (41) 23 (44)1 (42)1 —
Ethanol Water Ethyl Acetate (45) 20 (46)^ (40)1 (40)
Cyclohexane N-Heptane Aniline (47) 23 (47)1 2 (47)2 —

1. Binary vapor-liquid equilibria data at 1 atmo
2. Mutual solubility data at 23 °C
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TABLE XXVII

Solute Activity as a Function of Liquid Composition* Predicted 

by Various Methods. for the System Ethyl Acetate* 

Ethanol. and Water at 20 *C

Compo sition^* Activity of Ethanol*
Ethanol

2-suffix 3-suffix** Colburn^ 3-suffix Colburn-*
van Laar van Laar van Laar Margules Margules

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01718 0.05977 0.06506 0.05887 0.06314 0.06255

Water 0.03350 0.10768 0.11714 0.10608 0.11455 0.11345
Phase 0.04730 0.14181 0.15408 0.13964 0.15255 0.15098

0.06450 0.17651 0.19380 0.17360 0.19128 0.18906
0.08120 0.20164 0.22403 0.19789 0.22123 0.21818
0.10340 0.22104 0.25186 0.21596 0.24591 0.24137

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.03300 0.05338 0.06766 0.05117 0.06057 0.05677

Ethyl Acetate 0.08370 0.11783 0.15304 0.11247 0.13326 0.12449
Phase 0.11100 0.14268 0.18894 0.13572 0.16066 0.14977

0.13680 0.16470 0.21772 0.15671 0.18381 0.17173
0.16780 0.18400 0.24364 0.17502 0.20361 0.19094
0.17540 0.19178 0.25186 0.18270 0.21364 0.20172

■fr All tabular values in mole fraction units

1* Solubility data of Beech, D* G., and S* Glasstone; J* Ch©n. Soc* 
(1938) 67

2. Ternary constant, C =  1.363, Calculated by method of Wohl from data of 
Beech and Glasstone

3. Ternary constant, C = 0.2428, Calculated by Colburn approximation
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TABLE XXVIII

Solute Activity as a Function of Liquid Composition. Predicted 

by Various Methods, for the System Acetone.

Benzene, and Water at 30 °C

Composition^* Activity of Acetone*
Acetone

2-suffix 3-suffix^ Colburn^ 3-suffix Colbum3
van Laar van Laar van Laar* Margules Margules

0.03338 0.21466 0.21210 0.21455 0.21755 0.21745
0.07225 0.37933 0.37127 0.37900 0.38875 0.38843

Water 0.11842 0.49380 0.47377 0.49298 0.51111 0.51021
Phase 0.17477 0.55970 0.52417 0.55823 0.58347 0.58167

0.24881 0.56544 0.51202 0.56319 0.59204 0.58877
0.37237 0./+8304 0.45035 0.48168 0.50139 0.49763
0.53068 0.42947 0.51139 0.43250 0.42997 0.43120

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.12916 0.17159 0.15483 0.17088 0.17691 0.17598

Benzene 0.24699 0.27233 0.23463 0.27021 0.28739 0.28490
Phase 0.35594 0.35566 0.32834 0.35452 0.37213 0.36991

0.44656 0.38201 0.37964 0.38191 0.39972 0.39826
0.51893 0.40249 0.45160 0.40435 0.41331 0.41400
0.55767 0.42115 0.51908 0.42471 0.42234 0.42470

# All tabular values in mole fraction units

1. Solubility data of Briggs, S. W. and E. W. Comings: Ind. Eng. Chem, 
35, 411 (1943)

2. Ternary constant, C =  10.69, Calculated by method of Wohl
3. Ternary constant, C =  0.43, Calculated by Colburn approximation



TABLE XXIX

Solute Activity as a Function of Liquid Composition, Predicted 

by Various Methods, for the System Cyclohexane. 

Aniline, and N-Heptane at 25 °C

Composition*^**
Cyclohexane

Activity of Cyclohexane*

2-suffix 
van Laar

3-suffix2 
van Laar

Colburn^ 
van Laar

3-suffix
Margules

0.00000 0.00000 0.00000 0.00000 0.00000
0.22700 0.22726 0.26528 0.23066 0.22102

Aniline 0.24900 0.24933 0.28570 0.25261 0.24318
Phase 0.47200 0.47900 0.48812 0.48068 0.47513

0.62999 0.65218 0.63257 0.65027 0.65023
0.73100 0.77335 0.74802 0.77089 0.77239
0.84880 0.91021 0.91021 0.91021 0.90875

0.00000 0.00000 0.00000 0.00000 0.00000
N-Heptane 0.10980 0.51585 0.56038 0.51997 0.49731
Phase 0.19380 0.74981 0.77950 0.75261 0.74920

0.28200 0.91221 0.91227 0.91221 0.93490

* All tabular values in mole fraction units

1. Solubility data of Hunter, T. G., and Brovin: Ind. Eng. Chem., 39 
1343 (1947)

2. Ternary constant, C = 1.67, Calculated by method of Wohl from data 
of Hunter

3. Ternary constant, C = -0.161, Calculated by Colburn approximation
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TABLE XXX

S o lu te  A c t iv ity  as a Function o f  L iqu id  Com position. P re d ic te d  

by V arious Methods. f o r  th e  System A c e tic  A cid .

Benzene. and W ater a t  20 ° c

Compo s it io n * '*  
A c e tic  Acid

A c t iv ity o f  A c e tic  A cid*

2 - s u f f ix 3 -s u f f ix ^

C*YnH00

3 - s u f f ix Colburn^
van Laar van Laar van L aar Margules M argules

0.00195 0.00532 0.00533 0.00532 0.00532 0.00532
0.01811 0.04562 0.049H 0.05305 0 .0 4 6 8 7 0.04702
0.04196 0.09441 0 .1 1 1 5 2 0.04834 0 .1 0 0 2 1 0.10105
0 .1 6 4 0 8 0.26297 0.34120 0 .2 1 5 2 8 0 .2 8 2 0 2 0 .2 8 7 2 8
0.18375 0.27994 0.36837 0.24567 0.29772 0.30403

Benzene 0.23896 0.33189 0.43048 0.31849 0.34070 0.34824
Phase 0.27023 0.35892 0.46099 0.35872 0.35885 0 .3 6 6 8 1

0.34862 0.41567 0.52806 0.46415 0.35896 0.36825
0.38598 0.44788 0.55459 0.50338 0.36145 0.36956
0.40507 0.44.6 414 0.56579 0.52167 0.35771 0.36503
0.45144 0 .50621 0.58885 0.55933 0.35489 0.35920
0.48677 0.53950 0.59676 0.57897 0.36095 0 .3 6 2 2 1

0.01413 0.01576 0.01576 0.01576 0.01633 0.01633
0 .0 6 0 7 0 0 .0 6 7 6 8 0.06769 0 .0 6 7 6 8 0.07747 0.07750
0.10955 0.12205 0.12207 0.12207 0 .1 5 1 1 8 0.15143
0.29613 0.32852 0.32940 0.32917 0.42732 0.43058

Water 0.32004 0.35481 0.35603 0.45203 0.45571
Phase 0 .3 8 1 2 8 0*42191 0.42471 0.39091 0.49394 0 .4 9 8 1 6

0.39898 0.44125 0.44492 0.43755 0.49634 0.50057
0.49326 0.54361 0.55920 0.55494 0.46070 0.46124
0.50103 0.55209 0.57199 0.56650 O.44I48 0.44139
0.50557 0.55708 0 .5 8 0 6 8 0.57410 0.42877 0 .4 2 8 2 8
0.50237 0.55425 0.58885 0.57890 0.39063 0.3904L

All tabular values in mole fraction

1. Data of Hand, D. B . :  J. Phys. Chem., 34, 1961 (1930)
2. Ternary constant, C =  1.204, Calculated by method of Wohl from data 

of Hand
3. Ternary constant, C =  -0.8864, Calculated by Colburn approximation



- 138 -

VII. BIBLIOGRAPHY

1. Allen, G.s Azeotropic Data for Calculating General Properties of

Binary Systems, Ind. Eng. Chem., 22, 60S, (1930).

2. Bachman, J.: Tie Lines in Ternary Liquid Systems, Ind. Eng. Chem.,

(Anal. Ed.), 12, 38, (1940).

3* Beare, W. G., G. A. McVicar and G. B. Ferguson: Determination of 

Vapor Liquid Compositions in Binary Systems, J. Phys. Chem.,

24* 131* (1930).
4* Beech, D. G., and S. Glasstone: Solubility Influences, J. Chem.

Soc., (Lond.), 67, (1938).

5. Benedict, M., C. A. Johnson, E. Solomon, and L. C. Rubin: Extractive

and Azeotropic Distillation, Trans. Am. Inst. Chem. Engrs., 11.

371, (1946).

6. Bonner, W. D.: Ternary Liquid Systems, J. Phys. Chem., 14. 738,

(1910).

7* Brancker, A. V., T. G. Hunter, and A. W. Nash: Tie Lines in Two 

Phase Liquid Systems, Ind. Eng. Chem. (Anal. Ed.), 12, 35, 

(1940).

8. Briggs, S. W., and E. W. Comings: Effect of Temperature on Liquid-

Liquid Equilibrium, Ind. Eng. Chem., 411, (1943).

9. Brunjes, A. S. and M. S. P. Bogart: Vapor-Liquid Equilibria for

Commercially Important Systems of Organic Solvents, Ind. Eng. 

Chem., 255, (1943).



- 139 -

10. Carlson, K. C. and A. P. Colburns Vapor-Liquid Equilibria of Nonideal

Solutions, Ind. Eng. Chem., 31. 581* (1942).

11. Colburn, A. P. and R. L. Pigfords Diffusional Operations,

“Chemical Engineers1 Handbook” (J. H. Perry, Editor), p. 323• 

McGraw-Hill Book Company, Inc., New York, N. Y., 1950. 3 ed.

12. Cooper, C.: M. I. T. Dept, of Chem. Eng., 10.90 Report, 1941*

13. Chu, J. C.: “Distillation Equilibrium Data,” pp. 297-304* Reinhold

Publishing Co., Inc., New York, N. Y. 1950.

14. Dodge, B. F., “Chemical Engineering Thermodynamics,” McGraw-Hill

Book Co., Inc., New York, N. Y. 1944*

15. Elgin, J. C.: Solvent Extraction, Ind. Eng. Chem., ^8, 26-27 (1946).

16. : Solvent Extraction, Ind. Eng.

Chem., 22, 23-25, (1947).
17. s Solvent Extraction, Ind. Eng. 

Chem., /jO, 53-56, (1948).

18. s Solvent Extraction, Ind. Eng. 

Chem., £1, 35-38, (1949).

19. Ewell, R. H., J. M. Harrison and L. Berg: Azeotropic Distillation,

Ind. Eng. Chem., 36 . 871, (1944)*

20. Furnas, C. C. and W. B. Leighton: Ethyl Alcohol - Ethyl Acetate and

Acetic Acid - Ethyl Acetate Systems. Ind. Eng. Chem., 29 . 709* 

(1937).
21. Gilmont, R. and D. F. Othmer: Correlating Vapor Compositions and 

Related Properties of Solutions, Ind. Eng. Chem., ^6, 1061,

(1944).
. Hand, D. B.: Dineric Distribution, J. Phys. Chem., ^  1961, (1930).22



- 140 -

23* Hildebrand, J* H.: ”Solubility of Non-Electrolytes,11 Reinhold 

Publishing Go., Inc., New York, N. Y. 1936. 2 ed.

24- Hildebrand, J. H.s Theory of Non-Electrolytic Solutions Chemical 

Reviews, 18, 315, (1936).

25* Himmelblau, D. M., B. L. Brady and J. J. McKetta: Survey of Solubility 

Diagrams for Ternary and Quaternary Liquid Systems, University of 

Texas, Eng. Expt. Sta., Bull. No. 30, (1959).

26. Horsley, L. H.s Azeotropic Data, Advances in Chem. Ser., 6, (1952).

27* Hougen, 0. A., K. M. Watson and R. A. Ragatz: ^Chemical Process

Principles,” pp. 895-696. John Wiley and Sons., Inc., New York, 

1959. 2 ed.

28. ibid, pp. 903-906.

29. ibid, pp. 952-959.

30. Hunter, T. G., and T. Brown: hydrocarbon Solvent Systems, Ind. Eng.

Chem., 2 k  1343, (1947).

31. International Critical Tables, Vol. Ill, p. 396, McGraw-Hill Book Co.,

Inc., New York, 1928.

32. Lewis, G. N. and M. Randall: ^Thermodynamics,” McGraw-Hill Book Co.,

Inc., New York, 1923*

33. Mickley, H. S., T. K. Sherwood and C. E. Reed: ”Applied Mathematics

in Chemical Engineering,” p. 11. McGraw-Hill Book Co., Inc.,

New York, 1937* 2 ed.

34. ibid. pp. 95-99*

35. ibid. p. 6.
36. Norrich, B. S. and G. H. Twigg: Equations for Vapor-Liquid Equil­

ibrium, Ind. Eng. Chem., 46, 201 (1954).



- 141 -

37* Othmer, D. F., R. E. White, and E. Trueger: Equilibrium in Ternary 

Liquid Systems, Ind. Eng. Chem., 1240, (1941).

38. . and P. E. Tobias: Tie Line Correlation, Ind. Eng.

Chem., 2/*., 693, (1942).

39* : Composition of Vapors from Boiling Binary Solutions,

Ind. Eng. Chem., 614, (1943).

40. Okenfuss, R. H.: The Redesign and Construction of a Rotating Disc 

Contactor, Unpublished M. Sc. Thesis, Library, Missouri School 

of Mines and Metallurgy, Rolla, Mo., I960.

41* Perry, J. H., Ed: ”Chemical Engineers'1 Handbook.*1 pp. 573-577, 

McGraw-Hill Book Co., Inc., New York, 1950. 3 ed.

42. Redlich, 0., and A. T. Kister: Thermodynamics of Non-Electrolyte 

Solutions, Ind. Eng. Chon., ^0, 341, (1946).

43* . and C. E. Turnquist: Thermo­

dynamics of Solutions, Chem. Engr. Prog. Symposium Series,

Z£, 49, (1952).

44• Reid, R. C. and T. K. Sherwood: ”The Properties of Gases and Liquids,” 

pp. 320-321. McGraw-Hill Book Co., Inc., New York, 1958.

45. ibid, pp. 324-325*

46. Robinson, C. S. and E. R. Gilliland: ,fElements of Fractional

Distillation,” pp. 106-107* McGraw-Hill Book Co., Inc., New 

York, 1950.

47. Scatchard, G. and Hamer: J. Am. Chem. Soc., £2, 1805, (1935)*

48. Seidell, A.: ”Solubilities of Organic Compounds,” p. 893. D. Van

No strand Co., Inc., New York, 1941*

49* ibid, p. 101.



- 142 -

50. Smith, J. ii. and H. C. Van Ness: '‘Introduction to Chemical

Engineering Thermodynamics,“ p. 210. McGraw~Hi.ll Book Co.,

Inc., New York, 1959*

51* Smith, J. C.: Ternary Systems for Extraction Calculations, Ind. Eng.

52.

53.

54.

55.

56.

57.

58.

59.

Chem., 234, (1942).

Treybal, R. E.: “Liquid Extraction,** p. 39* McGraw-Hill Book Co., 

Inc., New York, 1951. 

ibi , p. 52.

Treybal, R. E.: Ternary Liquid Equilibria Predicted from Binary 

Vapor-Liquid Data, Ind. Eng. Chem., 36. 875* (1944).

s Solvent Extraction, Ind. Eng. Chem., 43. 79> (1951).

: Solvent Extraction, Ind. Eng. Chem., 44. 53* (1952).

: Solvent Extraction, Ind. Eng. Chem., 45. 58, (1953).

: Solvent Extraction, Ind. Eng. Chem., 46 . 91, (1954).

: Solvent Extraction, Ind. Eng. Chem., 47 . 536,

(1955).

60. : Liquid Extraction Columns, Ind. Eng. Chem., 47. 

2435, (1955).

bl« Solvent Extraction, Ind. Eng. Chem., 48. 510,

(1956).

62.

63.

64.

: Solvent Extraction, Ind. Eng. Chem., 49. 514,

(1957) .
: Solvent Extraction, Ind. Eng. Chem., 50. 463,

(1958) .

i Solvent Extraction, Ind. Eng. Chem., 51. 378,

(1959)



- 143 -

65* Treybal, E. E.: Solvent Extraction, Ind. Eng. Chem., 52. 262,

(1960) .
66. : Solvent Extraction, Ind. Eng. Chem., 53. 516,

(1961) .

67* Vapor Pressures of Organic Compounds, Interscience Publishers, Inc., 

New York, 1954*

68. Wohl, K.: Thermodynamic Evaluation of Binary and Ternary-Liquid 

Systems, Trans. Am. Inst. Ch. E., 4 2 . 215-249* (1946).

Addenda

69* White, R. E.: Vapor-Liquid Equilibria in Non-Ideal Solutions,

Trans. Am. Inst. Ch. E., 539-554* 41. (1945)*

70. Scheibel, E. G., and D. Friedland, Prediction of Ternaiy Distribution

Data, Ind. Eng. Chem., 1331, (1947).

71. Technical Data Sheet, No. 23, Commercial Solvents Corporation, New

York 16, N. Y., 1959.

72. Boberg, T. C. and E. R. White: Prediction of Critical Mixtures,

Ind. Eng. Chem. Fund. 1, 40, (1962).



144 -

V III . ACKNOWLEDGiMTS

The author wishes to thank Dr. Dudley Thompson, Major Advisor for 

this thesis, for his patient and understanding assistance. Without his 

help the project could not have been completed.

A special “thank you*1 is extended to Mr. John Zenor for his aid in 

operating and programming the Digital Computer, and to Mr. David Wright 

for the preparation of the original Figures.

The unselfish assistance of the members of the staff and graduate 

students of the Chemical Engineering and Chemistry Departments is appre­

ciated and hereby acknowledged.

The author thanks his wife, Lyla Lee, for her assistance in pre­

paring and typing each draft of this thesis.



- 145 -

IX, VITA

The author of this thesis, Risdon William Hankinson, was born at 

St. Joseph, Missouri on December 11, 1938. He was graduated from 

Lafayette High School of St. Joseph, Missouri, in May 1956. In the 

following fall he entered the Missouri School of Mines and Metallurgy, 

Holla, Missouri, from which he received his degree of Bachelor of Science 

in Chemical Engineering in June, I960.

Upon graduation, the author married Miss Lyla Lee Pollard of Kansas 

City, Missouri. He then entered the Arm y  R. 0. T. C. summer camp at



- 146 -

Fort McClellan, Alabama, and was commissioned as a Reserve Second 

Lieutenant in the United States Army Chemical Corps on August 1, I960.

In September of I960 he returned to the Missouri School of Mines and 

Metallurgy to complete the requirements for the Master of Science degree 

in Chemical Engineering. He served as a Graduate Assistant in Chemical 

Engineering for the school year 1960-61, and as an Instructor in 

Chemical Engineering during the 1961 summer session and the 1961-1962 

school year. Upon graduation, the author will go to the Procter & Gamble 

Company, Cincinnati, Ohio, where he has accepted a position as a chemical 

engineer in the Food Products Process Development Department.

On August 14, 1962, he will leave Procter & Gamble on a two year 

military leave of absence and report to Fort McClellan, Alabama, for 

active duty in the United States Army.


	The experimental determination and prediction of ternary-liquid equilibria data
	Recommended Citation

	tmp.1569950616.pdf.iTE1q

