
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2005

Bio-inspired approaches for critical infrastructure protection: Bio-inspired approaches for critical infrastructure protection:

Application of clonal selection principle for intrusion detection Application of clonal selection principle for intrusion detection

and FACTS placement and FACTS placement

Kasthurirangan Parthasarathy

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Parthasarathy, Kasthurirangan, "Bio-inspired approaches for critical infrastructure protection: Application
of clonal selection principle for intrusion detection and FACTS placement" (2005). Masters Theses. 3714.
https://scholarsmine.mst.edu/masters_theses/3714

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/3714?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

BIO-INSPIRED APPROACHES FOR CRITICAL INFRASTRUCTURE

PROTECTION: APPLICATION OF CLONAL SELECTION PRINCIPLE FOR

INTRUSION DETECTION AND FACTS PLACEMENT

by

KASTHURIRANGAN PARTHASARATHY

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2005

Copyright 2005
KASTHURIRANGAN PARTHASARATHY

All Rights Reserved

iii

ABSTRACT

In this research, Clonal Selection, an immune system inspired approach, is utilized
along with Evolutionary Algorithms to solve complex engineering problems such as In-
trusion Detection and optimization of Flexible AC Transmission System (FACTS) device
placement in a power grid. The clonal selection principle increases the strength of good
solutions and alters their properties to find better solutions in a problem space. A spe-
cial class of evolutionary algorithms that utilizes the clonal selection principle to guide
its heuristic search process is termed Clonal EA. Clonal EAs can be used to solve com-
plex pattern recognition and function optimization problems, which involve searching an
enormous problem space for a solution. Intrusion Detection is modeled, in this research,
as a pattern recognition problem wherein efficient detectors are to be designed to detect
intrusive behavior. Optimization of FACTS device placement in a power grid is modeled
as a function optimization problem wherein optimal placement positions for FACTS de-
vices are to be determined, in order to balance load across power lines. Clonal EAs are
designed to implement the solution models. The benefits and limitations of using Clonal
EAs to solve the above mentioned problems are discussed and the performance of Clonal
EAs is compared with that of traditional evolutionary algorithms and greedy algorithms.

iv

ACKNOWLEDGMENTS

I would like to thank my research advisors, Dr. Daniel Tauritz, Dr. Bruce McMillin
and Dr. Ann Miller, for their continuous support and guidance throughout this research
project. Dr. Daniel Tauritz was a great source of motivation and was primarily responsible
for transforming me from being a naive student to a competitive professional. I would
like to acknowledge his exceptional attention to detail and passion for perfection which
made this research a success.

I am indebted to my parents, Mr. and Mrs. Parthasarathy, my uncle Mr. Venugopal
and my grandfather Mr. Srinivasan for their invaluable support, constant guidance and
inspirational mentoring without which this research would not have been possible.

A special thanks to Archana Vasudevan, my soon to be wife, who helped cope with a
difficult phase in my life and complete this research through her compassionate presence,
constant encouragement and words of wisdom!

I would also like to thank William Atkins, John C. Mulder, Scott A. Miller and
many other friends who have immensely contributed to making this report as correct and
comprehensive as possible.

I acknowledge the support and company of my friends, especially that of Pradeep
and Karthikeyan, which helped me unwind and focus on my research after several busy
days at work.

Finally, I would like to thank the University of Missouri-Rolla for providing me the
opportunity and facilities to complete this exciting research.

V

TABLE OF CONTENTS

Page

A B S T R A C T iii

A C K N O W LE D G M E N TS... iv

LIST OF ILLUSTRATIONS... vii

LIST OF T A B L E S ...viii

N O M E N C L A T U R E ... ix

SECTION
1. IN TR O D U C TIO N .. 1
2. CLONAL SELECTION AND EVOLUTIONARY ALGORITH M S.................... 3
3. INTRUSION D E T E C T IO N .. 11

3.1. DEFINITION OF S E L F ... 13
3.2. NEGATIVE DETECTOR SET G E N E R A T IO N 15

3.2.1. Exponential Algorithm... 17
3.2.2. Greedy Algorithm.. 18

3.3. POSITIVE DETECTOR SET GENERATION...25
3.4. POSITIVE VS. NEGATIVE D ETECTION ... 31
3.5. E X P E R IM E N T S ...34

3.5.1. Experiments with Exponential Algorithm..35
3.5.2. Experiments with Greedy Algorithm...36

3.6. RESULTS AND DISCUSSION.. 37
3.7. APPLICATION OF CLONAL EAS AND SELF/NON-SELF PRINCI­

PLES ... 39
3.7.1. Data Preparation... 40

3.7.1.1. Data Separation... 42
3.7.1.2. Principal Component Analysis..43

3.7.2. IDS Design.. 43
3.7.2.1 . Generator...43
3.7.2.2. Evaluator... 48

3.7.3. Results... 49
3.7.4. Conclusion...50

4. FACTS PLACEMENT IN A POWER G R I D .. 55
4.1. THE POWER GRID M O D E L ...55

4.1.1. Power Grid..55
4.1.2. Component Representation... 57
4.1.3. Identification of Overloaded Lines. ..58
4.1.4. Metrics for Evaluation of FACTS Device Configuration................... 59

vi

4.1.5. Placement of a FACTS Device on the Grid..59
4.2. CLONALG D E S IG N ..60
4.3. EA DESIGN..63
4.4. GREEDY ALG O RITH M S.. 65

4.4.1. Greedy Algorithm based on Number of Overloaded Lines. . . . 65
4.4.2. Greedy Algorithm based on Amount of Line Overload.....................65

4.5. E X P E R IM E N T S.. 66
4.6. RESULTS AND DISCUSSION.. 66

5. CONCLUSION.. 79
6. FUTURE W O R K ..80

B IB L IO G R A P H Y ... 82

V I T A ..84

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Comparative Features of a Traditional EA and a Clonal E A 10

3.1 A Set Theoretical Representation of the System Definition 12

3.2 An Example to Illustrate PD and ND Schemes...33

3.3 Performance Comparison of ND and PD for FPs - ND: Exponential Algorithm
(Algorithm 3), PD: Random Algorithm (Algorithm 12)38

3.4 Performance Comparison of ND and PD for FNs - ND: Exponential Algorithm
(Algorithm 3), PD: Random Algorithm (Algorithm 12)39

3.5 Performance Comparison of ND and PD for Pf s - ND: Exponential Algorithm
(Algorithm 3), PD: Random algorithm (Algorithm 1 2) 40

3.6 Performance Comparison of ND and PD for Pf s - ND: Greedy Algorithm
(Algorithm 4), PD: Random Algorithm (Algorithm 12) and / = 1 641

3.7 Performance Comparison of ND and PD for P/s - ND: Greedy Algorithm
(Algorithm 4), PD: Random Algorithm (Algorithm 12) and / = 3 242

3.8 A Sample Data Schema with Critical A ttribu tes..42

4.1 The IEEE 118-bus test sy stem ... 56

4.2 Comparison of Results obtained using Various Algorithms....................................78

viii

LIST OF TABLES

Table Page

2.1 Differences between Clonal EA and Traditional EA ... 9

3.1 Mapping of Labels to A ct iv it ie s .. 14

3.2 Mapping of Labels to A ct iv it ie s .. 14

3.3 Exhaustive List of Templates for r = 3 ... 23

3.4 Input Parameters for Experiments using Algorithm 3 36

3.5 Performance of the Exponential Non-self Algorithm (Algorithm 3) and Ran­
dom Positive Algorithm (Algorithm 1 2) ... 36

3.6 Performance of the Greedy Non-self Algorithm (Algorithm 4) and Random
Positive Algorithm (Algorithm 12). The values within parenthesis in Column
4 are the standard deviations for 100 sample runs..37

3.7 IDSClonalg Results for Self, Non-self Detectors. (* Percentage values of re­
sults averaged over 50 trials, Values in parenthesis represent standard devia­
tions) ... 50

4.1 Parameter Values for Grid Configuration.. 66

4.2 Parameter Values for Clonalg............................ 67

4.3 Parameter Values for E A .. 67

4.4 Labels for FACTS Device Placements on the G r i d ...68

4.5 FACTS Device Placements obtained using C lonalg.. 69

4.6 FACTS Device Placements obtained using the Evolutionary Algorithm 69

4.7 FACTS Device Placements obtained using Greedy Algorithm based on Num-
ber of Overloaded Lines.. 74

4.8 FACTS Device Placements obtained using Greedy Algorithm based on Amount
of Overload... 75

NOMENCLATURE

Symbol Description Page

EAs Evolutionary Algorithms... 1

FACTS Flexible AC Transmission System.. 1

IDS Intrusion Detection Systems.. 1

Clonal EA Evolutionary Algorithm using clonal selection operators........................ 2

WBCs White Blood Cells.. 3

PD Positive Detection... 11

ND Negative Detection.. 11

AIS Artificial Immune System.. 11

Self Activities that are considered normal... 12

Non-self Activities that are considered undesirable/abnormal................................ 12

FP False Positives................................ 32

ES Estimated Self................................ 32

FN False Negatives... 33

Pf Number of Incorrect Classifications.................. 34

Power Grid A system for distribution of power/electricity.. 55

Lines Power transmission lines in a power grid...55

SLC single line contingency.. 58

ix

1. INTRODUCTION

The application of bio-inspired principles to solve complex engineering problems has
been gaining significance of late. Evolutionary Algorithms (EAs), inspired by the theory
of evolution, have been applied, with resounding success, in the search for solutions in
an enormous problem space with no known deterministic solutions. The Clonal Selection
principle, inspired by the human immune system, has also been studied extensively of
late. This principle involves taking a set of solutions to a problem and subjecting good
solutions to minute alterations in an effort to discover better solutions and subjecting
bad solutions to relatively larger alterations which might result in the discovery of better
solutions. The objective of this research is to determine how an evolutionary algorithm
designed using the clonal selection principle performs in searching a problem space, as
the clonal selection principle seems to possess the ability to refine and direct a heuristic
search process efficiently. In this research, Clonal EAs, combining the clonal selection
principle with evolutionary algorithms, are designed to solve two complex engineering
problems, namely intrusion detection and optimization of Flexible AC Transmission Sys­
tem (FACTS) devices placement in a power grid.

Intrusion Detection Systems (IDS) are responsible for protecting sensitive data and
information. One type of IDS involves defining normal behavior in a computer network,
henceforth termed system, and identifying behavior that is deviant from normal behavior.
Typically, unauthorized activities, errors and irregularities in a system can be considered
as deviant behaviors. These deviant behaviors are termed intrusions. Intrusion detec­
tors, further simply referred to as detectors, which represent either normal or abnormal
behavior in a system, monitor the system in order to detect intrusions. They do so by
comparing themselves against the current activities in that system. If the detectors rep­
resent normal behavior, then the activities that do not match the detectors are termed
intrusions. If the detectors represent abnormal behavior, then the activities that match
the detectors are termed intrusions. Generating a set of detectors that are efficient enough
to detect all intrusions in a system, based on a limited definition of normal behavior, is a
challenging task. In this research, the task of creating efficient detectors is modeled as a
pattern matching problem and Clonal EAs are employed to solve this pattern matching
problem.

A power grid is a critical infrastructure for a nation. Any disruption in the operation
of a power grid is bound to have a significant impact on the lives of a large number
of people. Faults in power transmission lines or a transformer in a grid can result in

2

unbalanced flow of electricity and may cause severe damage to the grid. FACTS devices
are placed on power transmission lines to stabilize the flow of electricity across the grid,
when the transmission lines or transformers malfunction. These FACTS devices are highly
expensive and if placed on ideal locations, can help maintain the grid in normal operating
conditions, even when abnormal conditions are encountered. It is a challenging task to
find optimal placement positions for FACTS devices in a grid, as there are a large number
of such positions. Even if we consider a grid with only a 100 power lines, given five FACTS
devices, we would have 75,287,520 possible combinations for the placement of FACTS
devices on that grid. In a practical case, the number of power lines in a power grid could
well be in the range of millions or more. Hence, a large search space needs to be explored
to determine optimal placements for a given number of FACTS devices. Clonal EAs are
used in this research to solve this problem.

In Section 2, the clonal selection principle is explained and a general framework
for designing a Clonal EA is provided. It is then compared with a traditional EA to
illustrate the differences between the two algorithms. In Section 3, intrusion detection
principles are explained and methods for defining detectors are explored. A Clonal EA
design to generate detectors for a particular data set is proposed and the results are
analyzed. Finally, a Clonal EA design is proposed for generation of rules in Snort, a
rule based IDS. In Section 4, a brief introduction to power grids and FACTS devices is
provided. Then, four algorithms including a Clonal EA are proposed for determining
optimal FACTS device placements and the results obtained using the algorithms are
compared, and analyzed. In Section 5, a summary of the performance of a Clonal EA
in solving the intrusion detection and FACTS device placement problems is provided.
Also, some important considerations that are to be made when a Clonal EA is applied
for pattern matching or function optimization problems are discussed. Section 6 details
possible future research work.

3

2. CLONAL SELECTION AND EVOLUTIONARY ALGORITHMS

The clonal selection principle is inspired by the human immune system [1]. The
human body generates White Blood Cells (WBCs) and compares them against body cells
during a phase termed Negative Selection. During this phase, the WBCs that match the
body cells are destroyed and only those that do not match the body cells are released
into the blood stream. These WBCs are called antibodies. When a foreign cell (antigen)
enters the body, the WBCs are compared against “epitopes” , which are small parts of
the antigen. Those WBCs that closely match the epitopes are replicated to form copies
(clones), thereby increasing their concentration in the blood stream during a process
referred to as Clonal Expansion. The clones are then subjected to a Hyper-Mutation
process during which their characteristics are altered proportional to the proximity of
their match to the antigen. Alteration of a clone’s characteristics may either result in a
better match with the antigen or a poorer one. The clonal expansion and hyper-mutation
operations result in the generation of mature clones and the whole process is referred to as
Affinity Maturation. These mature clones have diverse characteristics though they may
not match the antigen better than the antibodies they were created from.

The mature clones of some antibodies that exhibit a high affinity towards the antigen
are retained as memory antibodies. The memory antibodies serve to efficiently detect the
antigen and destroy it, if it is encountered again. A certain number of newly generated
mature clones are arbitrarily selected to replace antibodies that have a poor match with
the antigen. This facilitates improving the efficiency of the antibodies in matching the
antigens, while maintaining diversity in the population. This process is termed Repertoire
Diversity and it helps in maintaining reserves of antibodies that can efficiently match
variants of antigens previously encountered. Thus, the antibodies axe improved as well as
fine-tuned to efficiently detect and destroy previously encountered as well as novel antigens
[2] . This is a dynamic process which is abstracted into the clonal selection principle for
solving engineering problems.

Evolutionary Algorithms (EAs) are inspired by the process of biological evolution
[3] . EAs operate on a population of potential solutions to a problem. These potential
solutions are refined to produce better approximations or offspring to a solution using
the survival o f the fittest principle, borrowed from the process of evolution. This process
involves selecting a set of approximations termed parents, based on some problem-specific
criteria, and breeding them together using genetic operators to form the offspring. Thus,
this process leads to the generation of a population of individuals that have, on average,

4

superior fitness levels as compared to the original approximations. This process is repeated
over several generations in order to refine the approximations. The genetic operators that
EAs borrow from the process of biological evolution are:

1 . Selection: Selecting a set of individuals from a population for reproduction based
on some criteria.

2. Reproduction: The selected members reproduce by transferring part of their genetic
content to the offspring. This involves two operations, namely:

• Cross-Over: The process of creating new genetic content based on the parents.
In a typical Cross-Over between two parents, one part of the genetic content
of the offspring comes from one parent and the remaining part comes from the
other parent to form new genetic content. The selection of the parts of genetic
content received from the parents is based on some stochastic process.

• Mutation: This is a process involving subtle alterations in the genetic content
of an offspring

3. Evaluation: In the case of static environments, the newly created offspring are
evaluated to determine how fit they are to survive in their environment. In the
case of dynamic environments, the entire population along with the newly created
offspring is evaluated.

4. Competition: The offspring and the parent population compete among themselves
to enter the population pool for the next generation.

The following notations are used in the description of an EA:

1. Mp represents a population set.

2. M0 represents an offspring set.

3. Ms represents a parent set which is a subset of the population set.

4. np represents the cardinality of Mp.

5. n0 represents the cardinality of M0.

6. ns represents the cardinality of Ms. Usually na — 2 • nG, if the cross-over mechanism
uses pairs of members to create offspring. If np < 2 • n0, then Ms can be a multiset.

5

7. F(.) represents the fitness function which evaluates the fitness of a member in Mp
or M0. The objective is to maximize the fitness value of a member which corrsponds
to the optimization of some problem dependent objective function.

One type of EA using the genetic operators previously described can be designed
as:

1. Initialize Mp with uniform randomly created members.

2. Evaluate the fitness of all the members of Mp using F (.).

3. Select ns members of the population pool based on a selection criterion that is
influenced by the fitness of the members and add them to Ms. If rip < ns, then it is
possible that a member M* of Mp gets selected into Ms more than once.

4. Create nQ offspring by selecting pairs of members from Ms, using a specific selection
criterion and subjecting each of those pairs to cross-over and mutation wherein the
offspring obtain unique properties based off the properties they acquired from the
parents during Cross-Over.

5. Evaluate the offspring to determine their fitness based on F(.).

6. Set up a competition between the members of Mp and M0 and insert the np highest
fitness members among them into the next generation population set, which happens
to be Mp again. (survival o f the fittest).

7. Repeat steps 2 to 6 until a specified number of generations is reached, or the members
obtain a specified fitness level.

In a typical search algorithm, the properties of EAs serve to broadly direct the
search process and the properties of the clonal selection principle can be used to fine tune
the search mechanism. This is emphasized by the fact that clonal selection multiplies
the population members proportional to their fitness values and examines the high-fitness
members more closely using the Hyper-Mutation process. As a result, a large number
of members with high fitness values are subjected to subtle variations, facilitating small
steps in a number of directions, and a small group of members with low-fitness values
axe subjected to large variations thereby enhancing the diversity of the solution variants.
Thus, EAs can be used as a framework wherein the clonal selection principle is employed
to improve the efficiency of the search mechanism [1]. Such algorithms are termed Clonal
EAs in this research.

6

Clonal EAs refine a set of solutions, over several generations, to determine an op­
timal set of approximations for a certain number of problem scenarios. The solutions
are modeled as antibodies and a collection of such antibodies is termed a solution set.
The problem scenarios are represented as antigens and a collection of problem scenarios
is presented in an antigen set for which solutions need to be determined. Clonal EAs use
two sets of solutions, namely a normal set and a memory set, which together constitute
a population pool set. The normal set contains a set of solutions that are improved over
several generations. The memory set contains a set of solutions that represent the best
approximations found, until a particular generation, for each antigen in the antigen set.
The memory set is only altered if an approximation, for a particular antigen, obtained
in a particular generation, out-performs an approximation, for the same antigen, in the
memory set. Generally, the cardinality of the memory set is equal to the cardinality of
the antigen set.

The following notations are used in the description of a Clonal EA:

1. Mn represents a normal solution set.

2. Mm represents a memory solution set.

3. Mp represents a population set which is the union of the normal and memory sets

(Mp = Mn{JMm).

4. Mc represents a clone set.

5. Mag represents an antigen set comprising the problem scenarios.

6. n„ represents the cardinality of Mn.

7. nm represents the cardinality of Mm.

8. rip represents the cardinality of Mp.

9. nc represents the cardinality of Mc.

10. nlc represents the number of clones of a member i in Mp, that are to be generated
in Mc.

11. nag represents the cardinality of Mag.

12. F(.) represents the fitness function which evaluates the fitness of a member in Mp or
Mc against an antigen in Mag. F(.) uses an evaluation criterion, Eval to compare
the members against an antigen.

7

13. M*g represents a member x in the antigen set.

14. M* represents a member x in the clone set.

15. f* represents the fitness value of member x in Mc.

One type of Clonal EA for solving static problems can be described as follows:

1. Initialize Mn with uniform randomly created members. (The members of this set
are analogous to the antibodies in the immune system).

2. Initialize Mm with uniform randomly created members. (The members of this set
are analogous to the memory antibodies in the immune system).

3. Populate Mag with the problem scenarios for which solutions are to be devised.

4. Repeat steps 4 to 11 for each antigen M*p, where i = 1 to nag, in Mag.

5. Populate Mp with members from Mn and Mm using the set union operation.

6. Compute the fitness of all the np members of Mp with respect to using F(.).
Assign a fitness value to each member in the population pool based on Eval.

7. Select the n highest fitness members from Mp, and create multiple clones of each
selected member (Clonal Expansion), with the number of clones generated for each
member being proportional to the fitness of the member. Insert the clones thus
generated into Mc. For example, if the members of Mp are sorted in descending
order of fitness such that the position of each member represents its fitness-based
rank, then the number of clones to be generated for each one of the np members is
given by the formula:

7-rcp (2.1)

where 7 is a multiplicative constant that determines the proportion of number of
clones of each member, to be generated with respect to the total number of members,
np, and i represents the fitness-based rank of each one of the np members and takes
values in the range [1,Tip]. The total number of clones to be generated is then
computed as:

8

nc = J 2 nc (2-2)
*=1

If 7 = 0.5, and nv = 100, then for i = 1 , the number clones to be generated is 50 and
for i = 5, the number of clones to be generated is 10. Thus, the higher the fitness
of a member, the larger the number of clones to be generated for that member.

8. Subject all the members of Mc to hyper-mutation, wherein the high fitness clones
undergo minute variations in their properties, and the low fitness clones undergo
large variations. (These clones are akin to offspring discussed in the description
of EAs). For example, a mutate function can be defined such that it takes as
input arguments the population member to be mutated, M *, and an upper bound
on the maximum amount by which the member’s properties can be mutated, ceil.
Assuming that the fitness value of each clone is in the range [0,1], the upper bound
can be calculated as:

ceil = ui • (1 — /*) (2.3)

where a; is a multiplicative constant. Then, the hyper-mutation operation can be
performed such that the mutated member replaces the original member:

M* = mutate(M*, ceil) (2.4)

If u = 10, then for f* = 0.7, ceil = 3 and for /* = 0.2, ceil = 8. Thus, the lower
the fitness, the higher the range for the properties of a member to be mutated.

9. Compute the fitness of all the clones in Mc with respect to using F(.).

10. Select the highest fitness member M£ from the set of newly created clones and
compare it with a member M£ in Mm that corresponds to antigen M xag. If the
fitness of is greater than that of M£, then replace M £ with M*.

11. Select the m lowest fitness members from M„ and replace them with the m lowest
fitness members from Mc (Repertoire diversity).

9

12. Repeat steps 3 to 11 until the specified number of generations is reached, or the
members obtain a specified fitness level.

A comparison of the features of EAs and Clonal EAs is provided in Table 2.1.
Figure 2.1 shows an EA and a Clonal EA side by side, illustrating the operations involved
in each of them and the differences between the two algorithms. The shaded portions in
the Clonal EA flowchart represent the additional steps that are absent in a traditional
EA. The process flow depicted in the flowchart is based on the description of EAs and
Clonal EAs provided previously.

Table 2.1. Differences between Clonal EA and TVaditional EA

Clonal EA Traditional EA

Maintains a memory solution set
along with the normal solution set

Maintains a single solution set

Uses clonal expansion for reproduction Uses cross-over for reproduction

Mutation is inversely proportional to
fitness

Mutation is typically the same
for all members irrespective of
their fitness

Uses repertoire diversity for
maintaining diversity in the
population

There is no specific method for
maintaining diversity in the
population

10

lorithm A Clonal EA
f in a static environment

start

Initialization
(Memory + Normal)

.......v
Evaluation

(Memory > Normal)

Figure 2.1. Comparative Features of a Traditional EA and a Clonal EA

11

3. INTRUSION DETECTION

Intrusion Detection Systems (IDS) provide a layer of security below the identification
and authentication systems. They can be classified into two categories, namely Positive
Detection (PD) and Negative Detection (ND) schemes, based on the detection mechanism
employed. The PD scheme creates detectors, termed positive detectors, that represent
normal activities or behavior in a system and uses them to evaluate the current activities
in that system. If any of the current activities do not match the detectors, then they are
termed intrusions (they may also be normal activities classified incorrectly). Checksum
methods, many neural network based methods, and pattern classifiers are examples of
IDS based on the PD scheme [4]. IDS employing the ND scheme derive their inspiration
from the immune system that protects the human body against pathogens (cells not part
of the body), and hence are termed Artificial Immune Systems (AIS) [5, 6]. The ND
scheme creates detectors, termed negative detectors, which represent intrusive activities
in a system. If any of the current activities match the detectors, then they are termed
intrusions.

In order to detect intrusions in a system, it is important to have a clear definition
of what types of activities would be considered as intrusions. The activities in a system
are classified in this research as:

1. Normal: represents a known set of routine activities executed by normal users in a
system.

2. Misuse: represents a known set of all the undesirable activities in a system.

• Type I: Activities that are normal, but affect the performance and efficiency
of a system such as the denial of service attack.

• Type II: Activities that are abnormal by definition of the behavior of a sys­
tem. These can be further classified into intended malicious and unintentional
abnormal activities.

3. Anomaly: represents the types of activities in a system that are not classified as
Normal or Misuse and they comprise unknown normal activities and unknown mis­
uses.

Misuses and anomalies are usually considered as intrusions to be detected, though
there might be some anomalies which are not intrusions. Activities that axe considered

12

System Behavior

maps from

maps from

maps from

maps from

Known Self Unkown Self S ' ">\ Known Unknown
(Normal) (Anomaly) (, Non-self Non-self

(Anamoty)

Figure 3.1. A Set Theoretical Representation of the System Definition

normal in a system are termed as self and activities that are considered misuses are termed
non-self. A self set is comprised of activities that have been previously identified as normal
activities (known self) and anomalies that are yet to be identified as such (unknown self).
A non-self set is comprised of misuses (known non-self) and anomalies that are yet to be
identified as misuses (unknown non-self). Figure 3.1 gives a set theoretical representation
of system behavior or activities. The detectors for the PD scheme represent the known
self and detectors for the ND scheme represent known non-self, unknown non-self and
unknown self.

IDS, using the PD or ND scheme, can be classified into two broad categories based
on the types of systems they protect:

1. Host-based IDS: These IDS reside in a single computer, protecting it against attacks
and anomalies.

2. Network IDS: These IDS are distributed across various critical nodes of a system
and they protect the network resources against attacks and anomalies.

In this section, the PD and ND schemes are explained along with the experiments
performed to determine the circumstances under which they perform well. The PD and

13

ND schemes are then employed in designing a Clonal EA termed IDSClonalg that detects
intrusions in a static data set obtained from KDD Cup 19991 data.

3.1. DEFINITION OF SELF
Artificial Immune Systems (AIS) depend upon a comprehensive definition of ac­

tivities that are considered safe and normal for a particular system. A comprehensive
definition of self ensures that the detection mechanism can effectively distinguish abnor­
mal activities from the normal activities. The more comprehensive the definition of self,
the smaller the number of unknown self activities. Therefore, given a sufficiently compre­
hensive definition of self, it is reasonable to consider any activity that does not belong to
the self set as an intrusion without incurring significant false alarms. However, a compre­
hensive definition of self would result in a lot of time being spent on creating the detectors.
This is due to the fact that there will be a large number of self activities for the detectors
to be compared with and evaluated. Also, a considerable amount of time may need to be
spent on perfecting the definition of self. Thus, there is a trade-off between the accuracy
of the detection system and the time taken to generate the detectors.

The self set can be constructed as a statistical estimate of the activities of normal
users. For this purpose, all the processes executed and resources utilized by the users must
be tracked and logged. The patterns associated with activities the users perform must also
be monitored to define the normal state of a system. Consider a system which is monitored
to collect statistical data for defining the self set of that system. The monitoring process
would record the activities and processes executed by each user. Each user’s profile is
represented as Si, and their corresponding activities , alx, occurring in a temporal sequence
during a time span, t, are to be recorded. The representation would then be a vector of
vectors:

S — {^1? $2, S3, . . . , Sn}, (3.1)

where

Si = {a\al2 . . . a\}. (3.2)

A large collection of such vectors must be constructed out of activities that are con­
sidered normal, with respect to a particular system, to obtain a reasonably comprehensive

1 htt p : / / k d d . ics. u c i. edu/databases/kddcup99/kddcup99. htm l

14

definition of self. A set of these vectors, therefore, represents an approximation of the self
set.

The representation scheme also has an impact on the process of detection. A simple
representation scheme, such as one using a string representation, will facilitate easy and
swift comparison as well as compact storage. In this research, the string representation
scheme is used to represent the self and non-self set members. In this scheme, the activities
are represented by a single or a collection of symbols defined for a particular alphabet.
The mapping from the observable universe, formed by the activities that can be performed
in a system, to the alphabet, depends on the number of activities defined. For example,
considering a binary alphabet for the representation scheme, it would contain symbols
{0 ,1 }. If there are only two activities, namely A and B, which can be performed in a
system, then they can be mapped to labels formed by the symbols as shown in Table 3.1.

Table 3.1. Mapping of Labels to Activities

Activity Label
A 0
B 1

If four activities, namely A, B, C and D have to be mapped onto the representation
scheme, then they can be mapped to labels formed by a collection of symbols as shown
in Table 3.2.

The strings, st, can then be represented as a sequence of labeled activities (containing
a single symbol or a collection of symbols). Thus, a string Si can be constructed for a

Table 3.2. Mapping of Labels to Activities

Activity Label
A 00
B 01
C 10
D 11

15

sequence of activities A, B, D, C as:

Si = {00011110} (3.3)

A collection of such strings would form the self set, S.

3.2. NEGATIVE DETECTOR SET GENERATION
The ND scheme employs negative detectors representing the non-self set to monitor

a system for misuses and anomalies. If any activity in the system matches with one
or more negative detectors, then the activity is considered an intrusion. The negative
detectors are created using the negative selection process. Algorithm 1 provides a general
description of the negative selection process applied to intrusion detection. The size of
the negative detector set can be set to an arbitrary value, Nr.

A lgorithm 1 A General Negative Selection Algorithm
//INPUTS: Nr
//OUTPUTS: ND
Construct set S
/ /The method of constructing this set is implementation specific
Initialize the detector set ND <— <f>
i+ - 0
while i < Nr do

Generate a string Detector String
//T h e method of generating the string is implementation specific
if match(Detector String, S) = true then

//m atch is a function that is defined based on the matching
//scheme used and it returns true or false
Reject Detector String

else
N D <— N D (J Detector String
i *— i + 1

end if
end while

The detector set is a subset of the non-self set and optimally contains those vectors
that can represent an effective approximation of the non-self set. Initially, all these vectors
can be randomly generated and compared against a set of self vectors. The comparison
can be performed using a matching process which checks for similarity in the individual
attributes of the two entities being compared, termed a matching scheme, and this scheme

16

is in turn dependent on the representation scheme. A detailed discussion of the different
types of matching schemes can be found in [7]. Those detector vectors, di, that do not
match (depending upon the matching scheme) the self vectors can be retained, and those
that do can be eliminated. The surviving detectors form the set, ND.

ND = {d1,d2,d3, . . . , d n} } (3.4)

where

di = {a\al2 .. .a\}. (3.5)

with a\a2 • • • a\ representing a sequence of non-self activities. The current set of
activities in a system can be represented by a set Q as:

Q = {«1, 92, ■ ••,«(}, (3.6)

where

* = m (3.7)

with b\bl2 • • • b\ representing a sequence of activities observed in a system. The mem­
bers of Q can then be compared against the members of the detector set, ND, using
the matching scheme, and if a reasonable match occurs, it will indicate the occurrence of
an abnormal activity. The IDS must determine the amount of deviation from normalcy
that can be tolerated. Activities that deviate more than the specified amount should be
termed intrusions.

A prototype system that uses binary strings to represent self and non-self activities
is used in this research to study the ND scheme. The self set of the prototype system
is constructed as a set of random binary strings with a specified length, Z. Algorithm 2
describes the process of creating the self set. The prototype system uses an exact matching
scheme that contains the operators “6” and .

Various methods for construction of the detector sets based on the negative selection
principle have been proposed in [8], [9] and [10]. The exponential algorithm proposed in

17

Algorithm 2 An algorithm for generating the self set of the prototype system
//INPUTS: Ns, l
//OUTPUTS: S
i< - 0
S -̂(f>
//L oop for constructing the self set
while i < Ns do

self string <— randomstring(l)
//randomstring(l) generates a binary string of length /, uniform randomly
if se lf string £ S then

/ /Ensure that the same string is not included more than once
S +— S U sel fstring
i <— i + 1

end if
end while

[8] and the greedy algorithm proposed in [9], for generating negative detectors, are imple­
mented for the prototype binary system in this research. Some of the common terminolo­
gies associated with the exponential and greedy negative detector generation algorithms
are:

Ns - Number of members in the self set S
Nr - Number of detectors in the detector set ND

Pm - Probability that two random strings match
Pf - Probability that Nr detectors fail to detect an intrusion
m - Number of symbols in the alphabet used to define the strings
l - Number of symbols in a string
r - Number of contiguous matches required for a match

3.2.1. Exponential Algorithm. The exponential algorithm is an implementation
of the negative selection algorithm (Algorithm 1). It constructs the self set using Algo­
rithm 2. The prospective detector strings are generated randomly and tested against the
self set. Those strings that do not match any of the self set members are added to the
detector set N D and those strings that match the self set members are discarded. The
exact matching scheme is used to implement the function matched, S) discussed in Algo­
rithm 1. This process is repeated until the required number of detectors (Nr) is obtained.
The value Nr is computed stochastically based on Pf and Pm as in [8]:

18

A lgorithm 3 Exponential Negative Detector Generation Algorithm
//INPUTS: 5, Ns, Nr, l
//OUTPUTS: ND
i <- 0
N D <— (f)
//L oop for generating random strings that might be included in the detector set
while i < Nr do

Detector String <— randomstring (l)
if Detector String £ S then

ND <— ND U Detector String
2 <— 2 + 1

end if
end while

Nr =
—InPf (3.8)

A detailed explanation of the computations involved in stochastically determining
the value of Pf and Pm can be found in [8]. The main objective of computing Nr using
Equation 3.8 is to ensure that a sufficient number of detectors are available for detecting
intrusions. A pseudocode for the exponential algorithm is described in Algorithm 3.

The exponential algorithm is a primitive method for the generation of detectors us­
ing the negative selection method. Since it involves generating strings randomly, it may
take a long time for the generation of valid detectors and in some cases it may result in an
unreasonably large number of iterations. For example, if m = 2 (binary) and l = 10, then
there are 1024 (210) strings in the universe. For Ns = 24 and Nr = 1000, assuming that
999 detectors have already been generated by Algorithm 3, the probability that the final
detector string would be generated by the function randomstring(/) is 0.00098 (1/1024).
The detector generation process is expected to be much faster and more accurate, when
the greedy algorithm, proposed in [9], is used.

3.2.2. Greedy Algorithm. The greedy algorithm is another negative selection
algorithm implemented for the prototype system. The self set for this algorithm is also
constructed using Algorithm 2. The greedy algorithm efficiently computes all possible
combinations of bit positions that would result in non-self strings (based on the existing
definition of self, created as a set of random binary strings) and picks only those strings
that would cover a maximum number of non-self strings hot added to the detector set,

19

a distinctive weakness of the exponential algorithm. The algorithm thus avoids the ex­
haustive generation of random strings and ensures a fair distribution of the representative
detectors from the non-self set, thus providing better coverage. Some of the notations
used for developing a pseudocode for the greedy algorithm proposed in [9] are:

1. S' is a set of binary strings of length l.

2. S[i.. .j] denotes a subset of strings in S {s|s is the restriction of positions i .. . j of
some s' in S'}.

3. s denotes a bit string. The bits in s are numbered left to right.

4. s denotes s stripped of its leftmost (most significant) bit.

5. s • 6, where 6 € (0 ,1 }, denotes s appended with b. s • b represents s stripped of its
first bit and appended with b at its right end. b • s represents s stripped of its last
(rightmost) bit and appended with b at its left end.

6. Two strings match each other if they have identical bits in at least r contiguous
positions.

7. A template of order r is a string of length l consisting of l — r “blank” symbols
(represented here by an asterisk) and r fully specified contiguous bits. In particu­
lar, a template, tijS, in which s is an r-bit string, is that template in which the r
contiguous bits start at bit position i and are given by s. For example, if / = 64,
r = 3 and s = 010, then tijS = *010 ★ ★ .

8. A template matches a string if they have identical bits (no blanks) in at least r
contiguous positions.

9. A right or left completion of a template, £, is that template with all the blanks to its
right or left replaced by bits. For example, *01011 is a right completion for *010* ★ .

A set of pseudocodes is devised in this research based on a series of algorithms
proposed in [9], for implementing a greedy algorithm. Generally, in a string of length
l, a template of length r can be positioned in Z — r 4-1 ways, hence the data structures
employed by the algorithms have to account for 2r templates and l —r + 1 possibilities.
Some of the data structures used in the algorithms are:

1. C i [l . . . 2r] [l . . . (/ — r 4- 1)] represents the number of right completions t'i 8 of
such that t'i s is unmatched by any string in S.

20

2. C[[1 . . . 2r] [l . . . (I — r + 1)] represents the number of left completions t'i s of ti>s, such
that t'i s is unmatched by any string in S.

3. Ds[l . . . 2r] [l . . . (/ — r + 1)] represents the product of the C\ and C[array values.

4. Dr[1 . . . 2r] [l . . . (/ — r + 1)] represents the current state of the detector set, D.

5. C2[1 . . . 2r] [l . . . (/ — r + 1)] and C'2[1 . . . 2r][1 . . . (I — r + 1)] are arrays that keep track
of the number of non-self strings covered by a particular template.

6. Match[1 . . . 2r] [l . . . (/ — r + 1)] represents the number of possible and valid non-self
strings that can be generated.

7. T[1 . . . 2r] stores all the combinations of templates.

The greedy algorithm (Algorithm 4) accepts a complete template list, T, as input
along with other parameters. The self set, S , is then constructed by introducing random
strings of a particular length, Z, into the set, allowing redundancies that result in a multi­
set. The algorithm initializes the above mentioned data structures using the InitStructures
algorithm (Algorithm 5). Once the initialization of data structures is complete, it is
possible to determine the number of valid non-self strings that can be generated and this
information is provided by the data structure, D s.

The next step is to generate a new non-self string. This is performed by selecting
a template that has the maximum value in the Dr array. The Dr array maintains for
each template of size r, the number of non-self strings that are yet to be matched by the
detectors already generated and populated in ND. So, if a template is chosen for the
construction of a detector, then the number of non-self strings matched by that detector
is deducted from Dr for that template. Therefore, Dr is constantly updated as and when
a detector is created. Specific computations involved in updating Dr can be found in
Algorithm 4, Algorithm 8 and Algorithm 9. A detailed explanation of the computations
involved in updating Dr can be found in [11]. The template that matches the largest
number of non-self strings that are yet to be matched by the detectors in N D , is thus
selected.

The selected template is inserted into a particular position in the non-self string
and the remaining bit positions are filled using the RightFill (Algorithm 8) and LeftFill
(Algorithm 9) algorithms. If there are no valid bits that can fill a bit position in the new
string, then the flag variable is set to “0” , indicating that no new strings can be formed
based on the selected template and its position. However, if all the l bits in the new string
are filled, then it would represent a valid string and hence can be added to the detector

21

Algorithm 4 Greedy Negative Detector Generation Algorithm
//INPUTS: S, Ns, Nr, T, Z, r
//OUTPUTS: N D
ND <— (f>
Call InitStructures(5, Na, C i,C [,C 2, C2, Dr, Match)
/ /Initialize all the data structures involved
//Create a candidate detector
/fay <— 1
while flag = 1 do

//Select a template that covers the maximum number of
//non-self strings for a particular bit position
[maxi, maxj] <— Maxindex(Dr)
/ /Maxindex takes an array as input, determines the maximum value
/ / in the array and returns its index
Detector String <— NULL
/ /Insert the selected template into the new string
Detector String (maxj) <— T[maxi]
RightFi\\(DetectorString, S, C'2, C2, D r, Match, Ns, l, r, maxi, maxj, flag)
//RightFill fills Detector String with binary bits on the right side of the
//inserted template, sets the flag to “0” if valid strings cannot be
//generated and updates the book-keeping arrays (C'2, C2, Dr)
if flag 0 then

LeftFi\l(DetectorString, S, C2, C2, Dr, Match, Ns, l, r, maxi, maxj, flag)
//LeftFill fills Detector String with binary bits on the left side of the
//inserted template, sets the flag to “0” if valid strings cannot be
//generated and updates the book-keeping arrays (C2,C 2, Dr)

end if
if flag ^ 0 then

N D <— ND(J Detector String
end if
flag <— 1
call ColumnCheck(Matc/i, l, r, flag)
//ColumnCheck determines the termination point by checking if a particular
/ /bit position is exhausted for all the templates in which case no further
//valid strings can be produced and the flag is set to “0”
if flag ^ 0 then

UpdateArray(C2, C2, l, r)
//UpdateArray updates the book-keeping arrays to reflect the non-self
//string coverage status of the templates of size r
D r « - C2 ■ C'2

end if
end while

set ND. Once this is done, the book-keeping arrays, namely C2, C'2, Match and Dr,
which keep track of the number of templates that have already been used to construct
non-self strings, have to be updated to indicate the templates that are exhausted due to

22

A lgorithm 5 InitStructures: Algorithm for initializing the data structures
//INPUTS: 5, Ns, Ci, C[, C2, C ', £>s, £>r, Match
//Initialize Ci, C(, arrays
Call InitCl(5, Clt Ns, l, r)
Call InitClD(S, C [,N S, Z, r)
A <- Ci • C[
//Initialization of C2, C'2, Dr and Match arrays
i <— 1
while i < 2r do

1
while j < I - r + 1 do

//l — r + 1 represents the number of different ways a template of length r
/ /can be positioned within a string of length Z
c '2 Mbl - 2i-r--7

A-Mb’] - 2*-r
if Ds[i]b'] ^ 0 then

11 Match positions are initialized to “1” only if the Ds array has
/ / non-zero entries in those positions
Match[i)\j] <— 1

end if
end while

end while

addition of the new string. But, if the Match array has a zero entry for a particular bit
position for all the templates, then valid non-self strings can no longer be generated and
hence the process must stop. This is remedied by reinitializing the flag and updating
its value using the ColumnCheck algorithm (Algorithm 10). If the flag is set to “0” by
the ColumnCheck algorithm, then it is not necessary to update the book-keeping arrays.
The greedy algorithm repeats this process until all the valid detectors are generated (i.e.,
until the flag is reset by the ColumnCheck algorithm).

The Ci array is constructed by comparing the strings in the self set from right to
left with all the possible templates of length r. If from all the self strings none of the
substrings extracted from a particular bit position match a particular template, then the
score for that particular template at that bit position is updated in C\. Otherwise, the
score is set to “0” for the self string s that matched the template. If the template is
inserted at position Z — r + 1, then there are no right completions possible. This case
has to be addressed separately, hence two formulas (Equation 3.9 and Equation 3.10) for
updating the score have been suggested in [9]. If right completions are not possible:

23

Table 3.3. Exhaustive List of Templates for r = 3

Label Template
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Cl—r+l [s]
0 if ti-r+i,s is matched in S

1 otherwise

and if right completions are possible:

(3.9)

Cl—r+l[s] i
0

Ci+i[s.O] -fCi+i[s.l]

if ti-r+i'S is matched in S
otherwise

(3.10)

The implementation details related to these two formulas are illustrated in the InitCl
algorithm (Algorithm 6). The 3 • 6 operation is implemented in the algorithm using a
slightly different method. Consider templates of length r = 3, then the exhaustive list of
templates can be numbered as in Table 3.3.

Consider s = 001 and 6 = 0. s.b results in 010. Since 010 can be indexed by “1” ,
and Oil can be indexed by “2” , the formula, (2 • j)mod(2r), where j is the index for s, is
used to determine the indices. In this example, j = 1 and r = 3, which would result in
the new index (2 • l)raod(23) = 2. Thus, the formula results in the correct index. If 6 = 1 ,
then the index is incremented by 1 and the resulting template is extracted.

The array C[is constructed in almost the same way as the array Ci, except that it
examines the self strings from left to right, and the reverse procedure is illustrated by the
InitClD algorithm (Algorithm 7).

The RightFill algorithm (Algorithm 8) is responsible for filling a new string, pre­
inserted with a template, with bits towards the right side. While doing so, it must ensure
that the bits appended in positions to the right side of the template are the ones that
would cover the maximum number of non-self strings. For example, a particular bit
position, 6, of the string is filled with “1” , if “0” has already been used at 6 in another

24

string using the same template or if “0” covers a lesser number of non-self strings than
“1” . If “0” has already been used, then the Match cell would contain a value “0” for
bit “0” at position b. If “0” covers a lesser number of non-self strings than “1” , then it
is indicated in the score for “0” in D r. Once a particular bit (0 or 1) is inserted at a
particular position in the string, the bits appended until that point form a new template.
The book-keeping arrays, C\ and C[, are re-evaluated, wherein the bit position for the
inserted template is set to 0 and the other cells are updated using the methods illustrated
in Equation 3.9 and Equation 3.10.

The LeftFill algorithm (Algorithm 9) fills bits to the left side of the inserted tem­
plate and reverses the method followed in the RightFill algorithm. The ColumnCheck
algorithm (Algorithm 10) ensures that the greedy algorithm stops at a particular point.
This happens when a particular bit position for all the templates is exhausted, meaning
that no more strings can be constructed with values in that particular position. It takes
the flag as input and resets it if the termination condition is reached.

The Ci and C'2 arrays are primarily responsible for tracking the number of valid
non-self strings that axe not yet inserted into the detector set ND. These arrays need
to be updated after each newly constructed string that is added to the detector set ND.
Algorithm 11 implements the procedure to perform the update.

25

3.3. POSITIVE DETECTOR SET GENERATION
The PD scheme employs detectors representing the self set to detect intrusions in

the set of activities being observed in a system. The detector set PD thus contains the
self set members that are obtained from an exhaustive definition of the self set. This set
can be constructed by randomly picking members from the self set or by selecting those
members from the self set that cover a maximum number of self set members. The second

Algorithm 6 InitCl: Algorithm for initializing the C\ array
//INPUTS: 5, Ci, Ns, l, r
i <— / — r + 1
//L oop for checking the strings in self set, from right to left, with the templates
// in the corresponding positions
while i > 1 do

3 * - 1
while j < 2r do

/ /Loop through all the templates
/ / 2r represents the number of possible templates of length r
k <— 1
flag <- 1
while k < Ns do

//L oop through all the strings in S
if S[k][i. . . i + r] = T\j) then

/ / I f the template matches any self substring at position i reset the flag
flag <r— 0

end if
&<—& + !

end while
/ /I f the template is not matched by any of the self strings at position
//then update the C\ array
if flag = 1 then

if i = l — r + 1 then
//F irst update
CibIM < - 1

else
//Successive updates
CiblW - C i[(2 • j)mod(2r)][i + 1] + C i[(2 • j)mod(2r) + l][i + 1]

end if
end if
j <— j + 1

end while
i <— i — 1

end while

26

Algorithm 7 InitCID: Algorithm for initializing the C[array
//INPUTS: S, CjT /, r
z <— 1
//L oop for checking self strings, left to right, with the templates
while i < l — r + 1 do

j * - 1
while j < T do

fc <— 1
flag <— 1
while k < Ns do

/ / Check if the template matches any self substring at position z
if S[k] [z. . . i + r] = T[;] then

flag 0
end if
fc <— fc + 1

end while
/ / I f template is unmatched by any self string at z, update the Cx
if flag = 1 then

if z = 1 then
//First update
c i m - 1

else
n +— r
zero <— one <— 0
x <— 0
//Determine the templates formed when the rightmost bit in the
//self substring is removed and a new bit is added to the left
while n > 1 do

if T\j] [n — 1] > 0 then
zero <— zero + 2X

end if
x <— x 4-1
n <— n — 1

end while
one <— one + 2X
//Successive updates
CJ[?][z] <— C([zero][z — 1] + C[[one] [z — 1]

end if
end if
j « - J + 1

end while
< «— » +1

end while

method will provide a better coverage, while keeping the detector set size smaller. The
detector set generated in this case would be represented as:

27

Algorithm 8 RightFill: Algorithm for filling up the new string on the right side
//INPUTS: S, C'2, C'2, Dr, Match, Ns, l , r, Detector String, maxi, m axj, //a#
/ /Initialize the right pointer for the new string to the appropriate position
/ /after the last bit of the copied template
right *— maxj + r
Indi <— maxi
Indj <— maxj + 1
while rip/it < Z and flag = 1 do

//Determine the templates formed when the leftmost bit in the self substring is
/ / removed and a new bit is added to the right
zero <— (2 • Indi)mod(2r)
one <— (2 • Indi)mod(2r) 4-1
if Match[zero][Indj\ = 0 and Match[one][indj] = 0 then

//Check to verify that the particular position for the template has not already
/ /been assigned to any string
flag *- 0

else if Match[zero\ [Indj] = 0 then
/ /Bit “0” bit has already been used
DetectorString[right\ <— 1
Dr [one] [Indj] <— Match[one] [Indj] <— 0
C'2 [one] [Indj] <— C'2[one][Indj] 0
Indi *— one

else if Match [one] [Indj] = 0 then
//B it “1” has already been used
DetectorString[right] <— 0
Dr[zero][Indj] <— Match[zero][Indj] *— 0
C2 [zero][Indj] C'2[zero][Indj] <— 0
Indi <— zero

else if Dr[zero][Indj] > Dr[one][Indj] then
//Select a bit that covers the highest number of non-self strings
DetectorString[right] <— 0
Dr[zero][Indj] <— Match[zero][Indj] <— 0
C'2 [zero] [Indj] <— C2[zero][Indj] <— 0
Indi <— zero

else
DetectorString[right] *— 1
Dr[one][Indj] <— Match[one][Indj] 0
C 2 [one][Indj] <— C2[one][Indj] *— 0
Indi *— one

end if
right <— right + 1

end while

PD {^1, 6̂2, c/3, . . . , dn }, (3.11)

28

Algorithm 9 LeftFill: Algorithm for filling up the new string on the left side
//INPUTS: S, C2, C'2, Dr, Match, Ns, l, r, Detector String, maxi, maxj, flag
le ft <— indj *— m axj — 1
Indi <— maxi
//L oop for filling up the new string till the first bit
while le ft > 1 and flag = 1 do

n <— r
zero <— one <— x <— 0
/ /In a self substring, add a left bit and remove the rightmost bit
for i <— n to 1 do

if T[maxj][i — 1] > 0 then
zero <— zero 4- 2X

end if
x <— x + 1

end for
one <— one + 2X
if Match[zero\[Indj] = 0 and Match[one\[indj] — 0 then

//Verify that a particular position for the template has not been used
flag <— 0

else if Match[zero\[Indj] = 0 then
//B it “0” bit has already been used
DetectorString[left] <— 1
Dr[one][Indj] <— Match[one\[Indj] <— 0
C2 [one\[Indj] C'2[one][Indj] <— 0
Indi <— one

else if Match[one\[Indj] = 0 then
//B it “1” has already been used
DetectorString[left] <— 0
Dr[zero][Indj] Match[zero][Indj] 0
C2 [zero][Indj] <— C'2[zero\[Indj] 0
Indi zero

else if Dr[zero][Indj] > Dr[one][Indj] then
//Select a bit that covers the highest number of non-self strings
DetectorString[left] <— 0
Dr[zero][Indj] <— Match[zero][Indj] «— 0
C2 [zero][Indj] +— C2[zero][Indj] <— 0
Indi *— zero

else
DetectorString[left] <— 1
Dr[one][Indj] <— Match[one][Indj] <— 0
C2 [one][Indj] «— C2[one][Indj] <— 0
Indi <— one

end if
le ft <— le ft — 1

end while

29

Algorithm 10 ColumnCheck: Algorithm for checking if a position in the string has been
invalidated___

//INPUTS: Match , Z, r, flag
i «— 1
while i < l — r + 1 do

j <- 1
/ /Determine if a particular position in the string (for each template)
/ /has been exhausted
columncount <— 0
while j < 2T do

columncount <— columncount + Match [7] [i]

end while
if columncount = 0 then

flag <— 0
end if
i <— z + 1

end while

where

di = {a\a\. . . a\}. (3-12)

with ajaj . . . a\ representing a sequence of activities. This detector set is then compared
against the set of activities being observed and if the activities do not match any of the
detector components, then those activities can be categorized as intrusions. Algorithm 12
and Algorithm 14 are exclusively designed in this research for the generation of positive
detector sets in the prototype binary system. These algorithms also use the operators
and to implement the exact matching scheme used by the prototype system. The
algorithms use the self set constructed using Algorithm 2.

Algorithm 12 constructs a detector set based on the description of a self set. Random
strings are selected from the previously constructed self set and are validated against the
detector set to eliminate redundancies. If the newly generated strings are indeed unique,
then they are added to the detector set.

Algorithm 14 also constructs the detector set based on the description of the self
set, but instead of selecting the self strings at random, it prioritizes the strings in the self
set on the basis of the number of other self strings that the particular self string covers
or matches. Thus, the detector set would consist of those self strings that cover most of
their counterparts in the self set. This approach leads to a better representation of the
self set while keeping the size of detector set small. In order to determine the coverage

30

A lgorithm 11 UpdateArray: Algorithm for updating the arrays
//INPUTS: C2, Cf, l, r
//Update the C2 array
if flag = 1 then

i <— l — r
while i > 1 do

3 1
while j < 2r do

zero <— (2 • j)m od(2r)
one <— (2 • j)mod(2r) + 1
if C'2[j] [z] 7 ^ 0 then

C^j]^] <— C2[zero][i + 1] 4- C2[zero][z 4 1]
end if
3 3 + 1

end while
i <— i — 1

end while
/ /Update the C'2 array
i <- 2
while i < / - r + l do

3 + - 1
while j < 2r do

n <— r
zero 0
one <— 0
x <— 0
while n > 1 do

if T[;] [n — 1] > 0 then
zero <— zero 4- 2X

end if
k - i + I
n <— n — 1

end while
one *— one 4- 2*
if C'2[j][i] 7 ^ 0 then

C2\j][i\ +- C'2 [zero] [z - 1] + C'2 [one] [z - 1]
end if

end while
z *— i 4 1

end while
end if

of a self string, it is compared against the remaining strings in S using the function
MatchString(stringl, string2,l) described in Algorithm 13.

31

A lgorithm 12 Random Positive Selection Algorithm
//INPUTS: 5, Nay Nr
//OUTPUTS: PD
P D <— <f>
i « - 0
while i < Nr do

Pick a string from S randomly, say s
if s e PD then

Reject s
else

P D <— P D [js
i <— i + 1

end if
end while

A lgorithm 13 MatchString: A function for comparing strings
//INPUTS: string!, string2, l
//OUTPUTS: result
count <— 0
for i = 1 to / do

if stringl[i\ = string2[i\ then
count <— count + 1

end if
end for
if count > (1/2) then

result <— true
else

result <— false
end if

The following sections explore some of the practical issues that are confronted when
using the PD scheme for identifying intrusions, as compared to the ND scheme.

3.4. POSITIVE VS. NEGATIVE DETECTION
The literature reviewed has shown that the ND scheme has been explored extensively,

but the effectiveness of the PD scheme has not. The objective of this research is to analyze
the advantages of using the two schemes under different situations and to evaluate their
performance in specific environments. The PD scheme seems to have certain distinct
advantages over the ND scheme, both of which are illustrated in Section 3.6.

The definition of self, in most cases, is not complete. Hence, if a negative detector
set is to be constructed on the basis of this self set, it is bound to be erroneous. The reason

32

A lgorithm 14 Greedy Positive Selection Algorithm_________________________
//INPUTS: S, Ns, Nr, l
//OUTPUTS: PD
P D <— (j>
i <- 0
j * - 0
while i < Ns do

count[i] <— 0
while j < Ns do

if MatchString(S[i\, S\j],l) then
count[i\ <— count[i] + 1

end if
j * - j + l

end while
i *— i + 1

end while
Sort S
/ /The elements in S axe sorted in descending order according to their count
i « - 0
while i < Nr do

//Select the first Nr elements from S and include them in Ds
PD <- S[i]

end while

is that the detector set may have members that actually belong to the self set, but are
not included in the self set used in the construction of the detector set. This may result
in false positives (FP), i.e., the self activities may be classified as non-self. When the PD
scheme is used, the detectors are generated directly from the self set. The number of FPs
in this case may exceed those obtained using the ND scheme as the detector set is merely a
subset of the self set, which has an incomplete definition (there are unknown self strings).
Thus, chances for a self activity to be identified correctly are lower for the PD scheme
compared to the ND scheme. This can be illustrated using an example based on the data
set depicted in Figure 3.2, where the length of the strings, Z, in the binary universe is 3.
The self set, S, consists of five strings and it is assumed that two of those strings are not
recognized (unknown self). The remaining strings (known self) represent a subset of S,
called the estimated self set (ES). The non-self set, NS, consists of the remaining three
strings in the universe. A negative detector set, ND, with three members is constructed
by picking random strings from S and NS that are not members of ES:

N D = {000,101,111} (3.13)

33

Figure 3.2. An Example to Illustrate PD and ND Schemes

Consider a system characterized by the universe described in Figure 3.2, which
contains eight possible activities represented by the eight strings. If an activity represented
by the string 101 is observed in that system, it would be classified as non-self because the
string 101 is in N D , despite its being a self string. This results in an FP. If string 110 is
observed, it would be classified as self given it is not in ND. However, 110 happens to be
a non-self string; hence is a false negative (FN).

Further, if a positive detector set, PD , with two members is constructed using ES,
it results in the set:

PD = {001,010} (3.14)

If the strings 100,101, and 111 are observed, they would result in FPs. However, the
chance of FNs is very low and depends on the matching scheme used and its efficiency.

When the ND scheme is used, an observed self activity would be compared against
all the detectors unless an FP detection (i.e., the self being classified as non-self) occurs.
An observed non-self activity would be compared against the detector set only until a
match is found, unless an FN detection (i.e., the non-self being classified as self) occurs.
In the case of the PD scheme, an observed self activity would be compared against the
detector set only until a match is found, unless FPs are detected. A non-self activity
observed would be compared against all the detectors, unless FNs are detected. But
the chances for occurrence of FNs are significantly less in the case of the PD scheme,
unless the definition of self is incorrect. If the number of self activities is, on average,
greater than the number of non-self activities in a system, the PD scheme involves less

34

comparison than the ND scheme. This could prove to be a significant factor in real-time
systems wherein the number of self activities far outnumbers the abnormal ones.

In the PD scheme, the number of FPs is expected to be high, but it would be rare
to have an FN. Though it would be disconcerting to have a high FP rate, it should be
satisfactory to note that there is only a rare chance for an intrusion to succeed in the PD
scheme.

3.5. EXPERIMENTS
Experiments were conducted using Algorithm 15 designed in this research to ver­

ify the implications discussed in Section 3.4. The detector set for the ND scheme was
constructed using the exponential algorithm (Algorithm 3) and the greedy algorithm (Al­
gorithm 4). The detector set for the PD scheme was constructed based on Algorithm 12

and Algorithm 14. The same self set was used by the PD and ND algorithms. After the
construction of the detector sets, they were tested against one thousand non-self strings
and the procedure was repeated one hundred times. The average number of detectors that
were generated and the average number of incorrect classifications, P f , for the detector
sets to classify the non-self activities incorrectly, were recorded.

The r-contiguous match rule [5] was used for all experiments. In this method, the
strings are supposed to match each other, if and only if they have identical symbols at
r continuous locations. For example, if two strings, 1001 and 1000, axe to be compared
and r is set to “3” , the r-contiguous match rule will produce a true result since both the
strings match in the first three bit positions (if the least significant bit is expected to be
the leftmost). A detailed explanation of the working methodologies of the r-contiguous
match rule can be found in [5].

35

Algorithm 15 Procedure for Conducting Experiments
//INPUTS: Nat Nrt /, m, r
count 0
P f D <- F P PD <- F N PD <- 0
pNE> p p N D p j y N D q

while count < 100 do
Construct S using Algorithm 2
Construct N D using a negative detector generation algorithm
/ /Use either exponential or greedy negative detector generation algorithm
Construct P D using a positive detector generation algorithm
//U se either exponential or greedy positive detector generation algorithm
i <- 0
while i < 1000 do

Detector String <— randomstring (/)
//randomstringO generates a random string of length l
if Detector String G S then

/ /A case when the Detector String belongs to self
if Detector String ^ PD then

FPpd <— FPpd -1- 1
end if
if Detector String G N D then

F P n d F PnD + 1
end if

else
/ /A case when the Detector String belongs to non-self
if Detector String G P D then

FNpp <— FN pd + 1
end if
if Detector String £ N D then

FNnd FNnd + 1
end if

end if
i <— i + 1

end while
count«— count + 1

end while
//Determine average values of P f , F P and FN for PD and ND schemes
P PD <- (F P PD + F N pd)/ 100
pNL> \f p n d + F N ND)/100
p p P D p p P D / 100
F N pd 4- F N pd/ 100
p p N D p p N D / 100

F N nd 4- F N nd/ 100

3.5.1. Experiments with Exponential Algorithm. Algorithm 3 generates detectors
exhaustively, checking them against the self set to ensure that the generated detectors

36

do not match the self components. Experiments were conducted using the same values
for the parameters that were used for the experiments in [8] to recreate the results.
Table 3.4 lists those parameters and their corresponding values. Algorithm 12 was also
run simultaneously and the results were recorded for both the algorithms.

Experiments were conducted for Algorithm 3 by varying the size of the self set, Na
and using parameter values suggested in [8]. The Pf, FPs, and FNs were recorded for the
same. Experiments were conducted for Algorithm 12 by varying the number of detectors
and the size of the self set. The P fs, FPs, and FNs were recorded for the same. The
results are shown in Table 3.5.

Table 3.4. Input Parameters for Experiments using Algorithm 3

Nr 46 (Non-self)
Pm 0.0502
m 2 (binary)
l 32
r 8

Table 3.5. Performance of the Exponential Non-self Algorithm (Algorithm 3) and Random
Positive Algorithm (Algorithm 12)

Ns ND (Al)^orithm 3) PD (Algorithm 12)
Nr F P F N Pi Nr FP FN Pf

8 46 0.867 0.077 0.346 4 0.442 0.0 0.151
16 46 0.856 0.071 0.516 8 0.397 0.0 0.224
24 46 0.862 0.061 0.640 12 0.343 0.0 0.248
32 46 0.854 0.056 0.700 16 0.296 0.0 0.239
48 46 0.834 0.023 0.769 24 0.216 0.0 0.180
64 46 0.824 0.001 0.794 32 0.158 0.0 0.152
80 46 0.806 0.003 0.794 40 0.109 0.0 0.107
96 46 0.801 0.004 0.796 48 0.076 0.0 0.076

3.5.2. Experiments with Greedy Algorithm. The greedy algorithm, discussed in
[9], is aimed at generating non-self detectors that are far apart from one another, thus

37

providing better coverage with a minimal number of detectors. Also, it is possible to
generate all the possible sets of valid detectors for a given self set in linear time with
this particular algorithm. Experiments were conducted for different string lengths l and
matching lengths r, as suggested in [10]. The size of the self set, Ns, was limited to 250
members. The greedy algorithm was set up to generate all the possible negative detectors.
Random strings were generated and tested against the negative detectors to evaluate the
performance of the detector set. The P f s, FPs, and FNs were recorded in each case.
The PD algorithm was also run simultaneously using the same self set, S', but the size of
detector sets, Nr, were varied so as to determine the impact of the detector set size on
performance. The P/S, FPs, and FNs were recorded for the different values of Nr. The
results are shown in Table 3.6, where N* represents the number of detectors generated,
as per the results published in [9].

Table 3.6. Performance of the Greedy Non-self Algorithm (Algorithm 4) and Random
Positive Algorithm (Algorithm 12). The values within parenthesis in Column
4 are the standard deviations for 100 sample runs.

Ns l r ND (Algorithm 4) PD (Algorithm 12)
Nr n ; F P FN Pi Nr F P F N Pi

250 16 10 741 (2.03) 793 0.95 0.0003 0.60 125 0.34 0.0 0.22
250 16 9 230 (3.85) 320 0.89 0.0005 0.79 125 0.21 0.0 0.19
250 16 8 34 (6.47) 88 0.50 0.0003 0.49 125 0.55 0.0 0.06
250 32 11 1685 (2.19) 1796 0.99 0.0000 0.76 125 0.31 0.0 0.24
250 32 10 615 (3.10) 821 0.99 0.0000 0.95 125 0.17 0.0 0.16
250 32 9 143 (5.08) 378 0.98 0.0000 0.98 125 0.03 0.0 0.03
250 32 8 14 (7.72) 89 0.53 0.0000 0.53 125 0.00 0.0 0.00

3.6. RESULTS AND DISCUSSION
Table 3.5 and Table 3.6 clearly show that the P f values for the detector sets gener­

ated using Algorithm 12 are low. It is observed that Algorithm 12 is much faster when
compared to the ND scheme algorithms, since the size of the detector sets in the case of
the PD scheme is very small compared to the ND scheme, for the same P f .

It is also interesting to note that the number of FPs and FNs decrease with an
increase in the size of the self set Na. The inference made here is that the size of the self
set defines the accuracy with which the normal activities in a system are defined. The

38

0.9

0.8

0.7

0.6

£ 0.5>
1 0.4
Q.
0)
42 0.3
CD U_

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

Detector set size

I ND ♦..... PD x I

Figure 3.3. Performance Comparison of ND and PD for FPs - ND: Exponential Algorithm
(Algorithm 3), PD: Random Algorithm (Algorithm 12)

matching length, r, also plays a significant role in the performance of IDS. It can be seen
from Table 3.6 that with the reduction in the matching lengths, the FPs and FNs are
also reduced. This is because the detector set tends to become more general with broader
coverage.

Figure 3.3, Figure 3.4 and Figure 3.5 show the performance of detector sets in terms
of FPs, FNs, and P/s, respectively, based on the variation in the number of self set
members. It can be seen that the FPs and FNs are reduced with the increase in the size
of the self set. This is because the clearer the definition of the self set, the fewer the
chances for misclassification. Figure 3.6 and Figure 3.7 show the effect of string lengths
and matching lengths on the performance of the system. Generally, with the reduction
in matching length, the failure rates are also minimized. This is again due to the fact
that detector sets tend to behave like generalists with smaller matching lengths. It is also
observed that an increase in the length of the strings generally results in higher failure
rates. This is because the larger strings have more information encoded and comparison
operations do not effectively resolve the encoded information.

Results show that the non-self detectors result in more FPs than FNs. This is mainly
due to the matching rule used. Since the matching rule used is unsophisticated, the non­
self strings in the detector set match the self strings that are generated at random during

39

Figure 3.4. Performance Comparison of ND and PD for FNs - ND: Exponential Algorithm
(Algorithm 3), PD: Random Algorithm (Algorithm 12)

the tests conducted. The random strings used for testing are generated using the self set
and are labeled as either self or non-self. Since the matching process is performed using
the r-contiguous match rule, the test strings, labeled non-self because they do not match
any member of the self set, would not match the strings in the detector set (a subset of
the self set) as well. This explains why the FNs for the positive detector set are always
zero. Also, for the same reason, the FPs obtained may not be a true reflection of the
performance of the detector sets. But it is evident that the PD scheme performs better
in cases where the self strings are fewer in number.

When the size of the self set exceeds the non-self set size, the performance of the
detectors is expected to be better. No explicit experiments were done to investigate this
since the non-self and the self strings are complementary.

3.7. APPLICATION OF CLONAL EAS AND SELF/NON-SELF PRINCIPLES
The Clonal EAs and the PD/ND schemes discussed previously have been imple­

mented in a prototype IDS described in this section. The IDS uses a pattern recognition
algorithm termed IDSClonalg, a Clonal EA, and implements PD/ND schemes in IDSClon-
alg to classify a data set into two classes, namely normal and intrusive. Many intrusion

40

Figure 3.5. Performance Comparison of ND and PD for PfS - ND: Exponential Algorithm
(Algorithm 3), PD: Random algorithm (Algorithm 12)

detection algorithms based on Clonal EAs have been proposed in [1, 12, 13,14] for detect­
ing intrusions in a system. However, all these algorithms use the ND scheme to generate
detectors. In this research, both the PD and ND schemes axe implemented in a Clonal
EA framework and their performance is compared for a static data set.

The KDD Cup 19992 data set was used for this purpose. The data was processed
using various data cleaning and transformation techniques before being separated into
TrainData and Test Data sets. The TrainData set was provided as input to the IDS
and detectors were generated. The detectors were then used to evaluate the TestData
set members to perform the classification. It must be noted that the members of the
original data set were labeled as belonging to the normal or intrusive class, thus facili­
tating comparison of the performance of the IDS when used with the PD and ND schemas.

3.7.1. Data Preparation. The KDD Cup 1999 data set contains snapshots of
a system’s state recorded at regular time intervals. Activities simulating attacks had
been performed on the monitored system to facilitate generation of data that reflected
abnormal/intrusive behavior. The data set is composed of several rows of such snapshots,
each possessing forty one heterogeneous data type attributes representing various system

2http: / /kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

41

Figure 3.6. Performance Comparison of ND and PD for PfS - ND: Greedy Algorithm
(Algorithm 4), PD: Random Algorithm (Algorithm 12) and l = 16

characteristics. Each row of data is henceforth referred to as a data member or vector
and a collection of all such rows of data is referred to as a data set.

Detailed information on the methods used to prepare the data set can be found at
http ://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htm l. In order for the IDS
to perform efficient classification, it is essential that all the attributes possess values
belonging to the same data type and that their values are within a uniform range. An
example set of attributes that constitute a data member is provided in Figure 3.8. Note
that the figure shows only a partial list of attributes to facilitate understanding the nature
of the data involved.

The original data set possessed forty one attributes excluding a label attribute. The
label attribute represented the class which the data member belonged to. It was removed
from the data set to avoid its values being tampered with during the data processing
phase. The data set was then processed to ensure that all the forty one attributes be­
longed to the same data type (numeric). This was done by creating look-up tables for
attributes that possessed text data type values. For example, if there was an attribute
whose value set was { A , £?, C } then a look-up table was created as {A — 0, B — 1, C — 2}.
The numeric values from the look-up table were used to replace the text data value for
that attribute for each data member. The data set was then normalized such that all the

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

42

Figure 3.7. Performance Comparison of ND and PD for PfS - ND: Greedy Algorithm
(Algorithm 4), PD: Random Algorithm (Algorithm 12) and l = 32

Protocol Service Numfailed Src bytes Dst bytes urgent Serror Class
Type logins rate

Figure 3.8. A Sample Data Schema with Critical Attributes

attributes possessed values in the range [0,1]. For example, if there was an attribute with
values in the range [0, 10000], then the maximum value for that attribute was identified
and the values of that attribute for all the data members were divided by the maximum
value. After processing the data, the label attribute was added back to the data set.

3.7.1.1. Data Separation. The processed data set was condensed into a smaller set
by using class-based proportional sampling. Data members belonging to different labeled
classes were selected based on the number of members in the original data set. For ex­
ample, if there were 50 members belonging to class C in the original set containing 100

members and if the size of the condensed set was set to 50 members, then 25 members
belonging to class C were uniform randomly selected into the condensed set. Two subsets

43

were created from the condensed set by randomly inserting 60 percent of its members into
the TrainData set and the remaining 40 percent of its members into the Test Data data
set.

3.7.1.2. Principal Component Analysis. The members of the TrainData and
TestData sets were processed using Principal Component Analysis (PCA) [15] to reduce
the number of attributes, thereby making the classification process more efficient. The
label attribute was removed from the data sets before subjecting them to PCA. The im­
portant features of the data sets were extracted by discarding those attributes that were
correlated with each other. Correlated data attributes lead to redundancy in the data
set without necessarily providing more information. PCA extracts only the uncorrelated
attributes. Hence, only those attributes that significantly impact the detection process
were identified and extracted. Thus processed TrainData and TestData sets possessed
only ten attributes instead of the original set of forty one. These ten attributes were most
significant in terms of differentiating normal activities from intrusions. Finally, the label
attribute was reattached to the data sets.

3.7.2. IDS Design. The IDS was comprised of two main components, namely
Generator, the detector generation part, and Evaluator, the data evaluation part.

3.7.2.1. Generator. The Generator is responsible for creating positive and negative
detectors based on the input data provided to it. Previously, deterministic algorithms
such as the exponential algorithm, the greedy algorithm and the random positive selection
algorithm were used to generate detectors for a binary system. But, considering the fact
that the KDDCup\999 data set was huge and that there were thousands of rows of data
to be analyzed, a stochastic algorithm such as a Clonal EA was required. Thus, the
generator incorporated the IDSClonalg algorithm designed for generating detectors based
on the TrainData set.

IDSClonalg: The IDSClonalg algorithm was designed as a pattern recognition
algorithm. The TrainData set members were considered as patterns associated with
a particular labeled class, namely normal or intrusive. IDSClonalg was designed to
learn the patterns from the TrainData set and express them as detectors. The algorithm
design involved modeling the detector generation problem as Clonal EA components. The
following notations are used in the description of IDSClonalg:

44

1. Mag represents an antigen set comprising the problem scenarios. This set contains
a number of patterns which need to be approximated and learned. In order to
generate detectors, this set needs to be populated with TrainData set members
along with their label attribute.

2. Mn represents a normal solution set. The members of this set represent the de­
tectors that are being developed and possess all the attributes that the members
of TrainData and TestData sets do, including the label attribute. Members of
this set also possess an additional attribute termed fitness. The fitness attribute
determines how efficient a detector is.

3. Mm represents a memory solution set. The members of this set usually represent
a specific pattern that was learned. So this set should contain only two detectors,
one belonging to the normal class and the other belonging to the intrusive class.
But, considering the fact that there were a large number of members in the antigen
set that belonged to the normal and intrusive classes, it would not be sufficient to
have a single detector represent each class. Thus, the cardinality of the detector set
was set to ten and of these, five were positive detectors that represent the normal
class and the rest were negative detectors that represent the intrusive class. The
members of this set possess all the attributes that the members of TrainData and
TestData sets do, including the label attribute. Members of this set also possess
an additional attribute termed fitness.

The attributes and fitness of the members in Mm are initialized to zero. These
members are replaced with members from Mn, which possess the highest fitness
when evaluated against an antigen. The replacement is performed only between
members of the same class represented by their labels.

4. Mp represents a population set which is the union of the normal and memory sets

(Mp = Mn U Mm)-

5. Mc represents a clone set.

6. nag represents the cardinality of Mag.

7. nn represents the cardinality of Mn.

8. nm represents the cardinality of Mm.

9. np represents the cardinality of Mp.

45

10. nc represents the cardinality of Mo­

ll . n* represents the number of clones of member i in Mv that are to be generated in Mc.

12. M*g represents a member x in the antigen set as:

14. M* represents a member x in the clone set.

15. /* represents the fitness value of a member x in Mc.

16. IDSFitness(Detector, Antigen) represents a function that assigns a fitness value
to a detector in Mp or Mc when compared with an antigen in Mag. It uses the
Manhattan distance metric to determine the distance, dDetector, between a Detector
and an Antigen. Since the Detector and Antigen possess ten attributes each, with
values in the range [0,1], the distance value should be in the range [0,10]. The
fitness of a Detector is then expressed as fDetector = 10 — doetector- For example, if
the fitness function is executed as Fitness(M x, M%g), then:

M xag (3.15)

13. M* represents a member x in the normal set as:

(3.16)

Detector = Mp = [0.5,0.5,0.5,0.5,0.0,0.4,0.6,0.8,0.9,1.0] (3.17)

Antigen = M%g = [0.4,0.4,0.4,0.4,1.0,0.4,0.6,0.8,0.9,1.0] (3.18)

The Manhattan distance between Detector and Antigen is computed as:

10
dDetector = ^2 \Detectori — Antigen^ (3.19)

*=i

Hence,

dAntigen — 1*4 (3.20)

46

Then, the fitness fDetector of Detector is computed as:

(3.21)

(3.22)

Finally,

(3.23)

A fitness value close to “10” is considered as a high fitness value and a fitness value
close to “0” is considered as a low fitness value. Algorithm 16 summarizes the fitness
computation process.

A lgorithm 16 IDSFitness: A function for computing the fitness of members in Mn
//INPUTS: Detector, Antigen
for i <— 1 to 10 do

dDetector * dDetector T | DetectoTi Antigen^
end for
f Detector * 10 dDetector

17. IDSCreateClones(n, 7 , label) represents a function that populates Mc with clones
created from the first n members of Mp. The number of clones created for each
of the first n members is computed using Equation 2.1. Algorithm 17 explains the
process for creating the clones.

18. ID S Hyper Mutate(Clone) represents a function that performs hyper-mutation. The
upper bound on the maximum amount by which a clone’s attribute values can be
altered is termed ceil. The value of ceil is calculated as:

Ceil = 1 — (fctone)/W (3.24)

For example, if fclone = 8.6, then ceil = 0.14. Thus, the higher the fitness of a
member, the smaller the range of values by which the attributes of the member can
be altered. The IDSHyperMutate(clone) function is defined in Algorithm 18.

47

Algorithm 17 IDSCreateClones: A function for creating multiple clones of members in
Mn__

//INPUTS: n, 7 , label
k <— 0
for i *— 1 to n do

numclones <— [(7 • np)/i]
for j <— 1 to numclones do

k <— k + 1
Mcfc <- M lp
label* <— label

end for
end for
nc <— k

Algorithm 18 IDSHyperMutate: A hyper-mutation function
//INPUTS: Clone
ceil <— 1 - (fci one)/10
for i *— 1 to 10 do

disp <— random(0, ceil)
/ / The random() function generates a value between 0 and ceil
if randomQ < 0.5 then

/ / The random() function generates a value in the range (0,1)
if Clone[i] + disp < 1.0 then

Clone[i\ <— Clone[i] 4- disp
end if

else
if Clone[i] — disp > 0 then

Clone[i] <— Clone[i\ — disp
end if

end if
end for

19. InitNormal{) represents a function that assigns uniform random values to the at­
tributes in members of Mn and sets their label values to null. The InitNormal()
function is defined in Algorithm 19.

20. I nit Memory () represents a function that initializes the attributes in members of
Mm to zero and sets the label values for the first five members to normal and the last
five members to intrusive. The InitMemoryQ function is defined in Algorithm 20.

The IDSClonalg design based on the notations described previously is provided in
Algorithm 21. The algorithm first initializes the members of Mm, Mn and Mag. The

48

A lgorithm 19 InitNormal: A function for intializing members of Mn
for i <— 1 to nn do

fitnessln <— 0
labelln <— null
for j <— 1 to 10 do

alj <— random(0, 1)
end for

end for

A lgorithm 20 InitMemory: A function for intializing members of Mm
for i <— 1 to 5 do

fitnessln <— 0
labelln <— “normal”
for j *— 1 to 10 do

a'j o
end for

end for
for i <— 6 to 10 do

fitnessln <— 0
label‘s <— “intrusive”
for j <— 1 to 10 do

a) <- 0
end for

end for

members of Mm and Mn are then combined to form Mp and the members of Mp are eval­
uated against each antigen in Mag. Based on their fitness, members of Mp are subjected
to clonal expansion and the clones are populated in Mc. The clones then undergo hyper­
mutation and their fitness is evaluated. Based on the fitness of the clones, the memory
set and the normal set are altered. The whole process is repeated for a specified number
of generations, numgenerations. numparents represents the number of members from
Mp that are to be selected for cloning.

3.7.2.2. Evaluator. This component is responsible for using the detectors generated
by the IDS to classify the TestData set members as normal or intrusive. The evaluator
extracts members of Mm which belong to the normal class and inserts them into a new
set of positive detectors, M pd and extracts members of Mm which belong to the intrusive
class and inserts them into a new set of negative detectors, M^d - The cardinality of Mpd
is npD = 5 and the cardinality of M ^d is n^D = 5. The cardinality of TestData set is

49

nTestData• These two detector sets are then used to implement the PD and ND schemes
to classify members of the TestData set into normal or intrusive classes.

P D Scheme: In this scheme, members of the TestData set are compared against
the detectors in Mp d - A member, TestData*, of the TestData set is compared against all
the members of Mpd to determine the Manhattan distance between them and TestData1.
Then the minimum of those distances is identified and compared with a tolerance value,
T olpo. If the minimum Manhattan distance is less than Tolpo, then TestData* is classi­
fied as normal since TestData1 is considered to closely match the patterns represented by
the detectors in Mp d - But, if the minimum Manhattan distance is greater than Tolpp>,
the TestData1 is classified as intrusive. The tolerance value Tolpo sets the delineation
between the normal and intrusive classes and is computed as in Algorithm 22.

The purpose is to determine a Tolpo value based on the maximum average Manhat­
tan distance between the TestData set and Mpd- This would enable the determination
of the extent of tolerance that could be allowed for declaring a match. The classification
function for the PD scheme is defined in Algorithm 23.

The objective is to determine the closest possible match between a member of
M po and the data member under consideration, TestData*, and compare it with the
T oIpd value. The variable computedlabel'TeatData records the class that the evaluator
assigns to TestData1. The performance of the evaluator can be determined by compar­
ing computedlabellTestData against lobellTeatDatâ which provides the actual classification for
TestData1. Algorithm 24 demonstrates the procedure for evaluting the performance of
the PD scheme.

N D Scheme: In this scheme, members of the TestData set are compared against
the detectors in Mn d - A member, TestData1, of the TestData set is compared against all
the members of Mnd to determine the Manhattan distance between them and TestData1.
Then the minimum of those distances is identified and compared with a tolerance value,
T oIn d - If the minimum Manhattan distance is less than T oIn d , then TestData* is classi­
fied as intrusive since TestData1 is considered to closely match the patterns represented
by the detectors in M n d - But, if the minimum Manhattan distance is greater than ToInd ,
TestData* is classified as normal. The tolerance value T oInd sets the delineation between
the normal and intrusive classes. The computation of T oIn d , the classification function
and the performance of the evaluator for the ND scheme, is exactly the same as for the
P D scheme. The only modification would be that the set MPD would be replaced by

Mnd -

50

3.7.3. Results. The accuracy of the IDS is evaluated on the basis of the number
of correct classifications, the number of FPs and the number of FNs. Table 3.7 shows the
best results obtained using positive and negative detectors. It is evident from the results
that the positive detectors significantly outperformed the negative detectors. It was noted
from the data that there were certain unique “positive patterns” that could be identified
based on the normal class data; whereas, the intrusive class data was inconsistent in
terms of its characteristics so that no such patterns could be identified.

Table 3.7. IDSClonalg Results for Self, Non-self Detectors. (* Percentage values of results
averaged over 50 trials, Values in parenthesis represent standard deviations)

Scheme No. o f
D etectors

*Correct
Classifications

*False
Positives

*False
Negatives

PD 5 99.07 (0.21) 0.37 (0.08) 0.56 (0.13)
ND 5 37.36 (2.46) 0.0 (0.00) 62.64 (4.12)

This resulted in an inability to set the T o In d value, based on M n d , along a line
that delineates the intrusive class from the normal class. Thus, a T o I n d value was set
such that it was always below the dminlTestData values of TestData members, regardless
of whether TestData1 belonged to the normal or intrusive class. A high percentage of
intrusive class data was classified incorrectly mainly because the T o I n d value could not
be set such that it provided an accurate upper bound for the distance metric. Hence,
the evaluator for the ND scheme classified only 37.36 percent of TestData members
correctly. It can be seen that all the self activities were correctly classified (FPs = 0%)
and that most of the non-self activities were classified incorrectly. The reason might be
that intrusive data used for training (TrainData) differed from that used for testing
(TestData), which may have resulted in the detectors being closer to the intrusive class
members in TrainData and not to the intrusive class members in TestData.

In the case of the PD scheme, a T o I p d value was identified along the boundaries
of normal data, which greatly improved the classification process. This underscores the
importance of using the PD scheme when intrusions are sporadically distributed in terms
of their characteristics. In such cases, the classification process can restrict itself to
checking if a datum belongs to the normal class, using positive detectors that can be
generated based on a consistent pattern associated with data belonging to the normal
class.

51

3.7.4. Conclusion. IDSClonalg uses labeled classes of data to identify intrusions.
Though IDSClonalg is used with labeled classes of data, it is also possible for the algorithm
to be provided with unlabeled data to generate detectors. In such cases, its performance
is expected to decrease. But, the simplicity of the solution with a relatively low number
of detectors, compared to the overhead involved in detection systems such as those that
involve neural networks, makes it a better choice for real-time IDS.

52

A lgorithm 21 IDSClonalg: An algorithm for generating positive and negative detectors
//INPUTS: numgenerations, numparents, 7 , £
Call InitRandom{)
Call InitM em ory()
Mag <— TrainData
for iter <— 1 to numgenerations do

//L oop for specified number of generations
for i <— 1 to nag do

//L oop through all the antigens in Mag
label <— labellag
//R ecord the label of the antigen, which is to be assigned to the clones
Mp <— Mn U Mm
for j <— 1 to np d o

Call ID SFitness(M i, M*p)
end for
Call Sort(Mp)
/ /Sorts members of a set in descending order of fitness
Call IDSCreateClones(numparents,7 , label)
for j *— 1 to nc d o

Call ID S Hyper Mutate(M-l)
end for
for j <— 1 to nc d o

Call ID S F itn ess(M i,M lag)
end for
Call Sort(Mc)
if label — unormaF then

startindex <— 1
endindex <— 5

else
startindex <— 6
endindex <— 10

end if
for j <— startindex to endindex do

^ /c > fL then
<— M l //Insert the highest fitness member into Mm

end if
end for
nindex <— nn — i
for dndex <— nc — £ to nc do

nindex j^cindex //{Repertoire Diversity
nindex <— nindex + 1

end for
end for

end for

53

Algorithm 22 Computation of Tolerance Value
SUTTIt estData * 0
for i * 1 to TlTestData d o

dmax'TcstData — 0
for j <— 1 to ripo do

Determine the Manhattan distance, d^estData between TestData1 and MpD
i f T̂estData > dmax\.esWata then

/ /Determine the maximum of the Manhattan distances between a member
/ / in TestData and those of Mpp
dm aX TestData. * dfcpestData

end if
end for
SUTTIt estData. * SUTTIt estData T dmaXTestData

end for
T o lp D * SUTTlTestData j TlTestData
//Determine the average of the maximum distances of all the members of TestData
from the members of Mpp>

Algorithm 23 Data Classification Function
for t < 1 to TlTestData d o

dminirestData 100
for j <— 1 to ripo do

Determine the Manhattan distance, between TestData* and M 3PD
if d̂ iestData < d in in g ,tDatathen

//Determine the minimum of the Manhattan distances between a member
/ / in TestData and those of M pd
dminlTestData <— dTestData

end if
end for
if dminipe3tData < TPD then

P D co m p u ted la b ellTeatData <— n orm al
else

P D co m p u ted la b ellTeatData +— in tru siv e
end if

end for

54

A lgorithm 24 Performance Evaluation for PD Scheme_______________________________
CorrectClassificationspD *— 0
IncorrectClassificationspD <— 0
FalsePositivespD *— 0
FalseNegativespr) +— 0
for l < 1 to TlTest£)a,ta do

if PDcomputedlabel^estData = label'TestData then
CorrectClassificationspD *— CorrectClassificationspD 4-1

else
if PDcomputedlabellTestData = normal AND labellTe3tData = “intrusive” then

FalseNegativespD FalseN egativespD 4- 1
end if
if PDcomputatedlabellTestData ~ intrusive AND labelpestData = “normal” then

FalsePositivespD *— FalsePositivespD 4-1
end if

end if
end for
IncorrectClassficationspD <— npestData ~ CorrectClassificationspD

55

4. FACTS PLACEMENT IN A POWER GRID

A power grid is an enormous electrical power transmission network. It is made up
of power transmission lines, alternatively referred to as lines, that carry power across the
network and buses which act as hubs relaying power delivered to them by transmission
lines to other transmission lines and consumer loads. A power grid is thus a collection
of buses interconnected by transmission lines. Failure of transmission lines, termed line
contingencies, can trigger cascading failures in the power grid [16]. A cascading failure
occurs when the failure of one transmission line causes other power lines to carry excess
power. If such a condition is not immediately rectified, it might lead to failure of a large
number of transmission lines.

The placement of FACTS devices on ideal locations could help distribute the excess
load on overloaded lines across other transmission lines in the grid [16]. The FACTS
devices are very expensive and it is important to use as few devices as possible. Hence,
it is necessary to find ideal placements for a limited number of FACTS devices such that
the contingencies are handled efficiently, allowing the grid to operate under optimal con­
ditions. Given the fact that there are an extremely large number of possible locations
to place the FACTS devices in a power grid, the complexity of the problem is signifi­
cant. In this section, Clonalg, a Clonal EA designed for function optimization, is used
to determine optimal placement positions for FACTS devices. To evaluate its perfor­
mance, a standard evolutionary algorithm and two greedy algorithms were implemented
to determine comparative FACTS device placements.

4.1. THE POWER GRID MODEL
In this section, a simulation model developed to represent a power grid, the power

flows, contingencies and the placement of FACTS devices, is explained.

4.1.1. Power Grid. A power grid system termed “IEEE 118-bus test system”
[17] was considered for performing the experiments. The grid system included 118 buses
and 179 lines and several consumer loads. In this grid system, there can only be one
line connecting any two buses. Figure 4.1 shows the layout of the buses and the fines
connecting them along with the loads represented as circles.

In order to determine the ideal placement positions for FACTS devices on a grid, it
is necessary to establish a set of metrics for evaluating the placements. FACTS devices are
placed on fines and are configured to regulate power across those fines. A set of FACTS

56

devices placed on certain lines is henceforth referred to as a “FACTS device configuration” .
It is important to place the FACTS devices on critical lines such that when the power flow
across those lines is regulated, the power flow across the whole grid is regulated. Thus,
it is necessary to determine the power flow across the whole grid so that the power flow
across individual lines can be computed. Those lines that carry power more than their
specified capacities are considered to be overloaded. The overloaded lines that cause a
large number of lines in the grid to be overloaded are considered critical lines. The main
aim of this research is to develop algorithms to identify such critical lines and place the
FACTS devices on them, thus regulating the power flow across a large number of lines.

57

4.1.2. Component Representation. The components used in the simulation model
are explained as follows:

1. G represents a power grid with buses and lines.

2. Bus represents a set that contains a collection of buses in G.

3. Line represents a set that contains all the lines in G as its members, represented as
ordered pairs of source and destination bus numbers of a line.

4. VLine represents a subset of Line that contains the lines in G as its members,
represented as ordered pairs of source and destination bus numbers of a line.

5. BusConfig represents a set that maintains configuration information regarding the
buses in G.

6. LineConfig represents a set that maintains configuration information related to all
the lines in G.

7. Busi represents a bus i in G.

8. Lineij represents a line between BuSi and BuSj.

9. capij represents the power carrying capacity of a line, Lineij.

10. flowij represents the amount of power flowing across Lineij with the direction of
power flow represented by the sign (positive or negative) assigned to flow^.

11 . facij represents a FACTS device placed on a line, Lineij.

12. numoverloadij represents the number of times Lineij is overloaded for a certain
number of single line contingencies (SLCs), further explained in Section 4.1.3..

13. overloadij represents the sum of the amounts (flowij — capij) by which Lineij is
overloaded during each SLC.

14. nsus represents the cardinality of Bus.

15. nvLine represents the cardinality of Vline.

16. n facts represents the total number of FACTS devices available for placement in the
grid.

58

17. F con f ig ^ acts represents a configuration k wherein n facts FACTS devices are placed
on certain lines:

Fc<mfiglfacta = { /o c ^ , , /a c ^ , , • • •, /a c ,.,. ,, , , . , . , , .} (4.1)

There cannot be multiple configurations such as Fcon fig f and Fconfigl because
each configuration is unique and adding a facts device to Fconfigl will only create
a new configuration F con fig l. But, there can be multiple configurations such as
Fconfigl and Fconfigl which indicate two different configurations for the same
number of FACTS devices.

18. sumoverloadk represents the total number of overloaded lines in the grid for config­
uration Fconfig^ acts, considering all possible contingencies.

4.1.3. Identification of Overloaded Lines. The process of identifying the overloaded
lines involves performing a contingency analysis by iteratively deactivating a single line
(causing an SLC) and for each such SLC determining which lines are overloaded. In order
to simulate the SLCs, the lines in Line axe first populated into Vline and alterations are
done in Vline. This preserves the original grid configuration for the lines in Line. The
process of creating an SLC is explained in Algorithm 25.

A lgorithm 25 Deactivate: A function for deactivating a line in the grid
Remove Vlineij from Vline
Alter BusConfig and LineConfig to reflect the change in line configuration
//Detailed explanation of the procedure for altering the configurations
/ / is provided in [17]

In order to determine the lines in the grid that are usually the most overloaded, it is
necessary to cause one SLC at a time and determine the power flow across the grid. Thus,
by deactivating one line at a time and determining the power flow across the grid it is
possible to identify those lines that axe overloaded during that contingency. Based on this
information, the number of times a line is overloaded for all SLCs and the total amount
by which a line is overloaded for all SLCs can be determined. Computation of power flow
across the lines in a grid is accomplished using a MaxFlow algorithm discussed in [17].

59

The MaxFlow algorithm uses the pre-computed grid configuration represented by Bus,
VLine, BusConfig and LineConfig. A detailed explanation of the MaxFlow algorithm
can be found in [17]. The procedure for determining the number of times each line in
the grid is overloaded and the maximum amount by which they are loaded is provided in
Algorithm 26.

A lgorithm 26 ComputeOverloads: An algorithm to determine overloaded lines
for i *— 1 to riBus do

for j 1 to riBus d o
numoverloadij <— 0
overloadij <— 0

end for
end for
for i <— 1 to riBus do

for j <— 1 to riBus d o
if Vlineij E Vline then

Simulate a contingency for the failure of Vlineij
Deactivate(i, j)
Use MaxFlow algorithm to compute the power flow across G using Bus, Vline,
BusConfig and LineConfig
for k <— 1 to nsus do

for m <— 1 to ns us do
if \flowkm\ > capkm then

//Increment the number of times Vline^m is overloaded
numoverloadkm <— numoverloadkm + 1
//Aggregate the amount by which Vlinekm is overloaded
overloadkm <— overloadkm + (\floWkm\ — capkm)

end if
end for

end for
end if

end for
end for

4.1.4. Metrics for Evaluation of FACTS Device Configuration. The quality of
FACTS device configurations is evaluated on the basis of the reduction in the number of
overloaded lines in the grid. When FACTS devices are placed on the grid, the number of
overloaded lines is expected to be minimized, although that might not always be the case.
The benchmark value for this criterion is set as the total number of overloaded lines, n ^ e,
determined without the placement of any FACTS devices on the grid. The procedure for
computing n ^ e is given in Algorithm 27.

60

A lgorithm 27 ComputeNbase: An algorithm to determine the number of overloaded
lines for the initial configuration

W-base * 0
Call ComputeOverloads
for i <— 1 to riBus do

for j <— 1 to riBus do
Tibase nbase + numoverloadij

end for
end for

4.1.5. Placement of a FACTS Device on the Grid. The placement of a FACTS
device on a line involves efficiently controlling the FACTS device settings. In order to sim­
ulate the configuration of a FACTS device’s settings, BusConfig and LineConfig should
be altered accordingly. Extensive information on the process of configuring FACTS device
settings is provided in [17]. This research uses a ConfigureFACTS function that is de­
signed based on the process for configuring FACTS devices explained in [17]. Algorithm 28
describes the procedure for placing a FACTS device on a line.

A lgorithm 28 ConfigureFACTS: An algorithm for placing a FACTS device on a line
//INPUTS: B usC onfig , LineConfig , facij
Place a FACTS device on Vlineij
Alter BusConfig and LineConfig to reflect the change in grid configuration

4.2. CLONALG DESIGN
Clonalg is a Clonal EA designed for the determination of optimal FACTS device

configurations. In this context, Clonalg was specially designed to optimize a fitness func­
tion that assigns a fitness value to any FACTS device configuration, Fconfig^™*8. The
main differences between Clonalg and IDSClonalg (Algorithm 21) are:

1 . It does not use an antigen set: This is because there are no specific antigens to be
recognized and remembered. Rather, the requirement is to evaluate a given set of
FACTS device configurations using a fitness function and retain the best ones.

2. It does not use a memory antibody set: Since there are no specific antigens to be
recognized there is not a need for remembering antibodies. Rather, the FACTS

61

device configurations with superior fitness are preserved through a fitness-based
competition.

The following notations are used in the description of IDSClonalg:

1. Mp represents a solution set. The members of this set represent FACTS device
configurations. Each member of this set is represented as:

Mp = { jFconfig”,*acts, sumoverloadi, f i } (4-2)

where /* represents the fitness value assigned to M * by a fitness function. All
members of this set must possess the same number of FACTS devices, nfacts.

2. Mc represents a clone set, which is a multi-set containing multiple copies of members
in Mp.

3. np represents the cardinality of Mp.

4. nc represents the cardinality of M c.

5. nlc represents the number of clones of member i in Mp that are to be generated in
Mc.

6. M* represents a member x in the clone set.

7. FACTSFitness(M ,nfads) represents a function that assigns a fitness value to all
the members of M. The fitness value is computed by subtracting sumoverloadi from
Tibase • The procedure for computing the fitness value is provided in Algorithm 29.

8. FACTSCreateClones(n,'y) represents a function that populates Mc with clones
created from the first n members of Mp. The number of clones created for each
of the first n members is computed using Equation 2.1. Algorithm 30 explains the
process for creating the clones.

9. FACTSHyperM utate(r) represents a hyper-mutation function. It alters the FACTS
device configuration by changing the position of the FACTS devices i.e., by changing
the lines on which the FACTS devices are placed, and the process is fitness-based.
The higher the fitness of a member M*, the higher the probability that the FACTS
devices will be placed on lines closer to their location (i.e., on lines that connect
buses in the immediate neighborhood). The neighborhood is defined on the basis of
the grid layout shown in Figure 4.1. For example, considering the fine that connects

62

Algorithm 29 FACTSFitness: A function for computing the fitness value of a FACTS
device configuration

//INPUTS: M , rifacts
for i <— 1 to rtM do

//Iterate through all the members of M
sumoverloadi <— 0
for j <- 1 to nfacts do

Call ConfigureFACTS(B usC onfig , LineConfig , F con fig?(j))
end for
Call ComputeOverloads
for j *— 1 to nBus do

for k <— 1 to neus do
sumoverloadi <— sumoverloadi + numoverloadj^

end for
end for
fi *— nbase — sumoverloadi

end for

A lgorithm 30 FACTSCreateClones: A function for creating multiple clones of members
in Mn

//INPUTS: 7
k <— 0
for i <— 1 to np do

numclones <— ["(7 • np)/i]
for j *— 1 to numclones do

k <— k + 1
Mc* - M*

end for
end for
nc <— k

buses numbered “44” and “45” , a line that connects buses “46” and “47” , and a line
that connects buses “47” and “49” may be among those that are considered to be in
the immediate neighborhood. Also, a line that connects buses “17” and “18” may
be among those lines that are considered to be far away. The lower the fitness of a
member Mp, the higher the probability that the FACTS devices will be placed on
lines farther (fines that connect buses that are far away) from their current location.
For this purpose, the members of Mc are classified into different groups based on
their fitness. An upper limit that constrains the farthest fine to which a FACTS
device can be moved from its current location is assigned to each group. In order
to create such groups, the members of Af* are sorted in descending order of their

63

fitness. They are then classified into groups of r members each. The groups are
represented as {Gh, • • •, G,,} where:

For example, if nc = 53 and r = 10, then r) = 6. Group G\ holds r members

where i = 1 to 77. For example, if nvune = 118 and r = 10, then U\ = 6, U2 = 12
and so on. Thus, the upper bound increases with the group number. This ensures
that the high fitness members are altered such that their FACTS devices are moved
to relatively closer locations, if mutated, compared to the low fitness ones. Algo­
rithm 31 precisely describes the hyper-mutation process and it uses Algorithm 32
and Algorithm 33 for its sub-computations.

The value of r combined with 7 , the multiplication constant used in determining
the number of clones of each member in Mp, provides for interesting variations to
experiment. For example, if 7 = 0.5, t = 20, and rip = 50, then group G\ would
have twenty members that are clones of Mp that use U\, and G2 would have five
members that are clones of M* that use C/2 and five members of Mp which use t/2.
Thus, it is possible to expose the clones to different ranges of mutations.

10. RandInit(Mp) represents a function that uniform randomly initializes the members
of Mp. Algorithm 34 explains the process.

A description of Clonalg using the components discussed previously is provided in
Algorithm 35.

4.3. EA DESIGN
An EA was designed to determine optimal placements for a given number of FACTS

devices, nfacts. The primary purpose of designing this algorithm was to compare its

(4.3)

with the highest fitness and group Gv holds r or fewer members (not zero) with the
lowest fitness. The upper bound, C/* for each group is then computed as:

(4.4)

64

performance with that of Clonalg. The following notations are used in the description of
the EA:

1. Mp represents a parent solution set. The members of this set represent FACTS
device configurations. Each member of this set is represented using the format
described in Equation 4.2

2. M0 represents an offspring set that contains offspring created from members in Mp.
The members of this set possess the same format as that of Mp.

3. rip represents the cardinality of Mp.

4. n0 represents the cardinality of M0.

5. Select(parent\,parent2) represents a function that performs proportional selection
of parents for reproduction. The parents are selected from Mp whose members are
sorted in descending order of their fitness. Mp is partitioned into four bins with the
first 40 percent of the members allocated to bin 1, the next 30 percent to bin 2, the
next 20 percent to bin 3 and the last 10 percent to bin 4. Algorithm 36 explains
the process of proportional selection of the parents using the four bins.

6. Fitness(M ,nfacts) represents the fitness function. Algorithm 29 describes the
function in detail.

7. CrossOver(parentl,parent2,nfacts) represents a function that implements the
cross-over operation. Algorithm 37 explains the cross-over procedure designed for
use in the EA.

8. EAmutate(p) represents a function that implements the mutation operation. Unlike
hyper-mutation in Clonalg, the mutation operation of an EA is much simpler in the
sense that all the members of M0 are mutated similarly, and there is only one
upper bound value upper which takes a user-defined value in the range [1,118].
Algorithm 38 explains the mutation process.

The EA design based on the notations previously described is provided in Algo­
rithm 39.

65

4.4. GREEDY ALGORITHMS
Two greedy algorithms were also designed to evaluate the performance of Clonalg.

These greedy algorithms try to break-down a problem into a series of sub-problems and
try to find the best solution for each of those sub-problems. This method may result in
sub-optimal solutions because they suffer from the limitation that the best solutions to
the sub-problems may not yield an optimal solution for the problem.

4.4.1. Greedy Algorithm based on Number of Overloaded Lines. This greedy
algorithm, alternatively referred to as count greedy algorithm, breaks down the problem
of placing nfacts FACTS devices in the grid into nfacts sub-problems of placing one
FACTS device on an ideal location in the grid. The ideal location for placing the FACTS
device is determined by identifying a line in the grid that is overloaded the most number of
times, for all the SLCs. Algorithm 40 explains the greedy algorithm design. The algorithm
computes the value ribase for the initial configuration (without any FACTS devices). It
also determines the line that is overloaded the most number of times, aggregated over
all the SLCs, for the initial configuration and places the first FACTS device on that line.
The power flow in the grid is again calculated and the line that is overloaded the most
number of times is identified. The Second FACTS device is then placed on that line. This
process is repeated until all the FACTS devices are placed on the grid.

4.4.2. Greedy Algorithm based on Amount of Line Overload. This greedy al­
gorithm, alternatively referred to as amount greedy algorithm, breaks down the problem
of placing nfacts FACTS devices in the grid into nfacts sub-problems of placing one
FACTS device on an ideal location in the grid. The ideal location for the placement of
the FACTS device is determined by identifying a line in the grid that is overloaded by
a maximum amount for all the SLCs. The maximum amount of overload is determined
by aggregating the difference between the actual power flow (flowij) and rated capacity
{cap^) of each line over all the SLCs. Algorithm 41 explains the greedy algorithm design.
The algorithm computes the value ri^e for the initial configuration (without any FACTS
devices). It also determines the line that is overloaded by the maximum amount, aggre­
gated over all the SLCs, for the initial configuration and places the first FACTS device on
that line. The power flow in the grid is again calculated and the line that is overloaded
by the maximum amount is identified. The second FACTS device is then placed on that
line. This process is repeated until all the FACTS devices are placed on the grid.

66

4.5. EXPERIMENTS
The grid as already explained in Section 4.1.1., possesses 118 buses with at most

one line connecting any two buses. Table 4.1 lists the parameters and their values corre­
sponding to the grid setting. The total number of lines that were considered feasible for
performing the actual experiments, namely causing SLCs and placing FACTS devices, is
provided by nvline.

Table 4.1. Parameter Values for Grid Configuration

Parameters Values
Bus 118

f̂ Line 179
TlVline 169

The four algorithms, namely Clonalg, EA, count greedy algorithm and amount
greedy algorithm were executed to determine the best possible configurations for the
number of FACTS devices varying from one to ten. Clonalg was executed for nfacts
values varying from one to ten, along with the parameter values listed in Table 4.2. From
the values of np and 7 , the value of nc can be computed to be 194 using Equation 2.2.
It was important for comparison purposes, that the EA was also run with an equivalent
number of members. Table 4.3 lists the parameters and their values that were used in
the execution of the EA. It can be seen that the number of offspring to be generated was
specified as 194 to compare the performance of EA with Clonalg. There were no specific
paramenters associated with count greedy algorithm and amount greedy algorithm apart
from nfacts. These two algorithms were also executed for nfacts values varying from
one to ten.

4.6. RESULTS AND DISCUSSION
The algorithms discussed previously were executed against a grid configuration

model based on the grid shown in Figure 4.1. The algorithms were executed to de­
termine the optimal placement positions for a number of FACTS devices ranging from
one to ten. For simplicity of representation, Table 4.4 associates labels with various lines

67

Table 4.2. Parameter Values for Clonalg

Parameters Values
np 100
7 0.5
T 2

numgenerations 50

Table 4.3. Parameter Values for EA

Parameters Values
np 100
n0 194
P 2

numgenerations 50

that were identified by the optimization algorithms as optimal locations for placing the
FACTS devices. First, the value of n ^ e was computed using Algorithm 27 and it was
determined to be 463.

Table 4.5, Table 4.6, Table 4.7 and Table 4.8 show the optimal FACTS device config­
urations obtained using Clonalg, EA, greedy algorithm based on number of line overloads
and greedy algorithm based on amount of line overload, respectively. The sumoverloadi
values are also listed for each of those configurations.

Figure 4.2 shows the best results obtained for different number of FACTS devices
placed on the power grid by using the algorithms discussed above. It can be seen that
Clonalg performs the best in determining optimal FACTS device configurations. The
greedy algorithms are inconsistent, since they attempt to find the best possible placement
for a particular instance and hence tend to generate worse placements when additional
FACTS devices are introduced. The evolutionary algorithm provides the second best
performance and actually outperforms Clonalg for a smaller number of FACTS devices.
However, as the number of FACTS devices increase the performance drops. Thus, it is
inferred that the evolutionary algorithm is not as scalable as Clonalg.

The Clonalg algorithm and EA determine the critical lines for placing the FACTS
devices by first placing the FACTS devices on the lines and evaluating their quality. This
is a “passive” method for determining optimal FACTS device configurations. A unique

68

Table 4.4. Labels for FACTS Device Placements on the Grid

FACTS
Placement

Label FACTS
Placement

Label

17 113 A 76 118 O
56 58 B 23 25 P

114 115 C 17 30 Q
60 62 D 49 51 R
61 64 E 75 118 S
54 56 F 45 46 T
54 55 G 25 26 U
35 36 H 75 77 V

105 106 I 19 20 w
91 92 J 54 59 X
32 113 K 114 115 Y
23 24 L 56 58 z
24 72 M 90 91 AA
17 31 N 3 5 AB
89 90 AC 49 66 AD
74 75 AE 42 49 AF
52 53 AG 92 94 AH
37 39 AI 63 64 AJ
12 14 AK 64 65 AL
59 60 AM 17 18 AN
21 22 AO 45 46 AP

5 8 AQ 75 118 AR
78 79 AS 15 17 AT

feature of this method is that not a lot of grid specific information or methods to identify
critical lines are needed to determine optimal FACTS device configurations. On the
contrary, the greedy algorithms use an “active” method for determining optimal FACTS
device configurations. In this method, the critical lines are identified first by using some
specific criteria and a FACTS device configuration is then evaluated by placing FACTS
devices on those lines. Therefore, this method requires careful consideration of the criteria
to be used for identifying critical lines.

69

Table 4.5. FACTS Device Placements obtained using Clonalg

No. of
FACTS

FACTS Placement Fitness Over­
loads1 2 3 4 5 6 7 8 9 10

0 0.4463 143
1 P 0.40885 131
2 A J 0.38388 123
3 P J Q 0.35579 114
4 R A S J 0.34019 109
5 T A s u P 0.31834 102
6 V Q w J F R 0.29025 93
7 X Y z w V J Q 0.26216 84
8 X Y z A s AA Q W 0.24344 78
9 X Y z A p AA Q w S 0.2278 73
10 X Y z A p AA Q w S AB 0.2122 68

Table 4.6. FACTS Device Placements obtained using the Evolutionary Algorithm

No. of
FACTS

FACTS Placement Fit-
ness

Over­
loads1 2 3 4 5 6 7 8 9 10

0 0.446 143
1 P 0.409 131
2 A W 0.378 121
3 B Q W 0.346 111
4 A w AC O 0.337 108
5 AD p AE J AF 0.331 106
6 V Q W J AD AG 0.299 96
7 X c Z P V AH Q 0.287 92
8 AA u AI A O AJ AK AL 0.259 83
9 S AM AA AL AN A D AO AP 0.259 83
10 AQ AO S X I AS AT A J AP 0.247 79

70

A lgorithm 31 FACTSHyperMutate: A function for performing hyper-mutation on a
FACTS device configuration

//INPUTS: r
V +- \nc/r1
for i <— 1 to 77 do

U{ < yiP'Vline/ (2 * t)) • ij
end for
Sort the members of Mc in descending order of their fitness values
k <- 1
for i *— 1 to tj do

for j <— 1 to r do
if k < nc then

//Organize the members of Mp into fitness-based groups
Gi — Gi U { M cfc}

/c A; + 1
end if

end for
end for
for i <— 1 to 77 do

for j <— 1 to r do
for A: «— 1 to nfacts do

if randomQ > 0.5 then
//T h e random() function returns a uniform random value between “0”
/ /and “1”
/ /Hyper-mutate a FACTS device position with 50 percent probability
Remove fa cakpk from Fccm fig^acts
if randomQ >0 .5 then

{ « , /? } «— ForwardDisplace(Ui, ak, Pk)
else

{a ,/? } <— BackwardDisplace(Ui,ak,Pk)
end if
if VlineQp € Vline then

/ / Check if hyper-mutation yields a valid line for the FACTS device
/ / t o be placed
Insert fa cap into F con f ig ^ acta

else
Insert fa cakpk into F con f ig ^ acta

end if
end if

end for
end for

end for

71

A lgorithm 32 ForwardDisplace: A function for moving the bus numbers of a FACTS
placement forward

//INPUTS: K a*, ~pk
//OUTPUTS: a, p
tempi <— random(1, Up
/ /The function random(a,b) returns a value in the range [a, 6]
//Displace the FACTS device to a random position within a range specified by Ui
if ak + temp < nsUs then

a <— ak + tempi
else

ca <— otk — tempi
end if
temp2 <— random(1 , Ui)
if /3 + £emp < nsus then

(3 /3jt + temp2
else

(3 <— (3k — temp2
end if

A lgorithm 33 BackwardDisplace: A function for moving the bus numbers of a FACTS
placement backward___

//INPUTS: U ̂ ak, (3k
//OUTPUTS: a, (3
tempi <— random(1, Ui)
if ak — temp > 0 then

a <— ak — tempi
else

a <— ak + tempi
end if
temp2 <— random(l, I/j)
if /?jt — £erap > 0 then

P Pk ~~ temp2
else

P *- Pk + temp2
end if

72

A lgorithm 34 Randlnit: A function for uniform randomly initializing the members of
Mp__

for i <— 1 to Tip do
F con fig™ facts <— { }
sumoverload <— 0
/i <- 0
for j <— 1 to nfacts do

found false
while found = false do

a <— random(l,nBus)
a <— random(l, nsus)
if Vlineap G Vline then

if fa ca/3 £ Fconfigf*acts then
F con fig ffacts *— Fconfig^facts U fa ca0
found <— true

end if
end if

end while
end for

end for

A lgorithm 35 Clonalg: An algorithm for determining optimal FACTS device configura­
tion___

//INPUTS: numgenerations, nfacts , np, r, 7
Call RandInit(Mp)
Call FACTSFitness(M p, nfacts)
//Evaluate the fitness of all the randomly intialized members of Mp
Call Sort(Mp)
//Arrange the members of Mp in descending order of fitness
for iter <— 1 to numgenerations do

//L oop for a specified number of generations
Call FACTSCreateClones{7)
/ /Perform clonal expansion
Call F ACTS Hyper Mutate(r)
/ /Perform hyper-mutation
Call F ACTS Fitness(M c, nfacts)
//Evaluate the fitness of all newly created clones
M^temp * Mlp U M c
Call Sort(Mtemp)
//Set up a competition between the members of Mp and Mc
//and insert np of the highest fitness members in to Mp
for j = 1 to np do

Mp * Miemp
end for

end for

73

Algorithm 36 Select: A function for performing proportional selection
//OUTPUTS: parentl, parent2
Part <- {40,30,20,10}
for i <— 1 to 4 do

birii <— np • (Parti/10)
end for
chance <— randomQ
if chance < 0.4 then

x <— randomQ, binQ
else if chance < 0 .7 then

x <— random(bin\, bin2)
else if chance <0 .9 then

x <— random(bin2 , binQ
else

x <— random(bin3, 62724)
end if
found <— /a /se
while found = false do

chance randomQ
if chance < 0.4 then

y <— randomQ., binQ
else if chance <0 .7 then

y <— random(bin\, bin2)
else if chance < 0.9 then

y <— random(bin2, binQ
else

y <— random(bin^,binQ
end if
if x ^ y then

found <— true
end if

end while
parentl *— Mx
parent2 <— My

Algorithm 37 CrossOver: A function for performing cross-over
//INPUTS: parentl,parent2,nfacts
//OUTPUTS: offspring!, offspring2
o f f spring 1 parent 1
o f f spring2 <— parent2
midpt <— \nfacts/2]
for k <— 1 to midpt do

Swap fa cak,0k in Fconfig”f%£ingl and fac^ktSk in F config^fspring2facts
end for

74

A lgorithm 38 EAmutate: A function for performing mutation in an EA
//INPU T: p
for i <— 1 to tl0 do

for j <— 1 to nfacts do
if randomQ > 0.5 then

//M utate a FACTS device position with 50 percent probability
Remove fa cajpj from Fconfig*facts
if randomQ > 0.5 then

{ a , P } <— ForwardDisplace(p, otk, fik)
else

{a , P} <— BackwardDisplace(p, ak, Pk)
end if
if Vlineap € Vline then

/ / Check if mutation yields a valid line for the FACTS device
/ / t o be placed
Insert fa cQp into Fconfig"'facts

else
Insert fa cakpk into Fconfig™facts

end if
end if

end for
end for

Table 4.7. FACTS Device Placements obtained using Greedy Algorithm based on Number
of Overloaded Lines

No. of
FACTS

FACTS Placement Overloads
1 2 3 4 5 6 7 8 9 10

0 143
1 J 135
2 J F 130
3 J F K 130
4 J F K A 117
5 J F K A G 114
6 J F K A G Z 106
7 J F K A G Z L 228
8 J F K A G Z L M 94
9 J F K A G Z L M N 86
10 J F K A G Z L M N 0 82

75

A lgorithm 39 EA: An algorithm for determining optimal FACTS device configuration
/ /INPUTS: numgenerations, n facts, np, nQ, p
Call RandInit(Mp)
Call FACTS Fitness (Mp)
//Evaluate the fitness of all the randomly intialized members of Mp
for iter <— 1 to numgenerations do

//L oop for a specified number of generations
j 1
for i *— 1 to (n0/ 2) do

/ / Create nQ offspring
{parentl,parent2} <— Select()
{o //sp rm p l, o //sprm ^ 2} <— C r os sOver {parentl, par ent2,nfacts)
Mi <— o ffsp rin g1
M t 1 *— offspring2
j <- J + 2

end for
Call EAmutate(p)
/ /Perform mutation
Call F ACTS Fitness (M0)
/ /Evaluate the fitness of offspring
M. temp * U M o
Call Sort(Mtemp)
//S et up a competition between the members of Mp and Mc
//an d insert np of the highest fitness members in to Mp
for j <— 1 to np do

Mp < Mtemp
end for

end for

Table 4.8. FACTS Device Placements obtained using Greedy Algorithm based on Amount
of Overload

No. of
FACTS

FAC']?S Placement Overloads
1 2 3 4 5 6 7 8 9 10

0 143
1 A 131
2 A B 124
3 A B C 119
4 A B C D 114
5 A B C D E 116
6 A B C D E F 114
7 A B C D E F G 109
8 A B C D E F G H 108
9 A B C D E F G H I 104
10 A B C D E F G H I J 96

76

A lgorithm 40 Greedy Algorithm!.: An algorithm for determining optimal FACTS device
configurations based on number of overloaded lines

//INPUTS: nfacts
Call ComputeOverloadsQ
Call ComputeNbase ()
/ /Determine the value of
for i «— 1 to nfacts do

Max <— 0
for j <— 1 to nBus do

for k <— 1 to nBus do
if numoverloadjk > M ax then

//Determine the line that is overload the most number of times
M ax <— numoverloadjk
ot <— j
(3 <r- k

end if
end for

end for
Call ConfigureFACTS (BusConfig, LineConfig, fa ca,p)
/ /Place a FACTS device on the line that is overload the most number of times
Call ComputeOverloadsQ

end for
sumoverload <— 0
for i <— 1 to nBus do

for j +— l to nBus do
sumoverload <— sumoverload + numoverloadij
/ /Determine the total number of overloaded lines obtained when using the
/ /FACTS configuration created using this algorithm

end for
end for

77

A lgorithm 41 Greedy Algorithm2: An algorithm for determining optimal FACTS device
configurations based on amount of line overload

//INPUTS: nfacts
Call ComputeOverloadsQ
Call ComputeNbase ()
//Determine the value of n&jse
for i <— 1 to nfacts do

Max <— 0
for j <— 1 to nBus do

for k <— 1 to nBus do
if numoverloadjk > M ax then

/ /Determine the line that is overload by the maximum amount
Max *— overloadjk
a <— j
(3 <— k

end if
end for

end for
Call Con figureF ACTS (BusConfig, LineCon f ig , fa catp)
//P lace a FACTS device on the line that is overload by the maximum amount
Call ComputeOverloadsQ

end for
sumoverload <— 0
for i <— 1 to nBus do

for j <- 1 to nBus do
sumoverload <— sumoverload + numoverloadij
//Determine the total number of overloaded lines obtained when using the
//FACTS configuration created using this algorithm

end for
end for

N
u

m
b

e
r

of
 L

e
ve

H
 O

ve
rl

o
a

d
s

(L
o

a
d

fl
o

w
 >

 S
m

a
x)

78

L o w e s t N u m b e r of O v e r lo a d s re c o rd e d fo r F A C T S P la cem e n ts

Figure 4.2. Comparison of Results obtained using Various Algorithms

79

5. CONCLUSION

The main focus of this research was the exploration of various bio-inspired algorithms
and their application to different real-world problems. During the course of this research,
some theoretical concepts were examined and analyzed. New algorithms were designed
for the application of clonal selection principles to solve pattern recognition and function
optimization problems.

The IDSClonalg design and a theoretical system for analyzing the methods for gen­
erating intrusion detectors were the main features of the research on intrusion detection.
The research on the theoretical system for generating detectors revealed certain impor­
tant aspects of intrusion detection. The literature reviewed has shown that a significant
amount of research work has been dedicated to exploring the ND scheme but not the
PD scheme. However, it was determined from the experiments conducted that for cer­
tain systems, the PD scheme significantly outperforms the ND scheme. This motivated
a comparison of the two schemes by utilizing them to detect intrusions in a real-world
data set. Thus, the ND and PD schemes were implemented in IDSClonalg for performing
intrusion detection in the KDD cup 1999 data set. Again, it was found that for a system
with a highly cohesive definition of self, the PD scheme comprehensively outperforms the
ND scheme. Further, the IDSClonalg design illustrates a highly simplified approach for
generating detectors compared to the complex greedy algorithms discussed in Section 3.2.

The Clonalg algorithm developed for determining the optimal FACTS device con­
figurations was the most successful aspect of this research, as it has enabled researchers
at UMR to benchmark their results for developing and evaluating algorithms that com­
pute optimal FACTS device configurations. Previously, only brute force approaches and
greedy algorithms were available for such benchmarking, with bruteforcing involving pro­
hibitively long time spans for generating solutions that involved a large number of FACTS
devices. The success of Clonalg could well be the beginning of a whole new approach of
using clonal selection principles for solving problems in critical infrastructure protection.

80

6. FUTURE WORK

This research has revealed a lot of avenues for exploration. From the applications
considered, to the algorithms used and theoretical concepts discussed, there are many
opportunities for further improvement and modification. The self/non-self theoretical
model, examined in Section 3., was built on the basis of a binary universe. The model
analysis would be more realistic if real data were used and if the matching functions
involved tolerances, instead of exact matches. This would require a significant amount
of work in preparing the data sets and constructing the AIS model that will be used for
performing experiments.

The size of detector sets is to be carefully chosen and it depends on a trade-off
between speed, memory and accuracy of the detection system. A significant amount of
research would be required to develop broad guidelines for adjusting the detection system
parameters based on specific requirements.

Data handling is an important aspect of classification. It is highly recomended
that further investigations be made into the pre-processing of data as this will serve to
improve the performance of the classification systems. The IDSClonalg implemented to
evaluate the KDD Cup 1999 data set is designed to handle offline labeled data. It could
be augmented to work with unlabeled real-time data.

The AIS models built on the basis of the present understanding of the immune
system are not comprehensive and the results of application of biological techniques to
solve network intrusion detection problems have only been moderately successful. There
are several issues that need to be addressed including:

1. Concurrent events involved in an attack are not clearly understood and a consider­
able amount of research is needed in this direction.

2. There are fundamental differences between the human immune system and com­
puter security systems. A comparative study, distinguishing and discriminating the
various aspects of the two systems, needs to be performed. This will provide a better
perspective regarding the effectiveness of a mapping from the biological domain to
that of computers.

The FACTS placement problem is another area with enormous research opportuni­
ties. Parameter optimization, multiple line contingencies, contingencies other than line
contingencies, and control of FACTS device settings are some of the interesting areas

81

for exploration. Further, the use of clonal selection principles for solving some of these
problems is an exciting prospect.

82

BIBLIOGRAPHY

[1] L. N. de Castro and F. J. V. Zuben, “Learning and optimization using the clonal se­
lection principle.,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 239-
251, June 2002.

[2] S. Forrest, R. E. Smith, B. Javornik, and A. S. Perelson, “Using genetic algorithms
to explore pattern recognition in the immune system,” Evolutionary Computation,
vol. 1 , no. 3, pp. 191-211, 1993.

[3] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,
2003.

[4] S. Forrest and S. Hofmeyr, “Engineering an immune sytem,” Graft, vol. 4:5, pp. 5-9,
2001.

[5] S. Forrest, P. D’haeseleer, and P. Helman, “A distributed approach to anomaly
detection.” This is listed without publication information on Forrest’s website,
h ttp : //w w .cs .m m . edu/~f orrest/papers .html, 1997.

[6] A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a computer immune system,”
in Proceedings of New Security Paradigms Workshop, pp. 75-82, 1997.

[7] P. Harmer, P. Williams, G. Gunsch, and G. Lamont, “An artificial immune system
architecture for computer security applications.,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 252-280, June 2002.

[8] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimination in
a computer,” in Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, (Los Alamitos, CA), IEEE Computer Society Press, 1994.

[9] P. D’haeseleer, “Further efficient algorithms for generating antibody strings,” Tech­
nical Report CS95-03, The University of New Mexico, Albuquerque, NM, 1995.

[10] P. D’haeseleer, “A change detection method inspired by the immune system: The­
ory, algorithms and techniques,” Technical Report CS95-06, The University of New
Mexico, Albuquerque, NM, 1995.

[11] P. D’Haeseleer, S. Forrest, and P. Helman, “An immunological approach to change
detection: Algorithms, analysis and implications,” in Proceedings of the IEEE Sym­
posium on Security and Privacy, IEEE Computer Society Press, 1996.

[12] J. Kim and P. Bentley, “The artificial immune model for network intrusion detection,”
in Proceedings of the 7th European Conference on Intelligent Techniques and Soft
Computing (EUFIT’99), (Aachen, Germany), 13-19 Sept. 1999.

[13] J. Kim and P. J. Bentley, “Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator,” in
Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, (COEX,
World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea), pp. 1244-
1252, IEEE Press, 27-30 May 2001.

83

[14] J. Kim and P. J. Bentley, “Immune memory in the dynamic clonal selection al­
gorithm,” in Proceedings of the 1st International Conference on Artificial Immune
Systems (ICARIS) (J. Timmis and P. J. Bentley, eds.), (University of Kent at Can­
terbury), pp. 59-67, University of Kent at Canterbury Printing Unit, Sept. 2002.

[15] F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science and Engineer­
ing. Tata McGraw-Hill, 2001.

[16] A. Armbruster, B. McMillin, and M. L. Crow, “Controlling power flow using facts
devices and the max flow algorithm,” in Proceedings of the International Conference
on Power Systems and Control, (Abuja, Nigeria), 2002.

[17] A. Armbruster, B. McMillin, and M. L. Crow, “The maximum flow algorithm applied
to the placement and distributed steady-state control of facts devices.” This paper is
submitted to the 2005 North American Power Symposium and to the IEEE Trans­
actions on Power Systems, http://w eb.um r.edu/~ff/Pow er/papers.htm , 2005.

http://web.umr.edu/~ff/Power/papers.htm

84

VITA

Kasthurirangan Parthasarathy was born in Chennai, India, on October 19, 1980.
In December 2000, he received his Honors Diploma in Network Centered Computing
from the National Institute of Information Technology. In May 2002, he received his
bachelor’s degree in Computer Science and Engineering from Bharathidasan University,
Thiruchirapalli, India. Kasthurirangan Parthasarathy worked on his M.S in Computer
Science at the University of Missouri - Rolla from Fall 2002 to Summer 2005.

Kasthurirangan Parthasarathy has been a member of the International Engineering
Consortium since April 2002.

	Bio-inspired approaches for critical infrastructure protection: Application of clonal selection principle for intrusion detection and FACTS placement
	Recommended Citation

	tmp.1568920597.pdf.ckIgN

