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ABSTRACT 

Tornadoes have become a significant cause of property damage, injuries and life 

losses. Investigations of tornadoes indicate that most fatalities were caused by building 

failure. For example, in the Joplin, MO tornado of 22 May 2011, 161 people were killed, 

and 84% fatalities were related to building failure. Therefore, it is imperative to develop 

science-based tornado-resistant building codes, in order to provide a better level of 

occupant protection from tornadoes and to minimize the tornado-induced damage. This 

requires in-depth understanding of the wind characteristics of tornadoes and their wind 

effects on civil structures, based on which design tornadic wind loading can be properly 

determined. To achieve this, in this study, Computational Fluid Dynamics (CFD) 

simulations and Computational Structural Dynamics (CSD) simulations are combined for 

the first time to systematically investigate tornado dynamics and its dynamic impact on 

civil structures. First, wind effects on large-scale space structures induced by straight-line 

winds are investigated to fully understand the current building code against wind loads. 

Then, a real-world tornado is numerically simulated and verified based on full-scale 

radar-measured data. Based on the verified CFD model, non-stationary wind 

characteristics of tornadoes and the induced wind effects on large-scale space structures 

are investigated under different flow structures of tornadoes. Next, CFD and CSD are 

combined to investigate tornado-induced dynamic responses of large-scale space 

structures. Finally, tornado-induced dynamic responses of large-scale space structures are 

compared with that induced by the equivalent straight-line winds, in order to properly 

modify the equation for calculating the design wind pressure specified in ASCE7-16. 
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1. INTRODUCTION 

1.1. BACKGROUND 

A tornado is a rotating column of air extending from a cumulonimbus cloud to the 

ground. It is claimed to be one of the most violent natural hazards and strikes the United 

States very frequently, about 1200 tornadoes per year (Verbout et al., 2006). In recent 

years, it have become a significant cause of , injury, loss of life and property damage in 

the United States, contributing $10B annually to the nation’s loss portfolio. In 2011 only, 

the tornado-induced property loss exceeded $20B and 550 people were killed (Lott et al., 

2012; FEMA, 2012). 

In particular, the Joplin, MO tornado of 22 May 2011 killed 161 people, injured 

1150 people and led to $2.8B of property damage (Wurman, 2002). It is claimed to be the 

costliest tornado on record. The El Reno, OK tornado of 31 May 2013 took the lives of 

an experienced tornado researcher, Tim Samaras, his son Paul, and their TWISTEX 

colleague, as well as an amateur storm chaser and four others, injured 158 people, and 

resulted in $35-40M of property loss (Wurman et al., 2014). It is claimed to be the largest 

tornado ever documented. The “Tri-state” tornado of 18 March 1925 killed 695 people.  

In fact, tornadoes have killed more people historically than hurricanes. This is 

because the generation of tornadoes cannot be predicted. Many tornadoes occur in the 

evening of sunny, clear days. They are unexpected. The average warning time of a 

tornado is roughly 8 to 10 minutes. Obviously, there is no way to evacuate the 

community in 8-10 minutes. From another perspective, due to the unpredictability of a 

tornado path, the community may not want to be evacuated before an impending tornado, 
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as it is unknown where exactly a tornado will occur and in which way exactly a tornado 

will go. If there is not a public tornado shelter in their community, the only way for 

people to survive is to make sure that the building they stay in, at least a designated area, 

is strong enough. Therefore, to provide a better level of occupant protection from 

tornadoes and minimize the tornado-induced damage, eventually achieving tornado-ready 

and tornado-resilient communities, it is important to develop science-based tornado-

resistant building codes, which requires in-depth understanding of tornado-structure 

interaction. 

The civil structures of interest investigated in this study are two representative 

large-scale space structures (dome structures and cable-net roof structures). Large-scale 

space structures are considered here because this type of structure is usually built as 

public assembly venues that hold many people. They are subjected to significant wind 

loads because of large surface areas. Failure of this type of structure may endanger the 

safety of hundreds or even thousands of people. Therefore, it is important to quantify the 

tornadic wind loads on this type of structure, eventually achieving tornado-resistant 

design of large-scale space structures. 

1.2. OBJECTIVE AND SCOPE OF WORK 

Although the static impact of tornadoes (mean aerodynamic loading) on civil 

structures has been widely studied (Selvam and Millett, 2003), the research on the non-

stationary characteristics of tornadoes and their dynamic impact on civil structures has 

been lacking, which has prevented the tornadic wind loading from being properly 

determined. To bridge this research gap, the research objective of this study is to 
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investigate the tornado dynamics and its dynamic impact on civil structures using the 

combination of Computational Fluid Dynamics (CFD) simulations and Computational 

Structural Dynamics (CSD) simulations. The obtained research finding will help to 

develop science-based building codes for tornado-resistance design and to improve 

disaster resilience in Tornado Alley. 

To achieve the proposed research objective, the following research tasks have 

been planned: 

1.2.1. Task 1.  Characterize the winds effects on dome structures under straight-

line winds using systematic CFD simulations, in which the influence of turbulence 

modeling on the wind effects is investigated. To verify the accuracy of the CFD 

simulations, wind tunnel testing of a large-scale dome model (1/60) is carried out in the 

WOW facility at Florida International University. Then, the wind tunnel testing is 

numerically simulated. Three different turbulence models, Spalart-Allmaras, shear stress 

transport (SST) k-ω, and large eddy simulation (LES) models, are employed in the CFD 

simulations to investigate their influence on the wind effects acting on the dome 

structure. One purpose to conduct this study is due to the fact that the current building 

design code against wind loads (the related equation to calculate the design pressure on 

structural surface ASCE7-16) is still based on straight-line winds (ASCE, 2016). To 

develop tornado-resistant design code, it is necessary to compare the wind effects 

induced by tornadic winds and those induced by straight-line winds; then, the obtained 

findings can be used to properly modify the existing pressure-calculating equation in 

ASCE7-16 (for straight-line winds) to determine the tornado-induced wind pressure. In 

addition, considering that CFD simulations still demand validation at this stage (Blocken, 
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2014), the high-quality wind tunnel testing data obtained in WOW allows the adjustment 

of CFD simulation setup to be practiced, which lays a good foundation on adjusting CFD 

simulation setup under tornadic winds to obtain good CFD simulation results under 

tornadic winds.  

1.2.2. Task 2.  Verify the CFD simulation of tornadic wind fields based on full-

scale radar-measured data from a real-world tornado and investigate the influence of flow 

structure of a tornado on wind effects acting on civil structures. CFD simulations offer an 

effective and economic way to characterize tornadic wind fields, as an alternative to 

laboratory simulations. However, its accuracy and effectiveness should be verified first 

before its wide application. A real-world F4 tornado, the Spencer, SD tornado of 30 May 

1998, is numerically simulated using CFD simulations and verified based on the 

associated full-scale radar-measured data. Then, the validated CFD model is used to 

investigate how the number of cells in the flow structure affects the wind effects acting 

on civil structures. It will also provide a good basis for the investigation of structural 

responses.  

1.2.3. Task 3.  Determine dynamic responses induced by tornadic winds through 

the combination of CFD simulations and CSD simulations. A large-scale dome structure 

is taken as an example to investigate tornado-induced dynamic responses. The dome 

structure is placed into the simulated tornadic wind field to quantify tornadic wind loads 

on the dome surface. The velocity profiles applied at the velocity inlet are scaled by 

150%, 130%, 100%, and 87% to simulate tornadoes with different intensities, that is, 

EF5, EF4, EF3, and EF2 tornadoes. To simulate the translation of the tornado, rather than 

having the tornado moved, the structure is assumed to move in the opposite direction. To 
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achieve this, the dynamic mesh technique is turned on in the CFD simulations. Then, the 

obtained time histories of wind pressure from CFD simulations are imported onto the 

finite element model (FEM) of the dome structure; And a nonlinear, transient CSD 

analysis is conducted to obtain structural responses at each time instant, considering all 

geometric (large strain/deformation) and material nonlinearity. 

1.2.4. Task 4.  Investigate dynamic wind effects induced by the non-stationary 

characteristics of tornadoes and reflect this on associated parameters (gust-effect factor, 

G) in ASCE 7-16 tornadic wind loading calculation. Current wind design practice against 

tornadoes is first reviewed on related equations for calculating tornadic wind pressure and 

on the determination of G. Then, CFD simulations of tornadic wind field and equivalent 

straight-line wind field are conducted and compared, in order to investigate the non-

stationary characteristics of tornadic wind field and their dynamic impact on civil 

structures. Finally, based on the dynamic structural responses, G is calculated to reflect 

the dynamic impact of tornadoes on the structure and compared to the G defined in 

ASCE 7-16. 

1.2.5. Task 5.  Investigate the tornado-structure interaction on a cable-net roof 

structure using numerical simulations based on two-way coupled wind-structure 

interaction (WSI) under straight-line winds. For the structures whose structural 

deformation is large and will affect the wind field, the interaction between the structure 

and the wind field should be considered. To illustrate this, a flexible cable-net roof 

structure is modeled under straight-line winds to investigate how the wind field and the 

structure will interact with each other. The two-way coupled WSI is achieved by coupling 

the flow analysis (CFD simulation) and the finite element analysis (CSD simulation). 
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Herein, after the wind pressure on structural surface at one time step is obtained from 

CFD simulation, it will be transferred to the finite element model of the structure though 

wind-structure interface. Then, a nonlinear, transient CSD analysis will be conducted to 

obtain structural responses for this time step. Next, the obtained structural displacements 

will be transferred back to the CFD solver to set up the new boundary condition of the 

wind field for the next cycle of CFD simulation. A number of cycles are conducted to 

reach the desired structural responses. The findings of this study will improve the 

understanding of two-way coupled WSI and will facilitate two-way WSI under tornadic 

winds, leading to more accurate tornadic wind loading. 

This study will increase fundamental knowledge on the tornado-structure 

interaction and tornadic wind effects, and help to properly determine design tornadic 

wind loading, which can be used for tornado-resistance design of new buildings and 

reinforcement of existing buildings. This will contribute to the NIST’s mission of 

improving building codes and standards against tornadoes and the specific mission of 

Disaster Resilience Programs. The implementation of the research findings will 

significantly improve occupant protection by preventing civil structures from collapse or 

severe damage and reduce property loss, ultimately achieving tornado-ready and tornado-

resilient communities.   

1.3. INTELLECTUAL MERITS 

This study will thoroughly investigate wind effects on civil structures and 

tornado-structure interactions through systematic CFD and CSD simulations. First, wind 

tunnel testing is conducted on a large-scale dome model, which allows a better resolution 
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of pressure distribution on structural surface and hence accurate evaluations of wind 

effects on civil structures. Second, non-stationary characteristics of tornadic winds and 

their dynamic impact on civil structures are systematically investigated, filling a 

fundamental knowledge gap. It will potentially provide more realistic design tornadic 

wind loading for the development of tornado-resistant design code. Third, the coupling of 

CFD simulation and CSD simulation (finite element analysis) allows the consideration of 

wind-structure interaction. This will improve the quantification of tornadic wind loading 

on flexible structures.  

1.4. DISSERTATION ORGANIZATION 

This dissertation includes three sections. Section 1 gives a brief introduction to 

the subject area and explains the need for the current research study. The first section also 

presents the overarching objective and scope of work of the investigation. 

Section 2 presents the results of this study in the form of five manuscripts: four 

journal papers are under review and one journal paper is intended to submit. The first 

paper presents wind tunnel testing and CFD simulations of wind effects on dome 

structures induced by straight-line winds, in which the influence of turbulence modeling 

on the wind effects is discussed. The second paper presents the validation and verification 

of CFD simulations of tornadic wind fields and the investigation of the influence of flow 

structure of a tornado on wind effects. Both single-cell, single vortex and double-cell, 

single vortex flow structures are explored. The third paper presents dynamic responses of 

a large-scale dome structure induced by tornadic winds through the combination of CFD 

simulation and nonlinear, transient structural analyses. The fourth paper calculates gust-
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effect factor for tornadic wind field to reflect its non-stationary characteristics and 

induced dynamic impact on civil structures, aiming to determine the design tornadic wind 

pressure more accurately. CFD simulations of both tornadic wind field and equivalent 

straight-line wind field are conducted and compared. The fifth paper presents the 

dynamic responses of a cable-net roof structure using numerical simulations based on 

two-way coupled wind-structure interaction (WSI) under straight-line winds. The 

findings of this study will improve the understanding of two-way WSI and will facilitate 

two-way WSI under tornadic winds, leading to more accurate tornadic wind loading. 

Section 3 summarizes the conducted research work and conclusions of the 

obtained research findings, and proposes future research. 
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PAPER 

I. INFLUENCE OF TURBULENCE MODELING ON WIND EFFECTS OF 
STRAIGHT-LINE WINDS ON DOME STRUCTURES 

 

Tiantian Li, Yi Zhao, and Guirong Yan 

 

ABSTRACT 

In this study, systematic Computational Fluid Dynamics (CFD) simulations are 

conducted to investigate the influence of turbulence modeling on wind effects acting on 

dome structures induced by straight-line winds. First, wind tunnel testing of a large-scale 

dome model (1/60) is carried out in the WOW facility at Florida International University. 

Then, the wind tunnel testing is numerically simulated. Three different turbulence 

models, Spalart-Allmaras, shear stress transport (SST) k-ω, and large eddy simulation 

(LES) models, are employed in the CFD simulations to investigate their influence on the 

wind effects acting on the dome structure. The distribution of the along-wind velocity and 

the static pressure in the entire wind field indicates that the LES model provides detailed, 

turbulent flow condition while the Spalart-Allmaras and SST k-ω models provide the 

averaged flow condition. With respect to the wind pressure distribution on the dome 

surface and the total suction force, the simulated results associated with the Spalart-

Allmaras model match the wind tunnel testing the best and the LES model the poorest. A 

close examination of the pressure distribution on the leeward side shows that the Spalart-
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Allmaras model predicts the boundary layer separation with the highest accuracy and 

hence the most accurate wind pressure distribution. In summary, when averaged 

quantities are targeted to be matched, the Spalart-Allmaras model is a better option than 

the LES model. 

 

1. INTRODUCTION 

 

A spherical dome structure is a common geometric shape of long-span space 

structures for public assembly venues (e.g. sport stadiums, auditoriums, and shopping 

malls), due to the fact that this type of structure offers little spatial obstruction, material 

efficiency and economic benefit. Figure 1 presents an example of an arena in a spherical 

shape in Stockholm, Sweden. Since the outer surface area of the spherical dome is large, 

this type of structure can be subjected to significant wind loads. Also, its long-span and 

lightweight roofs can be subjected to severe vibrations under strong winds. In fact, this 

type of structure has been found to be collapsed during strong winds. For example, the 

Reno/Virginia peak dome failure as shown in Figure 2, which was caused by strong 

winds on Dec. 19, 2008.  

To avoid structural failure and to ensure the safety of this type of structure, proper 

wind resistance design is necessary, which demands the comprehensive understanding of 

the aerodynamic behavior of spherical dome structures and corresponding wind loads. 

Experimental and numerical studies have been conducted to investigate aerodynamics of 

spherical dome structures in straight-line winds. Literature of direct relevance to this 

study is briefly reviewed as below. 
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Figure 1. Stockholm Globe Arena. 

 

 

Figure 2. Reno/Virginia peak dome failure (by NWS Reno Electronics Team). 

 

Experimental investigations were first undertaken in wind tunnels by researchers 

(Maher, 1965; Blessman, 1971; Taniguchi et al., 1982; Newman et al., 1984; Savoy and 

Toy, 1986) to obtain mean pressure on spherical dome structures. Then, fluctuations of 

pressure about mean pressure with time were characterized using wind tunnel testing 

(Taylor, 1991; Ogawa, 1991). Later on, the influence of dome surface roughness on the 

pressure distribution was investigated, and it was found that the dome structure with a 

rougher surface was subjected to lower suctions over the apex of the dome and higher 

suctions in the wake region on the leeward side (Letchford and Sarkar, 2000). The 
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influence of Reynolds number on the mean pressure coefficient was also studied using 

wind tunnel testing and it was found that the mean pressure coefficient became 

independent of Reynolds number when it fell into 1.0 10  and 2.0 10  (Cheng and 

Fu, 2010). Apart from the mean and fluctuating wind pressures, the spectra of the wind 

pressure acting on spherical dome structures were also investigated (Qiu et al., 2011). 

The results indicated that the wind pressure spectra were attributed from both the flow 

turbulence and the dome-generated turbulence that was induced by the boundary layer 

separation over the dome apex and the vortex shedding in the wake.  

Besides wind tunnel testing, numerical simulations were also carried out to 

understand the aerodynamic behavior of spherical dome structures. Due to the curved 

surface of a spherical dome structure, the boundary layer separation points cannot be 

identified based on geometry. Computational Fluid Dynamics (CFD) simulations offer an 

insight into the boundary layer separation point and the characteristics of the flow near 

the separation location. However, the simulated wind field depends on the selection of 

turbulence models, turbulence intensities, surface roughness, and boundary conditions, 

and so on. Meroney et al. (2002) examined the influence of surface roughness on the 

mean pressure coefficient of dome structures in a straight-line wind field using CFD 

simulations, and it was concluded that the surface roughness reduced mean suctions over 

the surface of the domes, which was consistent with the wind tunnel testing performed by 

Letchford and Sarkar (2000). Tavakol et al. (2010; 2015) investigated the influence of 

turbulence modeling on the velocity profile along height in the wake behind a spherical 

dome structure in a straight-line wind field. Two turbulence models were studied, 

including renormalization group (RNG) k-ε turbulence model and large eddy simulation 
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(LES) model. It was found that the LES model showed better agreement with wind tunnel 

testing than the RNG k-ε model. Wood et al. (2016) investigated the influence of different 

subgrid-scale models adopted in LES on the boundary layer separation points on a 

spherical dome structure in a straight-line wind field. The adopted subgrid-scale models 

included the Smagorinsky-Lily model (Smagorinsky, 1963), the dynamic Smagorinsky-

Lily model (Germano et al., 1991; Lilly, 1992), and the wall-adapting local eddy-

viscosity (WALE) model (Nicoud and Ducros, 1999). It was concluded that the location 

of boundary layer separation was the same for all subgrid-scale models. Fu et al. (2015) 

applied the LES model in CFD simulations to determine mean pressure coefficients of a 

spherical dome structure in a straight-line wind field, and the numerical results agreed 

fairly well with the wind tunnel testing. 

Since the selection of a turbulence model affects the reproduction of the flow 

structure of the wind field around the dome structure and hence the accuracy of wind 

pressure distribution on the dome surface, the commonly used turbulence models, 

Reynolds averaged Navier-Stokes (RANS) turbulence models and the LES model, are 

reviewed here.   

RANS models modify the original unsteady Navier-Stokes equations by treating 

velocity/pressure into the superimposition of averaged and fluctuating quantities. The 

averaged quantities are solved by RANS equations. The fluctuating quantities, also called 

Reynolds stresses, are assumed to be related to the turbulent eddy viscosity and the mean 

velocity gradient. The turbulent eddy viscosity is determined based on additional 

transport equations. Based on the number of transport equations required, the RANS 

models can be classified into one-equation RANS turbulence models, two-equation 
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RANS turbulence models, three-equation RANS turbulence models, and so on. In one-

equation RANS turbulence models, only one transport equation is needed to determine 

the turbulent eddy viscosity. A representative one-equation RANS model is the Spalart-

Allmaras model (Spalart and Allmaras, 1994). This model is developed for wall-bounded 

flows and has been proved to offer good results for airflows with mild separation and 

recirculation. It is robust and fast to implement, and it is not memory-intensive and easy 

to converge. In two-equation RANS turbulence models, two transport equations are 

needed to determine the turbulent eddy viscosity. The representative two-equation 

models include the standard k-ε model (Launder and Spalding, 1972) and the standard k-

ω model (Wilcox, 1998). k represents turbulent kinetic energy. ε and ω are two different 

forms to represent the dissipation rate of turbulent kinetic energy. The main drawback of 

the standard k-ε model is that it overestimates k at impinging region when the wind 

passes the civil structure (Murakami, 1998). To tackle this problem, more advanced k-ε 

models were developed, e.g., realizable k-ε model (Shih et al., 1995) and RNG k-ε model 

(Yakhot et al., 1992). The primary drawback of standard k-ω model is its sensitivity to 

the inlet conditions compared to k-ε models. One of the improved k-ω models is the shear 

stress transport (SST) k-ω model (Menter, 1994; Menter, 1997; Menter et al., 2003). It 

overcomes the flaw of the original k-ω model and can predict the boundary layer 

separation and reattachment better than the standard k-ω model and k-ε model. 

Different from RANS models, LES model separates turbulent eddies into large 

and small scales. The original unsteady Navier-Stokes equations are filtered in the 

physical space, and the eddies whose scales are smaller than the filter width are filtered 

out. Thus, the filtered Navier-Stokes equations only resolve the dynamics of the large 
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eddies. The small eddies are analytically modeled by subgrid-scale models, e.g., the 

Smagorinsky-Lily model, the dynamic Smagorinsky-Lilly model, and the WALE model. 

LES is a time-dependent approach, and thus it can generally reproduce main turbulence 

properties with a higher accuracy compared to statistically steady RANS simulations 

(Franke et al., 2004; Murakami, 2002; Tominaga and Stathopoulos, 2010). However, this 

is achieved at a significantly higher cost in memory and CPU time.  

In current study, to investigate the influence of turbulence modeling on the wind 

effects acting on dome structures induced by straight-line winds, three turbulence models 

are employed, i.e., Spalart-Allmaras model, SST k-ω model and LES model. Spalart-

Allmaras and SST k-ω models are selected due to the following three reasons. First, they 

are able to better predict boundary layer separation and reattachment than other RANS 

models; Second, they can reach a compromise between accuracy and computational cost; 

and Third, they have good convergence properties. LES model is selected because it is a 

time-dependent approach, which is able to provide more detailed information of the wind 

field than RANS models that only provide statistically steady solution. All CFD 

simulation results are compared to a wind tunnel testing to evaluate their accuracy on the 

prediction of wind pressure distribution on the dome surface.  

The remainder of the paper is organized as follows. First, the spherical dome 

structure of interest and the setup of wind tunnel testing are described. Then, wind tunnel 

testing results are presented in terms of velocity profile and pressure distribution on the 

dome surface. Third, CFD simulations of the wind field produced in the wind tunnel 

(when the dome model is not present) are conducted, and the influence of the turbulence 

modeling on the wind field is discussed. The verification of velocity input and grid 
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independence study are also discussed in this section. Fourth, CFD simulations of the 

wind tunnel testing of the dome model are conducted, and the influence of turbulence 

modeling is investigated in regard to the along-wind velocity and static pressure in the 

entire wind field and the wind pressure distribution on the dome surface. Finally, 

conclusions are drawn. 

 

2. DOME GEOMETRY AND EXPERIMENTAL SETUP 

 

Wind tunnel testing of a large-scale dome structure is conducted in the “Wall of 

Wind (WOW)” facility at Florida International University (FIU). This section introduces 

the dimensions of the dome model and the testing setup in the WOW. 

2.1. DOME DIMENSIONS  

The prototype spherical dome selected for this study has a base diameter of 120 m 

and apex height of 40 m. At a scale of 1:60, a dome model with a base diameter of 2.0 m 

and apex height of 0.67 m is created, as shown in Figure 3. It is made of a smooth shell 

with the thickness of 9.0 mm. The blockage rate of this dome model in the wind tunnel is 

0.7%, which is the ratio of the projected area of the dome model to the cross-sectional 

area of the testing section of the WOW facility. 

2.2. CONFIGURATION OF THE WOW FACILITY 

The WOW facility is a large open circuit wind tunnel, as shown in Figure 4. A 

30.5 m × 24.4 m × 10.7 m building (Figure 4(a)) is used to house the WOW facility, of 
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which the big door is 15.24 m × 9.14 m. Twelve fans, located on the South end, are used 

to generate winds. The flow conditioning section is 6.10 m wide and 4.27 m high, which 

is used to generate desired wind velocity profile and turbulence using spires and/or floor 

roughness elements (Figure 4(c)). A 4.9 m-diameter turning table is located 6.1 m 

downstream of the end of the flow conditioning section. This turning table allows the 

investigation of the effect of wind directionality for testing models. The wind-borne 

debris stopping wall (Figure 4(b)) is 60 m to the North of the center of the turning table. 

The WOW facility is capable of generating up to Category 5 hurricane winds, together 

with wind-driven rain and wind-borne debris. The generated wind field is sufficient to 

engulf a small single-story building, and thus it is able to test small structures at full-scale 

to failure.  

 

 
Figure 3. The scaled dome model tested in the WOW facility. 

2.3. EXPERIMENTAL SETUP 

The dome model is placed at the center of the turning table, which is the origin of 

the global coordinate system, as shown in Figure 5. The angle (𝜃) of the turning table is 

illustrated in Figure 5(a). 0° represents the case when the North side (Figure 5(b)) of the 

dome model faces the North. Positive angle ( 𝜃) is for the case when the turning table is 

rotated clockwise. The dome model is tested under two different terrain configurations, 
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open and suburban terrains, as shown in Figure 6. The open terrain is achieved by spires 

(Figure 6(a)), while the suburban terrain is achieved by both spires and surface roughness 

elements (Figure 6(b)).  

 

 
                                       (a)                                                                 (b) 

 
(c) 

Figure 4. The WOW facility used for experimental investigation: (a) One end of the 
WOW facility; (b) The other end of the WOW facility; (c) Schematic diagram of the 

picture in (a). 

 

Wind velocity is measured by TFI Cobra Probes, which are four-hole pressure 

probes that provide 3-component velocity and local static pressure measurements in real-

time. The sampling rate is 2,500 Hz and the sampling duration is 300 s. The velocity 
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components are calculated based on the local coordinate system of each probe. The 

coordinate system is shown in Figure 7. 

 

 
                                       (a)                                                                     (b) 

Figure 5. Top view of the testing section: (a) Angle of the turning table; (b) Orientation 
of the dome model. 

 

 
                                     (a)                                                           (b)                         

Figure 6. Experimental setup to achieve two different terrain configurations: (a) Open 
terrain; (b) Suburban terrain. 

 

 
Figure 7. Cobra Probe coordinate system. 
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In order to get the wind velocity profile along the height, Cobra Probes are placed 

at the center of the turning table (X=0 and Y=0) at various heights (16.5 cm, 33.3 cm, 

66.7 cm, and 133.4 cm) when the dome model is not present, as shown in  Figure 8.  This 

measurement is only conducted for open terrain.  

 

 

Figure 8. Measurement of wind velocity profile for open terrain. 

 

The wind pressure on the surface of the dome model is measured by pressure taps. 

The pressure data is acquired by Scanivalve ZOC33 electronic pressure scanners at the 

sampling rate of 520 Hz for 60 s. Each ZOC33 module incorporates 64 individual 

piezoresistive pressure sensors with full scale range of ±10 inch 𝐻 𝑂. The pressure taps 

on the dome model are connected to these sensors using PVC-105-16 tubing. The PVC 

tubing attached to the tap hole is 0.3 m long, and that attached to the sensor side is 0.6 m 

long. These two PVC tubing pieces are connected through a piece of steel tubing. In total, 

384 pressure taps are placed across the entire surface of the dome model. The distribution 

of pressure taps on the dome surface is shown in Figure 9. Due to the limitation of the 
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number of pressure taps, a small area along the positive Y axis is not deployed with 

pressure taps.  

 

 

Figure 9. Distribution of pressure taps on the dome surface (black dots represent the 
locations of pressure taps).  

 

3. TESTING RESULTS AND DISCUSSION 

3.1. MEAN VELOCITY PROFILE 

The measured wind velocity profiles along height over open terrain are presented 

in Figure 10. They are time-averaged. In each subfigure of Figure 10, 52%, 74%, and 

95% represent that the fans are kept at 52%, 74%, and 95% throttle for 300 s. Time-

averaging is conducted on 280 s of each velocity component, eliminating the first and last 

10 s to avoid uncertainties. From Figure 10, the along-wind mean velocity increases with 

the increase of elevation, while the vertical and across-wind mean velocities decrease 

with the increase of elevation. It is noted that the same across-wind mean velocity is 

observed at the elevation of 1.33 m for the three cases (Figure 10(b)). 
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                             (a)                                            (b)                                            (c) 

Figure 10. The obtained mean velocity profile for open terrain: (a) Along-wind; (b) 
Across-wind; (c) Vertical. 

 

The power spectral density (PSD) of the time history of the along-wind velocity at 

0.67 m, which is the same as the elevation of the dome apex, for 95% throttle over open 

terrain is presented in Figure 11. The obtained PSD from wind tunnel testing matches the 

ESDU spectrum in the high frequency range, which is acceptable since the high 

frequency range is important in the design of civil structures where resonance is possible. 

3.2. TURBULENCE INTENSITY 

Turbulence intensity (TI) is used to quantify turbulence of the airflow, which is 

obtained based on the time histories of wind velocity from the wind tunnel testing. TI is 

defined as 
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where 𝑢  is the root-mean-square of the fluctuating components of the measured velocity, 

and 𝑈 is the mean resultant velocity. Subscripts X, Y, and Z represent three velocity 

components. According to Equation (1), TI for open terrain under 95% throttle is shown 

in Figure 12. They are all close to 10% at the four different heights. 

 

 

Figure 11. Power spectral density of the time history of along-wind velocity for 95% 
throttle at 0.67 m (dome apex) over open terrain. 

3.3. CONTOUR PLOTS OF MEAN PRESSURE COEFFICIENT 

All pressure data are non-dimensionalized into pressure coefficients based on the 

reference dynamic pressure at the dome apex as 

𝐶
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the test. V is the reference mean velocity that is taken at the elevation of 0.67 m for 95% 

throttle over open terrain, which is 49 m/s. 

 

 
Figure 12. TI along height under 95% throttle for open terrain. 

 

3.3.1. Open Terrain.  Figure 13 presents the contour plots of mean pressure 

coefficient over open terrain at 52%, 74%, and 95% throttle, which are obtained from the 

averaging of 40-s-record of pressure data. In each case, the fans were started from 0% 

throttle, then ramped to the specified throttle, and were kept constant thereafter for 60 s. 

During the last 60 s of data, the middle 40 s (10 s - 50 s) is used to do the time averaging 

in order to eliminate the uncertainties from the first and last 10 s. Since pressure taps did 

not cover the entire surface of the dome model, pressure coefficient in the unmeasured 

small area along the positive Y axis (see Figure 9) is mapped from the corresponding area 

along the negative Y axis. Figure 13 shows that generally the wind pressure distributions 

are similar when the dome model is under the three different fan throttles, that is, positive 

pressure on the windward side, negative (suction) pressure on the leeward side, and 

maximum negative pressure around the dome apex. However, the pressure distribution on 
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the leeward side is slightly different. In general, the magnitudes of positive and negative 

pressure coefficients increase with the increase of fan throttle. Comparison of Figures 

13(a) and 13(c) indicates that the magnitudes of positive and negative pressure 

coefficients increase four times when the fan throttle is doubled, which is consistent with 

the relationship between the upstream velocity and surface pressure based on the equation 

for calculating the surface pressure. 

 

 
                    (a)                                            (b)                                           (c)      
Figure 13. Pressure coefficients over open terrain: (a) 52% throttle; (b) 74% throttle; (c) 

95% throttle. 

 

3.3.2. Suburban Terrain.  Contour plots of mean pressure coefficients over 

suburban terrain at 52%, 74%, and 95% throttle are presented in Figure 14. The testing 

procedure and averaging method for suburban terrain are the same as those for open 

terrain. Comparison between Figures 13 and 14 indicates that the wind pressure 

distribution over the two different terrains follows a similar pattern, while the magnitudes 

of both positive and negative pressure coefficients are lower over the suburban terrain. 
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This is expected because wind velocity over suburban terrain is lower due to higher 

surface roughness over suburban terrain. 

 

  
                      (a)                                           (b)                                           (c)        
Figure 14. Pressure coefficients over suburban terrain: (a) 52% throttle; (b) 74% throttle; 

(c) 95% throttle. 

3.4. FORCE AND MOMENT COEFFICIENT 

By the integration of the surface pressures, the overall forces and moments acting 

on the dome model can be determined. The obtained forces and moments over both open 

and suburban terrains at all fan throttles (52%, 74%, and 95%) are listed in Table 1. 

Suction force (𝐹 ) is the most significant among all six forces and moments. The drag 

force 𝐹 , the overturning moment 𝑀 , and the rotational moment 𝑀  are extremely small 

that can be neglected, which is due to the symmetry of the dome model and the 

symmetric distribution of static pressure on the dome surface about X axis. For 𝐹 , 𝐹 , 

and 𝑀 , they increase with the increase of the fan throttle. Because of the significance of 

the suction force 𝐹 , it serves as one parameter for the match between CFD simulations 

and the wind tunnel testing. 
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Table 1. Force and moment. 

 Open terrain Suburban terrain 

 52% 74% 95% 52% 74% 95% 

𝐹  (N) 45.9 74.1 136.3 59.7 76.4 127.4 

𝐹  (N) -2.6 16.5 1.1 -9.6 -19.6 -23.5 

𝐹  (N) 597.2 1188.4 2151.8 479.2 1056.0 1764.8 

𝑀  (Nꞏm) -1.1 6.9 0.4 -4.0 -8.2 -9.8 

𝑀  (Nꞏm) -19.1 -31.0 -57.0 -24.9 -31.9 -53.2 

𝑀  (Nꞏm) -0.02 -0.03 -0.08 -0.03 -0.05 -0.08 

 

All forces and moments are normalized by the dynamic pressure, which are 

calculated using Equation (3). The obtained force and moment coefficients are listed in 

Table 2. Suction force coefficient is the most significant. While the difference between 

the suction force is large (e.g., around 72% difference between 52% and 95% throttle), 

the difference between the suction force coefficient is pretty small (e.g., around 9% 

difference between 52% and 95% throttle). 

𝐶
𝐹

1
2 𝜌𝑉 𝐴

, 𝐶
𝑀

1
2 𝜌𝑉 𝐴𝐻

 

𝐶
𝐹

1
2 𝜌𝑉 𝐴

, 𝐶
𝑀

1
2 𝜌𝑉 𝐴𝐻

 

𝐶
𝐹

1
2 𝜌𝑉 𝐴

, 𝐶
𝑀

1
2 𝜌𝑉 𝐴𝐻

 

(3) 

where 𝐹 , 𝐹 , and 𝐹 , are the forces applied on the dome model; 𝑀 , 𝑀 , and 𝑀  are the 

moments applied on the dome model; 𝜌 is the same as in Equation (2), 1.16 kg/m ; 𝐴 is 

the projected area of the dome model on a plane parallel to the cross-section of the wind 

tunnel (0.97 m ); 𝐻 is the height of the dome apex (0.67 m); 𝑉 is the reference mean 
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velocity (27 m/s under 52% throttle, 38 m/s under 74% throttle, and 49 m/s under 95% 

throttle, which are all from the open terrain). 

 

Table 2. Force coefficient and moment coefficient. 

 Open terrain Suburban terrain 

 52% 74% 95% 52% 74% 95% 
𝐶  0.11 0.09 0.10 0.15 0.09 0.09 
𝐶  -0.01 0.02 0.00 -0.02 -0.02 -0.02 
𝐶  1.46 1.46 1.59 1.17 1.30 1.31 
𝐶  0.00 0.01 0.00 -0.01 -0.02 -0.01 
𝐶  -0.07 -0.06 -0.06 -0.09 -0.06 -0.06 
𝐶  0.00 0.00 0.00 0.00 0.00 0.00 

3.5. REYNOLDS NUMBER 

The Reynolds number (𝑅𝑒) is the ratio of inertial forces to viscous forces, 

expressed as: 

𝑅𝑒
𝜌𝑉𝐻

𝜇
 

(4) 

where 𝜌 is the same as in Equation (2), 1.16 kg/m ; V is the reference mean velocity (27 

m/s under 52% throttle, 38 m/s under 74% throttle, and 49 m/s under 95% throttle, which 

are all measured over open terrain at the height of 0.67 m that is the same height as the 

dome apex); 𝐻 is the same as in Equation (3), 0.67 m; 𝜇 is dynamic viscosity of air at the 

air temperature of 30 °C (1.86 10 Nꞏs/m ). 

According to Equation (4), the Reynolds numbers for 52%, 74%, and 95% throttle 

over open terrain (when the dome model is not present) are determined as 1.13 10 , 

1.59 10 , and 2.03 10 , respectively. 
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4. NUMERICAL SIMULATION OF WIND FIELD PRODUCED IN WOW AND 
DISCUSSION OF RESULTS  

4.1. COMPUTATIONAL DOMAIN 

To simulate the straight-line wind field, a rectangular computational domain is 

applied, as shown in Figure 15. It consists of two parts, Part A and Part B. Part A is from 

the end of the flow conditioning section to the WOW door, and Part B is from the WOW 

door to the debris wall. The total length of the computational domain is 66.10 m. The 

cross section of the computational domain is 15.24 m wide and 9.14 m high, which has 

the same dimensions as the WOW door. On the left boundary surface of Part A, the area 

associated with the flow conditioning section is defined as the velocity inlet, with the 

width and height of 6.10 m and 4.27 m, respectively. The rest of the left boundary surface 

of part A, excluding the velocity inlet, is defined as no-slip wall, so are the front, back, 

top, and bottom boundary surfaces. For Part B, the front, top, and back boundary surfaces 

are defined as pressure outlet, as these three sides are open to air, and the bottom surface 

and the debris wall are defined as no-slip wall. All boundary surfaces that are defined as 

no-slip wall are shaded in Figure 15 except the bottom surface. The origin of the 

Cartesian coordinate system is located at the center of the turning table, which is 6.1 m 

away from the velocity inlet. 

4.2. DETERMINATION OF VELOCITY INPUT 

The velocity input at the velocity inlet is obtained from the mean velocity data 

presented in Figure 10, which was measured at the center of the turning table in the wind 

field when no dome model was present. The velocity was measured over open terrain at 
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95% throttle at four elevations. Only the along-wind velocity is considered for velocity 

input, since the other two velocity components are relatively small and thus can be 

neglected. To obtain the velocity input, the regression technique is applied to the mean 

velocity data at the four elevations. The regression equation is based on the power law 

(Simiu and Scanlan, 1986) and expressed as 

𝑉 𝑧 𝑉 𝑧
𝑧

𝑧
/  (5) 

where z is the elevation above the ground; 𝑧  denotes the reference height, 0.167 m in 

this wind tunnel testing, which is associated with 10 m in full-scale; 𝑉 𝑧  denotes the 

mean velocity at the reference height 𝑧 , 43.95 m/s for the along-wind velocity at 0.167 

m; 𝛼 is a function of surface roughness, which will be determined using the regression 

technique.  

The obtained regression equation of the mean along-wind velocity profile along 

height (95% throttle over open terrain) is shown in Equation (6) with α determined as 

9.41.  

𝑉 43.95
𝑧

0.167
/ .  (6) 

The comparison between the power law regression equation and the mean along-

wind velocity data from the wind tunnel testing is presented in Figure 16. It is found that 

the regression equation is in good agreement with the velocity data from the wind tunnel 

testing. In this study, it is assumed that the mean velocity profile measured at the end of 

the flow conditioning section (Figure 4) is the same as that measured at the center of the 

turning table. Therefore, Equation (6) is directly used as the velocity input at the velocity 

inlet in the following CFD simulations.  
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Figure 15. Computational domain applied to simulate the wind field produced in WOW 
(unit: m). 

 

  

Figure 16. Comparison of the regression equation (“Regr. eq.”) and the mean velocity 
profile obtained from the wind tunnel testing (“Exp.”). 

4.3. TURBULENCE MODELING AND OTHER CFD SIMULATION SETUP 

Three different turbulence models (Spalart-Allmaras model, SST k-ω model and 

LES model) are employed sequentially. The transport equations for Spalart-Allmaras and 

SST k-ω models are listed in Table 3. The model constants used in the CFD simulations 

are also listed in Table 3. The filtered Navier-Stokes equations employed by the LES 

z 
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model is presented in Table 3, and Smagorinsky-Lilly model with constant 𝑐 0.1 is 

selected as the subgrid-scale model.  

 

Table 3. Turbulence model equations. 

Spalart-
Allmaras model 

Transport equation: 
𝜕
𝜕𝑡

𝜌𝜈
𝜕

𝜕𝑥
𝜌𝜈𝑢

𝐺
1
𝜎

𝜕
𝜕𝑥

𝜇 𝜌𝜈
𝜕𝜈
𝜕𝑥

𝐶 𝜌
𝜕𝜈
𝜕𝑥

𝑌 𝑆  

where 𝜈 is the modified turbulent viscosity; 𝐺  is the production of 
turbulent viscosity, and 𝑌  is the destruction of turbulent viscosity that 
occurs in the near-wall region due to wall blocking and viscous damping. 
𝜎  and 𝐶  are the constants and 𝜈 is the molecular kinematic viscosity. 𝑆  
is a user-defined source term.  
 
Model constants:  

𝐶 0.1355, 𝐶 0.622, 𝐶 7.1, 𝐶 , 𝐶 0.3, 

𝐶 2, 𝜎 0.667, 𝜅 0.4187. 
 

SST k-ω model 

Transport equation for k: 
𝜕
𝜕𝑡

𝜌𝑘
𝜕

𝜕𝑥
𝜌𝑘𝑢

𝜕
𝜕𝑥

𝛤
𝜕𝑘
𝜕𝑥

𝐺 𝑌 𝑆  

Transport equation for ω: 
𝜕
𝜕𝑡

𝜌𝜔
𝜕

𝜕𝑥
𝜌𝜔𝑢

𝜕
𝜕𝑥

𝛤
𝜕𝜔
𝜕𝑥

𝐺 𝑌 𝐷 𝑆  

where 𝐺  represents the production of 𝑘. 𝐺  represents the generation of 𝜔. 
𝛤  and 𝛤  are the effective diffusivity of 𝑘 and 𝜔, respectively. 𝑌  and 𝑌  
represent the dissipation of 𝑘 and 𝜔 due to turbulence. 𝐷  is the cross-
diffusion term. 𝑆  and 𝑆  are user-defined source terms. 
 
Model constants:  
𝛼∗ 1, 𝛼 0.52, 𝛽∗ 0.09, 𝑎 0.31, 𝛽 , 0.075, 𝛽 , 0.0828, 
𝜎 , 1.176, 𝜎 , 1.0, 𝜎 , 2.0, 𝜎 , 1.168. 
 

LES model 

Filtered Navier-Stokes equation: 
𝜕𝑈
𝜕𝑡

𝑈
𝜕𝑈
𝜕𝑥

𝜕𝜏

𝜕𝑥
1
𝜌

𝜕�̅�
𝜕𝑥

𝜈∇ 𝑈  

where 𝜏  is the anisotropic residual stress tensor, �̅� is the modified filtered 
pressure, 𝜈 is kinematic viscosity, and 𝜌 is the fluid density. 
 
Subgrid-scale model: 
Dynamic Smagorinsky-Lilly model with constant 𝑐 0.1. 
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For each turbulence model, the segregated implicit solver, semi-implicit method 

for pressure linked equation-consistent (SIMPLEC) pressure velocity coupling, second 

order discretization for pressure, and bounded second order implicit for transient 

formulation are used. Second order upwind discretization scheme for momentum 

equations is used for Spalart-Allmaras and SST k-ω model, and bounded central 

difference discretization scheme for momentum equations is used for the LES model. The 

CFD simulation is run for 5 s with the time step of 0.0001 s. Such a small time step is 

used to accurately capture sufficient information from the simulation. The convergence 

criterion for the residual within one time step is defined as “Error between two time steps 

< 0.001”. 

4.4. GRID INDEPENDENCE STUDY 

To investigate the influence of meshing size on the generated wind field and to 

determine the optimal number of cells, three cases with different meshing sizes are 

simulated, as shown in Table 4. For each case, structured mesh is applied to the entire 

computational domain (Figure 15).  

The inflation grid technique is applied to the ground surface in order to capture 

the velocity gradients in the lowest layers near the ground, with the thickness of the first 

layer of 0.001 m, the growth rate of 1.19, and the total height of 1.2 m. Figure 17 presents 

the details of Mesh 1. Part A and Part B are all divided into four zones. The dimensions 

of Zone 1 are the same as those of the velocity inlet. The grid arrangement of Mesh 2 and 

Mesh 3 is similar to that of Mesh 1. The total number of generated cells is 0.85 million, 

0.43 million, and 0.17 million for Mesh1, Mesh 2, and Mesh 3, respectively. 



 

 

34

Table 4. Meshing strategies of the wind field without the dome model present. 

 Mesh 1 Mesh 2 Mesh 3 

Grid size of Part A 
(m×m×m) 

0.2×0.2×0.2 0.3×0.3×0.3 0.4×0.4×0.4 

Grid size of Part B 
(m×m×m) 

0.2×0.2×0.5 0.3×0.3×0.6 0.4×0.4×0.8 

Total No. of Cells (million) 0.85 0.43 0.17 

Note: a×b×c represents width×height×length. 

 

 
Figure 17. Structured mesh of the computational domain without the dome model present 

(Mesh 1). 

 

For each case, the mean velocity profile is extracted at the center of the turning 

table, that is, the origin of the global coordinate system. The time averaging is based on 

the velocity data from 4 s to 5 s at the time interval of 0.0001 s. In all the three simulated 

cases, only the turbulence model of Spalart-Allmaras is considered for simplicity. Figure 

18 presents the comparison of the mean velocity profiles among the three cases with 

different meshes. No large difference is found between these three cases, and thus the 
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independence of numerical results can be preserved. To achieve computational 

efficiency, Mesh 3 is employed to investigate the influence of turbulence modeling on the 

mean along-wind velocity profile.  

 

  

Figure 18. Mean along-wind velocity profile among the three cases with different 
meshes. 

4.5. INFLUENCE OF DIFFERENT TURBULENCE MODELS 

To investigate the influence of turbulence modeling on the simulated wind field, 

three cases with different turbulence models (Spalart-Allmaras, SST k-ω and LES 

models) are simulated. Figure 19 presents the comparison of the mean velocity profile 

extracted from the three simulated cases. Above 1.4 m, very minor differences are found 

among the three simulated cases, while larger differences are observed below 1.4 m. To 

be specific, the mean velocities with the Spalart-Allmaras and SST k-ω models are larger 

than that with the LES model at the same height. This indicates that the turbulence 

modeling affects the airflow characteristics in the near-wall regions more significantly 

than at higher elevations.  
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For comparison, the mean velocity profile obtained from the wind tunnel testing 

is also presented in Figure 19. The error of the velocity results based on the LES model is 

the smallest. The maximum error is associated with the SST k-ω model and less than 9%. 

Therefore, no matter which turbulence model is used, the numerically obtained mean 

velocity profiles are in general agreement with the wind tunnel testing. In addition, the 

Reynolds numbers in the three simulated cases (at the elevation of 0.67 m) are 2.16

10 , 2.12 10 , and 2.13 10  for Spalart-Allmaras, SST k-ω, and LES models, 

respectively, which are in the error of 6.4%, 4.4%, and 4.9% with the wind tunnel testing 

(2.03 10 ). Therefore, with respect to the mean velocity profile and the Reynolds 

number, the CFD simulation results match the wind tunnel testing very well. By 

comparing the regression equation (Equation (6), which is taken as the velocity input at 

the velocity inlet) with the three numerically obtained velocity profiles in Figure 19, the 

aforementioned assumption is verified that the velocity profile measured at the end of the 

flow conditioning section is very close to that measured at the center of the turning table. 

 

 

Figure 19. Mean along-wind velocity profile among the three cases with different 
turbulence models, regression equation (“Regr. eq.”), and the wind tunnel testing data 

(“Exp.”). 
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5. NUMERICAL SIMULATION OF WIND TUNNEL TESTING OF THE DOME 
STRUCTURE AND DISCUSSION OF RESULTS 

 

A dome model is placed in the computational domain, as shown in Figure 20, to 

determine the wind effects acting on the dome model. The dome model is placed at the 

center of the turning table, which is 6.1 m away from the velocity inlet and 6.2 m away 

from the WOW door. To investigate the influence of turbulence modeling on simulation 

results, three cases with different turbulence models (Spalart-Allmaras model, SST k-ω, 

and LES models) are simulated.  

 

 

Figure 20. Computational domain to simulate the wind tunnel testing of the dome model 
in WOW (unit: m). 

5.1. GRID INDEPENDENCE STUDY 

To investigate the grid sensitivity on the simulation results, three cases with 

different meshing sizes are simulated. For all the three simulated cases, the turbulence is 

only modeled by the Spalart-Allmaras model for simplicity. The applied meshing sizes 
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are the same as the ones listed in Table 4 for the computational domain except zone 1 of 

Part A. Because of the presence of the dome model, unstructured mesh is applied to Zone 

1 of Part A. For Zone 1 of Part A, the global sizes of the cells are 0.2 m, 0.3 m, and 0.4 m 

for Mesh 1, Mesh 2, and Mesh 3, respectively. The meshing sizes of the dome surface are 

0.02 m, 0.03 m, and 0.04 m for Mesh 1, Mesh 2, and Mesh 3, respectively. Besides the 

ground surface, the inflation grid technique is applied to the area around the dome 

surface. The total numbers of the generated cells are 2.2 million, 1.4 million, and 0.51 

million for these three cases, respectively. Figure 21 presents the grid arrangement of 

Mesh 1. Similar grid arrangement is applied to Mesh 2 and Mesh 3.  

 

 

Figure 21. Grid arrangement of the computational domain with the dome model present 
(Mesh 1). 

 

The distribution of the mean pressure coefficients on the dome surface and the 

total suction force 𝐹  are extracted. It is noted that all other moments and forces acting on 

the entire dome structure (e.g., the drag force 𝐹  and the rotational moment 𝑀 ) are so 
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small that they are negligible. Equation (2) is used to determine pressure coefficients, 

with the reference velocity for each case extracted from its corresponding CFD 

simulation results at the elevation of 0.67 m. Figure 22 presents the distribution of the 

mean pressure coefficient on the dome surface for the three cases. No distinct difference 

is found. The suction forces 𝐹  are 2209 N, 2205 N, and 2195 N for the three cases 

associated with Mesh 1, Mesh 2, and Mesh 3, respectively. The maximum error of 𝐹  

among these three cases is less than 1%. Therefore, the numerical results are independent 

of the meshing size. Considering the computational efficiency, Mesh 3 is used for further 

analyses. The following CFD simulations are all based on Mesh 3 unless otherwise 

stated.  

 

 

                     (a)                                             (b)                                           (c) 
Figure 22. Pressure coefficients on the dome surface over open terrain at 95% throttle: (a) 

Mesh 1; (b) Mesh 2; (c) Mesh 3. 

5.2. ALONG-WIND VELOCITY IN THE WIND FIELD 

For each case, the contour plot of the along-wind velocity on the XZ plane where 

Y=0 in the entire wind field is presented in Figure 23. The results show that the general 
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trend of velocity contour is similar when the Spalart-Allmaras and SST k-ω models are 

used. However, the trend of the velocity contour is significantly different when the LES 

model is used. The numerically simulated wind field associated with the LES model 

tends to exhibit more turbulent characteristics. The difference is consistent with the 

inherent characteristics of the RANS and LES models. To be more specific, the RANS 

models provide the ensemble-averaged flow condition while the LES model provides 

detailed, turbulent flow condition.  

The zoom-in figures of the velocity contour around the dome model are also 

presented in Figure 23. It reveals that the airflow on the windward side split at the 

stagnation point, as indicated by the black dot in each Zoom-in figure of Figure 23. 

Below the stagnation point, at the corner in front of the dome model, negative velocities 

appear, indicating the reversal of the flow. Above the stagnation point, the airflow 

accelerates over and surrounding the dome model due to the convergence of streamlines, 

which is caused by the blockage of the dome model. On the leeward side, the airflow 

decelerates, forming the boundary layer separation, and a wake region is present behind 

the dome model.  

5.3. STATIC PRESSURE IN THE WIND FIELD 

For each case, the distribution of the static pressure on the XZ plane where Y=0 in 

the entire wind field is presented in Figure 24. In general, the variation of the static 

pressure in the wind field is greater when the LES model is used, indicating that the 

corresponding wind field is more turbulent. This is consistent with the nature of the LES 

model, since it is a time-dependent approach.  
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(a) 

 

(b) 

 

(c) 

Figure 23. Contour plot of the along-wind velocity in the wind field on the XZ plane 
where Y=0: (a) Spalart-Allmaras; (b) SST k-ω; (c) LES. 

 

The zoom-in figures of the static pressure distribution around the dome model are 

also presented in Figure 24. On the windward side of the dome model, positive pressure 

is observed in the wind field. This is due to the decrease in velocity, which is caused by 

the divergence of streamline. Around the dome apex and on the top of the dome model, 

negative pressure is observed in the wind field. This is due to the increase in velocity, 

which is caused by the convergence of streamline. All the above is based on mass 

continuity and Bernoulli theorems. On the leeward side of the dome model, negative 
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pressure is observed in the wind field. This is due to the boundary layer separation on the 

leeward side of the dome, i.e., less air on the leeward side leads to negative pressure.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 24. Contour plot of static pressure in the wind field on XZ plane where Y=0: (a) 
Spalart-Allmaras; (b) SST k-ω; (c) LES. 

5.4. WIND PRESSURE DISTRIBUTION ON THE DOME SURFACE 

Figure 25 presents the mean pressure distribution on the dome surface for all the 

three simulated cases associated with different turbulence models. Figure 25(a) is 

associated with the Spalart-Allmaras model, which is exactly the same as Figure 22(c) 



 

 

43

and duplicated here for convenience. For comparison, the mean pressure distribution 

obtained from the wind tunnel testing is presented in Figure 25(d), which is exactly the 

same as Figure 13(c) and duplicated here for convenience. From Figure 25, although the 

simulation based on all the three turbulence models follow a similar trend for the wind 

pressure distribution, the pressure distribution based on the Spalart-Allmaras model 

(Figure 25(a)) is in the best agreement with the wind tunnel testing in terms of the 

pressure distribution on the dome surface and 𝐹 .  

 

 
                                            (a)                                             (b)                                              

 
                                           (c)                                                (d) 

Figure 25. Pressure coefficient over open terrain at 95% throttle: (a) Spalart-Allmaras; (b) 
SST k-ω; (c) LES; (d) Wind tunnel testing. 
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(a) 

 

(b) 

 

(c) 

Figure 26. Pressure distribution on the dome surface superimposed on the streamline of 
the along-wind velocity around the dome model: (a) Spalart-Allmaras; (b) SST k-ω; (c) 

LES. 
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To be specific, for the pressure distribution associated with the SST k-ω model 

(Figure 25(b)), the maximum mean positive and negative pressure can match that from 

the wind tunnel testing data. However, the enclosed areas by the contour line of -1 and -

0.8 appear to be smaller. For the pressure distribution associated with the LES model 

(Figure 25(c)), the maximum mean negative pressure is smaller than that from the wind 

tunnel testing. By closely examining the pressure distributions on the leeward side for 

each simulated case, the boundary layer separation occurs the earliest when the LES 

model is applied and the latest when the Spalart-Allmaras model is applied, as indicated 

in Figure 26. In terms of the location of the boundary layer separation, the obtained 

surface pressure distribution when the Spalart-Allmaras model is applied matches the 

wind tunnel testing better. The suction forces 𝐹  extracted from the cases associated with 

the Spalart-Allmaras, SST k-ω and LES models are 2205 N, 2044 N, and 1597 N, 

respectively, which are in the error of 2.5%, 5.0%, and 25.8% compared to that from the 

wind tunnel testing (2152 N). In summary, the simulated results associated with the 

Spalart-Allmaras model match the wind tunnel testing the best in terms of both the wind 

pressure distribution on the dome surface and the total suction force 𝐹 .  

 

6. CONCLUSIONS 

 

A large-scale (1/60) spherical dome model is tested in a straight-line wind tunnel 

and the wind tunnel testing is numerically simulated using CFD simulations. In the wind 

tunnel testing, the dome model is tested at three levels of fan throttles (52%, 74%, and 

95%) over both open and suburban terrains. Systematic CFD simulations are conducted 
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to investigate the influence of turbulence modeling on the wind effects induced by the 

straight-line winds on the dome model. The following conclusions can be drawn: 

 In the wind tunnel testing, when the fan throttle is doubled, the corresponding 

maximum mean positive and negative pressure coefficients increase four 

times. When the terrain type changes from open terrain to suburban terrain, 

the magnitudes of both positive and negative pressure coefficients are reduced 

due to higher surface roughness. Among all wind-induced forces and 

moments, suction force (𝐹 ) is the most significant. 

 In the CFD simulations, the velocity input is obtained from the wind tunnel 

testing. Grid independence study is conducted. The coarser mesh (Mesh 3) is 

selected as the final meshing strategy due to its low computational cost. 

 Three different turbulence models are applied, i.e., Spalart-Allmaras, SST k-

ω, and LES models. The simulated results associated with the Spalart-

Allmaras model match the wind tunnel testing the best in terms of both the 

wind pressure distribution on the dome surface and the total suction force 𝐹 . 

The simulated results associated with the LES model show the poorest 

accuracy of wind effects on the dome model, which is attributed to the earlier 

boundary layer separation compared to wind tunnel testing. 

 The mismatch between the CFD simulations and the wind tunnel testing is 

mainly caused by the inaccurate prediction of boundary layer separation. This 

can be greatly improved by applying a proper turbulence model.  
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 Although the LES model is able to provide detailed, turbulent flow condition 

of the wind field, it may not be the best option when the averaged quantities 

are targeted to be matched. 
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II. INVESTIGATE THE INFLUENCE OF FLOW STRUCTURE OF A 
TORNADO ON WIND EFFECTS 

 

Tiantian Li, Guirong Yan, and Daoru Han 

ABSTRACT 

Due to the incredible property loss and significant fatalities induced by tornadoes 

each year, tornado research has attracted considerable attention. However, previous 

studies mainly focused on the wind characteristics of tornadoes with the single-cell flow 

structure, and only a few targeted tornadoes with the double-cell flow structure. Limited 

attempts have been made for quantifying the tornado-induced wind effects on civil 

structures. The influence of flow structure of the tornado on its wind effects has not been 

sufficiently explored. This study is therefore aimed to investigate how the number of cells 

in the flow structure affects the wind effects acting on civil structures through 

Computational Fluid Dynamics (CFD) simulations. The paper is focused on the single-

cell and double-cell flow structure, both of which belong to the category of single-vortex 

tornadoes. For completeness, the wind characteristics of both types of tornadoes are also 

studied and compared. The applied CFD simulation strategies are verified based on a 

real-world tornado. The obtained results show that, due to the central downdraft in the 

double-celled tornado, its turbulence intensity is higher than that of the single-celled 

tornado. The pressure profile for the double-celled tornado has a wide, flat distribution, 

while the corresponding profile for the single-celled tornado has a narrow, single peak. 

The two drag forces induced by the single-celled tornado follow a typical trend, i.e., they 



 

 

51

reach their peak values when the dome center moves to the tornado core radius, while the 

corresponding variations under the double-celled tornado tend to be more random. 

Similar observations can be found from the two overturning moments. This suggests that 

the wind loading induced by the double-celled tornado is more dynamic than that induced 

by the single-celled tornado. 

 

1. INTRODUCTION 

 

In recent years, tornadoes have become a significant cause of injury, death, and 

property damage. On average, they cause $10B of property loss each year in the United 

States. Tornadoes are violently rotating columns of air that extend from a thunderstorm to 

the ground. They can generate intense winds at the speed of up to 135 m/s or 302 mph 

[1]. Due to the violent nature and unpredicted path of tornadoes, it is very challenging to 

obtain the in situ measurements of tornadoes, especially near-ground measurements [2]. 

Therefore, to characterize tornadic wind fields and to study tornado-induced wind effects 

on civil structures, researchers developed analytical models and simulated tornadoes 

using laboratory tornado simulators and Computational Fluid Dynamics (CFD) 

simulations. 

Analytical modeling of tornadic wind flow has first been applied to investigate 

flow characteristics of tornado vortices. Several analytical models have been developed. 

The mathematical expressions of some representative analytical models are listed in 

Table 1. Rankine vortex model only defined tangential velocity (𝑉 ) in the flow [3], as 

shown in Table 1. This model divided the vortex into two parts: the inner part of the 
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vortex in which 𝑉   linearly increased with the radial distance and the outer part of the 

vortex in which 𝑉  was a decreasing function of radial distance in hyperbolic form. The 

changeover from linear to hyperbolic form of 𝑉  profile created a sharp pinnacle at core 

radius (designated as 𝑅 , which was the radius where the maximum tangential velocity 

(𝑉 , ) occurred. Later on, Rankine model was modified by Deppermann [4]. A single 

equation was used to represent the vortex, and the sharp pinnacle at 𝑅  observed in 

Rankine model was smoothed out. Then, a more advanced model (Burgers-Rott vortex 

model) was developed [5, 6], which defined all three wind velocity components 

(Tangential velocity 𝑉 , Radial velocity 𝑉 , and Axial velocity 𝑉 ) to better capture the 

wind characteristics of tornadoes. However, almost all the previous analytical models 

pertain to single-celled single-vortex tornadoes except the following. An analytical model 

(Sullivan model) of a double-celled tornado was proposed [7], and its mathematical 

expression is also listed in Table 1. In the flow generated by this model, 𝑉  and 𝑉  

reversed their directions around the tornado center, generating a central recirculation 

pattern that was absent in the single-celled tornado. However, in this model, 𝑉  grew 

without limits, which was not consistent with the real-world situation. Later on, a new 

model (Vatistas model) was reported for intense vortices [8], as shown in Table 1, which 

was able to produce a double-celled tornado by a proper selection of the scaling 

constants, e.g. 𝜅=1.1, 𝜂=0.625, and 𝛽=0.6. In this model, the velocities were bounded. It 

was shown that 𝑉  profile along a radius exhibited a direction reversal near the tornado 

center when a double-celled tornado appeared. Burgers-Rott model [5, 6] was employed 

to generate a single-celled vortex and Sullivan model [7] to generate a double-celled 

vortex to investigate the effects of different flow structures on the basic characteristics of 
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tornado vortices [9]. Recently, Manikis extended the work of Vatistas [8] to consider the 

time effect, decaying of vortices, on the double-celled tornadoes [10]. 

 

Table 1. Mathematical expression of analytical tornado models. 

Vortex 
model 

Radial velocity (𝑉 ) Tangential velocity (𝑉 ) Axial velocity (𝑉 ) 

Rankine 
model 

0 

𝑉 , 𝑟
𝑅

, 𝑟 𝑅  

𝑉 , 𝑅
𝑟

, 𝑟 𝑅  
0 

Modified 
Rankine 
model 

0 
2𝑟𝑉 , 𝑅

𝑟 𝑅
 0 

Burgers-
Rott model 

𝑎𝑟 
Γ

2𝜋𝑟
1 𝑒  2𝑎𝑧 

Sullivan 
model 

𝑎𝑟
6𝜈
𝑟

1

𝑒  

Γ
2𝜋𝑟

𝐻
𝑎𝑟
2𝜈

𝐻 ∞
 2𝑎𝑧 1 3𝑒  

Vatistas 
model 

𝛼𝑟
𝜅

1 𝛽𝑟
1

1 𝜂𝛽𝑟
 

𝐶
𝑟

1 𝛽𝑟
1 𝜂𝛽𝑟 / 𝑟𝑑𝑟 

2𝛼𝑧
1

1 𝜂𝛽𝑟
𝜅

1 𝛽𝑟
 

Note: 𝑉 ,  denotes the maximum tangential velocity; 𝑅  the core radius where 𝑉 ,  is 
observed; 𝑟 the radial distance from the vortex center; Γ the strength of circulation; 𝑎 the 
strength of the suction; 𝜈 the kinematic viscosity; 𝐻 𝑥 𝑒 𝑑𝑡, 𝑓 𝑡 𝑡

3 1 𝑒 ; 𝛼, 𝜅, 𝜂, and 𝛽 are scaling constants, 𝛼 ; 𝐶 1/

/ 𝑟𝑑𝑟; 𝑚 , 𝑅  is the Reynolds number. 

 

Besides analytical modeling, experimental simulations also play an important role 

in generating essential features of real-world tornadoes. Ward developed the first 

laboratory tornado simulator and simulated single-celled tornadoes [11]. He investigated 

the influence of the aspect ratio on 𝑅  and surface pressure profile. Later on, extensive 

laboratory simulations were conducted through the updated Ward-type simulators, and 
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different aspects regarding tornado flow characteristics were investigated [12-17]. For 

example, various tornado-like vortex configurations were generated as a function of swirl 

ratio (S), radial Reynolds number (𝑅 ), and aspect ratio, including a single laminar 

vortex, a single vortex with breakdown, and multiple vortices [12, 13]. 𝑉  and 𝑉  as well 

as 𝑅  of the tornado increase with the increase of S [13, 16]. The influence of tornado 

translation [14] and surface friction [15] on the wind field were also studied. Tornado 

translation caused a local increase in S and increased 𝑅  compared to a stationary vortex. 

Surface friction made the flow more turbulent and thus caused greater eddy exchange of 

momentum. In addition to the Ward-type tornado simulator, tornadoes have been 

simulated and studied in the other two recently built laboratory tornado simulators at 

Iowa State University [18] and Western University [19] to characterize tornadic wind 

fields [20-23]. During the simulations in the Ward-type laboratory tornado simulator at 

Texas Tech University, the transition of the flow structure from a single-cell to a double-

cell with the increase of S was observed [24, 25]. It was found that the aspect ratio not 

only affected 𝑅  of both single- and double-celled tornadoes but also S at which the 

critical transition occurred. It also showed that the Burgers-Rott model [5, 6] closely 

fitted the averaged 𝑉  profile of the single-celled tornado generated in the laboratory 

tornado simulator, and the Sullivan model [7] fitted the double-celled tornadoes produced 

in the lab very well.  

In addition, CFD simulations have been applied to numerically simulate the 

different types of laboratory tornado simulators, including Ward-type tornado simulator, 

tornado simulators at Iowa State University and Western University, and the Atmospheric 

Vortex Engine, to investigate the generated tornado vortices and the airflow through 
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these tornado simulators [26-30]. Among these studies, Ishihara et al. [26] simulated a 

Ward-type tornado simulator and investigated both single- and double-celled tornadoes 

regarding the mean velocity field and pressure field. It was found that a single-celled 

tornado appeared when S is low and 𝑉  showed peaks at the tornado center; and that a 

double-celled tornado appeared when S is high and 𝑉 ,  appeared near ground. 

Based on the comprehensive understanding of the tornado vortex itself, the 

tornado-induced wind effects and its static impact on civil structures have then been 

investigated [18, 28, 31-36]. A few attempts have also been made on the study of non-

stationary characteristics of tornadoes. Dynamic wind pressure on a low-rise building 

frame was studied through laboratory tornado simulations and the results showed that the 

characteristics of dynamic pressures were strongly affected by the relative location of the 

structure to the tornado and were very different from those under straight-line winds [37]. 

Transient wind loads on a cubic building under a translating tornado were investigated in 

a laboratory simulator [38] and through CFD simulations [39]. In addition, tornado-

induced wind loads on a low-rise gable-roofed building were explored in respect to S, 

translation speed and building parameters [40]. However, the tornadoes from which the 

wind effects are induced are mainly single-celled tornadoes. 

According to the comprehensive literature review, previous studies were mainly 

focused on the characterization of the wind field induced by single-celled tornadoes and 

little if any research is about the comparison on the wind characteristics between single- 

and double-celled tornadic wind fields. Although Tang et al. [25] and Ishihara et al. [26] 

have compared single- and double-celled tornadoes through laboratory and numerical 

tornado simulations, respectively, their emphases were primarily on the mean velocity 
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field and pressure field, and they did not compare and discuss the characteristics of 

turbulence in the two tornadic wind fields and the tornado-induced wind effects on civil 

structures. However, turbulence can significantly affect the wind flow around civil 

structures and aerodynamic force; and can produce significant dynamic effect on some 

types of civil structures. To fill this research gap, in this study, CFD simulations will be 

employed to systematically investigate the differences between single- and double-celled 

tornadoes regarding the wind characteristics and the induced wind effects on civil 

structures. The remainder of this study is organized as follows. First, the civil structure of 

interest, a dome structure, will be introduced. The CFD simulation setup for generating a 

single-celled tornado and a double-celled tornado will be described. Second, the 

verification of the applied CFD simulation strategies will be demonstrated by comparing 

the simulated results to radar-measured data of a real-world tornado. Third, the wind 

characteristics of the two types of tornadoes will be investigated and compared, with 

respect to the flow structure, tangential velocity, turbulence intensity, and static pressure. 

At last, the wind effects on the dome structure induced by these two types of tornadoes 

will be compared in terms of the wind pressure on the dome surface and the total forces 

and moments. 

 

2. SIMULATION OF TORNADIC WIND FIELD 

2.1. CIVIL STRUCTURE CONSIDERED IN THIS STUDY 

The civil structure considered in this study is a Kiewitt-type K6-7 single-layer 

spherical dome structure, as shown in Figure 1. It spans 75 m and rises 25 m. It consists 
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of 462 tubular beam members, which form a frame, and 294 shells, which cover the 

frame. 

 

 

Figure 1. Spherical dome structure. 

2.2. REAL-WORLD TORNADO SIMULATED IN THIS STUDY 

Simulation of the tornadic wind field is based on a real-world F4 tornado, the 

Spencer, SD tornado of May 30, 1998 (hereafter “Spencer Tornado”). From the three-

dimensional ground-based velocity track display analysis conducted by Kosiba and 

Wurman, a double-celled single-vortex flow structure is maintained for Spencer Tornado 

throughout their 8-min observation period [41]. Recent research findings also 

demonstrate the double-celled vortex structure of Spencer Tornado [42]. 𝑉 ,  of 

Spencer Tornado is around 63 m/s, and its 𝑅  fluctuates around 220 m at the elevation of 

80 m during the observation period [28]. This tornado will be taken as the baseline and 

parameters will be adjusted to generate tornadoes with different flow structures, i.e., 

double- and single-celled flow structure. The CFD simulation software, ANSYS 

FLUENT, is employed to simulate the tornadic wind field. 
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2.3. ALL SIMULATED CASES AND SIMULATION SETUP 

All simulated cases are listed in Table 2. Case 1 is simulated to reproduce Spencer 

Tornado and to verify the applied CFD simulation strategies. In Case 1, all civil 

structures are eliminated to simulate the tornadic wind field only; the radius of pressure 

outlet is set to be 340 m to achieve the double-celled flow structure. Case 2 is targeted to 

generate a tornado with the single-celled flow structure, which will be achieved by 

modifying the radius of the pressure outlet in Case 1 to 150 m. Again, no civil structures 

are present in this wind field. The results from Case 1 and Case 2 will be used to compare 

the wind characteristics of tornadic wind fields between double- and single-celled flow 

structures. In Cases 3 and 4, the dome structure described in Section 2.1 is placed in the 

computational domain in order to compare the wind effects on the dome surface induced 

by tornadoes with different flow structures. 

 

Table 2. All cases simulated in this study. 

Cases Flow structure 
With civil structure 

present? 
Radius of pressure outlet 

(m) 

Case 1 Double-celled No 340 

Case 2 Single-celled No 150 

Case 3 Double-celled Yes 340 

Case 4 Single-celled Yes 150 

 

Four different computational domains (Figure 2) are established corresponding to 

the four simulated cases. In each case, the computational domain consists of two 

cylinders to simulate the swirling wind flow. The bottom cylinder is 100 m high, 

resembling the inflow zone. The top cylinder is 1,000 m high, resembling the convection 
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zone. The radii of the two cylinders are both 800 m. The boundary condition on the 

inflow surface is velocity-inlet and that on the outflow circle is pressure-outlet. The rest 

top and side boundary surfaces are defined as symmetry. The bottom boundary surface is 

a no-slip wall when a stationary tornado is simulated and is a moving wall when a 

translating tornado is simulated. The main difference in CFD simulation setup between 

Cases 1 and 2 lies in the radius of the pressure outlet, which are 340 m and 150 m for 

Case 1 (Figure 2(a)) and Case 2 (Figure 2(b)), respectively. The dome structure is not 

present in these two cases. To investigate tornadic wind loads on dome structures, the 

dome structure is included in Case 1 and Case 2 to generate Case 3 (Figure 2(c)) and 

Case 4 (Figure 2(d)), respectively.  

For all the four simulated cases, an inflow with tangential velocity (𝑉 ) and radial 

velocity (𝑉 ) enters the velocity inlet and exits from the pressure outlet. The equations 

used for 𝑉  and 𝑉  along the height are shown in Equations (1)-(2). They are obtained 

from the radar-measured data only at a location 800 m away from the tornado center 

through the height of 320 m. More details about the regression equations can be found in 

[43]. 

𝑉 20.61
𝑧

20
.  (1) 

𝑉
31.14

𝑧
20

.
,                             𝑧 20 m

45.14
𝑧

20

.
76.48,               𝑧 20 m

 (2) 

where 𝑧 is the height above the ground. 

Pointwise [44] is applied to develop the geometric model of the computational 

domain. For Cases 1 and 2, only structured mesh is applied. For Cases 3 and 4, hybrid 
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mesh is applied, including hexahedra, tetrahedra, pyramids and prisms. In Cases 1 and 2, 

inflation grid sizing is applied to the ground surface; in Cases 3 and 4, inflation grid 

sizing is applied to both the ground surface and the dome surface. The thickness of the 

first layer is 0.002 m and the corresponding Y+ value is 250 using the flat-plate boundary 

layer theory. The growth rate is 1.2 and a total of 36 layers is used. More details about the 

mesh strategies can be found in [43]. 

 

        (a)          (b) 

        (c)          (d) 

Figure 2. Computational domains of the simulated tornadic wind fields (unit: m): (a) Case 
1;  (b) Case 2; (c) Case 3; (d) Case 4. 
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2.4. SIMULATION OF TORNADO TRANSLATION 

In Cases 3 and 4 where the dome structure is present, the whole process of a 

tornado translating over the dome structure is simulated to determine more realistic 

tornadic wind loads. To simulate the tornado translation, rather than having the tornado 

move, the dome structure is made to move at the same speed as tornado translating, but in 

the opposite direction to the direction of tornado translating, to establish the relative 

motion. As shown in Figure 3, the dome structure is originally located at 360 m on the X 

axis (t = 0 s). To simulate that the tornado translates to the right, the dome translates to 

the left (along the negative X direction) at a speed of 15 m/s, which is the translating 

speed of Spencer Tornado based on the field measurement data [45]. When t = 24 s, the 

dome center reaches the tornado center. The calculation terminates when the dome 

structure moves to -360 m on the X axis (t = 48 s). In the CFD simulation, the dynamic 

mesh technique is applied to simulate that the dome structure travels inside the 

computational domain. Besides, to simulate the relative motion between the ground plane 

and the tornado, a moving wall boundary condition is applied on the ground plane with 

the speed of 15 m/s in the negative X direction. Details about the application of dynamic 

mesh can be found in [43]. 

 

3. VERIFICATION OF THE APPLIED CFD SIMULATION STRATEGIES 

 

Case 1 aims to reproduce Spencer Tornado, a double-celled tornado. To verify the 

applied CFD simulation strategies, the obtained simulation results are compared with the 
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radar-measured data in terms of the tangential velocity profile (𝑉 ), radial Reynolds 

number (𝑅 ) and swirl ratio (S), as well as the flow structure on the vertical plane. 

 

 

Figure 3. Schematic diagram of the simulation of tornado translation. 

3.1. PROFILE OF TANGENTIAL VELOCITY (𝑽𝒕) 

The comparison between the simulated results and the radar-measured data is 

shown in Figure 4, with respect to the averaged 𝑉  profile as a function of radial distance 

at the elevation of 80 m. 𝑉  profile at the elevation of 80 m is selected to do the 

comparison to eliminate the requirement of matching the ground roughness between the 

CFD simulation and radar measurement, assuming that the influence of ground roughness 

on the wind flow at the elevation of 80 m is minimal. To achieve an appropriate 

comparison, the averaging method applied to the simulated 𝑉  profile is the same as the 

one applied to process the radar-measured data [28]. To be specific, first, 𝑉  along a 

radius on the horizontal 80-m-high plane is extracted during a period of 20 s, and then it 

is time-averaged. Time-averaged 𝑉  along 36 radii are obtained. Next, the space-averaged 
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𝑉  at each specified radial distance is calculated by averaging the values at the same 

radial distance over the 36 azimuth angles. A data regression technique is applied on the 

time-averaged 𝑉  profile along each radius to ensure the data availability at the specified 

radial distances. A similar method was also used to obtain the averaged 𝑉  from 

laboratory tornado simulations [16, 23, 46]. As shown in Figure 4, the averaged 𝑉  profile 

obtained from the CFD simulation is in agreement with that obtained from the radar-

measured data. From Figure 4, tornado center is located at the radial distance of 0 m; 𝑅  

of the simulated tornado is 230 m and the corresponding 𝑉 ,  is 65 m/s. In terms of 𝑅  

and 𝑉 , , the simulated results match the radar-measured data very well.  

 

 

Figure 4. Comparison of the tangential velocity profiles extracted from the CFD 
simulation (Case 1) and the radar-measured data. 

3.2. RADIAL REYNOLDS NUMBER (𝑹𝒆𝒓) AND SWIRL RATIO (S) 

R  and S control the flow structure of the tornado [13]. R  is essentially a 

measure of the relative amount of the flow updraft strength to flow viscosity, reflecting 

the degree of flow turbulence, and it is defined as the ratio of volume flow rate to 

viscosity: 
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R
𝑄

2𝜋𝜈
𝑄

2𝜋𝜈ℎ
 (3) 

where 𝑄  represents the volume flow rate per unit axial length of inflow height and 𝑄 

represents the total volume flow rate through the system. Herein, 𝑄 1.15 10  m /s. 

𝜈 denotes kinematic viscosity (1.53 10  m /s), and ℎ denotes the height of the 

velocity inlet (100 m). R  of the simulated tornado is 1.20 10 , which falls into the 

estimated range of actual tornado cyclone flows, 10 -10  [13]. 

S is essentially a measure of the relative amount of angular to radial momentum in 

the vortex, reflecting the amount of rotational energy in the vortex relative to the 

convective energy in the vortex [18]. S at a certain height is defined as: 

S
𝜋𝑅 𝑉 ,

𝑄
 (4) 

where 𝑅  is the core radius at that specific height, and 𝑉 ,  is the corresponding 

maximum 𝑉  (the 𝑉  at 𝑅 ) at that height. S of the simulated tornado at seven 

representative heights are presented in Figure 5. S is larger than 1 within 200 m, which is 

consistent with the radar observation that S of Spencer Tornado exceeds 1 [41]. It is also 

consistent with the conclusions drawn by Hangan and Kim [47], in which the best fit 

between the CFD data and the radar-measure data from Spencer Tornado was found for a 

S of approximately S=2. 

3.3. VERTICAL FLOW STRUCTURE 

The schematic diagrams of ideal tornadic flow structures on a vertical plane are 

shown in Figure 6 [48]. Figure 6(a) presents a double-celled single-vortex flow structure, 

which is formed when S is relatively high. A downdraft is formed at the tornado center 
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and touches the ground surface, widening the corner flow. Figure 6(b) presents a single-

celled single-vortex flow structure and it is formed when S is low. No downdraft is 

observed and the corner flow forms an intense lateral inflow and upward jet. 

 

 

Figure 5. Swirl ratio at representative heights for Case 1 (double-celled tornado). 

 

 

 

(a) (b) 
Figure 6. Schematic diagrams of tornadic flow structures on the vertical plane [48]: (a) 

Double-celled single-vortex flow structure; (b) Single-celled single-vortex flow structure. 

 

To demonstrate a double-celled single-vortex tornado is generated in Case 1, the 

instantaneous flow structure of the simulated tornado at 300 s is shown in Figure 7. It is 

extracted from a meridional plane of the computational domain. From the flow structure 

on the vertical plane, it can be seen that a downdraft is formed at the tornado center, 
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impinging the ground, indicating a double-celled flow structure comparing to Figure 6(a). 

Such a central downdraft is a main feature of double-celled tornadoes, as also reported by 

Fiedler and Rotunno [49]. Updraft is formed at the outer region. Small vortices are 

formed due to local turbulence of airflow. Thus far, the simulated results are in general 

agreement with the radar-measured data, thus validating the feasibility of the applied 

CFD simulation strategies. Further analyses will be conducted based on these CFD 

simulation strategies. 

 

 

Figure 7. Instantaneous flow structure of the simulated tornado in Case 1 (double-celled 
tornado). 

 

4. COMPARISON ON WIND CHARACTERISTICS OF TORNADIC WIND 
FIELD 

 

In this section, the wind characteristics of tornadic wind field with the two 

different flow structures will be investigated. Comparisons between Cases 1 and 2 will be 
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made regarding the flow structure, tangential velocity (𝑉 ), turbulence intensity (TI), and 

static pressure. 

4.1. TORNADIC FLOW STRUCTURE 

The instantaneous flow structures on the vertical plane of the two types of 

tornadoes at 300 s are shown in Figure 8. Figure 8(a) is for the double-celled tornado, 

which is exactly the same as Figure 7 and duplicated here for convenience. From Figure 

8, updraft is formed at the outer region of the computational domain for both cases. 

However, downdraft is only formed at the tornado center of the double-celled tornado 

(Figure 8(a)), while the airflow at the tornado center of the single-celled tornado is still 

updraft (Figure 8(b)). This is the main difference between double- and single-celled 

tornadoes regarding the flow structure on the vertical plane. Small vortices due to local 

turbulence are observed for both cases. In general, the flow structures of both cases match 

the corresponding schematic diagram of ideal tornadic flow structure (Figure 6) well.  

According to Equation (4), S is determined as 1.1 for the double-celled tornado 

and 0.12 for the single-celled tornado at the elevation of 80 m. S is consistent with the 

research findings about the effect of increasing S on tornadic flow structure [16, 25, 26, 

46, 48], i.e., a double-celled tornado is formed when S is high and a single-celled tornado 

is formed when S is low. Based on Equation (3), R  of both cases is the same, that is, 

1.20 10 , since they share the same velocity input and dimensions at the velocity inlet. 

The instantaneous flow structure (at 300 s) on the horizontal plane at the elevation 

of 25 m is shown in Figure 9. The elevation of 25 m is chosen, as this is the height of the 

dome apex. In both cases, the air rotates counterclockwise. From the radius where 𝑉 ,  
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is reached (core radius, 𝑅 ), 𝑅  for the double-celled tornado (Case 1) is 159 m and that 

for the single-celled tornado (Case 2) is 56 m. Here, 𝑅  is instantaneous result that is 

determined based on this time instant of data. As shown in Figure 9(a), it is interesting to 

point out that, the outer air flows in towards 𝑅 , and the inner air flows out towards 𝑅  

due to the centrifugal force induced by the air rotation. In other words, the airflow 

converges at 𝑅  for the double-celled tornado. For the single-celled tornado, a similar 

phenomenon is observed but the airflow converges at a radial distance that is 50 m away 

from 𝑅 , as shown in Figure 9(b). The convergence location of the airflow depends on 

the force balance between the pressure gradient force (inwards) and the centrifugal force 

(outwards). For the single-celled tornado (Case 2), 𝑉 ,  is much higher (see Figure 10), 

leading to a much higher centrifugal force. This is why the convergence location of the 

airflow is further away from 𝑅 . Based on the flow analysis on the horizontal plane, it is 

worth noting that the large atmospheric pressure drop at tornado center (the maximum 

negative pressure) is due to the fact that the air flows outwards in the core region. 

 

(a) (b) 

Figure 8. Instantaneous flow structure on the vertical plane of the tornadic flow: (a) Case 
1: Double-celled; (b) Case 2: Single-celled. 
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(a) (b) 

Figure 9. Instantaneous horizontal flow structure of the tornadic wind field at the 
elevation of 25 m (Note: 𝑅  denotes the core radius in each case): (a) Case 1: Double-

celled; (b) Case 2: Single-celled. 

4.2. TANGENTİAL VELOCİTY (𝑽𝒕) 

Instantaneous contour plots of 𝑉  on the horizontal plane at the elevation of 25 m 

at 300 s are shown in Figure 10. For both cases, the distribution of 𝑉  is in the pattern of 

concentric circles. 𝑅  of the double-celled tornado is much larger than that of the single-

celled tornado. They are 159 m and 56 m, respectively, and indicated by dashed circles in 

Figure 10. 𝑉 ,  of the single-celled tornado (214 m/s) is much larger than that of the 

double-celled tornado (98 m/s), which can be explained by the conservation of angular 

momentum. The minimum 𝑉  for both cases is similar. Here, 𝑅  and 𝑉 ,  are 

instantaneous results based on this time instant of data. 

To be more specific, 𝑉  profiles along one radius at the elevation of 25 m and 80 

m are presented in Figure 11. Here, 𝑉  is time- and space-averaged. For both elevations, 

𝑅  of the double-celled tornado is larger than that of the single-celled tornado, while 

𝑉 ,  of the double-celled tornado is smaller. Qualitatively, this is consistent with the 



 

 

70

conservation of the angular momentum. Figure 12 presents the instantaneous 𝑉  profile 

(space-averaged) at the elevation of 25 m for both types of tornadoes. It is in general 

agreement with the corresponding time- and space-averaged 𝑉  profile, although some 

extra peaks show up, which is due to the turbulence in tornadic wind field. 

 

   

(a) (b) 

Figure 10. Instantaneous contour plots of tangential velocity on the horizontal plane at the 
elevation of 25 m: (a) Case 1: Double-celled; (b) Case 2: Single-celled. 

 

   

(a) (b) 

Figure 11. Time- and space-averaged profile of tangential velocity along radial distance: 
(a) At the elevation of 80 m; (b) At the elevation of 25 m. 
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Figure 12. Instantaneous profile of tangential velocity along radial distance at the 
elevation of 25 m (space-averaged). 

 

Instantaneous contour plots of 𝑉  on a meridional plane at 300 s is shown in 

Figure 13. For lower elevations, in both cases, the distribution of 𝑉  is symmetric about 

the central axis; for higher elevation, the distribution of 𝑉  for the double-celled tornado 

(Case 1) is less symmetric than that for the single-celled tornado (Case 2). This is due to 

the fact that there exists central downdraft and the airflow is more turbulent in the 

double-celled tornado. 

 

   

(a) (b) 
Figure 13. Contour plot of tangential velocity on the vertical plane: (a) Case 1: Double-

celled; (b) Case 2: Single-celled. 
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4.3. TURBULENCE İNTENSİTY (TI)   

TI is used to measure the strength of turbulence, which in this study is obtained 

based on the time histories of wind velocity at the elevation of 25 m. TI is defined as the 

ratio of the root-mean-square of velocity fluctuation to the mean resultant velocity [50]: 

𝑇𝐼
𝜎
𝑈

, 𝑇𝐼
𝜎
𝑈

, 𝑇𝐼
𝜎
𝑈

 
(5) 

where 𝜎 𝑢 𝑑𝑡, 𝜎 𝑣 𝑑𝑡, and 𝜎 𝑤 𝑑𝑡; 𝑢, 𝑣, and 𝑤 are the 

velocity fluctuation in the radial, tangential and axial directions; 𝑈 is the mean resultant 

wind velocity. 

Based on Equation (5), TI at different radial distances in the axial, radial, and 

tangential directions for both cases are obtained and presented in Figure 14. Radial 

distance is normalized using 𝑅  of each case, i.e., 170 m for the double-celled tornado 

(Figure 11(b)) and 34 m for the single-celled tornado (Figure 11(b)).  

From Figure 14, for the single-celled tornado, TIs of the three velocity 

components are similar. For the double-celled tornado, TI of the axial velocity 

component is much higher than TIs of the other two velocity components; and TI of each 

velocity is generally larger than that of the single-celled tornado, especially at the 

locations close to the tornado center. Both phenomena are attributed to the presence of 

the central touching-down downdraft in the double-celled tornado. This indicates that the 

airflow of the double-celled tornado is more turbulent than that of single-celled tornado, 

which also demonstrates the aforementioned statement that the vertical distribution of 𝑉  

for the double-celled tornado is less symmetric than that for the single-celled tornado at 

higher elevations. 
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(a) (b) (c) 
Figure 14. Comparison of turbulence intensity between Case 1 and Case 2: (a) For axial 

velocity; (b) For radial velocity; (c) For tangential velocity. 

 

To demonstrate the fluctuations in velocities, the time histories of 𝑉  for both 

cases at three representative locations, i.e., 𝑅 , half of 𝑅  and tornado center, are 

presented in Figures 15-16. For both cases, the mean value decreases when the radial 

distance gets closer to the tornado center. At each representative radial distance, although 

𝑉  of the double-celled tornado fluctuates less frequently than that of the single-celled 

tornado and the corresponding variance of the velocity data is much smaller, TI of the 

double-celled tornado is higher based on Equation (5) due to the lower mean 𝑉  in the 

double-celled tornado.   

 

(a) (b) (c) 

Figure 15. Time histories of tangential velocity of the double-celled tornado: (a) At 𝑅 , 
𝜎 7.7; (b) At half of 𝑅 , 𝜎 7.5; (c) At tornado center, 𝜎 2.8 (Note: 𝜎  denotes 

the root-mean-square of tangential velocity fluctuation). 
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(a) (b) (c) 

Figure 16. Time histories of tangential velocity of the single-celled tornado: (a) At 𝑅 , 
𝜎 13.7; (b) At half of 𝑅 , 𝜎 32.9; (c) At tornado center, 𝜎 4.1. 

4.4. STATIC PRESSURE 

Figure 17 shows the instantaneous contour plots of static pressure on the 

horizontal plane at the elevation of 25 m at 300 s. It is shown that, for both cases, the 

distribution of static pressure is in the pattern of concentric circles. Within the tornado 

core, negative pressure is present due to a high atmospheric pressure drop. Static pressure 

increases with the increase of radial distance. It is also observed that the distribution of 

negative pressure within 𝑅  is scattered for the double-celled tornado (Figure 17(a)) and 

is centered for the single-celled tornado (Figure 17(b)). This further verifies that the 

double-celled tornado is more turbulent inside the tornado core than the single-celled 

tornado. 

To be more specific, the profile of static pressure along a diameter of the 

computational domain is shown in Figure 18. Here, static pressure is time- and space-

averaged. In both cases, the maximum negative pressure occurs at the tornado center, as 

the air flows outwards away from tornado center within the tornado core. There are three 

main differences between the two cases. First, the pressure gradient of the double-celled 

tornado is much smaller than that of the single-celled tornado. Second, for the double-
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celled tornado, the region with the maximum negative pressure is wide, while that for the 

single-celled tornado is narrow, exhibiting as a peak. Third, the pressure magnitude range 

of the double-celled tornado is much smaller than that of the single-celled tornado. These 

findings are consistent with experimental results obtained from laboratory tornado 

simulators [25, 51]. 

 

   

(a) (b) 

Figure 17. Instantaneous contour plot of static pressure on the horizontal plane at the 
elevation of 25 m: (a) Case 1: Double-celled; (b) Case 2: Single-celled. 

 

 

Figure 18. Static pressure profile as a function of radial distance. 
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5. COMPARISON ON TORNADO-INDUCED WIND EFFECTS ON THE DOME 
STRUCTURE 

 

In this section, tornado-induced wind effects are compared between Cases 3 and 4 

when the dome structure is present in the wind field. The wind effects presented here 

include the wind pressure on the dome surface (hereafter “surface pressure”) and total 

forces and moments acting on the entire dome.  

5.1. SURFACE PRESSURE 

Surface pressure induced by the double-celled tornado (Case 3) at six 

representative time instants during the last 48 s of simulation (while the dome moves 

from the right side to the left side of tornado center, see Figure 3) are presented in Figure 

19. In general, all surface pressure is positive when the dome is far away from tornado 

center (Figure 19(a)), while negative surface pressure is gradually developed when the 

dome approaches the tornado center. From Figure 19(b), when the dome is closer to the 

tornado center, since it is on the right side of the tornado center, the wind blows towards 

the southeast corner of the dome, at which the surface pressure is positive. As shown in 

Figure 19(c), when the dome center moves to 𝑅  (Here, 𝑅  is 170 m, which is at the 

height of the dome apex, 25 m, and is determined from Case 1 when the dome structure is 

not present, see Figure 11(b)), the wind blows from due south and the surface pressure 

near the south edge of the dome is positive. From Figure 19(d), when the dome center is 

exactly at the tornado center, relatively uniform negative pressure is distributed across the 

whole surface. The negative pressure is contributed from the large atmospheric pressure 

drop within the tornado core (see Figure 18). When the dome moves to the left side of the 
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tornado center (Figures 19(e)-(f)), large positive pressure is found at the northwest corner 

of the dome, which is the windward direction. 

 

         (a)             (b)             (c) 

            (d)             (e)              (f) 

Figure 19. Surface pressure for the double-celled tornado (Case 3): (a) 4 s (300 m away 
from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 12.6 s (171 m away 
from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.7 s (-85.5 m away 

from tornado center); (f) 35.4 s (-171 m away from tornado center). 

 

Figure 20 shows the surface pressure induced by the single-celled tornado (Case 

4). The general trend is similar to that induced by the double-celled tornado, that is, all 

surface pressure is positive when the dome is far away from the tornado center, while 

negative surface pressure is developed when the dome gets closer to the tornado center. 

In this case, 𝑅  is 34 m at the elevation of 25 m (Figure 11(b)).  
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By comparing Figures 19(a) and 20(a), when the dome center is 300 m away from 

the tornado center, the distribution of positive surface pressure induced by the single-

celled tornado is more uniform than that induced by the double-celled tornado. This is 

because the tornado core of the single-celled tornado is much smaller, and the negative 

pressure at tornado center exerts less influence on the airflow at the 300-m radius. 

Therefore, the pressure gradient at the 300-m radius in the single-celled tornado is much 

smaller (see Figures 21(a) and 22(a)), and thus induces less uneven distribution of surface 

pressure. 

When the dome is at the tornado center, the distribution of surface pressure 

induced by the double-celled tornado (Figure 19(d)) is more uniform than that induced by 

the single-celled tornado (Figure 20(d)). This is due to the influence of the relative size of 

the tornado core and the dome structure. The core diameter of the double-celled tornado 

is 340 m at the elevation of 25 m, which is 4.5 times the base diameter of the dome 

structure (75 m). The similar ratio for the single-celled tornado is around 0.9. This 

indicates that the size of the dome structure is much less than the core of the double-

celled tornado, which means the dome structure is completely immersed in the lower 

pressure region. Therefore, the distribution of surface pressure is much uniform under the 

double-celled tornado.  

It is also interesting to notice that a spot of localized peak negative pressure 

occurs in Figures 20(c)-(e), and it is indicated by the dark blue color in each subfigure. 

The tornado core of the single-celled tornado is affected by the dome structure more 

significantly than the tornado core of the double-celled tornado, which can be observed 

clearly from Figures 21-22.  
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As presented in Figure 21, for the double-celled tornado, the pressure distribution 

within the tornado core is scattered, on which the influence of the dome structure is not 

noticeable. As presented in Figure 22, for the single-celled tornado, when the dome 

structure is far away from the tornado center, the pressure is distributed in concentric 

circles and centered at the core. When the dome moves close to the core, the pattern of 

concentric circles is disturbed by the dome structure and the localized peak negative 

pressure is observed, i.e., Figures 22(c)-(d). The localized peak negative pressure in 

Figures 22(c)-(d) corresponds with the spot of localized peak negative pressure on the 

dome surface in Figures 20(c)-(d).  

 

         (a)           (b)           (c) 

          (d)           (e)           (f) 

Figure 20. Surface pressure for the single-celled tornado (Case 4): (a) 4 s (300 m away 
from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 21.7 s (34.5 m 

away from tornado center); (d) 24 s (0 m away from tornado center); (e) 26.3 s (-34.5 m 
away from tornado center); (f) 35.4 s (-171 m away from tornado center). 
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(a) (b) 

   

(c) (d) 

Figure 21. Instantaneous contour plot of static pressure on a 12.5-m-high horizontal plane 
of the wind field and on the dome surface induced by the double-celled tornado (Case 3) 
(Note: 𝑅 = 138 m at the elevation of 12.5 m at 300 s; the static pressure contour of the 

dome surface is superimposed on that of the horizontal plane): (a) Dome center is 300 m 
away from tornado center; (b) Dome center is 210 m away from tornado center; (c) Dome 

center is 180 m away from tornado center; (d) Dome center is at tornado center. 

 

To characterize the dynamic characteristics of the surface pressure, the time 

history of surface pressure at a representative location of the dome (the dome apex) is 

extracted from these two cases, and the Fourier transform (FT) and the short-time Fourier 

transform (STFT) of the time histories are carried out, as shown in Figures 23-24. From 

Figures 23(a) and 24(a), the surface pressure is positive when the dome is far away from 

the tornado center, and it then decreases and becomes negative when the dome 

approaches the tornado center, which is due to the large atmospheric pressure drop at the 
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tornado center (Figure 18). Figures 23(b) and 24(b) show that FT of the surface pressure 

time histories and the frequency components lower than 0.15 Hz dominate the spectrum, 

which are relatively low. To obtain the frequency variation over time, Figures 23(c) and 

24(c) present STFT of the surface pressure time histories. From the time-frequency 

scalogram, the surface pressure varies more rapidly when the dome center moves into the 

tornado core, especially around 𝑅 , which can be indicated by the presence of the higher 

frequency components at 𝑅  (up to 3.75 Hz for the double-celled tornado and 2.5 Hz for 

the single-celled tornado). Overall, the dominant frequency components of the surface 

pressure are below 0.5 Hz over the entire duration.  

 

   

(a) (b) 

   

(c) (d) 

Figure 22. Instantaneous contour plot of static pressure on a 12.5-m-high horizontal plane 
(except as otherwise specified) of the wind field and on the dome surface induced by the 
single-celled tornado (Case 4) (Note: 𝑅 = 41.5 m at the elevation of 12.5 m at 300 s): (a) 

210 m away from tornado center; (b) 60 m away from tornado center; (c) 30 m away 
from tornado center; (d) At tornado center at the elevation of 19 m. 
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(a) (b) (c) 

Figure 23. Time history of the surface pressure at the dome apex induced by the double-
celled tornado (Case 3): (a) Time history; (b) Fourier transform; (c) Short-time Fourier 

transform. 

 

     

(a) (b) (c) 

Figure 24. Time history of the surface pressure at the dome apex induced by the single-
celled tornado (Case 4): (a) Time history; (b) Fourier transform; (c) Short-time Fourier 

transform. 

5.2. FORCE AND MOMENT COEFFICIENTS 

The wind force and moment are used to quantify the total wind effects of the 

tornado on the entire dome structure, which are determined by integrating the surface 

pressure. Forces and moments of both cases are presented in Figures 25 and 27, 

respectively. The associated force and moment coefficients are calculated based on 

Equations (6)-(7) and presented in Figures 26 and 28.  
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𝐶
,

                                                            (6) 

𝐶
,

                                                         (7) 

 
where 𝐹  and 𝑀  are the force and moment applied on the dome structure in the 

𝑖 𝑥, 𝑦 𝑜𝑟 𝑧  direction, respectively; 𝜌 is the density of air (1.225 kg/m ); 𝐴 is the 

projected area of the dome structure on a plane normal to the translating direction 

(1355 m ); 𝐻 is the height of the dome structure (25 m); in each case, the reference 

velocity is taken as the maximum 𝑉  at the elevation of 25 m in its own wind field, 

expressed as 𝑉 ,  (73 m/s for the double-celled tornado and 176 m/s for the single-

celled tornado, see Figure 11(b)).  

From Figure 25, when the tornado translates over the dome, the suction force (𝐹 ) 

is the most significant among the three forces for both cases. This is why the roof is often 

seen to be torn off during tornado incidents. 𝐹  first increases and reaches its maximum 

value at the tornado center, and then decreases. The magnitude of 𝐹  of the single-celled 

tornado is much larger than that of the double-celled tornado.  

For the single-celled tornado, 𝐹  reaches its peak values when the dome moves to 

tornado 𝑅 . 𝐹  changes its direction approximately when the dome center passes the 

tornado center. Since this direction change of the wind force happens very quickly in 

tornadic wind fields (at the tornado center), within the range of a couple of seconds, it 

may cause dynamic responses of the structure. It is the same case for 𝐹  induced by the 

single-celled tornado. However, for the double-celled tornado, the magnitudes of 𝐹  and 

𝐹  are much smaller than 𝐹 , and their developments with time are more fluctuating. This 

is due to the scattered distribution of static pressure (Figure 17(a)) within the larger 
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tornado core of the double-celled tornado. The findings about the force induced by the 

single-celled tornado are consistent with laboratory tornado simulations conducted by 

Haan et al. [31] and Hu et al. [32]. 

 

      (a)        (b) 
Figure 25. Forces acting on the dome structure: (a) Case 3; (b) Case 4. 

 

       (a)        (b) 
Figure 26. Force coefficients: (a) Case 3; (b) Case 4. 

 

Figure 27 presents the moments acting on the entire dome structure for Cases 3 

and 4. For both cases, the rotational moment (𝑀 ) about the Z axis is very small, this is 
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due to the fact that the geometry of the dome structure is symmetric and that the 

distribution of surface pressure is approximately symmetric, e.g., the surface pressure is 

symmetric about the X axis in Figure 19(c). From Figures 27-28, the development of 

moments induced by the double-celled tornado is more fluctuating than that induced by 

the single-celled tornado. The moments (Figure 27) induced by the double-celled tornado 

are much smaller than those induced by the single-celled tornado. It is the same case for 

the moment coefficients (Figure 28). For the single-celled tornado, the moment about the 

Y axis (𝑀 ) is much greater than those about the other two axes, and it reaches its peak 

values when the dome center is about at the edge of 𝑅 . This is because 𝐹  is much 

greater. That is to say, the effect of the tornado sucking the dome towards its center is 

much stronger. The trends of the moments induced by the single-celled tornado are 

consistent with those obtained from laboratory tornado simulations conducted by Haan et 

al. [31] and Hu et al. [32]. This suggests that the wind loading induced by the double-

celled tornado is more dynamic than that induced by the single-celled tornado. 

 

       (a)        (b) 

Figure 27. Moments acting on the dome structure: (a) Case 3; (b) Case 4. 
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       (a)        (b) 

Figure 28. Moment coefficients: (a) Case 3; (b) Case 4. 

 

6. CONCLUSIONS 

 

In this study, the differences between single- and double-celled tornadoes have 

been systematically investigated using CFD simulations, in respect to both the wind 

characteristics of tornadic wind fields and the induced wind effects on civil structures. 

The following conclusions can be drawn: 

 The tangential velocity profile and the flow structure on the vertical plane 

extracted from the simulated tornadic wind field agree well with those 

extracted from the radar-measured data during Spencer Tornado, which 

demonstrates the appropriate setup for the CFD simulations. 

 A double-celled tornado is formed with a high swirl ratio, while a single-

celled tornado is formed with a low swirl ratio; a touching-down downdraft is 

observed in the central region of the double-celled tornado, while no 

downdraft is observed in the single-celled tornado; the core radius of the 
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single-celled tornado is much smaller compared to that of the double-celled 

tornado while its maximum tangential velocity is much larger, when the 

velocity input at the velocity inlet is the same; the pressure profile of the 

single-celled tornado have a narrow, single peak with a higher pressure 

gradient, but the corresponding profile for the double-celled tornado has a 

wide, flat distribution. 

 Due to the central downdraft, the turbulence intensity of the double-celled 

tornado is much higher than that of the single-celled tornado in the core 

region, to be specific, in the region within half of the core radius. Also, the 

turbulence intensity of the axial velocity is the most significant among all the 

three velocity components. 

 The force and moment induced by the double-celled tornado is more 

fluctuating and random than those induced by the single-celled tornado, which 

is caused by the presence of the central downdraft. This suggests that the wind 

loading induced by the double-celled tornado is more dynamic than that 

induced by the single-celled tornado. 

 The two drag forces (𝐹  and 𝐹 ) under the single-celled tornado follow a 

typical trend: 1) they reach their peak values when the dome center moves to 

the tornado core radius; 2) they change their direction approximately when the 

dome center passes the tornado center; and 3) 𝐹  is much greater than 𝐹 , 

indicating that the effect of the tornado sucking the dome towards its center is 

much stronger. However, the corresponding variations under the double-celled 

tornado tend to be more random, and the effect of sucking the civil structure 
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towards the tornado center is not obvious. Similar observations can be found 

from the two overturning moments (𝑀  and 𝑀 ). 
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III. DYNAMIC STRUCTURAL RESPONSES OF LONG-SPAN DOME 
STRUCTURES INDUCED BY TORNADOES 

 

Tiantian Li, Guirong Yan, Fangping Yuan and Genda Chen 

ABSTRACT 

Long-span dome structures are widely used for public assembly venues because 

of their large column-free space and efficient use of materials. When occupied by 

hundreds or even thousands of people, it would be devastating if they fail or collapse, 

which unfortunately happen frequently during extreme events, especially under tornadic 

winds. Although static effects of tornadoes on civil structures have been extensively 

studied, their dynamic impact has not been sufficiently investigated. In this study, non-

stationary characteristics of tornadoes and their dynamic impact on a long-span dome 

structure are systematically investigated. In particular, the time-variant wind pressure on 

the dome surface induced by translating tornadoes with different intensities is 

characterized through Computational Fluid Dynamics simulations. The obtained wind 

pressure on the dome surface is then mapped onto the finite element model of the dome 

structure, and transient time-history analyses are conducted to characterize the tornado-

induced dynamic responses. It is observed that non-stationary wind pressure and the 

induced dynamic structural responses are significant, when core radius of the tornado 

approaches the dome. Wind flow of EF4 and EF5 tornadoes is found to be more turbulent 

than EF2 and EF3 tornadoes, and hence larger and more rapid fluctuations of dynamic 

responses. 
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1. INTRODUCTION 

 

A tornado is a rotating column of air extending from a cumulonimbus cloud to the 

ground. It is claimed to be one of the most violent natural hazards. They result in 

incredible amounts of property damage and significant numbers of fatalities each year. 

The devastation from recent tornadoes (e.g., the Joplin, MO tornado of May 22, 2011; the 

Tuscaloosa, AL tornado of April 27, 2011; and the Moore, OK tornado of May 20, 2013) 

left no doubt as to the vulnerability of the central United States to tornadoes and 

prompted an urgent need in studying tornadoes in all aspects from different research 

fields. 

To investigate flow characteristics of tornado vortices, tornadic wind flow has 

been modeled using analytical modeling, experimental simulation, and numerical 

simulation. Several simplified analytical models have been developed. Rankine vortex 

model, a simple one-dimensional analytical model, only used tangential velocity to 

represent the flow; more advanced analytical models, e.g. modified Rankin vortex 

(Deppermann, 1947) and Burgers-Rott vortex (Burgers, 1948; Rott, 1958), were 

developed later to better capture the characteristics of tornadoes. Based on the laboratory 

simulations conducted through Ward-type tornado simulator (Ward, 1972) and its 

updated ones (Church et al., 1977; Leslie, 1977; Church et al., 1979; Diamond and 

Wilkins, 1984; Wang et al., 2001; Tari et al., 2010), it was found that the tornadic wind 

flow characteristics and vortex configurations were governed by the following three non-

dimensional parameters, swirl ratio, radial Reynolds number and aspect ratio. The 

recently developed laboratory tornado simulators in North America are located at Iowa 
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State University (Haan et al., 2008), Texas Tech University (Mishra et al., 2008a) and 

Western University (Hangan, 2014). Tests were conducted through these facilities to 

characterize the generated wind flow (Refan et al., 2014; Haan et al., 2017; Razavi and 

Sarkar, 2018a, 2018b; Tang et al., 2018a, 2018b), among which Refan et al. (2014) 

investigated the relationship between the swirl ratio and the velocity-based EF-scale so 

that the simulated and real tornadoes can be correlated. It was concluded that EF0-EF3 

tornadoes in nature can be represented by the tornado vortices generated in the facility at 

Western University using proper scaling. Numerical simulations of tornadic wind flow 

have been mainly focused on the tornado vortices generated in laboratory tornado 

simulators. Ward-type laboratory tornado simulator, tornado simulators at Iowa State 

University and Western University, and the Atmospheric Vortex Engine were modeled 

by Computational Fluid Dynamics (CFD) simulations and the air flow through these 

tornado simulators was investigated (Kuai et al., 2008; Ishihara et al., 2011; Natarajan, 

2011; Yuan et al., 2017). Three-dimensional numerical simulations of tornado-like 

vortices were performed by Hangan and Kim (2008) and compared with the full-scale 

radar data from the Spencer, SD tornado of May 30, 1998, and it was concluded that the 

results of swirl ratio of 2 compared well with the full-scale data.  

The above research efforts were aimed at comprehensive understanding of the 

tornado vortex itself, which also built a solid foundation for examination of tornado-

induced wind loads on civil structures. Extensive studies have been reported with respect 

to tornado-induced wind loads (Haan et al., 2008; Haan et al., 2010; Hu et al., 2011; 

Ishihara et al., 2011; Kuai et al., 2008; Mishra et al., 2008a, 2008b; Natarajan and 

Hangan, 2012; Rajasekharan et al., 2013; Sabareesh et al., 2013), together with the static 
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impact of tornadoes (mean aerodynamic loading) on civil structures (Selvam and Millett, 

2003). However, the research on the non-stationary characteristics of tornadoes and their 

dynamic impact on civil structures has been lacking. The recent anemometer-measured 

wind speeds inside a tornado demonstrated the non-stationary characteristics of tornadoes 

(Wurman et al., 2013), resulting in a dynamic effect on civil structures. The dynamic 

effect can cause a structure to oscillate severely, as observed on the Great Plains Life 

building during the Lubbock, TX tornado of May 11, 1970 (Chang, 1971). Chang 

suggested that structures should be designed for non-stationary wind loads, which may 

vary from 20% to 70% more than the mean wind pressure (Chang, 1966). Tornado-

induced wind loads applied on a tall building was studied with an analytical model of 

tornado (Wen, 1975). In this model, the velocity profiles of three components (tangential, 

radial, and vertical) were defined as a function of radial distance within and above the 

boundary layer of the tornado. It was found that very large inertial forces in the tangential 

and radial directions were produced by the tornadic winds, which indicated the velocity 

change in the tornado vortex boundary layer and the large pressure gradient. It was 

concluded that the inertial forces should be considered in structural analysis. Otherwise 

the wind-induced structural responses would be underestimated. Transient wind loads on 

a cubic building under a translating tornado was simulated in a laboratory simulator 

(Sengupta et al., 2008). In their study, tornadoes with two different tornado vortex radii 

and two different tornado translation speeds were simulated. Measured transient wind 

loads were compared to the stationary case where the tornado vortex does not translate. It 

was found that the wind loads on the cubic building induced by tornadoes of F2 or higher 

intensity are 50% more than that induced by the associated stationary case. In addition, 
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wind loads on a cubic building induced by a translating tornado were investigated 

through CFD simulations (Selvam and Millett, 2005). Turbulence was modeled using 

large eddy simulation. From the numerical results, 45% more forces on the walls and 

100% more forces on the roof were caused by the translating tornado than straight-line 

winds. The magnitude and direction of these forces change quickly when the tornado core 

was in the vicinity of the building. Strasser et al. (2016) proposed the concept of dynamic 

load factor to assess the dynamic amplification of tornadic wind loads on civil structures. 

In that study, two-dimensional loading of a rigid, circular cylinder under an impinging 

vortex was simulated, and the tangential velocity profile was compared with the 

tangential velocity profiles extracted from full-scale radar-measured data. It was 

concluded that potential dynamic load amplification should be considered for flexible 

structures, since they may experience significant dynamic loading from tornadic wind 

loads. 

Based on the understanding of the non-stationary characteristics of the tornadic 

wind loads, attempts have been made to investigate dynamic responses on civil structures 

via structural analyses (Dutta et al., 2002; Ahmad et al., 2014). Planar frame buildings 

and a pitched portal shed were analyzed under an empirical tornado model. In this 

empirical model, both radial and vertical velocities were approximated as half of 

tangential velocity. The finite element (FE) analyses showed that dynamic displacement 

responses caused by tornadic winds were fifty times the response under the basic wind 

speed (straight-line winds) as per IS code (IS875 Part 3, 1987); and stiffer or smaller 

buildings may be affected mostly by a faster tornado, while more flexible or taller ones 

may be affected mostly by a slower tornado.  
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Previous research either investigated the wind characteristics of tornadic wind 

fields or the induced wind effects by CFD simulations, or investigated structural 

responses using FE analyses. Seldom research has combined these two together. Dr. 

Elawady and Dr. El Damatty have applied similar approach to investigate tornado and 

downburst effects on lattice towers and transmission lines, considering potential positions 

and movements of the downbursts to find the worst loading situation (Elawady et al., 

2017; El Damatty and Elawady, 2018; Hamada and El Damatty, 2016). However, they 

only used CFD simulations to model the tornadoes and downbursts, and loading on civil 

structures was determined by code neglecting transient aerodynamics. To capture real 

dynamic responses of civil structures, it is necessary to consider the transient 

aerodynamics of tornado-induced wind loads on the structures. Therefore, in this study, 

CFD simulations are not only used to simulate the tornadic wind field, but also used to 

determine tornado-induced wind loads on civil structures by including the civil structure 

in the computational domain of the CFD simulation. FE analyses are then combined with 

CFD simulations for the first time to systematically investigate the tornado-induced 

dynamic impact on civil structures. 

The remainder of this paper is organized as follows. First, a long-span civil 

structure of interest, a dome structure, will be described. Second, tornadoes with different 

intensities translating over the dome structure will be modeled using CFD simulations 

based on a real-world tornado (the Spencer, SD tornado of May 30, 1998), and then the 

tornado-induced wind pressure on the dome structure will be determined. Third, dynamic 

characteristics (natural frequencies and mode shapes) of the dome structure itself will be 

studied through a modal analysis. Finally, the obtained tornado-induced wind pressure 
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from CFD simulations will be mapped onto the finite element model (FEM) of the dome 

structure, and dynamic time-history analyses of the structure will be conducted to 

investigate its dynamic responses. 

 

2. DOME STRUCTURE  

 

Due to their large column-free space and efficient use of materials, long-span 

dome structures have been widely used for public assembly venues, such as sport 

stadiums, auditoriums and shopping malls. Since this type of structure is often crowded 

by hundreds or even thousands of people, their collapse or failure would be devastating. 

This type of structure is potentially subjected to significant wind loads because of large 

surface areas. The wind loads on dome structures induced by tornadoes have not been 

sufficiently explored, except the study conducted by Yousef and Selvam (2016a, 2016b, 

2017) and Yousef et al. (2018), which investigated the tornadic wind loads induced by 

different sizes of tornadoes on the same structure and the influence of the ratio of 

tangential velocity to translating speed on wind force coefficients, and the previous 

studies by the present authors (Zhao et al., 2016a; Zhao et al., 2016b; Zu et al., 2016). 

Thus far, no structural responses of dome structures induced by tornadoes have been 

studied. To systematically investigate the dynamic structural responses of dome 

structures under tornadic winds, a Kiewitt-type K6-7 single-layer spherical dome 

structure (Figure 1) is considered here.  

This dome structure spans 75 m (L) and rises 25 m (ƒ). It consists of 462 tubular 

beam members, which form a frame, and 294 shells, which cover the frame. The diameter 
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and thickness of the radial and latitudinal beam members are 152 mm and 5 mm, 

respectively; and those of the diagonal beam members are 140 mm and 4.5 mm, 

respectively. The thickness of all shells is 15 mm. All beam members and shells are 

assumed to be made of A36 steel. The density of the A36 steel is 7850 kg/m , and its 

Young’s modulus and Poisson’s ratio are 200 GPa and 0.3, respectively. The structure is 

assumed to be fixed at the bottom joints with restraints in all three translational degrees 

of freedom (DOFs) and all three rotational DOFs.  

 

 

Figure 1. Spherical dome structure. 

 

3. SIMULATION OF TORNADIC WIND FIELD 

3.1. TORNADOES SIMULATED IN THIS STUDY 

Simulation of the tornadic wind field is based on a real-world F4 tornado, the 

Spencer, SD tornado of May 30, 1998 (hereafter “Spencer Tornado”). Kosiba and 

Wurman (2010) reported that the maximum tangential velocity of Spencer Tornado 

ranges from 60 to 80 m/s, and the core radius fluctuates around 200 m during their 8-min 

observation period at the elevation of 40 m. The swirl ratio of this tornado exceeds 1. 

R=37.5 m 

f=25 m 
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This tornado will be taken as the baseline and parameters will be adjusted to generate 

tornadoes with different intensities. The CFD simulation software, ANSYS FLUENT, is 

employed to simulate the tornadic wind fields. 

3.2. COMPUTATIONAL DOMAIN 

To simulate the swirling wind flow, a computational domain consisting of two 

cylinders is applied, as shown in Figure 2. The bottom cylinder is 100 m high and 

resembles the inflow zone. The top cylinder is 1,000 m high and resembles the 

convection zone. Thus, the total height of the computational domain is 1,100 m. The radii 

of the two cylinders are both 800 m. An inflow with tangential and radial velocity 

components enters the bottom cylindrical domain and exits from the circle on the top 

surface of the top cylinder. The radius of the top outflow circle is 340 m. The boundary 

condition on the inflow surface is velocity-inlet and that on the outflow circle is pressure-

outlet. The rest top and side boundary surfaces are defined as symmetry. The bottom 

boundary surface is a no-slip wall when a stationary tornado is simulated and a moving 

wall when a translating tornado is simulated.  

 

 
Figure 2. Computational domain of the simulated tornadic wind field (unit: m). 
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3.3. BOUNDARY CONDITION AT VELOCITY INLET 

The radar-measured data only at a location 800 m away from the tornado center 

through the height of 320 m are used to do data regression to get the tangential velocity 

profile and radial velocity profile at the velocity inlet.  The obtained regression equations 

of tangential velocity 𝑉  and radial velocity 𝑉  along the height are expressed as 

𝑉 20.61
𝑧

20
.  (1) 

𝑉
31.14

𝑧
20

.
,                             𝑧 20 m

45.14
𝑧

20

.
76.48,               𝑧 20 m

 (2) 

where 𝑧 is the height above the ground. 

The velocity profiles in Equations (1) and (2) are graphed in Figure 3, together 

with full-scale radar data. It is seen that the radar-measured data are slightly scattered 

around the regression lines, indicating that the regression lines fit the radar-measured data 

very well. Therefore, the obtained velocity profiles are used as the input at the velocity 

inlet. 

 

    

                                          (a)                                                          (b) 

Figure 3. Comparison between regression equation and radar-measured data of velocity 
profiles: (a) tangential; (b) radial. 
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3.4. SIMULATED CASES 

First, the case where the dome structure is not present is simulated to verify the 

applied CFD simulation strategies, which is described in Section 4. Then, the dome 

structure is included in the computational domain to quantify tornadic wind pressure on 

the dome surface. The obtained wind effects on the dome structure are compared to 

previous findings (although it is rare), which is described in Section 6. The velocity 

profiles expressed in Equations (1) and (2) represent EF3 tornado based on Enhanced 

Fujita scale (McDonald et al., 2010). In order to simulate tornadoes with different 

intensities, the velocity profiles are scaled by 150%, 130%, and 87% to simulate EF5, 

EF4 and EF2 tornadoes, respectively. 

3.5. SIMULATION OF TORNADO TRANSLATION 

Since a real-world tornado always translates, the whole process of a tornado 

translating over civil structures is simulated. To simulate the translation of a tornado, 

rather than having the tornado move, the dome structure is made to move in the opposite 

direction to the direction of tornado translating. As shown in Figure 4, the dome structure 

is originally located at 360 m on the x axis (t = 0 s). It translates along the negative X 

direction at a speed of 15 m/s, which is the translating speed of Spencer Tornado based 

on the field measurement data (Wurman and Alexander, 2005). When t = 24 s, it reaches 

the tornado center. The calculation terminates when the dome structure moves to -360 m 

on the x axis (t = 48 s). In the CFD simulation, the dynamic mesh technique is applied to 

simulate that the dome structure travels inside the computational domain. Besides, to 

simulate the relative motion between the ground plane and the tornado, a moving wall 
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boundary condition is applied on the ground plane with the speed of 15 m/s in the 

negative X direction. 

 

 

Figure 4. Schematic diagram of the simulation of tornado translation (unit: m). 

3.6. MESH STRATEGY AND DYNAMIC MESH ZONES 

Pointwise is chosen for preprocessing of the geometric model of the 

computational domain. Hybrid meshes including hexahedra, tetrahedra, pyramids and 

prisms are generated. The grids of the x-z plane where y=0 is shown in Figure 5(a). For 

the near-ground wind field (the bottom cylinder in Figure 5(a)), fine mesh is applied, i.e., 

the longest edge of all cells is 9 m. For higher levels (the top cylinder in Figure 5(a)), 

coarse mesh is applied, i.e., the longest edge of all cells is 34 m. By combining fine and 

coarse mesh, accurate solution and computational efficiency can be achieved at the same 

time. Similar strategy has been employed by Gallus et al. (2006).  

Inflation grid sizing is applied to the ground surface and the dome surface. Since 

the variations in the wind profile near the ground (boundary layer) need to be accurately 

captured, a higher number of cells in the direction normal to the wall are necessary. 
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Therefore, cells with high aspect ratios are stacked in the direction normal to the wall, 

that is, the inflation technique. More details about the mesh arrangement are described as 

below.  

The cuboid that contains the dome structure is meshed into unstructured 

tetrahedral grids, as shown in Figure 5(b). The remaining zones are meshed into 

structured hexahedral grids. Regarding the inflation grid sizing on the ground and dome 

surfaces, the height of the first layer is 0.002 m (the aspect ratio is 9/0.002=4,500) and the 

corresponding Y+ value is 250 using the flat-plate boundary layer theory. The growth 

rate is 1.2 and a total of 36 layers is used. A plan view of the meshed top cylinder is 

shown in Figure 5(c). To create structured grids for the top cylinder, a smooth structured 

O-H topology (Pointwise, 2016) with the floating boundary condition in the grid solver is 

used. Figure 5(d) shows the layout of the pressure outlet (inner circle) in order to use O-H 

topology. Figure 5(e) presents a plan view of the meshed bottom cylinder at the elevation 

of 25 m. The truncated semicircle is split into four regions in order to create structured 

grids (Figure 5(f)). It is worth mentioning that the split point should be outside the path of 

the tornado translation in order to avoid potential numerical errors caused by the dynamic 

mesh. 

During the translating motion, the cuboid that contains the dome structure moves 

as a rigid body at the speed of 15 m/s in the negative X direction. The top cylinder is 

defined as stationary. Also, the two truncated semi-cylinders of the bottom cylinder are 

defined as stationary. The remaining parts of the bottom cylinder excluding the cuboid 

that contains the dome are defined as dynamic mesh zones (Figure 5(f)), in which the 

layering technique is applied.  
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(a) (b) 

  

(c) (d) 

   

(e) (f) 

Figure 5. Hybrid meshes of the computational domain: (a) x-z plane where y=0; (b) 
cuboid that contains the dome structure; (c) plan view of the meshed top cylinder; (d) 

layout of the top cylinder before mesh; (e) plan view of the meshed bottom cylinder; (f) 
layout of the bottom cylinder before mesh. 
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3.7. SIMULATION SETUP 

The large eddy simulation (LES) with a Smagorinsky-Lilly subgrid-scale model is 

adopted for turbulence modeling, and thus filtered time-dependent Navier-Stokes 

equations are the governing equations of the tornadic wind flow. LES is a time-dependent 

approach, and it can provide detailed information about the wind flow. The governing 

equations are solved by the segregated implicit solver with the SIMPLEC (Semi-Implicit 

Method for Pressure Linked Equation-Consistent) method.  

The simulation is first run for 300 s for the stationary case when the dome 

structure is not moving; and then it is run for another 48 s for the translating case when 

the dome structure is moving. The time step of the simulation is 0.01 s. During the 

translating motion, the dynamic mesh is turned on. The double-precision solver is chosen 

due to the following three reasons: 1) the aspect ratio of the cell is large, especially in the 

inflation layers; 2) pressure level varies greatly in certain locations, such as the large 

atmospheric pressure drop at the tornado center; 3) the adoption of the dynamic mesh 

achieving the tornado translation.  

The main computational resource is a research platform with 2 processors 

(Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz, 18 cores per processor) and 192 GB 

RAM. The high performance computing, the Forge that is operated by the authors’ 

university, is used as a secondary computational resource. It includes 4 compute nodes 

with each node containing dual 16 core Haswell CPUs with 256 GB RAM. In general, 

10-15 days are needed to finish one simulation, depending on different intensities of the 

tornado and the number of parallel simulations running on the same machine at the same 

time. 
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4. VERIFICATION OF THE APPLIED CFD SIMULATION STRATEGIES FOR 
EF3 TORNADO 

 

In order to verify the applied CFD simulation strategies, the numerical model 

when the dome structure is not present is first calculated. Since the velocity input for the 

simulated EF3 tornado is directly obtained from Spencer Tornado, only numerical results 

from this tornado intensity are compared to radar-measured data during Spencer Tornado. 

Figure 6 presents 𝑉  profile of the simulated cases (EF2-EF5 tornadoes) as a 

function of radial distance at the elevation of 80 m. The radial distance of 0 m indicates 

the tornado center. The core radius is defined as the location where the maximum 𝑉  is 

reached. From Figure 6, the core radii of the simulated EF2-EF5 tornadoes are 223m, 232 

m, 244 m, and 218 m, respectively, and the corresponding maximum 𝑉  are 59 m/s, 64 

m/s, 82 m/s, and 104 m/s, respectively. The 𝑉  profile at the elevation of 80 m extracted 

from the Radar-measured data (Gallus et al., 2004) is also included in Figure 6 for 

comparison. The simulated EF3 tornado is in general agreement with the radar-measured 

data with the error of 5.5% for core radius and of 1.3% for tangential velocity.  

 

 
Figure 6. Comparison of numerically-simulated and radar-measured tangential velocity 

profile as a function of radial distance. 
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The axial, radial, and tangential velocity profiles as a function of height at the 

radius of 300 m are shown in Figure 7. In general, axial, radial, and tangential velocities 

increase with the increase of tornado intensity, and tangential velocity is the largest in 

magnitude. From Figure 7(a), the maximum axial velocity is located at 200-250 m. 

Above 500 m, axial velocity is close to zero for all cases. In Figure 7(b), negative radial 

velocity represents inflow. The strongest inflow is located near the ground, which is 

consistent with the numerical studies by Lewellen et al. (1997) and the experimental 

studies by Refan and Hangan (2018), as well as radar-measured data by Gallus et al. 

(2004). With the increase of the height, the inflow weakens and the flow direction 

changes to an outflow. For the elevations above 450m, the flow changes back to an 

inflow and the magnitude is much smaller. For EF3 tornado, the depth of the inflow layer 

is around 120 m, which is very close to the radar-measured data. This demonstrates the 

appropriate setup for the height of velocity inlet of the tornadic computational domain. 

From Figure 7(c), the maximum tangential velocity is located between 100 m and 150 m 

for all simulated tornadoes.  

 

 

                         (a)                                           (b)                                            (c) 

Figure 7. Numerically-simulated velocity profile as a function of height: (a) axial; (b) 
radial; (c) tangential. 
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Figure 8 shows the time variations for the axial, radial, and tangential velocity 

components at a point close to core radius at the elevation of 25m during the last 30 s. 

The figure exhibits significant fluctuations of the velocity components, demonstrating the 

rapid change of wind speed of tornadoes. Standard deviations are used to quantify the 

amount of variations of these sets of data values, which are 4.7, 10.2, and 7.7 for axial, 

radial, and tangential velocity component, respectively. The variation in radial velocity 

component is the largest. 

 

 

                        (a)                                            (b)                                           (c) 

Figure 8. Time history of the velocity components at a point in space: (a) axial; (b) radial; 
(c) tangential. 

 

The distribution of the static pressure along radial distance at the elevation of 80 

m is shown in Figure 9. A significant pressure drop is found at the tornado core for all 

cases. To be specific, pressure drop is 3.5 kPa, 5.4 kPa, 9.5 kPa, and 10.7 kPa for EF2-

EF5 tornadoes, respectively, if the pressure at the outer wall is taken as the reference 

pressure.  

The radial Reynolds number (R ) and the swirl ratio (S) control the structure of 

the tornadic flow (Church et al., 1979). Radial Reynolds number is essentially a measure 
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of the relative amount of the flow updraft strength to flow viscosity, reflecting the degree 

of flow turbulence, and it is defined as the ratio of volume flow rate to viscosity 

R
𝑄

2𝜋𝜈
𝑄

2𝜋𝜈ℎ
 (3) 

where 𝑄  represents the volume flow rate per unit axial length of inflow height and 

𝑄represents the total volume flow rate through the system. Herein, 𝑄 1.15 10  m /

𝑠; 𝜈 denotes kinematic viscosity (1.53 10  m /𝑠), and ℎ denotes the height of the 

velocity inlet (100 m). R  of the EF3 tornado simulated here is 1.2 10 , which falls 

into the estimated range of actual tornado cyclone flows, 10 -10  (Church et al., 1979). 

 

 
Figure 9. Static pressure profile as a function of radial distance. 

 

Swirl ratio (S) is essentially a measure of the relative amount of angular to radial 

momentum in the vortex, reflecting the amount of rotational energy in the vortex relative 

to the convective energy in the vortex (Haan et al., 2008). S at a certain height is defined 

as 

S
𝜋𝑟 𝑉 ,

𝑄
 (4) 
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where 𝑟  is the core radius at that specific height, and 𝑉 ,  is the corresponding 

maximum tangential velocity (the tangential velocity at the core radius) at that height.  S 

of the EF3 tornado at seven representative heights are presented in Figure 10. S is larger 

than 1 from the dome apex (25 m) to 200 m, which is consistent with the radar 

observation that the S of Spencer Tornado exceeds 1 (Kosiba and Wurman, 2010).  

 

    
Figure 10. Swirl ratio at representative heights for EF3 tornado. 

 

5. MODAL ANALYSIS RESULTS 

 

Besides external dynamic loads, the dynamic responses of a structure also depend 

on its own dynamic characteristics, such as natural frequencies and mode shapes as well 

as damping. Therefore, a modal analysis is conducted to characterize the dynamic 

properties of the dome structure.  

5.1. FINITE ELEMENT MODEL 

A FEM of the dome structure is developed in ANSYS. The dimensions and the 

material properties of the dome structure have been specified in Section 2 and Figure 1. 

The developed FEM is shown in Figure 11. Beam188, which is a two-node linear beam 
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element, is used to model the beam members, and Shell181, which is a linear triangle or 

quadrilateral element, is used to model shells. Each edge of the shell is connected to the 

adjacent beam member by rigid connections along the length. In general, each beam 

member and the edge of shell is discretized into 10 elements, and in total, 28,139 nodes 

and 28,336 elements are generated. The bottom joints of the dome structure are assumed 

to be fixed. In this analysis, elastic material model is used for the steel, and the standard 

earth gravity and the external loads (tornadic wind pressure) are omitted. 

 

 
Figure 11. FEM of the dome structure. 

5.2. NATURAL FREQUENCIES AND MODE SHAPES 

Ten representative natural frequencies of the dome structure are listed in Table 1 

and four representative mode shapes are presented in Figure 12.  From Table 1, it can be 

seen that natural frequencies of this type of structure are very close to one another. The 

first natural frequency is 3.9485 Hz, and the deflection in the associated mode shape is 

confined to a 1/8 portion of the entire dome and it is out of the membrane plane. By 

comparing the obtained mode shapes, the higher the mode, the more the area on the 

surface is excited. In general, these mode shapes are local, as they are out of the 
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membrane plane and thus the stiffness of the shells (instead of the beam frame) 

dominates the modal analysis, and the shells are not good at transferring loading to a far 

location.  

 

Table 1. Natural frequencies of the dome structure (with the beam frame and shell). 

Mode 
No. 

1 2 3 4 5 6 7 8 9 100 

Natural 
frequency 

(Hz) 
3.9485 3.9488 3.9510 3.9522 3.9550 3.9557 4.0875 4.0898 4.0921 5.4463 

 

 

                                       (a)                                                                   (b) 

 

                                        (c)                                                                     (d)  

Figure 12. Representative mode shapes of the dome structure with the beam frame and 
shell: (a) 1st mode; (b) 7th mode; (c) 9th mode; (d) 100th mode. 
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6. WIND EFFECTS INDUCED BY TORNADO 

 

To investigate the dynamic responses of the dome structure induced by tornadoes, 

the dome structure is placed in the computational domain (the tornadic wind field) to 

obtain tornado-induced wind pressure on the dome surface at each time instant. The dome 

structure in the tornadic wind field is assumed to be rigid, i.e., not deformable. In 

addition, aerodynamic damping is not considered since the dome structure is assumed to 

be rigid so that aerodynamic instability or negative aerodynamic damping is less likely to 

occur. Then the obtained wind pressure is imported onto the FEM of the dome structure 

through the transient load mapping technique (ANSYS, 2013), and a nonlinear transient 

FE analysis is conducted to obtain structural responses at each time instant. All geometric 

(large strain/deformation) and material nonlinearity are considered. Material nonlinearity 

is modeled by adopting a bilinear elastic-plastic constitutive model for the steel, with a 

yield strength of 250 MPa and post-yield stiffness ratio of 0.03 (tangent modulus of 6 

GPa). Rayleigh damping is added to the FEM of the dome structure. The stiffness 

coefficient α is 0.000586 and the mass coefficient β is 0.671. This section will present the 

wind direction at the dome apex and the wind pressure on dome surface during the 

tornado passes the dome structure. Section 7 will present the structural responses in terms 

of displacement responses, acceleration responses and stress during the whole process.  

6.1. WIND DIRECTION OF THE FLOW FIELD 

Figure 13 displays the streamline of the resultant wind velocity when the dome 

structure is located on the right side of the tornado center in EF3 tornado. The wind flow 
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is swirling and rotating counterclockwise. At this moment, the wind blows towards the 

southeast corner of the dome structure, which is the windward direction. Similarly, when 

the dome structure moves to the left side of the tornado center, its northwest corner is the 

windward direction. The above information will explain where the positive pressure 

occurs on the dome surface. Figure 13 shows that wind direction in tornadic wind field 

changes very quickly. 

 

 
Figure 13. Streamline of the resultant wind velocity (for EF 3 tornado). 

6.2. WIND PRESSURE ON DOME SURFACE 

The wind pressure induced on the dome surface (hereafter “surface pressure”) at 

six representative time instants during the last 48 s (while the dome moves from the right 

side to the left side of tornado center, see Figure 4) are presented in Figure 14. In general, 

all surface pressure is positive when the dome is far away from tornado center, while 

negative surface pressure is gradually developed when the dome approaches the tornado 

center. From Figures 14(a) and (b), when the dome is on the right side of the tornado 

center, the wind blows towards the southeast corner of the dome, at which the surface 

pressure is positive. As shown in Figure 14(c), when the dome moves to core radius (165 

Windward 

Windward 
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m is the core radius at the height of dome apex, 25 m), the wind blows from due south 

and the surface pressure near the south edge of the dome is positive. From Figure 14(d), 

when the dome center is exactly at the tornado center, relatively uniform negative 

pressure is distributed across the whole surface. The negative pressure is contributed 

from the large atmospheric pressure drop within the tornado core (see Figure 9). When 

the dome moves to the left side of the tornado center (Figures 14(e) and (f)), large 

positive pressure is found at the northwest corner of the dome, which is the windward 

direction. It is also observed that the maximum positive pressure appears on the part of 

the dome structure that is closer to the ground (e.g., red color in Figures 14(a), (b) and 

(f)) and that the maximum negative pressure in magnitude appears approximately at the 

top of the dome structure (e.g., blue color in Figures 14(c) and (f)). This is consistent with 

previous findings reported by Yousef et al. (2018). The overall forces and moments 

acting on the dome structure are estimated by integrating the surface pressure and 

compared to previous numerical and experimental data. They are not presented here due 

to the length of the content. More details can be found in Li et al. (2019). 

During the dome moves, the time histories of maximum and minimum surface 

pressure for EF2-EF5 tornadoes are presented in Figure 15. It should be noted that the 

maximum/minimum surface pressure at different time instants may not be associated 

with the same location of the dome. In Figure 15, the first dashed line is associated with 

the time instant when the dome center moves to the core radius of the tornado, 

approaching the tornado; the second dashed line is for the time instant when the dome 

center moves to the tornado center; and the third dashed line is for the time instant when 

the dome center moves to the core radius, leaving the tornado. From Figure 15(a), the 
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maximum surface pressure experiences a large drop within the core. This is caused by the 

large atmospheric pressure drop inside the tornado core (see Figure 9). The maximum 

surface pressure reaches its valley when the dome center is at the tornado center. The 

lowest values of the maximum surface pressure of EF2 and EF5 tornadoes are around 0, 

but those of EF3 and EF4 tornadoes are below 0. This indicates that the dome structure 

subjects to negative pressure when it is at the tornado center, which is consistent with the 

contour plot in Figure 14(d). Such low negative pressure causes large suction force on the 

dome. In respect to the minimum surface pressure, the trend is similar for EF2-3 

tornadoes and their magnitudes remain relatively constant within core radius. However, 

for EF4-5 tornadoes, sudden drops happen at core radius and close to tornado center.  

 

 
                           (a)                                             (b)                                         (c)  

 
                         (d)                                             (e)                                            (f) 

Figure 14. Surface pressure for EF3 tornado: (a) 4 s (300 m away from tornado center); 
(b) 8.6 s (231 m away from tornado center); (c) 13 s (165 m away from tornado center); 
(d) 24 s (0 m away from tornado center); (e) 29.5 s (-82.5 m away from tornado center); 

(f) 35 s (-165 m away from tornado center). 
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                                          (a)                                                           (b) 

Figure 15. Time history of tornado-induced surface pressure: (a) Maximum; (b) 
Minimum. 

 

                

                                    (a)                                                                     (b)     

         

                                 (c)                                                                      (d) 

Figure 16. Surface pressure at the dome apex: (a) Time history; (b) Fourier transform; (c) 
Short-time Fourier transform; (d) Wavelet transform. 
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To characterize the dynamic characteristics of the wind pressure on the dome 

structure, the time history of surface pressure at a representative location of the dome (the 

dome apex) is extracted from EF3 tornado, and the Fourier transform, the short-time 

Fourier transform (STFT), and wavelet transform of the time history are carried out, as 

shown in Figure 16. From Figure 16(a), the surface pressure is positive when the dome is 

far away from tornado center, and it then decreases and becomes negative when the dome 

approaches tornado center, which is again due to the large atmospheric pressure drop at 

tornado center (Figure 9). The wind pressure drops and reaches as low as -3.2 kPa, while 

the dome center approaches the core radius the second time, which may be attributed 

from both the large atmospheric pressure drop and the wake effect. Figure 16(b) shows 

the Fourier transform of the surface pressure time history, where three major peaks are 

found at 0.02 Hz, 0.05 Hz, and 0.07 Hz, respectively. It indicates that the main frequency 

spectrum of the surface pressure is in the range of 0-0.30 Hz, which is relatively low. To 

obtain the frequency variation over time, Figure 16(c) presents the STFT of this surface 

pressure. The selected window length is 1.6 s for optimal time-frequency representation. 

From the time-frequency scalogram, the surface pressure varies more rapidly when the 

dome center moves into the tornado core, especially around core radius, which can be 

indicated by the presence of the higher frequency components at core radius (up to 3.15 

Hz), although the magnitude of the related higher frequency components is low. The 

time-frequency scalogram is also obtained from wavelet transform and shown in Figure 

16(d). The Morlet mother wavelet is used in this analysis, and the center frequency is 1 

Hz (2π rad/s) to guarantee the best time resolution. Similar observations are found 

compared to STFT. Overall, the dominant frequency components of the surface pressure 
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are below 1 Hz over the entire time duration, which is much less than the first natural 

frequency of the dome structure (3.95 Hz). Therefore, resonant response is not expected. 

In fact, the largest deformation from the nonlinear, transient analysis is only 0.41 m, 

verifying that resonant vibration did not occur. 

 

7. TORNADO-INDUCED STRUCTURAL RESPONSES  

7.1. DISPLACEMENT RESPONSES 

For the EF3 tornado, the deformation profiles of the entire structure at the six 

representative time instants are illustrated in Figure 17. From Figure 17(a), the dome 

structure deforms inward symmetrically, as the surface pressure is all positive and 

relatively uniform when the dome structure is far away from the tornado center (see 

Figure 14(a)). The maximum deformation is 0.123 m at this time instant. Figure 17(b) 

presents the deformation when the dome structure moves closer to the tornado center. 

Although negative surface pressure is developed, it only covers a small area, and thus the 

dome still deforms inward. The maximum deformation reduces to 0.11 m. As shown in 

Figure 17(c), when the dome center passes the core radius the first time, the deformation 

becomes smaller, since the change in pressure direction from being positive to negative 

causes some deformation to cancel out. From Figure 17(d), when the dome center is at 

the tornado center, outward deformation occurs on the dome surface due to the negative 

pressure caused by the atmospheric pressure drop (see Figure 9). However, the 

deformation is small (0.0127m), which is because the displacement caused by positive 

surface pressure at the previous time instants is balanced out by the displacement caused 



 

 

122

by the negative pressure at this time instant. That is to say, even though the atmospheric 

pressure drop is present and large negative pressure is developed when the dome center 

moves to the tornado center, the displacement on the structure at this stage does not reach 

its worst scenario. From Figure 17(e), when the dome center passes half of the core 

radius the second time, most of the dome surface still deforms outward, since negative 

surface pressure still remains dominant. When the dome center passes the core radius the 

second time (see Figure 17(f)), the deformation profile is similar to Figure 17(c) when it 

passes the core radius the first time. 

 

    

                            (a)                                            (b)                                          (c) 

 

                            (d)                                           (e)                                            (f)  

Figure 17. Deformation profile of the entire structure for EF3 tornado: (a) 4 s (300 m 
away from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 13 s (165 m 
away from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.5 s (-82.5 m 

away from tornado center); (f) 35 s (-165 m away from tornado center). Note: larger scale 
is used to display the deformation of (d) and (e) other than true scale for better 
representation, while the range of the color bar is kept the same for all figures. 
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Figure 18 presents the deformation profile of the beam frame for EF3 tornado, 

and they experience almost the same maximum displacement as the entire structure. This 

is because surface pressure is transferred to the beam frame via shells, and the 

deformation of the shells leads to that of the beam frame, resulting in the compatibility of 

deformation.  

 

 
                            (a)                                             (b)                                          (c)  

 
                            (d)                                             (e)                                          (f) 

Figure 18. Deformation profile of the beam frame for EF3 tornado: (a) 4 s (300 m away 
from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 13 s (165 m away 
from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.5 s (-82.5 m away 
from tornado center); (f) 35 s (-165 m away from tornado center). Note: larger scale is 

used to display the deformation of (d) and (e) other than true scale for better 
representation, while the range of the color bar is kept the same for all figures. 

 

The time history of maximum resultant displacement obtained from the beam 

frame is presented in Figure 19. During the first four seconds, the effect of the sudden 

application of surface pressure on structural responses applies, which is outside the scope 
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of this study. Therefore, the raised cosine filtering is applied to the first four seconds of 

data to mitigate the transient effects. The general trend of the maximum resultant 

displacement agrees with the variation of the surface pressure (Figure 15), suggesting that 

local deformation may be controlled by local surface pressure. More specifically, when 

the dome structure is away from tornado center, maximum surface pressure controls 

(Figure 15(a)) since the dome structure deforms inward. Similarly, when the dome 

structure is in and around tornado core, the deformation of the dome structure is 

controlled by the minimum surface pressure (Figure 15(b)). The maximum displacement 

of EF5 tornado is 17%, 61%, and 73% higher than that of EF4, EF3, and EF2 tornadoes, 

respectively. When the dome center is around tornado center, the displacement is much 

smaller, which verifies the aforementioned statement that the previous displacement due 

to positive surface pressure is balanced out by the displacement due to negative wind 

pressure when tornado center is reached.  

 

 
Figure 19. Time history of maximum resultant displacement on the beam frame. 

 

Figure 20 presents the time histories of displacement components in three 

directions at the dome apex for the four simulated tornadoes. The same trend is observed 
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in all four cases, but the fluctuations in three displacement components under EF4 and 

EF5 tornadoes are greater. For example, standard deviations of Dz for EF4 and EF5 

tornadoes are 0.0045, and 0.0170, which are much higher than those for EF2 and EF3 

tornadoes (0.0015 and 0.0018). In general, the tornado does not induce significant 

displacements in the horizontal directions, but it induces a significant displacement in the 

vertical direction, which is consistent with the fact that the induced total force in the 

vertical direction (Fz) is much higher than the two total forces in the horizontal direction 

(Fx and Fy). In addition, from the structural perspective, the dome structure is strong in 

the plane due to the membrane stress and relatively weak out of the plane. 

 

 

                 (a)                                (b)                                (c)                                (d)          

Figure 20. Time history of displacement components in three directions at the dome apex: 
(a) EF2; (b) EF3; (c) EF4; (d) EF5. 

7.2. ACCELERATION RESPONSES 

The time histories of acceleration components in three directions at the dome apex 

under all four simulated tornadoes are presented in Figure 21. Acceleration responses 

under EF2 and EF3 tornadoes are much smaller compared to that under EF4 and EF5 

tornadoes. For EF4 and EF5 tornadoes, very large fluctuations of acceleration are found 

when the dome center is around core radius, indicating the non-stationary characteristics 
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of surface pressure. When the dome center is at the tornado center, the acceleration dies 

out, which is consistent with the change trend of displacement in Figure 19.  

 

 

                   (a)                               (b)                                (c)                              (d) 

Figure 21. Time history of acceleration components in three directions at the dome apex: 
(a) EF2; (b) EF3; (c) EF4; (d) EF5. 

 

Figure 22 presents the time histories of acceleration responses at other four 

representative locations on the dome surface, where are indicated by the red dots. If the 

locations are on the left side of the dome (Figures 22(a) and (c)), large acceleration 

responses occur when the dome is around the core radius the first time. At this moment, 

the dome is on the right side of the tornado center, and the red dot in each figure is on the 

leeward side of the dome. If the location is not only on the left side of the dome but also 

close to the dome edge (see Figure 22(c)), the acceleration becomes significant even 

earlier.  

On the contrary, when the locations are on the right side of the dome (Figures 

22(b) and (d)), large acceleration responses occur when the dome is around the core 

radius the second time. At this moment, the dome is on the right side of the tornado 

center, and the red dot in each figure is again on the leeward side of the dome. This 

suggests that the wind flow on the leeward side is more turbulent, leading to higher 

acceleration responses. 
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                   (a)                               (b)                                (c)                               (d) 

Figure 22. Time history of acceleration components in three directions at other 
representative locations: (a) EF2; (b) EF3; (c) EF4; (d) EF5. 

7.3. INDUCED STRESS ON SHELLS AND BEAM MEMBERS  

The von-Mises stress on shells under EF3 tornado are presented in Figure 23. 

Since the beam frame is much stronger than the shells, the deformation of the shells is 

firmly restricted by the beam members, resulting in stress concentration along the beam 

members. Moreover, the stress distribution agrees with the structural deformation, as 

large deformation is normally induced by large stress before yielding. 

The time histories of maximum von-Mises stresses on the shells under all 

simulated tornadoes are presented in Figure 24. No yielding occurs on shells under EF2-

EF4 tornadoes. Moreover, a similar trend of their stress variation is observed, i.e. stress 

decreases when the dome center is close to the core radius the first time, remains stable 

around tornado center, and increases as the dome center moves further away from 

tornado center. This trend is consistent with the time history of maximum resultant 

displacement in Figure 19, implying that large deformation is caused by large stress. 

However, for EF5 tornado, the shell yields at the very beginning due to the abrupt 

application of surface pressure, but it then returns to the elastic state. When the dome 

passes core radius the first time, yielding happens again. When the dome is around 

tornado center, the stress decreases to 225 MPa due to the fact that the previous positive 
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pressure cancels out some of the developed negative pressure. Then, the stress increases 

again and vibrates around the yielding point (250 MPa). The second yielding (around the 

core radius the first time) of the shells under the EF5 tornado justifies the fluctuations of 

the acceleration in Figure 22(d) between 10 s to 20 s, since the stiffness of the structure 

becomes smaller after yielding occurs. 

 

 

                           (a)                                            (b)                                          (c) 

 

                           (d)                                             (e)                                           (f) 

Figure 23. Contours of von-Mises stress for shells for EF3 tornado: (a) 4 s (300 m away 
from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 13 s (165 m away 
from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.5 s (-82.5 m away 

from tornado center); (f) 35 s (-165 m away from tornado center). 

 

The combined stress is adopted to describe behavior of the beam members. The 

combined stress consists of the stress component (𝜎 ) due to axial load and a bending-
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stress component (𝜎 , 𝜎 , 𝜎  or 𝜎 ) due to bending moment, which are expressed in 

Equations (5)-(9). 

𝜎 𝐹 /𝐴                                                                                 (5) 

𝜎 𝑀 𝑦 /𝐼                                                                 (6) 

𝜎 𝑀 𝑦 /𝐼                                                                  (7) 

𝜎 𝑀 𝑧 /𝐼                                                                  (8) 

𝜎 𝑀 𝑧 /𝐼                                                                  (9) 

where 𝐹  is the axial load; 𝐴 is the cross-sectional area of the beam member; 𝑀  and 𝑀  

are the bending moments; 𝑦 , 𝑦 , 𝑧  and 𝑧  are the maximum and minimum y, 

z coordinates in the cross-section measured from the centroid; and 𝐼  and 𝐼  are the 

moments of inertia of the cross section. The superscripts of T and B denote the top and 

bottom of the cross-section.  

 

 

Figure 24. Time history of maximum von-Mises stress of the shells. 

 

The minimum combined stress is defined as the minimum value of the 

combination of axial-stress and bending-stress components. For instance, the minimum 
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combined stress equals 𝜎  plus the minimum value of 𝜎 , 𝜎 , 𝜎  and 𝜎 . The same 

rule applies to the maximum combined stress. The minimum and maximum combined 

stress of the beam frame are shown in Figures 25 and 26. Similar trend is observed for 

each time instant disregarding the combination types. 

 

 

                            (a)                                           (b)                                           (c) 

 

                            (d)                                           (e)                                            (f) 

Figure 25. Contours of minimum combined stress of the beam frame for EF3 tornado: (a) 
4 s (300 m away from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 13 
s (165 m away from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.5 s 

(-82.5 m away from tornado center); (f) 35 s (-165 m away from tornado center). 

 

To be more specific, the time histories of maximum and minimum values of the 

two combined stresses for the beam frame are presented in Figure 27. For EF2 and EF3 

tornadoes, the combined stress reaches the yielding point very late, i.e. after the dome 

passes the core radius the second time. For EF4 and EF5 tornadoes, the beam frame 
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yields at the very beginning that is followed by a sudden increase (or drop) when the 

dome approaches the core radius the first time and then it remains stable. 

 

 

                            (a)                                           (b)                                           (c) 

 

                            (d)                                            (e)                                           (f) 

Figure 26. Contours of maximum combined stress of the beam frame for EF3 tornado: (a) 
4 s (300 m away from tornado center); (b) 8.6 s (231 m away from tornado center); (c) 13 
s (165 m away from tornado center); (d) 24 s (0 m away from tornado center); (e) 29.5 s 

(-82.5 m away from tornado center); (f) 35 s (-165 m away from tornado center). 

 

 
Figure 27. Time history of maximum and minimum values of the two combined stresses 

of the beam frame. 
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Figure 28 shows the time history of the two combined stresses at the dome apex 

under all four simulated tornadoes, together with the time history of the von-Mises stress 

at the location very close to the dome apex. The maximum and minimum values of the 

combined stress are almost symmetric about the x-axis, and their trends are similar under 

all four simulated tornadoes, i.e., the peak values occur when the dome structure is 

around core radius. In all cases, von-Mises stress is much smaller than the magnitude of 

the two combined stresses, which implies that the shells are thick enough to transfer 

surface pressure to the beam frame. In addition, both the combined stresses on the beam 

frame and von-Mises stress on the shells for EF4 and EF5 tornadoes experience more 

prominent variation over time than those for EF2 and EF3 tornadoes. This is because the 

dome becomes flexible and vibrates more severely due to the early yielding of the beam 

frame under EF4 and EF5 tornadoes.  

 

 
                  (a)                                (b)                               (c)                                (d) 

Figure 28. Time history of combined and von-Mises stresses at dome apex: (a) EF2; (b) 
EF3; (c) EF4; (d) EF5. 

 

The time histories of the combined and von-Mises stresses at other representative 

locations are presented in Figure 29. The yellow dots on the dome structure denote the 

locations where von-Mises stresses are obtained, while the red ones denote the locations 

where combined stresses are obtained. For EF2 tornado, yielding is not observed for 
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these two specific locations. For EF3 tornado, the combined stress on the specified beam 

frame reaches the yielding stress when the dome moves further away from the core 

radius. In regard to EF4 and EF5 tornadoes, the yielding of the specified beam frame 

occurs when the dome passes core radius the first time. Among the specified locations of 

shells, only the one under EF5 tornado yields, which also contributes to severe 

fluctuations of the combined stress when the dome is at core radius the second time. 

 

 

                  (a)                                (b)                               (c)                                (d) 

Figure 29. Time history of combined and von-Mises stresses at other representative 
locations: (a) EF2; (b) EF3; (c) EF4; (d) EF5. 

 

8. CONCLUSIONS 

 

A transient time-history analysis of a long-span dome structure is performed to 

systematically investigate its dynamic responses induced by a translating tornado. The 

surface pressure caused by translating tornadoes with different intensities is determined 

by CFD simulations. The following conclusions can be drawn: 

 The tangential velocity profile extracted from the simulated tornadic wind 

field agrees well with that extracted from the radar-measured data during 
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Spencer Tornado, which demonstrates the appropriate setup for the CFD 

simulations. 

 Surface pressure becomes non-stationary when the dome center approaches 

the core radius of the tornado. At the same time, the dome structure 

experiences high vibration (high acceleration responses) on the leeward side, 

where the flow separation and/or potential flow reversal increases the non-

stationary characteristics of surface pressure. 

 The non-stationary characteristics of tornadic wind pressure is mainly caused 

by the change in wind angle of attack acting on the dome structure during the 

tornado translates.  

 When the dome approaches the tornado center, existing structural deformation 

caused by positive surface pressure is cancelled out by some of the negative 

surface pressure. Therefore, the maximum deformation of the dome structure 

becomes very small. Although large negative pressure is developed because of 

atmospheric pressure drop when the tornado center is reached, structural 

deformation does not reach the worst scenario. 

 Wind flow of EF4 and EF5 tornadoes are more turbulent than that of EF2 and 

EF3 tornadoes, and thus higher dynamic responses are experienced.  

Based on the fact that the dynamic responses induced by tornadoes are significant, 

design of large-span dome structures should consider both static and dynamic impacts of 

tornadic winds, as the acceleration-related inertial force can be significant. In the future, 

an equivalent straight-line wind field will be developed. By comparing the dynamic 
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responses induced by tornadic winds and the equivalent straight-line winds, the gust-

effect factor, G, in the pressure calculation equation will be determined. 
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IV. MODIFYING G TO CONSIDER DYNAMIC IMPACT OF TORNADOES 
FOR ACHIEVING TORNADO-RESISTANCE DESIGN 

 

Tiantian Li and Guirong Yan 

ABSTRACT 

In current wind design practice, ASCE 7-16, dynamic impact of wind loads on 

civil structures is reflected on gust-effect factor, G. For straight-line wind field, a single 

value of 0.85 is used for rigid structures. For tornadic wind field, G for rigid structures is 

simply increased from 0.85 to 0.9. In fact, a tornado is frequently translating while 

rotating, and the induced wind pressure is non-stationary, which is significantly different 

from straight-line winds. Therefore, in this study, systematic computational fluid 

dynamics simulations are conducted to investigate non-stationary characteristics of 

tornadoes and their dynamic impact on civil structures, and then, G is determined based 

on dynamic structural responses to reflect dynamic impact of tornadoes. The obtained 

results show that the numerically simulated G is about 34% higher than the G defined in 

ASCE 7-16. To achieve sufficient structural capacity against tornado-induced wind loads, 

fully reflecting dynamic impact of tornadoes, G should be increased in ASCE 7-16. 

 

1. INTRODUCTION 

 

In recent years, tornadoes have become a significant cause of injury, death, and 

property loss in the US. They cause an average of $10B of property loss each year (Lott 
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et al. 2012). In 2011 alone, the tornado-induced property loss exceeded $20B and 550 

people were killed (FEMA 2012). For example, in the May 22, 2011, Joplin, MO 

Tornado, 161 people were killed, and 83.8% fatalities (135 out of 161) were related to 

building failure; of these building failure-related fatalities, 54.8% (74 out of 135) 

occurred in residential buildings (Kuligowski et al. 2014). Therefore, it is imperative to 

develop science-based building codes in order to provide a better level of occupant 

protection from tornadoes and to minimize building damage.  

Currently, tornadoes are required to be considered only when designing such 

critical structures as nuclear facilities, storm shelters or tornado safe rooms by following 

ANS 2.3, ICC 500 and FEMA P-320/FEMA P-361, respectively (ANS 2011, ICC 2014, 

FEMA 2014, FEMA 2015). “Tornadoes have not been considered in the wind load 

provisions” for normal civil structures , based on ASCE/SEI 7-16 Minimum Design 

Loads for Buildings and Other Structures (ASCE 2016), which governs the structural 

design under wind loads. Actually, ASCE 7-16 commentary does provide information 

and design guidance for design tornadic wind loads, but they are not mandatory. 

Unfortunately, some parameters in the related equations in ASCE 7-16 to calculate 

tornadic wind pressure and wind loads are based on improper simplification or 

assumptions, due to the limited understanding of tornado-structure interaction. For 

example, when calculating the pressure on each wall/roof of a structure, the commentary 

simply applies the exterior pressure coefficient (Cp) that is used for straight-line (SL) 

winds, which ignores the asymmetry of wind effects on the two sidewalls when the 

tornado core radius passes the structure and ignores the symmetry of wind effects around 

the structure when the tornado center passes a structure; no matter what is the original 
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design exposure condition, it specifies “must apply Exposure C or D”, which ignores the 

influence of the presence of surrounding buildings on tornadic wind fields for the original 

design Exposure B; and it specifies the gust-effect factor (G) as 0.90, which does not 

reflect the fact that within such a short time, while the tornado passes a structure, the 

wind angle of attack keeps changing and the wind speed keeps changing (extremely non-

stationary).  

The study will thoroughly investigate the tornado dynamics and tornado-structure 

interaction through systematic CFD simulations, and then modify the associated 

parameters in ASCE 7-16 tornadic wind loading calculation. The focus is to investigate 

dynamic wind effects induced by the non-stationary characteristics of tornadoes and to 

reflect this on G. The proposed research will increase fundamental knowledge on the 

tornado-structure interaction and tornadic wind effects and help to properly determine 

design tornadic wind loads, which can be used for tornado-resistance design of new 

buildings and reinforcement of existing buildings. This will contribute to the NIST’s 

mission of improving building codes and standards against tornadoes and the specific 

mission of Disaster Resilience Programs (NIST 2014). The remainder of the study is 

organized as below. Current wind design practice against tornadoes will first be reviewed 

on related equations for calculating tornadic wind pressure and on the determination of G. 

Next, a solution will be proposed intending to address the current issue with G. Then, 

CFD simulations of tornadic wind field and equivalent straight-line wind field will be 

conducted and compared, in order to investigate the non-stationary characteristics of 

tornadic wind field and dynamic impact on civil structures. Based on the dynamic 

structural responses, G will be calculated to reflect the dynamic impact of tornadoes on 
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the structure and compared to the G defined in ASCE 7-16. Finally, conclusions will be 

drawn. 

 

2. REVIEW ON CURRENT WIND DESIGN PRACTICE AGAINST 
TORNADOES 

2.1. RELATED EQUATIONS FOR CALCULATING TORNADIC WIND 
PRESSURE 

According to ASCE 7-16, “tornadoes have not been considered in the wind load 

provisions”. However, the ASCE 7-16 commentary (Section C26.14) does provide 

information and design guidance to enable design for reduced property damage or 

increased occupant protection (not mandatory). This suggests that structural engineering 

researchers and practitioners have started to re-envision the design for tornadoes in codes 

and standards (Prevatt et al. 2012), which may be due to the significant fatalities and 

property loss during recent tornadoes, such as the 2011 Joplin, MO Tornado (Kuligowski 

et al. 2014), 2013 El Reno, OK tornado and 2013 Moore, OK Tornado (Kuligowski et al. 

2013). Unfortunately, some parameters in the related equations for calculating tornadic 

wind pressure and wind loads in ASCE 7-16 are based on improper simplification or 

assumptions due to the limited understanding of tornado-structure interaction, which is 

resulted from a lack of field pressure/velocity measurements and related research. This 

section will justify why the specification on G is improper.   

In Section C26.14 of the ASCE 7-16 commentary, two wind pressure 

computation methods are provided. They are the Extended Method and the Simplified 

Method. The Extended Method applies the following equations to calculate the velocity 
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pressure (q) and the wind pressure on structural surface (designated as “surface pressure” 

in the following, p)  

𝑞 0.00256𝐾 𝐾 𝐾 𝐾 𝑉                                                (1) 

𝑝 𝑞𝐺𝐶 𝑞 𝐺𝐶                                                         (2) 

where the design basic wind speed here, V, is taken either as the maximum wind speed 

for the target design EF scale or from the wind speed map of ICC 500 (ICC 2014), 

FEMA P-320 (FEMA 2014) or FEMA P-361 (FEMA 2015). Refer to ASCE 7-16 

(Chapter 26, Section 26.10; Chapter 27, Section 27.3.1) for the meaning of other 

parameters. The expressions of Equations (1) and (2) are exactly the same as those for the 

SL winds (based on the assumption of the atmospheric boundary layer) as outlined in 

Chapter 27 of ASCE 7-16. The difference lies in that some parameters in these equations 

are determined in a different way to account for tornadic wind effects.  

The Simplified Method combines the changed parameters of the Extended 

Method into one single multiplier and is intended to provide a simple method to account 

for various tornado-related design considerations. It claims “two approaches achieve the 

same results” in ASCE 7-16 Commentary C26.14.4. Therefore, current study only 

focuses on the Extended Method, more specifically, the specification on G. 

2.2. THE DETERMINATION OF GUST-EFFECT FACTOR (G) 

This section provides some background discussion of G and how it is defined in 

ASCE 7-16 to develop a better understanding of G modifier. G is used to examine 

dynamic loading effects on civil structures caused by gustiness in wind. To be specific, it 

accounts for the loading effects in the along-wind direction due to wind turbulence-



 

 

146

structure interaction and for along-wind loading effects due to dynamic amplification of 

civil structures. It does not include allowance for across-wind loading effects, vortex 

shedding, and instability due to galloping or flutter, or dynamic torsional effects.  

In ASCE 7-16, G is defined separately for SL wind field and tornadic wind field. 

For SL wind field, different G is used for rigid buildings (fundamental natural frequency 

is greater than or equal to 1 Hz) and flexible buildings. For rigid buildings, either a 

single, conservative G of 0.85 is used or a more accurate G is calculated by Equations 

(3)-(6).  

𝐺 0.925
.

.
                                                         (3) 

   𝐼 𝑐 /                                                                   (4) 

𝑄
. .

                                                            (5)  

𝐿 ℓ                                                                   (6) 

where 𝐼  is turbulence intensity at height 𝑧; 𝑧 is the equivalent height of the building or 

structure defined as 0.6h; c is 0.30, 0.20, and 0.15 for Exposure B, C, and D, respectively; 

𝑔  and 𝑔  are 3.4; Q is the background component of wind fluctuating response; B is 

horizontal dimension of building measured normal to wind direction, in m; h is mean roof 

height of a building or height of other structure, in m; 𝐿  is integral length scale of 

turbulence at height 𝑧; ℓ is 97.54 m, 152.40 m, and 198.12 m for Exposure B, C, and D, 

respectively; 𝜀 is 1/3, 1/5, and 1/8 for Exposure B, C, and D, respectively. 

The constant 0.925 is introduced to adjust the design loads in the updated code 

consistent with the former version (ASCE 1995, Zhou et al. 2002). In current study, the 
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first natural frequency of the civil structure of interest is 3.9 Hz, which is larger than 1 

Hz. Therefore, it belongs to the category of rigid buildings. Then, G modifier will be 

proposed primarily based on rigid buildings. For flexible buildings, G can be calculated 

by Equation (7). 

𝐺𝑓 0.925
1 1.7𝐼𝑧 𝑔𝑄

2 𝑄2 𝑔𝑅
2 𝑅2

1 1.7𝑔𝑣𝐼𝑧
                                               (7) 

where 𝑔  is resonant peak factor, and R is the resonant component of wind fluctuating 

response. Since G of the flexible structures is not the focus of current study, it is not 

described in detail here for the sake of brevity. More details about Equation (7) can be 

found in Section 26.11.5 of ASCE 7-16. 

For tornadic wind field, G is increased from 0.85 to 0.90 for rigid structures by 

not considering the 0.925 calibration factor. That is, G=0.85/0.925=0.92 (rounding down 

to 0.9). In fact, a tornado translates while rotating. Assume a tornado passes by a civil 

structure within 10~15 seconds. Within such a short time, the wind angle of attack keeps 

changing and the wind speed attacking the structure keeps changing, as the tangential 

velocity varies along the radius. Even without taking turbulence into account, the 

tornado-induced wind pressure is non-stationary. Previous research results have shown 

that when a tornado core passes a structure, the surface pressure fluctuates significantly 

and the vibration (acceleration) on the civil structure is severe (Li et al. 2018a). 

Therefore, the dynamic impact of tornadoes should be included in the wind load 

calculation. This justifies the significance of present study that reflect non-stationary 

characteristics of tornadoes on G. 
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3. PROPOSED SOLUTION 

 

The improper specification of G is due to limited understanding on the tornado-

structure interaction. Field velocity and pressure measurements are valuable to obtain the 

actual wind effects. However, in spite of recent measurement and reconnaissance efforts, 

the data on tornadic wind speeds and loading conditions is still limited. This is because 

tornadoes are violent, short-lived with an average warning lead time of only 10-15 

minutes and their tracks are unpredictable (Savory et al. 2001, Simmons and Sutter 

2005). Although testing in laboratory tornado simulators has brought about interesting 

results, experimental testing has its own limitations, such as high cost and reduced 

scaling. Especially, it is prohibitively expensive and time-consuming to systematically 

investigate a number of cases. One promising area to ameliorate these difficulties is CFD 

simulations (Natarajan 2011, Liu and Ishihara 2012, Selvam and Millett 2003).  

CFD offers particular advantages compared with field measurements and 

reduced-scale wind tunnel measurements by providing detailed information on the 

relevant flow variables in the whole computational domain, under well-controlled 

conditions and without similarity constraints. That is, inflow and boundary conditions, 

surface roughness, and even air density and temperature can be easily changed; and full 

intensity and scale of real-world tornadoes can be replicated by CFD simulations if 

sufficient computational resources are available. By applying CFD simulations, the real-

world tornado events and their wind effects on civil structures can be potentially 

reproduced, and the high cost associated with repeated lab experiments and adjustments 

can be potentially avoided. Indeed, CFD simulations are also time-consuming. Thanks to 
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the high-performance computational resources available at MS&T and other 

organizations (e.g., TACC), systematic case studies can be conducted in parallel with 

sufficient computational resources.  

Considering that CFD simulations still demand validation (Blocken 2014), the 

CFD models will be first validated using the available field-measured data (although it is 

rare). Then, based on the validated CFD simulation strategies, systematic CFD 

simulations will be carried out to thoroughly investigate tornado dynamics and tornado-

structure interaction and apply the research findings to modify G in the related equations 

used in ASCE 7-16 tornadic wind loading calculation. 

 

4. SIMULATION OF WIND FIELDS 

4.1. SIMULATION OF TORNADIC WIND FIELD 

4.1.1. CFD Simulation Model.  A civil structure is placed in the wind field to 

investigate induced wind effects acting on the civil structure. It is assumed to be rigid in 

the wind field, i.e., non-deformable. The civil structure of interest is a Kiewitt-type K6-7 

single-layer spherical dome structure, as shown in Figure 1. Its base diameter is 75 m and 

its height is 25 m. 462 tubular beam members form a frame for the dome structure, and 

294 shells cover the frame. 

Simulation of the tornadic wind field is based on a real-world F4 tornado, the 

Spencer, SD tornado of May 30, 1998 (hereafter “Spencer Tornado”). To simulate the 

swirling tornadic wind flow, a cylindrical computational domain is created, as shown in 

Figure 2(a). It consists of two cylinders. The bottom cylinder is 100 m high, resembling 
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the inflow zone. The top cylinder is 1,000 m high, resembling the convection zone. The 

radii of the two cylinders are both 800 m. The boundary conditions include velocity inlet, 

pressure outlet, symmetry for the top and side boundary surfaces, and no-slip wall for the 

ground and the surface of the dome structure. The radius of the pressure outlet is 340 m. 

 

 
Figure 1. Spherical dome structure. 

 

To simulate tornado translating over the dome structure, the bottom cylinder is 

divided into 5 regions, as shown in Figure 2(a). The middle three regions (3, 4, and 5) are 

served as the tornado translating path. Detailed illustration about tornado translating is 

shown in Figure 2(b). The dome structure is made to move in the opposite direction to the 

direction of tornado translating in order to establish relative movement. As shown in 

Figure 2(b), the dome structure starts at 360 m on the X axis (t = 0 s), translates along the 

negative X direction, and stops at -360 m on the X axis (t = 48 s). Its translating speed is 

15 m/s, which is the translating speed of Spencer Tornado based on the field 

measurement data (Wurman and Alexander 2005). In the CFD simulation, the dynamic 

mesh technique is applied to simulate that the dome structure travels inside the 

computational domain. Besides, to simulate the relative motion between the ground plane 
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and the tornado, the no-slip wall applied on the ground in the stationary case is changed 

into moving wall in the tornado translating case. 

 

                  
                                       (a)                                                                    (b) 
Figure 2. (a) Computational domain of the simulated tornadic wind field; (b) Schematic 

diagram of the simulation of tornado translation. 

 

Hybrid mesh is applied to the computational domain, as shown in Figure 3. 

Region 4 (Figure 2(a)) is meshed into unstructured grids, while the remaining parts are 

meshed into structured mesh. The inflation grid sizing is applied to the ground surface 

and the dome surface. The height of the first layer is 0.002 m and the corresponding Y+ 

value is 250 using flat-plate boundary layer theory. The growth rate is 1.2 and a total of 

36 layers is used. Fine mesh is applied to the bottom cylinder and coarse mesh is applied 

to the top cylinder. In total, 1,843,280 cells are generated. 

The large eddy simulation (LES) is adopted in the CFD simulation. Large scales 

of the turbulent flow field are resolved directly, and the non-resolvable small scales are 

considered by a subgrid-scale model, i.e., dynamic Smagorinsky-Lilly model. Filtered 

time-dependent Navier-Stokes equations are solved by the segregated implicit solver with 
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the SIMPLEC (Semi-Implicit Method for Pressure Linked Equation-Consistent) method. 

The simulation is first run for 300 s for the stationary case (with the dome not moving) 

and then another 48 s for the translating case (with the dome moving). The time step of 

the simulation is 0.01 s. During the translating motion, the dynamic mesh is turned on. 

More details about the CFD model can be found in Li et al. (2018a). 

 

 

Figure 3. Mesh strategies of the computational domain (tornadic wind field). 

 

4.1.2. Velocity Input at the Velocity Inlet.  An inflow with tangential and radial 

velocity components, as expressed in Equations (3)-(4), enters the velocity inlet and exits 

from the pressure outlet. They are determined based on radar-measured data at a location 

800 m away from the tornado center through the height of 320 m. More details about the 

determination of velocity input can be found in Li et al. (2018a). 

𝑉 20.61 .                                                           (3) 

𝑉
31.14

.
,                             𝑧 20 m

45.14
.

76.48,               𝑧 20 m
                            (4) 

where 𝑧 is the height above the ground. 
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Figure 4 shows the time- and space-averaged profile as a function of radial 

distance at the elevation of 25 m. Tornado center is located at the radial distance of 0 m. 

Core radius of the simulated tornado is 170 m and the corresponding maximum tangential 

velocity is 73 m/s. 

 

 

Figure 4. The averaged tangential velocity profile along radial distance at the elevation of 
25 m. 

4.2. SIMULATION OF EQUIVALENT STRAIGHT-LINE WIND FIELD 

4.2.1. CFD Simulation Model.  To simulate the equivalent SL wind field, a 

rectangular computational domain is established as shown in Figure 5. The origin of the 

coordinate system is at the center of the dome structure. The domain is 30H in streamline 

direction (X axis), 16H in spanwise direction (Y axis), and 8H in wall-normal direction 

(Z axis), where H is the height of the dome apex (25 m). The blockage rate of the dome 

structure in the wind field is 1.7% based on the projected area of the dome structure 

(1355 m2) and the cross-sectional area of the computational domain. The dome structure 

is enclosed by an inner box to generate finer mesh around it. The dimensions of the inner 
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box is 6H×6H×2H. The boundary conditions include velocity inlet, pressure outlet, no-

slip wall for ground and the dome surface, and symmetric boundary for the top and side 

walls. The center of the dome structure is 10H from the inlet plane and 20H from the 

outlet plane. 

 

 

Figure 5. Computational domain and boundary conditions of the equivalent straight-line 
wind field. 

 

Hybrid mesh is applied to the computational domain, as shown in Figure 6. 

Unstructured mesh is applied to the dome surface and the inner box. Structured mesh is 

applied to the rest parts. The same inflation grid is applied to the ground and the dome 

surface as in the tornadic wind field, that is, the thickness of the first layer is 0.002 m, the 

growth rate is 1.2, and a total of 36 layers is applied. Finer mesh is generated within the 

inner box than the remaining parts. In total, 1,685,652 cells are generated. The simulation 

setup is similar to that of the tornadic wind field. LES and dynamic Smagorinsky-Lilly 

model are used to model turbulence. The simulation is run for 75 s. The time step of the 

simulation is 0.001 s.  
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Figure 6. Mesh strategies of the computational domain (straight-line wind field). 

 

4.2.2. Velocity Input at the Velocity Inlet. Velocity input at the velocity inlet 

follows the power law, which is shown in Equation (5) (Simiu and Scanlan, 1986). 

𝑉 𝑧 𝑉 𝑧 /                                                  (5) 

where z is the vertical distance above the ground; 𝑧  denotes reference height, which is 

taken as the height of the dome apex (25 m); 𝑉 𝑧  denotes velocity at 𝑧 , which is 

taken as the time- and space-averaged maximum tangential velocity (73 m/s) at the dome 

apex in the tornadic wind field; 𝛼 is a function of roughness terrain, which is taken as 9.5 

based on ASCE 7-16 Table 26.11-1 for Exposure C (open terrain). Therefore, Equation 

(1) is expressed as:  

𝑉 73 / .                                                          (6) 

 

5. COMPARISON BETWEEN TORNADIC WINDS AND STRAIGHT-LINE 
WINDS 

5.1. WIND PRESSURE ON THE DOME SURFACE 

The peak wind pressure on the dome surface (hereafter “surface pressure”) 

induced by SL winds and tornadic winds are presented in Figure 7. For tornadic winds, a 
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large drop is observed around tornado center (time=24 s), especially for peak positive 

pressure. The large drop is caused by the atmospheric pressure drop within the tornado 

core. The peak positive pressure induced by tornadic winds is 5.53 kPa, and the peak 

negative pressure is -9.63 kPa. For SL winds, time variation of induced surface pressure 

is relatively stable. The peak positive pressure induced by SL winds is 2.55 kPa, and the 

peak negative pressure is -3.61 kPa. In summary, there are two main differences between 

surface pressure induced by tornadic winds and SL winds: 1) A large drop is observed in 

time variation of tornado-induced surface pressure, which is not found under SL winds; 

2) The magnitude of peak pressure induced by tornadic winds is higher than that induced 

by SL winds, i.e., peak positive pressure of tornadic winds is 1.17 times more than that of 

SL winds and peak negative pressure of tornadic winds is 1.67 times more than that of SL 

winds. 

 

 
                                         (a)                                                         (b) 
Figure 7. Peak surface pressure at each time instant induced by: (a) Tornadic winds; (b) 

Straight-line winds. 

 

Figures 8 and 9 present the distributions of surface pressure induced by the 

tornadic winds and SL winds at three time instants, respectively. For tornadic winds, the 
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three time instants are selected as at core radius (170 m, see Figure 4), at tornado center 

and at 360 m away from tornado center. For SL winds, the three time instants are selected 

as at 3 s, at 30 s, and at 60 s. The comparison between Figures 8 and 9 reveals that the 

wind angle of attack keeps changing and the surface pressure keeps changing for tornadic 

winds while corresponding variations are subtle for SL winds.  

To be specific, when the dome structure is at core radius (Figure 8(a)), the wind 

blows from due south and the surface pressure near the south edge of the dome is 

positive. When the dome moves to the left side of the tornado center (Figures 8(c)), the 

windward direction changes to the northwest corner of the dome, and thus large positive 

pressure is found at that location. On the other hand, for SL winds, the general trend of 

the surface pressure distribution is unchanged, that is, the wind always blows from due 

west, and positive pressure is generated near the west edge of the dome and negative 

pressure around the dome apex. The locations of peak positive and negative pressure are 

almost the same for the three time instants. 

 

 

                          (a)                                            (b)                                          (c) 

Figure 8. Wind pressure on the dome surface induced by tornadic winds: (a) At core 
radius; (b) At tornado center; (c) At 360 m away from tornado center. 



 

 

158

 

                          (a)                                           (b)                                            (c) 

Figure 9. Wind pressure on the dome surface induced by straight-line winds: (a) At 3 s; 
(b) At 30 s; (c) At 60 s. 

 

To identify the fluctuation patterns, time histories of surface pressure at three 

points are presented in Figure 10 for tornadic winds and in Figure 11 for SL winds. The 

red dots represent the locations of the three points. The time variations of the three points 

under tornadic winds (Figure 10) generally follow the same tendency, experiencing a 

large drop around tornado center. Such tendency is consistent with the time variation of 

peak surface pressure in Figure 7(a). The magtigude of pressure variation for the three 

points is similar. 

For SL winds (Figure 11), the time variations of the three points are more steady. 

The magnitude of pressure variation for point 1 (close to dome edge) is much larger than 

that for points 2 and 3. It indicates that the airflow on the windward side is more turbulent 

than that around the dome apex. This is because the airflow breaks into two regions at the 

stagnation point. At the corner in front of the dome, flow reversal or vortices occurs. 

5.2. DYNAMIC RESPONSES OF THE DOME STRUCTURE 

Time histories of surface pressure induced by tornadic and SL winds obtained 

from CFD simulations are imported onto the finite element model (FEM) of the dome 
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structure in Computational Structural Dynamics (CSD) simulations, determining dynamic 

structural responses. The FEM of the dome structure is shown in Figure 12. The beam 

members are modeled by Beam 188 and the shells are modeled by Shell 181. The bottom 

joints of the dome structure are assumed to be fixed. The first natural frequency of the 

dome structure is 3.9 Hz based on the model analysis. More details about the setup of the 

FEM and modal analysis can be found in Li et al. (2018a). 

 

 
                        (a)                                            (b)                                           (c) 
Figure 10. Time history of surface pressure induced by tornadic winds: (a) At point 1; (b) 

At point 2; (c) At point 3. 

 

 
                        (a)                                            (b)                                           (c) 

Figure 11. Time history of surface pressure induced by SL winds: (a) At point 1; (b) At 
point 2; (c) At point 3. 

 

Figure 13 presents the maximum displacement of the dome structure at each time 

instant induced by tornadic and SL winds. With respect to tornadic winds (Figure 13(a)), 
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the time variation of maximum displacement is consistent with the trend of peak surface 

pressure in Figure 7(a). Relatively larger displacement occurs when the dome structure is 

far away from the tornado center, where the dome structue is undertaken by pure positive 

pressure. Around the tornado center, the dome structure is sorely covered by negative 

pressure resulted from the atmosphereic pressure drop, but the induced structural 

displacement is very small. This is because the displacement caused by the negative 

pressure at this time instant is balanced out by the displacement caused by positive 

pressure at previous time instants. Overall, the peak tornado-induced structural 

displacement is 0.153 m occurred at 47.4 s. Figure 14(a) presents the deformation profile 

of the dome structure at this time instant, mainly exhibiting inward deformation. 

 

 

Figure 12. FEM of the dome structure in CSD simulations. 

 

With respect to SL winds, the development of maximum displacement over time 

is more steady, slightly vibrating around the mean value of 0.0512 m. The overall peak 

structual displacment induced by SL winds is 0.0617 m. The deformation profile of the 

entire dome structure at this time instant is presented in Figure 14(b). Inward deformation 

is formed on the leeward side and outward deformation is formed around the dome apex, 
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which is consistent with the tendency of surface pressure distribution under SL winds 

(Figure 9). 

 

          

                                       (a)                                                               (b) 

Figure 13. Maximum displacement of the dome structure at each time instant induced by: 
(a) Tornadic winds; (b) Straight-line winds. 

 

 

                                     (a)                                                                   (b) 

Figure 14. Deformation profile of the dome structure induced by: (a) Tornadic winds; (b) 
Straight-line winds. 

  

Time histories of structural displacement at three representative points of the 

dome structure are presented in Figure 15 for tornadic winds and in Figure 16 for SL 

winds. The red dots represent the locations of the three points. 
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                         (a)                                           (b)                                           (c) 

Figure 15. Time history of displacement induced by tornadic winds: (a) At point 1; (b) At 
point 2; (c) At point 3.  

 

 
                         (a)                                           (b)                                           (c) 

Figure 16. Time history of displacement induced by SL winds: (a) At point 1; (b) At 
point 2; (c) At point 3.  

 

6. DETERMINATION OF G 

 

To reflect non-stationary characteristics of tornadoes and their dynamic impact on 

the dome structure, G is calculated based on dynamic responses of the dome structure. 

First, the time variations of maximum displacement induced by tornadic winds and SL 

winds (Figure 13) are averaged every 3 s, respectively. To be more specific, as presented 

in Figure 17, the time history of maximum displacement is averaged from 0 to 3 s, from 3 

to 6 s, from 6 to 9 s, and so on. Second, within each 3 s, the peak value is selected from 
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the time history of maximum displacement and defined as 𝑈 . The mean value is defined 

as 𝑈 . Then, within this 3 s, 𝐺  is defined as the ratio of 𝑈  and 𝑈  (𝐺 𝑈 /𝑈 ). 

For example, in Figure 18, within 0-3 s under SL winds, 𝑈  is 0.0595 m and 𝑈  is 

0.0520 m, and 𝐺  is 1.144 (0.0595 m/0.0520 m). 𝐺  is repeatedly calculated for each 3 

s, and a series of 𝐺  are obtained, as presented in Figure 19. Third, the final G reflecting 

the dynamic impact of the wind field is defined as the peak value among the series of 

𝐺 . Therefore, final G in the tornadic wind field is 𝐺 1.839 and final G in the SL 

wind field is 𝐺 1.147. The ratio of 𝐺  to 𝐺  is 1.60 (1.839/1.147). 

As defined in ASCE 7-16, for tornadic wind field, G is increased from 0.85 to 

0.90 for rigid structures. Therefore, the ratio of 𝐺  to 𝐺  is 1.06 (0.90/0.85), which is 

about 34% lower than the simulated results. This suggests that G defined in ASCE 7-16 

should be increased in order to fully reflect the dynamic impact of tornadoes. 

 

7. CONCLUSIONS 

 

In this study, CFD simulations are employed to reflect the dynamic impact of 

tornadoes on gust-effect factor, G, in ASCE 7-16. First, both tornadic wind field and 

equivalent straight-line wind field are developed and compared, regarding the obtained 

wind pressure acting on the structural surface and induced dynamic responses of the 

structure. Then, G is calculated based on dynamic responses of the structure induced by 

both wind fields. The obtained results show that building design should consider dynamic 

impact of tornadoes, and G defined in ASCE 7-16 should be increased in order to 

sufficiently reflect dynamic impact of tornadoes. 
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                                     (a)                                                                 (b) 

Figure 17. 3-s averaged maximum displacement: (a) Tornadic winds; (b) Straight-line 
winds. Note: black line represents time variation of maximum displacement and red line 

represents 3-s averaged value. 

 

 

Figure 18. Definition of 𝑈  and 𝑈 . 

 

 

Figure 19. Time history of 𝐺 : (a) Tornadic winds; (b) Straight-line winds. 
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V. IMPROVE WIND-INDUCED STRUCTURAL RESPONSES ON A CABLE-
NET ROOF STRUCTURE USING TWO-WAY COUPLED WIND-

STRUCTURE-INTERACTION SIMULATION 

 

Tiantian Li, Guirong Yan, Fangping Yuan, and Genda Chen 

ABSTRACT 

Computational fluid dynamics (CFD) simulation offers an advantageous tool to 

quantify wind effects on civil structures. However, previous research is mainly focused 

on one-way wind-structure interaction (WSI), which neglects the effect of structural 

deformation on the wind field. This neglection is acceptable if the civil structure is rigid 

enough. But for flexible structures with large deformation, this neglection might lead to 

inaccurate estimation of wind effects on civil structures. In order to accurately estimate 

wind effects on flexible structures, a two-way coupled simulation considering the WSI 

will be conducted. A flexible cable-net roof structure is first studied under straight-line 

winds. Then, it will be studied under tornadic winds. The obtained results will help 

develop science-based building codes for tornado-resistance design and improve disaster 

resilience in Tornado Alley. 

 

1. INTRODUCTION 

 

Computational fluid dynamics (CFD) simulation offers an advantageous tool to 

quantify wind effects on civil structures. However, previous research is mainly focused 

on one-way wind-structure interaction (WSI), which neglects the effect of structural 
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deformation on the wind field. This neglection is acceptable if the civil structure is rigid 

enough. But for flexible structures with large deformation, this neglection might lead to 

inaccurate estimation of wind effects on civil structures. In order to accurately estimate 

wind effects on flexible structures, a two-way coupled simulation considering the WSI 

should be conducted. 

Studies have been reported regarding the comparison between one-way and two-

way coupling methods for numerical analysis of fluid-structure interaction in a broad 

sense [1-4], e.g. the interaction between pile structures and wave loads. It was concluded 

that two-way coupled simulation was more reasonable and closer to experimental results 

compared to one-way coupled simulation. The accuracy of the dynamic response from 

one-way coupled simulation compared to two-way simulation depended on the 

relationship of shedding frequency and the natural frequency of the structure. However, 

two-way coupled simulations are very expensive in terms of computational time. For 

example, the solution time for two-way coupled simulation was four to five times that for 

one-way coupled simulation [1]. A new technique of file sharing was proposed to reduce 

the computational cost [5]. A file (ds.dat file) was generated in ANSYS-MECHANICAL 

and saved in a separate folder, which was imported and ran in CFX solver. Then, an outer 

connection was made between the CFX and ANSYS-APDL solver, and finally the 

structural results were obtained from ANSYS-APDL. In comparison with experimental 

data, the proposed strategy for two-way coupled simulation was sufficiently precise and 

certain while the computational cost was reduced. 

Regarding the WSI in a narrow sense, Hillewaere et al. [6] investigated the WSI 

of a closely spaced group of silos by three-dimensional numerical simulations. The 
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numerical results showed that the one-way and two-way simulations have similar results 

for a single silo. But, for silos in the group, ovalling vibrations from two-way simulations 

were significantly larger than that from one-way simulations. Also, the vibration 

amplitude obtained from two-way simulations was closer to the field observation during a 

storm in 2002. This demonstrated the accuracy of two-way simulations since the 

aeroelastic effect and/or interaction between the wake-induced excitation and the 

structural vibration can be captured. Wind-induced vibrations of flexible shells were 

studied by Gluck et al. [7], in which time-dependent WSI was considered. A partitioned 

but fully implicit coupling algorithm was applied to flexible L-shaped plates being loaded 

by a steady far-field flow. The coupling algorithm connected a three-dimensional, finite 

volume-based flow solver for incompressible fluids with a finite element code for 

geometrically nonlinear structural problems using a commercial coupling interface. The 

obtained results showed that the proposed coupling algorithm was possible to study 

dynamic interactions for engineering applications. 

In this study, two-way coupled WSI simulations will be applied in order to obtain 

more reliable structural responses of a cable-net roof structure. Straight-line wind field is 

the focus of current study. The obtained results will facilitate the study of dynamic 

responses of flexible structures under tornadic winds considering two-way WSI. 

 

2. METHODOLOGY 

 

In this study, the two-way WSI is achieved by coupling the flow analysis (CFD 

simulation) and structural analysis (finite element analysis). Herein, after the wind 
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pressure on structural surface (hereafter “surface pressure”) at one time step is obtained 

from CFD simulation, it will be transferred to the finite element model of the structure 

though wind-structure interface. Then, a nonlinear, transient structural analysis will be 

conducted to obtain structural responses for this time step. Next, the obtained structural 

displacements will be transferred back to the CFD solver to set up the new boundary 

condition of the wind field for the next cycle of CFD simulation. 

 

3. NUMERICAL SIMULATION SETUP 

 

A saddle-shaped cable-net roof structure is investigated in this study. It spans 36 

m and rises 3 m, and the height of the center node of the roof is 6 m. In order to simulate 

the straight-line winds, a rectangular cuboid computational domain is created (Figure 1a). 

The inflow is velocity inlet, and the outflow is pressure outlet. The ground is defined as 

non-slip wall. The top surface of the entire computational domain is defined as zero-shear 

stress wall. The remaining two side boundary surfaces of the entire computational 

domain are defined as symmetry boundaries. The velocity profile at the velocity inlet 

follows the atmospheric boundary layer in form of the power law, that is, 

U(z)=53.6(z/6)0.28, where z is the vertical distance above the ground plane. A transient, 

incompressible, three-dimensional CFD simulation is conducted using the commercial 

software, ANSYS FLUENT. Large eddy simulation is used to model the turbulence. 

Large eddies are resolved with filtered time-dependent Navier-Stokes equations while 

small eddies are modeled with a subgrid stress model, i.e. the Smagorinsky-Lilly model. 
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The finite element model of the cable-net structure is developed in ANSYS 

Mechanical Module. This model is used to perform transient analysis of the roof structure 

under the wind pressure obtained from CFD simulations to calculate structural responses. 

The finite element model is shown in Figure 1b, cables are modeled using Link180, but 

only tension is enabled in this simulation. Shells are modeled using shell181. Each edge 

of the shell is connected to the adjacent link member by rigid connections along the 

length. The four walls of the roof structure are assumed to be rigid, and the bottom is 

assumed to be fixed. The roof is setup as the wind-structure interface to enable data 

transfer between CFD simulation and structural analysis. 

 

 

                                       (a)                                                          (b) 

Figure 1. (a) CFD model; (b) Finite element model of the cable-net structure. 

 

4. NUMERICAL RESULTS 

 

The streamline of velocity on the vertical plane is shown in Figure 2a. Vortices 

are found in front of the windward wall and in the wake. Distribution of wind pressure on 

the roof surface is shown in Figure 2b. From the time history of displacement at the 
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center of the roof (Figure 2c), severe vibrations are observed before 1 s. Then, the 

variation of displacement levels out and remains constant around 0.06 m. 

 

      

                         (a)                                         (b)                                        (c) 

Figure 2. (a) Streamline of velocity on the vertical plane; (b) Wind pressure distribution 
on the roof surface; (c) Time history of displacement at the center of the roof. 

 

5. CONCLUSIONS 

 

In this study, dynamic responses of a cable-net structure under straight-line winds 

are obtained by two-way coupled wind-structure interaction simulation. The wind flow 

analysis and the structural analysis are coupled to account for the impact of structural 

deformation on the wind field, which in turn affects the wind pressure on structural 

surface. Severe vibrations are observed at the center of the roof at the initial stage. 

Further analysis about the dynamic responses of the cable-net structure under tornadic 

winds considering WSI will be conducted. The obtained research findings will facilitate 

the development of tornado-resistance design for flexible structures. 
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SECTION 

2. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

2.1. SUMMARY OF RESEARCH WORK 

The objective of this research is to investigate the tornado dynamics and its 

dynamic impact on civil structures in order to properly determine tornadic wind loading 

on large-scale space structures. This is achieved by systematic numerical simulations 

combining Computational Fluid Dynamics (CFD) simulation and Computational 

Structural Dynamics (CSD) simulation (finite element analysis). The research findings 

will help to develop science-based tornado-resistance building codes, eventually 

achieving tornado-ready and tornado-resilient communities. 

To achieve this research objective, the following research has been conducted. 

First, wind effects of dome structures induced by straight-line winds are characterized 

using both wind tunnel testing and CFD simulations, in order to set a baseline for the 

comparison with tornado-induced wind effects and to gain experience in verification and 

validation of CFD simulations based on experimental results. In addition, three different 

turbulence models, Spalart-Allmaras, shear stress transfer (SST) k-ω, and LES models, 

are employed in the CFD simulations to investigate their influence on the wind effects 

acting on the dome structure. Second, a tornadic wind field is simulated based on a real-

world F4 tornado and the corresponding CFD model is validated using the full-scale 

radar-measured data. After the validation, a large-scale dome structure is included in the 

computational domain of the tornadic wind field to determine wind effects acting on the 
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dome surface. Both wind characteristics of the tornadic wind field and wind effects of the 

dome structure are investigated regarding different flow structures of the tornadoes. 

Third, CFD and CSD simulations are combined to investigate dynamic responses of a 

large-scale dome structure. CFD simulations are conducted to determine tornado-induced 

wind pressure on the dome surface (hereafter “surface pressure”). The obtained surface 

pressure is imported onto the finite element model of the dome structure, and then a non-

linear, transient analysis is carried out to quantify dynamic responses of the dome 

structure induced by tornadoes. Fourth, gust-effect factor, G, is calculated based on 

tornado-induced dynamic structural responses, in order to consider non-stationary 

characteristics of tornadoes and their dynamic impact on civil structures. CFD 

simulations of both tornadic wind field and equivalent straight-line wind field are 

conducted and compared. Finally, numerical simulations considering two-way coupled 

wind-structure interaction (WSI) are conducted to determine dynamic responses of a 

cable-net roof structure, which takes account into the effect of structural deflection on the 

wind field and vice versa. Although the two-way WSI is implemented based on the 

straight-line winds, it will improve the understanding of two-way WSI and will facilitate 

two-way WSI under tornadic winds, leading to more accurate tornadic wind loading. 

2.2. CONCLUSIONS  

This section presents the conclusions from the characterization of wind effects 

and induced dynamic structural responses of large-scale space structures under straight-

line winds and tornadic winds. With regard to the wind effects of a dome structure under 
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straight-line winds obtained from wind tunnel testing and CFD simulations (Task 1), the 

following conclusions are drawn: 

 Three different turbulence models are applied, i.e., Spalart-Allmaras, SST k-

ω, and LES models. The simulated results associated with the Spalart-

Allmaras model match the wind tunnel testing the best in terms of both the 

wind pressure distribution on the dome surface and the total suction force 𝐹 . 

The simulated results associated with the LES model show the poorest 

accuracy of wind effects on the dome model, which is attributed to the earlier 

boundary layer separation compared to wind tunnel testing. 

 The mismatch between the CFD simulations and the wind tunnel testing is 

mainly caused by the inaccurate prediction of boundary layer separation. This 

can be greatly improved by applying a proper turbulence model. 

 Although the LES model is able to provide detailed, turbulent flow condition 

of the wind field, it may not be the best option when averaged quantities are 

targeted to be matched. 

With regard to the verification of the tornadic wind field (Task 2), the following 

conclusions are drawn: 

 The tangential velocity profile and the flow structure on the vertical plane 

extracted from the simulated tornadic wind field agree well with those 

extracted from the radar-measured data during Spencer Tornado, which 

demonstrates the appropriate setup for the CFD simulations. 

 A double-celled, single-vortex tornado is formed with a high swirl ratio, while 

a single-celled, single-vortex tornado is formed with a low swirl ratio; a 
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touching-down downdraft is observed in the central region of the double-

celled tornado, while no downdraft is observed in the single-celled tornado; 

the core radius of the single-celled tornado is much smaller compared to that 

of the double-celled tornado while its maximum tangential velocity is much 

larger, when the velocity input at the velocity inlet is the same; the pressure 

profile of the single-celled, single-vortex tornado have a narrow, single peak 

with a higher pressure gradient, but the corresponding profile for the double-

celled , single-vortex tornado has a wide, flat distribution. 

 Due to the central downdraft, the turbulence intensity of the double-celled 

tornado is much higher than that of the single-celled tornado in the core 

region, to be specific, in the region within half of the core radius. Also, the 

turbulence intensity of the axial velocity is the most significant among all the 

three velocity components. 

 The force and moment induced by the double-celled tornado is more 

fluctuating and random than those induced by the single-celled tornado, which 

is caused by the presence of the central downdraft. This suggests that the wind 

loading induced by the double-celled tornado is more non-stationary than that 

induced by the single-celled tornado. 

 The two drag forces (𝐹  and 𝐹 ) under the single-celled tornado follow a 

typical trend: 1) they reach their peak values when the dome center moves to 

the tornado core radius; 2) they change their direction approximately when the 

dome center passes the tornado center; and 3) 𝐹  is much greater than 𝐹 , 

indicating that the effect of the tornado sucking the dome towards its center is 
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much stronger. However, the corresponding variations under the double-celled 

tornado tend to be more random, and the effect of sucking the civil structure 

towards the tornado center is not obvious. Similar observations can be found 

from the two overturning moments (𝑀  and 𝑀 ). 

With regard to the dynamic responses of a large-scale space structure induced by 

tornadic winds (Task 3), the following conclusions are drawn: 

 Surface pressure becomes non-stationary when the dome center approaches 

the core radius of the tornado. At the same time, the dome structure 

experiences high vibration (high acceleration responses) on the leeward side, 

where the flow separation and/or potential flow reversal increases the non-

stationary characteristics of surface pressure. 

 The non-stationary characteristics of tornadic wind pressure is mainly caused 

by the change in wind angle of attack acting on the dome structure during the 

tornado translates.  

 When the dome approaches the tornado center, existing structural deformation 

caused by positive surface pressure is cancelled out by some of the negative 

surface pressure. Therefore, the maximum deformation of the dome structure 

becomes very small. Although large negative pressure is developed because of 

atmospheric pressure drop when the tornado center is reached, structural 

deformation does not reach the worst scenario. 

 Wind flow of EF4 and EF5 tornadoes are more turbulent than that of EF2 and 

EF3 tornadoes, and thus higher dynamic responses are experienced.  
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With regard to the reflection of gust-effect factor on design tornadic wind loads, 

the following conclusions are drawn: 

 Dynamic impact of tornadoes should be considered when designing large-

span dome structures. 

 Gust-effect factor defined in ASCE 7-16 should be increased in order to 

sufficiently reflect dynamic impact of tornadoes on civil structures. 

With regard to the dynamic responses of a cable-net roof structure under straight-

line winds consider two-way WSI (Task 5), the following conclusions are drawn: 

 Large fluctuations are observed of the time history of displacement at the 

center of the roof before 1 s, indicating severe vibrations at the initial stage.  

 For flexible structures, it is necessary to conduct two-way WSI, in order to 

determine wind-induced vibrations more accurately. 

 Further analysis about the dynamic responses of the cable-net roof structure 

under tornadic winds considering WSI will be conducted. The obtained 

research findings will facilitate the development of tornado-resistance design 

for flexible structures. 

2.3. RECOMMENDATIONS 

Based on the objective and scope of work of this study, the following aspects are 

recommended for future research: 

1. Further investigations are needed to study the modifier of the gust-effect 

factor for other shapes of structures. 
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2. Two-way coupled WSI will be conducted in the tornadic wind field to 

investigate non-stationary characteristics of tornadoes and the induced 

dynamic impact on flexible structures. 

3. Tornado-induced vibration phenomena need to be identified in order to fully 

understand failure mechanism of civil structures under tornadic winds. 
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