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ABSTRACT

Multiple recurrent reinforcement learners were implemented to make trading de-

cisions based on real and freely available macro-economic data. The learning algorithm

and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside

Deviation Ratio and Returns) were revised and the performances were compared while trans-

action costs were taken into account. (This is important for practical implementations even

though many publications ignore this consideration.) It was assumed that the traders make

long-short decisions in the S&P500 with complementary 3-month treasury bill investments.

Leveraged positions in the S&P500 were disallowed. Notably, the Differential Sharpe Ratio

and the Differential Downside Deviation Ratio are risk adjusted and are therefore expected

to yield more stable and less risky strategies. Interestingly, the Return-traders performed the

most consistently. Explanations for these findings were explored. The strong performance

of the return-based traders - even based on few and readily available macro-economic time

series - showed the power and practical relevance of the simpler algorithm.
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SECTION

1. INTRODUCTION

In the following, we are implementing reinforcement learning agents for investment

decisions with the objective of comparing the performance of different reinforcement func-

tions. The mathematical formulation of the model is given as a Markov Decision Process,

which we shall revise below.

Markov Decision Process

The mathematical formulation of stochastic control problems is often given as a

Markov Decision Process, which is defined in Definition 1.1. As we observe in Figure

1.1 the model can be interpreted as an environment and an actor or decision maker. The

environment supplies the agent with information regarding the current state. Based on this

information, the agent makes a decision with the goal of maximizing rewards or minimizing

penalties, which supplied by the environment after an action was taken and can depend on

the new state. In Section 2, we will identify and these components in the financial setting

and explore different possible options for our model.

The nature of financial data is distinctly different fromdata in other settings. Therefore,

we shall firstly discuss the subsequently arising challenges regarding state and action space.

Moreover, it is unclear how to rationally assess the performance of a trading strategy or

rather certain investment decisions. This is an issue that finance has tried to answer for

centuries, leading to different approaches which we discuss in the second subsection.
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Figure 1.1. Illustration of a Markov Decision Process.

Definition 1.1: Markov Decision Process

A (stationary) Markov decision Process is defined as (S × A,D,Q, r, β), where

• S denotes the state space, endowed with σ-field S

• A denotes the action space, which is endowed with a σ-field A

• D ⊂ S×A is measurable w.r.t. σ(S∪A), which is the smallest σ-field containing

both S and A), and denotes the set of possible state-action pairs.

• Q is the transition kernel such that B 7→ Q(B |s, a) is a probability measure

∀B ∈ S, s ∈ S, a ∈ A.

• r denotes a measurable function r : S × A 7→ R, which denotes the expected

reward r(s, a) =
∫

S reward(s, a, ã)Q(dã|s, a), if the current state is s and action a

is taken.

• β is a constant discount rate.

This definition is illustrated in Figure 1.1. For further reference, the reader is encouraged

to see [Bäuerle and Rieder, 2011, Puterman, 2014].
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2. DATA STRUCTURE,PRE-PROCESSING AND IMPLICATIONS

Let us consider data from the S&P500 ranging from November of 1960 to November

2018. The observable behavior closely resembles that of a geometric Brownian motion with

upwards trend. One way of interpreting a stochastic process is to view it as a random variable

on an (infinitely) high dimensional product space, where dependencies can, for instance,

be modeled using Markov kernels. This clearly demonstrates one major issue that we

encounter in finance: The whole stock market is a single multivariate observation containing

all tradable assets. The obvious consequence is that classical statistical approaches relying

on multiple observations are rendered impractical (compare Figure 2.1).

Statisticians have, by introducing time series analysis, found a way around this

problem. The observed processes remain as before, however, by assuming certain models or

structures, inference and prediction (at least in the short term) is possible. One such model is

the AutoRegressive Moving Average (ARMA), is given by a (stationary) processes {Xt}t∈Z

fulfilling

Xt − φ1Xt−1 − ... − φpXt−p = Zt + θ1Zt−1 + ... + θq Zt−q

where p, q ∈ N denote the autoregressive and the moving average order respectively and

{Zt}t∈Z is some white noise process [Brockwell et al., 2002].

Figure 2.1. From left to right: S&P500 Index from November 1960 to November 2018,
log-returns and historical Volatility respectively.
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However, there are good reasons for why such a static model might not be fully

appropriate. On one hand, if tradable patterns are observed, market participants will quickly

start making money from them causing the effect to vanish. On the other hand, governments

might choose to change tax codes, regulations, or provide subsidies, which may alter

the way markets function. Moreover, the economy is evolving over time as innovations

build upon each other and we learn from historical events. This leads to an ever-changing

environment and assuming that, despite these effects, core mechanics remain the same is a

strong assumption.

Another issue that is difficult to tackle is that many risks in the past were not observed.

Assume, for instance, that the United States had lost the cold war. Today we know, that

the chances for this were diminishingly low. However, based on the partial knowledge at

the time of the conflict, this risk may have seem much more severe. The conclusion is

that highly unlikely events with high impact have not occurred or our knowledge of them

is so limited that our assessment of past risks and opportunities may be inaccurate [Taleb,

2007]. Reinforcement learning, in contrast, is capable to learn hidden patterns implicitly

through trial and error. This feature may prove valuable for learning patterns which might

not be easily observable and adopting dynamically to changing environments. In order to

implement a reinforcement learning algorithm for investment decisions, we need create a

model for the agent (see Section 3.1) and the environment (section 3.2) in which it acts.

Before we can come to the implementation and set up a model for analysis, we need to obtain

and pre-process the data. For more details on the data selection (i.e. the definition of the

state and action space), see Section 3.2.

Data assimilation and pre-processing

Table 2.1 gives a brief summary of the data sources of the inputs used. After the

data was obtained and merged in Power Query, the database tool in Microsoft Excel, the

economic indicators were lagged by one month to adjust to ensure that we are not relying on
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future data in our decision making, since only the data of the past month is known when

making a decision for the next. Furthermore, missing data was replaced by data from the

previous month.

Table 2.1. Summary of input data with data source.
Data Type Source Period Interval Use
S&P500

Price Index (ˆGSPC) Yahoo Finance 1950-01-01 / 2019-04-01 monthly log-returns

AAA Corporate
Bond Yield FRED 1919-01-01 / 2019-03-01 monthly 6 month difference

10 year Treasury Rate FRED 1953-04-01 / 2019-03-01 monthly Yield Curve

3 month Treasury
Bill Rate FRED 1934-01-01 / 2019-03-01 monthly

Yield Curve,
6 month difference,

risk free rate

Data Normalization

Additionally, we need to normalize the inputs sincewe are employingL1-regularization

(weight decay). Because L1-regularization shrinks all weights equally, we want the inputs to

be centered around zero and to have similar ranges. At the same time, we do not want to use

future information in the process of normalization (since we aim for an online-algorithm

as described in Section 3.1b. However, the maximum and minimum depends on future

observations. In order for the algorithm to learn from data which has similar ranges as

unobserved data in the markets, we estimate the minimum and maximum using a heuristic,

which builds on results from Extreme Value Theory. The algorithm goes as follows:

1. Determine the minimum and maximum of the first few observations. The exact

number may depend on the history available. Generally, the more data, the more exact

the estimate will become. At the same time, we do not want to cut too deep into our

training set in order to have a realistic learning environment. We decided to use up to

n = 48 months of training data for this step and any additional history before that.
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2. The definition of a maximum and a minimum trivially entails, that it superseded or

went below the previous historical maximum or minimum respectively. Hence, we

need to adjust up- and downwards. To achieve this, we compute the 95% quantile

of the extreme value distribution of the normal distribution (which is the Gumbel

distribution as shown in Theorem 2.1) for both the sample size n, which we used in

step 1, and for the size of the data set N . Dividing the later by the former then gives a

multiplier which we apply to our computed minimum and maximum.

3. Once, the estimated minimum m̃ and maximum M̃ are obtained, the data is normalized

as Zn := Xn−ζ0.5
M̃−m̃

, where ζ0.5 is the median of X = X1, ..., Xn.

Theorem 2.1: Extreme Value Distribution of the Normal distribution

Let X = X1, ..., XN
i.i.d
∼ N(0, 1). Then

MN − aN

bN

D
−→

N−→∞
Z ∼ G,

where MN := max {X1, ..., XN }, G is the Gumbel distribution and aN := 1
NΦ(bN )

and

bN := Φ−1
(
1 − 1

N

)
with Φ being the cumulative distribution function of the Normal

distribution. For proof, see [De Haan, 1976, Herbert and Nagaraja, 2003].

After this transformation, the economic indicators, which will serve as inputs into

our model, have a more similar range as seen in Figure 2.2.
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Figure 2.2. Histograms of the economic data. The red line indicates the location of the
median.
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3. DEFINING THE MODEL AS A MARKOV DECISION PROCESS

As we noted in Definition 1.1, there are multiple aspects to a Markov Decision

Process. In this chapter, we will explore how we can translate our problem into a Markov

Decision Process and use reinforcement learning to optimize risk adjusted returns. This is

a classical control problem with a few twists to it in our special case. Hence, we examine

how the our situation fits into the framework of agent (in Section 3.1) and environment (in

Section 3.2).

3.1. THE AGENT

Past experiments suggest, that an integrated decision-making module performs best

in this scenario [Bengio, 1997][bengio, early moody?]. Works by Moody et al. further

indicate that a policy gradient algorithm implementing a recurrent neural network performs

well and provides a comprehensive interpretation. Moody et al. compare how traders

implementing the Q-learning algorithm, which tries to estimate values for state-action pairs

and derives the policy implicitly, performs against a recurrent reinforcement learning (RRL)

traders and the market. They find that the RRL traders are trading less frequently and are

able to outperform the Q-learning traders and the market. Possible reasons for these findings

include

1. The 2-modular approach using distinct prediction and decision-making modules

creates a bottleneck. Additional information, f.e. regarding the accuracy of the

prediction, is neglected. This causes a shrinkage of the σ-field, which we condition

on to make decisions and hence our decision making is negatively impacted.
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2. The Q-learning approach may suffer from the “curse of dimensionality”. Many of the

features, on which we base the decision-making, can be unbounded and continuous.

Furthermore, the dimensions quickly explode as we expand to consider further time

series. This may demand for a large and deep neural network, which may be slow to

train.

3. The Q-learning algorithm is discontinuous with regard to updates. In other words,

a small change in the Q-function may cause a radically different policy due to the

arg max operator.

4. The RRL algorithm may be faster to adopt to non-stationarities in financial markets,

since it does not need to unlearn an outdated Q-function.

This motivates the implementation of an integrated (single module) trading system,

which is trained via RRL.

Learning Rule

Depending on how the agent is designed and the reinforcement is received from the

environment (see Section 3.4), different learning approaches are required. Both rules, which

are presented here are based on gradient descent. Firstly, we explore how feedback for an

interval of decision points is handled. Secondly, we proceed by deriving a learning rule for

online-feedback, where reinforcement is provided between two successive points of decision

making. For the sake of completeness, much of this section will be a reiteration of Section 3

of the submitted paper.

We consider a trader in one asset, who can make buying and (short-)selling decisions.

Hence, the desired output at time t of our trading system is at ∈ [−1, 1]. Here, a trading

decision of at = 1 would refer to a long position (buying or holding 100% of the available

funds in the asset) in the asset, whereas at = −1 refers to a short position in the same asset

(borrowing an equivalent of 100% of the available funds of the asset’s shares and selling
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them in the market to buy them back at a later time - hopefully at a lower price). The

algorithm we use has previously been proposed by Moody, et al. [Moody and Saffell, 2001,

Moody et al., 1999, Moody and Wu, 1997, Moody et al., 1998, Moody and Saffell, 1999].

They suggest a single neuron direct reinforcement learning algorithm using a tanh activation

function. This design is beneficial since it allows to easily account for transaction costs and

other market frictions such as tax. They demonstrate that their direct reinforcement trader

outperforms their trading algorithm based on the Q-learning algorithm. Therefore, we focus

our attention to the direct reinforcement trader with the tanh activation, which guarantees

the desired output range.

3.1.1. Batch Update. The consideration of transaction costs implies a recurrent

structure, since the investment decision at depends partly on the previous decision at−1. We

want to optimize a utility U of portfolio returns (R(p)d+1, R(p)d+2, ...) which are generated over

time (for optimization, we consider a finite horizon of T ∈ N such returns). The trader will

be supplied with a moving window of d ∈ N past asset returns (Rt−d+1, ..., Rt)
T and h ∈ N

further economic indicators (E1, ..., Eh)
T . Together, these form the vector of economic inputs

It := (Rt−d+1, ..., Rt, E1, .., Eh)
T ). Additionally, the previous asset allocation or investment

decision at is provided. The policy of the direct reinforcement trader is parameterized by

θ ∈ Rm. In our simple case (m = d + h + 1), this will look as follows:

at+1 = F (at, It |θ) = tanh (θ1Rt−d+1 + ... + θd Rt + θd+1E1 + ... + θd+hEh + θd+h+1at)

It should be noted that this is similar to a simple generalized linear model in the

covariates
(
[IT

t , at]
T )

t∈N with response (at+1)t∈N. However, these response variables are

unobserved and are chosen in a way that maximizes the utility or reinforcement function.

Rather then obtaining a closed form expression as we might in the case of a linear model,

we will therefore maximize the target function U via a gradient ascent optimizer as seen

in Figure 3.1a (assuming U is differentiable with regard to the set of weights θ almost

everywhere). Hence, let us proceed to computing the gradients:
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dUT

dθ
=

dUT

(
R(p)
d+1(ad, ad+1), ..., R(p)

d+T
(aT−1, ad+T )

)
dθ

=

T∑
t=d+1

∂UT

∂R(p)t

[
∂R(p)t

∂at

dat
dθ
+
∂R(p)t

∂at−1

dat−1
dθ

]
,

where dat
dθ is recursively given by dat

dθ =
∂at
∂θ +

∂at
∂at−1

dat−1
dθ .

(a) (b)

Figure 3.1. Diagram of (a) the batch version and (b) the incremental version of the algorithm.

3.1.2. Incremental Update. The approach as given above has a few weaknesses.

Gradient ascent is an iterative optimization algorithm and we would need to run through

the whole dataset in order to compute a single iteration. Moreover, due to possible non-

stationarity of the environment and to allow for continuous learning and adaptation we are

interested in an online system. Furthermore, the time frame for our online trading system

should not be bounded by a finite number T . If we can break up UT as follows

UT

(
R(p)d+1(ad, ad+1), ..., R(p)d+T (aT−1, ad+T )

)
=

T∑
t=d+1

U(t)T (R
(p)
t ) =:

T∑
t=d+1

U(t)(R(p)t ),

then we are able to remove the time constraint and apply incremental updates by maximizing

each summand individually. The resulting algorithm is illustrated in Figure 3.1b. We

approximate the gradients as follows:

dU(t)

dθt
=

dU(t)
(
R(p)t (at−1, at )

)
dθt

=
∂Ut

∂R(p)t

[
∂R(p)t

∂at

dat
dθt
+
∂R(p)t

∂at−1

dat−1
dθt

]
≈

∂Ut

∂R(p)t

[
∂R(p)t

∂at

dat
dθt
+
∂R(p)t

∂at−1

dat−1
dθt−1

]
,

where dat
dθt
=

∂at
∂θt
+

∂at
∂at−1

dat−1
dθt
≈

∂at
∂θt
+

∂at
∂at−1

dat−1
dθt−1

.
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According to [Williams and Zipser, 1989] the approximation error is negligible for

small learning rates. Additionally, it allows us to efficiently compute the gradients since we

only need to store the total derivative dat
dθt

. Note the similarity to backpropagation through

time [Werbos et al., 1990]. Now that we have discussed the updating scheme, let us turn to

the evaluation of the performance of financial assets and which criterion to optimize.

Furthermore, they suggest multiple candidates for the reinforcement function which

we shall explore in the next section.

3.2. THE ENVIRONMENT

As we noted in Section 1, the environment supplies the actor with information about

the current state and penalizes or rewards actions. Hence, we discuss which variables to

consider and supply to the agent. Furthermore, we review some economic results regarding

decision making under risk in Section 3.3 to construct plausible reinforcement signals in

Section 3.4.

The State- and Action Spaces

We have a few variables which are likely to impact our investment decision and

should therefore be contained in our state space:

• Past stock prices: S(h)t := (St, ..., St−h)
T

There is a whole branch of finance called technical analysis which is dedicated to

analyzing and trading patterns in past stock prices. reinforcement learning could help

us discover significant higher order patterns, which are not easily observable, or at

least learn. Neglecting this aspect could undercut the performance [Blume et al.,

1994, Lo et al., 2000], even though some have argued that technical analysis may be

self-fulfilling [Taylor and Allen, 1992].
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• Additional Economic data: It

including additional economic data such as the yield curve, Commitment of Trader

(CoT) Reports, unemployment rates, etc. may help to make better investment decisions.

• Past Asset Allocation: Ft−1

If we are interested to potentially implement the trading system, we need to take

taxation and transaction costs into account. Hence, past asset allocations will impact

allocation decisions in the future.

• Exploration Parameter: zt

We may want to include a noisy parameter which does not contain any information

for purposes of exploration. This allows to explore different decisions if all other

inputs are held equal. In the financial setting, however, we already have much noise.

Therefore, we will not end up running a single sub-optimal greedy policy and we can

neglect this input.

The goal is to arrive at a portfolio. Hence the action space relies on the number of assets we

are considering. Generally, we can limit our action to

(
Ft,w

f
t

)
∈ [−1, 1]d × R

where d ∈ N denotes the number of risky assets and Ft :=
(
F1

t , ..., F
d
t
)T is a vector containing

the respective portfolio weights and w
f
t is the weight of the “risk free” asset. A negative

weight corresponds to a short position in that asset and conversely a positive weight represents

a long position. We require all weights to sum up to 1:

d∑
k=1

F(k)t + w
f
t = 1

For now, however, we shall only consider a single risky asset as other authors have done, see

[Deng et al., 2017, Du et al., 2016, Moody and Saffell, 2001].
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3.3. THE REINFORCEMENT

In order to derive, understand and interpret the reinforcement functions that we

present later, we need to study decision making under risk. In order to motivate the economic

theory, we introduce the well-known St. Petersburg Paradox in Section 3.3.1. In Section

3.3.2 we give the classical response first formulated by [Bernoulli, 2011]. We then move on

to the commonly used model for financial decision making in Section 3.3.3. We proceed by

reviewing different reinforcement functions in Section 3.4.

Decision Making under Risk

In economic Theory, there are generally two different approaches to describe and

advise decision making in the presence of unsure outcomes. We present these in Sections

3.2 and 3.3 after a short motivation in Section 3.3.1.

3.3.1. The St. Petersburg Paradox. Assume that you are offered the following

lottery (A), which you may enter, if your bid is accepted by the counterparty:

i) You start off with an amount of 2$.

ii) A fair coin is tossed.

iii) If the coin shows head, the amount is doubled. Then go to step ii). If the coin shows

tail, the game ends and you win the amount.

Now, how much are you willing to bid in order to enter the lottery? You may quickly notice

that the expected payoff is infinite:

E[A] =
∞∑

k=1

(
1
2

) k

2k =

∞∑
k=1

1 = ∞
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Figure 3.2. Rescaled Utility for the exponential utility function: u(c) := 1−exp(−γc)
γ . Positive

γ implies risk aversion, whereas negative γ results in a convex utility function implying risk
seeking behavior. And γ = 0 describes risk neutral preferences.

However, most people would only bid relatively small amounts for this lottery. It

may seem like a contradiction but there is an explanation for this behavior: Due to limited

resources and minimum consumption required for survival, risk adverse behavior is rational.

This behavior can be described by the use of utility functions.

3.3.2. The Utility Function. The utility function is helps to describe rational

decision making under risk. Usually, diminishing marginal utility can be observed (compare

Figure 3.2). In other words, the higher the quantity of a good, the less useful will an

additional unit of that quantity be. This is equivalent to risk aversion and is described by an

increasing (more is better) and concave utility function. A popular class of utility functions

is the exponential utility function as shown below [Bernoulli, 2011].

However, in finance there is usually a different approach which is applied to assess

the performance and make risky decisions:

3.3.3. Mean-Variance Analysis. HarryMarkowitz famously suggested considering

risky assets in an (expected return, volatility)-plane [Markowitz, 1952]. Let us assume, that

we have two risky assets as shown on the left hand side in Figure 3.3, with an expected

return and where the risk is given by the volatility of the return. Now, the assumption is
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Figure 3.3. On the left hand side, we have two assets, A and B, in the expected return-
volatility-plane. The curve represents the possible portfolio combinations of assets. A
similar case holds, if the investor has more then two investment opportunities. On the right
hand side, we introduce a risk free rate, at which the investor may borrow or deposit. The
resulting portfolios can be illustrated like as blue line, which represents the one such line
with maximum slope.

that rational investors seek to maximize return for any fixed and achievable amount of risk

(volatility). Doing so yields portfolios which lie on the efficient frontier. These, are also

called dominant portfolios (compare to Definition 3.1. Introducing a risk free rate produces

a new set of dominant portfolios, as observed on the right hand side of Figure 3.3.

Definition 3.1: Dominant Portfolio

A dominant portfolio is a portfolio, which yields a superior return given a lower amount

of risk (standard deviation). In Figure 3.3 the dominant portfolios are given in blue.

Of the previously dominant portfolios, only one portfolio remains dominant after

introducing the risk free rate, whichwe shall refer to as themarket portfolio. It is characterized

by having maximal Sharpe Ratio, which is introduced in Definition 3.2. For any given

amount of risk (volatility) one simply deposits or borrows money at the risk free rate and

invests in the tangent or market portfolio. Since it has a larger Sharpe Ratio, these mixtures

will always produce a more attractive investment than any other portfolio. We observe that

this principle holds for any two assets with differing Sharpe Ratios. A rational investor

(assuming our assumptions are satisfied) will always prefer to allocate his resources in the
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portfolio with maximal Sharpe Ratio. Therefore, the Sharpe Ratio can be used to assess risk

adjusted performance of investments and to represent the preferences of a rational investor

[Sharpe, 1994].

Definition 3.2: Sharpe Ratio

The Sharpe Ratio SR(A) of an asset A is defined as the slope of the line passing through

(0, R f ) and (σ(rA), E[rA]), where the net return of the asset A is denoted by rA and σ

denotes the volatility or standard deviation. Hence, the Sharpe Ratio us given by

SR(A) =
E[rA] − r f

σ(rA)
.

3.4. POSSIBLE REINFORCEMENT FUNCTIONS

After having discussed the state and action spaces, an obvious question remains

on which feedback we provide our learning agent. In Section 3.3, we discussed a few

potential options. JohnMoody and various co-authors have discussed different reinforcement

functions [Moody and Saffell, 2001, Moody and Wu, 1997, Moody et al., 1998, Moody

and Saffell, 1999]. Nevertheless, let us summarize some observations and advantages and

disadvantages regarding diverse reinforcement functions.

3.4.1. Return. The most apparent choice would be to use the return or the net profit

of an investment decision. We can maximize the total gross return R(T) of the trading system.

At time t, we denote the gross return Rt = 1 + rt , with net return rt (f.e. rt = 2%). Since the

total gross return is the product of the gross returns up until time T :

R(T) =
T∏

t=1
Rt = exp

(
T∑

t=1
R̃t

)
,
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where R̃t := log(Rt) is the log-return. Hence, maximizing R(T) is equivalent to maximizing

R̃t, ∀t = 1, ...,T , which is equivalent to maximizing Rt, ∀t = 1, ...,T individually.

However, a high risk high return strategy would get rewarded highly. From previous

observations in Section 3.3, we have learnt that we need to adjust for risk. Otherwise, we

might obtain higher expected returns with the same amount of risk (or lower risk at the same

expected return). This could be remedied by using the utility of investment decisions instead.

Here, risk is accounted for. However, the utility of a decision also depends on the wealth

and risk preference of the observer.This makes formulating a universal reinforcement rather

difficult.

3.4.2. Differential Sharpe Ratio. The approach of using the Sharpe Ratio intro-

duced in portfolio theory, is an attractive alternative. It does not depend on personal wealth

and risk preferences can be incorperated later - by choosing an according mixture of the

strategy (the risky portfolio) and the risk free asset. Nevertheless, if we consider the definition

we see that the Sharpe Ratio is the quotient of the expected risk premium and the expected

volatility: SR(A) = ErA−rf
σ(rA)

. These are future values that are not easily determined. Usually,

the expectation and the variance are estimated from past data. However, it is not clear

that past data is a good predictor of future values due to the non-stationarity (at least in a

conditional sense) of the data. Furthermore, positive past Sharpe Ratios would significantly

impact future estimates. This may lead to a situation, where bad decisions get rewarded,

even though we are making decisions that reduce the estimate of the Sharpe Ratio (take an

unproportionally high amount of risk to achive the return). This behavior is troublesome.

Hence, let us rewrite the estimate of the Sharpe Ration in terms of moment estimates of the

returns to obtain incremental changes to the overall Sharpe Ratio:

First Moment or arithmatic mean:

An :=
1
n

n∑
t=1

rt = An−1 +
1
n
(rn − An−1)
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Second Moment (non-central):

Bn :=
1
n

n∑
t=1

r2
t = Bn−1 +

1
n
(r2

n − Bn−1)

Now, instead weighing the update term with 1/n we can generalize the above terms to:

An = An−1+ηn(rn − An−1), Bn = Bn−1 + ηn(r2
n − Bn−1),

where we obtain the previous estimates by setting ηn = 1/n. Instead, we could also use

exponential smoothing to arrive at exponential moving estimates by holding ηn ≡ η constant

as suggested by John Moody and Lizhong Wu[Moody and Wu, 1997]. This might be a good

approach, since the impact of old observations decays at an exponential rate and makes

the algorithm adopt faster to a changing setting. Also, new observations will have a larger

impact on the exponential moving average since the adoption rate η is held constant over

time, whereas it would converge to zero with the arithmetic average. This may prove to be

an advantage given that we do not need to assume stationarity. Furthermore, it will make a

few derivations easier. However, this is a change that might bias and make it inconsistent.

This trade-off could be further investigated.

Taylor expansion around η = 0 yields:

SRn(η) = SRn−1(η) + η
d

dη
SRn(η)

����
η=0
+O(η2),

where the change in the Sharpe Ratio with regard to rn is only given in the second term (all

higher order terms contained in O(η2) are independent of rn) and SRη(n − 1) is simply the

previous Sharpe Ratio. Therefore we define
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Definition 3.3: Differential Sharpe Ratio

The Differential Sharpe Ratio, which is motivated above, is defined as

DSRn :=
d

dη
SRn(η)

����
η=0

.

using some simple calculus, we can show that[Moody and Wu, 1997]

DSRn =
Bn−1∆An −

1
2 An−1∆Bn(

Bn−1 − A2
n−1

)3/2 ,

where ∆An := rn − An−1 and ∆Bn := r2
n − Bn−1.

The main drawback of this performance function is, that it penalizes both extraordinarily

high and small returns. In fact [Moody and Saffell, 2001] note that the DSR is maximized

by r∗n =
Bn−1
An−1

. This may not be an optimal feature for training. A solution is presented in the

next section.

3.4.3. Differential Downside Deviation Ratio. The Downside Deviation Ratio

(DDR) is similar to the Sharpe Ratio, which was introduced in Section 1. The difference lies

in the definition of Risk. To obtain the Sharpe Ratio, we defined Risk in terms of volatility of

net returns. However, the impact of a negative deviation of net returns is much heavier then

that of a positive deviation. The case where the expected net return is Ert = 2%. A negative

deviation of −22% requires a positive deviation of 23% just to break even, let alone meet

expectation. Hence, it may be rational to perceive of risk asymmetrically. An example is the

Downside Deviation, which results in the Downside Deviation Ratio as given in Definition

3.4.
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Definition 3.4: Downside Deviation Ratio

The Downside Deviation with an investor specific expectation h ≥ 0 is defined as

DDn := E1/2 [
min (Rn − h, 0)2

]
and induces the Downside Deviation Ratio:

DDRn :=
E[rn] − r f

DDn
, .

Similar as in Section 3.4.2, we can use exponential moving averages

An := An−1 + η (rn − An−1)

D2
n := D2

n−1 + η
(
min (rn − h, 0)2 − D2

n−1

)
to approximate the Downside Deviation Ratio. Using the Taylor expansion, we once again

arrive at an incremental reinforcement, which is given in definition 3.5.

Definition 3.5: Differential Downside Deviation Ratio

The Differential Downside Deviation Ratio with investor-specific expectation h ≥ 0 is

defined as below.

DDDRn :=
d

dη
DDRn(η)

����
η=0
=


rn− 1

2 An−1

D3
n−1

, rn − h > 0

D2
n−1(rn−

1
2 An−1)− 1

2 An−1r2
n

D3
n−1

, rn − h ≤ 0



22

Now that we have introduced and justified Returns, Differential Sharpe Ratio and

the Differential Downside Deviation Ratio, we proceed to compare the performance of the

discussed trading system receiving reinforcement from these functions. Afterwards, we

discuss some points, which were left out for the publication for brevity.
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ABSTRACT

Multiple recurrent reinforcement learners were implemented to make trading

decisions based on real and freely available macro-economic data. The learning algorithm

and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside

Deviation Ratio and Returns) were revised and the performances were compared while

transaction costs were taken into account. (This is important for practical implementations

even though many publications ignore this consideration.) It was assumed that the traders

make long-short decisions in the S&P500 with complementary 3-month treasury bill

investments. Leveraged positions in the S&P500 were disallowed. Notably, the Differential

Sharpe Ratio and the Differential Downside Deviation Ratio are risk adjusted and are

therefore expected to yield more stable and less risky strategies. Interestingly, the Return-

traders performed the most consistently. Explanations for these findings were explored. The

strong performance of the return-based traders - even based on few and readily available

macro-economic time series - showed the power and practical relevance of the simpler

algorithm.

1. INTRODUCTION

The development of computers and the Internet have drastically changed and enhanced

the efficiency of financial markets. Today, numerous Robo-Advisors advertise to provide

investors with automated investment strategies tailored to their personal risk profile. At the

same time, high frequency traders are replacing market makers and arguably increasing

market efficiency and thus reducing bid-ask spreads when beneficial, which translates to a

more efficient allocation of liquidity and resources [Carrion, 2013]. In other optimization

problems like job scheduling [Zhang and Dietterich, 1995] in operations research, control

problems [Lillicrap et al., 2015] or various games such as Atari games [Mnih et al., 2013],

Markov Decision Processes and reinforcement learning have demonstrated that they can

produce positive results and have often outperformed the previous state of the art.
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There is a distinction in reinforcement learning, namely between value-based and

policy-based methods. One such policy-based algorithm is policy gradients [Sutton et al.,

2000], which we use in conjunction with recurrent Neural Networks (rNNs). These are

popularly tested in the area of speech recognition [Graves et al., 2013] but can be applied to

any environment with sequential data and were thus employed to solve (dynamic) control

problems [Ku and Lee, 1995] and time series prediction [Connor et al., 1994]. Given this

background, Moody et al. [Moody and Saffell, 2001] suggested to apply reinforcement

learning, using an rNN structure for the policy approximation, to online trading systems.

They employed a single tanh-Neuron for the decision making and maximizing a financial

criterion, namely the Differential Sharpe Ratio, which they introduced [Moody and Saffell,

2001, Moody et al., 1999, Moody and Wu, 1997, Moody et al., 1998, Moody and Saffell,

1999]. We revise this algorithm in Section 3 and use it to compare how maximizing Returns,

the Differential Sharpe Ratio and the Differential Downside Deviation Ratio, as derived

in Section 4.2, contrast against each other. In Section 5 we discuss the details of our

experiments, including the data used and its sources, the partitioning of the available data

into offline training, online validation and online testing sets and the hyperparameters we

employed. The results including some possible explanations are covered in Section 6. Also,

we compare the findings during the validation phase from Section 6.1 with those from the

testing phase in 6.2 and suggest a selection procedure to boost the performance of the trading

system. Furthermore, we explore how well the online phase is able to adopt to changes by

comparing the results with a model, which was retrained on the training and validation set.

But first, let us explore what has been published in this area prior to this work.

2. PRIOR LITERATURE

In the financial setting, Neural Networks have traditionally been applied to stock

price prediction [Kim and Han, 2000, Kohara et al., 1997, Saad et al., 1998, White, 1988].

However, in 1997 Yoshua Bengio suggested using an integrated system that directly learns
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to make investment decisions instead of a modular system consisting of a prediction module

and a decision module [Bengio, 1997]. In the same period, Moody et al. introduced the idea

of using a recurrent neural network model trained via reinforcement learning and Gradient

Decent to directly optimize a financial criterion. In the same paper they suggested optimizing

additive returns, an economic utility function (see [Bernoulli, 2011]), and the Differential

Sharpe Ratio, which we define later [Moody and Wu, 1997, Moody et al., 1998, Moody and

Saffell, 1999]. Later, they proceeded to show impressive performance in a synthetic and

real world environments (Forex Trading and S&P500) and that approximating the policy

directly using a single tanh-Neuron outperforms their Q-Learning trader. Furthermore, they

suggested that alternatively the Downside-Deviation can be utilized as a risk measure [Moody

and Saffell, 2001, Moody et al., 1999]. Dempster et al. employed a recurrent reinforcement

learning trader in combination with a risk management layer. Hyperparameters were

automatically tuned [Dempster and Leemans, 2006]. Deng et al. implemented a variation

of Moody’s RRL-Trader using different approaches for more efficient signal representation

[Deng et al., 2017, 2015]. Almahdi et al. extended the RRL-Trader to a multiple asset

setting. They proposed the use of Expected Maximum Drawdown as a risk measure. They

emphasized the improvement of statistical properties and its resilience against increased

transaction costs [Almahdi and Yang, 2017].

3. NEURAL NETWORK DESIGN AND LEARNING RULE

We consider a trader in one asset, who can make buying and (short-)selling decisions.

Hence, the desired output at time t of our trading system is at ∈ [−1, 1]. Here, a trading

decision of at = 1 would refer to a long position (buying or holding 100% of the available

funds in the asset) in the asset, whereas at = −1 refers to a short position in the same asset

(borrowing an equivalent of 100% of the available funds of the asset’s shares and selling

them in the market to buy them back at a later time - hopefully at a lower price). The

algorithm we use has previously been proposed by Moody, et al [Moody and Saffell, 2001,
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Moody et al., 1999, Moody and Wu, 1997, Moody et al., 1998, Moody and Saffell, 1999].

They suggest a single neuron direct reinforcement learning algorithm using a tanh activation

function. This design is beneficial since it allows to easily account for transaction costs and

other market frictions such as tax. They demonstrate that a their direct reinforcement trader

outperforms their trading algorithm based on the Q-learning algorithm. Therefore, we focus

our attention to the direct reinforcement trader. Moreover, the tanh activation guarantees the

desired output range.

3.1. BATCH UPDATE

The consideration of transaction costs implies a recurrent structure, since the in-

vestment decision at depends partly on the previous decision at−1. We want to optimize a

utility U of portfolio returns (R(p)d+1, R(p)d+2, ...) which are generated over time (for optimiza-

tion, we consider a finite horizon of T ∈ N such returns). The trader will be supplied

with a moving window of d ∈ N past asset returns (Rt−d+1, ..., Rt)
T and h ∈ N further

economic indicators (E1, ..., Eh)
T . Together, these form the vector of economic inputs

It := (Rt−d+1, ..., Rt, E1, .., Eh)
T ). Additionally, the previous asset allocation or investment

decision at is provided. The policy of the direct reinforcement trader is parameterized by

θ ∈ Rm. In our simple case (m = d + h + 1), this will look as follows:

at+1 = F (at, It |θ) = tanh (θ1Rt−d+1 + ... + θd Rt + θd+1E1 + ... + θd+hEh + θd+h+1at)

It should be noted that this is similar to a simple generalized linear model in the

covariates
(
[IT

t , at]
T )

t∈N with response (at+1)t∈N. However, these response variables are

unobserved and are chosen in a way that maximizes the utility or reinforcement function.

Rather then obtaining a closed form expression as we might in the case of a linear model, we

will therefore maximize the target functionU via a gradient ascent optimizer as seen in Figure

1a (assuming U is differentiable with regard to the set of weights θ almost everywhere).

Hence, let us proceed to computing the gradients:
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dUT

dθ
=

dUT

(
R(p)
d+1(ad, ad+1), ..., R(p)

d+T
(aT−1, ad+T )

)
dθ

=

T∑
t=d+1

∂UT

∂R(p)t

[
∂R(p)t

∂at

dat
dθ
+
∂R(p)t

∂at−1

dat−1
dθ

]
,

where dat
dθ is recursively given by dat

dθ =
∂at
∂θ +

∂at
∂at−1

dat−1
dθ .

(a) Diagram of the batch version of the algorithm. (b) Diagram of the incremental version
of the algorithm.

Figure 1. Diagram of the a) batch version and b) the incremental version of the algorithm.

3.2. INCREMENTAL UPDATE

The appoach as given above has a few weaknesses. Gradient ascent is an iterative

optimization algorithm and we would need to run through the whole dataset in order to

compute a single iteration. Moreover, due to possible non-stationarity of the environment

and to allow for continous learning and adaptation we are interested in an online system.

Furthermore, the timeframe for our online trading system should not be bounded by a finite

number T . If we can break up UT as follows

UT

(
R(p)d+1(ad, ad+1), ..., R(p)d+T (aT−1, ad+T )

)
=

T∑
t=d+1

U(t)T (R
(p)
t ) =:

T∑
t=d+1

U(t)(R(p)t ),
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then we are able to remove the time constraint and apply incremental updates by maximizing

each summand individually. The resulting algorithm is illustrated in Figure 1b. We

approximate the gradients as follows:

dU(t)

dθt
=

dU(t)
(
R(p)t (at−1, at )

)
dθt

=
∂Ut

∂R(p)t

[
∂R(p)t

∂at

dat
dθt
+
∂R(p)t

∂at−1

dat−1
dθt

]
≈

∂Ut

∂R(p)t

[
∂R(p)t

∂at

dat
dθt
+
∂R(p)t

∂at−1

dat−1
dθt−1

]
,

where dat
dθt
=

∂at
∂θt
+

∂at
∂at−1

dat−1
dθt
≈

∂at
∂θt
+

∂at
∂at−1

dat−1
dθt−1

.

According to [Williams and Zipser, 1989] the approximation error is negligible for

small learning rates. Additionally, it allows us to efficiently compute the gradients since we

only need to store the total derivative dat
dθt

. Note the similarity to backpropagation through

time [Werbos et al., 1990]. Now that we have discussed the updating scheme, let us turn to

the evaluation of the performance of financial assets and which criterion to optimize.

4. FINANCIAL PERFORMANCE EVALUATION AND REINFORCEMENT

The most intuitive assessment of financial performance is the return of a portfolio.

Therefore, we formally derive incremental updates utilizing the return of our trading system

before proceeding to the derivation of the Differential Sharpe Ratio and the Differential

Downside Deviation Ratio.

4.1. RETURN

We can maximize the total gross return R(T) of the trading system. At time t, we

denote the gross return Rt = 1 + rt , with net return rt (f.e. rt = 2%). Since the total gross

return is the product of the gross returns up until time T :

R(T) =
T∏

t=1
Rt = exp

(
T∑

t=1
R̃t

)
,
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where R̃t := log(Rt) is the log-return. Hence, maximizing R(T) is equivalent to maximizing

R̃t, ∀t = 1, ...,T , which is equivalent to maximizing Rt, ∀t = 1, ...,T individually.

However, this performance function does not take risk into account adequately. It

may therefore adopt high return policies that are very risky. For example, it may - under

a different model - learn to leverage the market portfolio. Assuming the market portfolio

generally follows an upwards trend, the trader will yield a multiple of the positive market

risk premium. This, however, comes at the cost of higher β (market risk according to the

Capital Asset Pricing Model (CAPM) [Cochrane, 2009]), which means that the trader has

not outperformed the market but merely purchased a higher expected return with increased

undiversifiable risk.

4.2. SHARPE RATIO AND DOWNSIDE DEVIATION RATIO

The Sharpe Ratio has been suggested by Markowitz [Markowitz, 1952] who lay

the foundation for modern portfolio theory. In short, it is assumed that risk is completely

represented by the standard deviation or volatility of future returns. Instead of maximizing

the returns, we maximize the ratio of expected excess returns E
[
r(T)

]
− r f , with r f denoting

the risk free rate, and volatility σ:

SR(T) =
E

[
r(T)

]
− r f

σ
(
r(T)

) ,

which is called the Sharpe Ratio. This quotient can be interpreted as the slope of the line

representing mixtures of the risk free asset and the asset in question. Investment opportunities

are thereby made comparable to each other, since the same volatility can be reached by

either leveraging one or mixing the other asset with the risk free asset. The asset with

higher Sharpe Ratio will thus yield a higher expected return. The Downside Deviation Ratio

works similarly, only that Downside Deviation (eq. 1) is used as a measure of risk. We

will use these measures to assess the performance of the trader’s portfolio and to provide
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reinforcement. Since we do not know the true values of E
[
r(T)

]
and σ

(
r(T)

)
, we approximate

these values using the exponential moving averages

An := An−1 + η (rn − An−1)

Bn := Bn−1 + η
(
r2

n − Bn−1

)
.

For a small adaptation rate η > 0, we obtain the estimator

ŜRn(η) :=
An − r f

(Bn − A2
n)

1
2
.

Observe, that setting η = 1
n results in the standard moment estimates and the above estimate

for the Sharpe Ratio is asymptotically unbiased. This can be transformed into an incremental

performance function by Taylor expansion:

ŜRn(η) = SRn−1(η) + η
d

dη
SRn(η)

����
η=0
+O(η2).

We therefore maximize

DSRn :=
d

dη
SRn(η)

����
η=0
=

Bn−1∆An −
1
2 An−1∆Bn(

Bn−1 − A2
n−1

) 3
2

.

This term was named the Differential Sharpe Ratio (DSR) by Moody et al. [Moody and

Wu, 1997]. The main drawback of this performance function is, that it penalizes both

extraordinarily high and small returns. In fact [Moody and Saffell, 2001] note that the DSR

is maximized by R∗n =
Bn−1
An−1

. This may not be an optimal feature for training. In contrast, the

Downside-Deviation-Ratio (DDR)

DDRn :=
E[rn] − r f

DDn
, (1)
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where DDn := E1/2 [
min (Rn − h, 0)2

]
with an investor specific expectation h ≥ 0, only

views the negative deviation from the mean as risk, leaving the agent free to collect arbitrarily

large returns. We may again use exponential moving averages

An := An−1 + η (rn − An−1)

D2
n := D2

n−1 + η
(
min (rn − h, 0)2 − D2

n−1

)
to arrive at an incremental update

DDDRn :=
d

dη
DDRn(η)

����
η=0
=


rn− 1

2 An−1

D3
n−1

, rn − h > 0

D2
n−1(rn−

1
2 An−1)− 1

2 An−1r2
n

D3
n−1

, rn − h ≤ 0

which we may use as reinforcement as mentioned in Section 3.2.

Table 1. Summary of economic data used in the experiment.
Data Type Source Period Interval Use
S&P500

Price Index (ˆGSPC) Yahoo Finance 1950-01-01 / 2019-04-01 monthly log-returns

AAA Corporate
Bond Yield FRED 1919-01-01 / 2019-03-01 monthly 6 month difference

10 year Treasury Rate FRED 1953-04-01 / 2019-03-01 monthly Yield Curve

3 month Treasury
Bill Rate FRED 1934-01-01 / 2019-03-01 monthly

Yield Curve,
6 month difference,

risk free rate

Table 2. Summary of data partitions.
Set Size (months) Purpose

Offline Training 240 Training the randomly initialized traders independently of
each other over muliple epochs.

Online Validation 200 Validation of the trained models. Tuning of the hyperparameters
and detection of overfitting.

Online Test 330 Testing and comparing the models on untainted data.
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5. EXPERIMENTAL DESIGN

We compare 30 agents maximizing returns, the Differential Sharpe Ratio and the

Differential Downside-Deviation-Ratio (DDDR). The algorithm was implemented in

TensorFlow (version 1.12.0) and run on Google Colaboratory using Tensor Processing Units

(TPUs). The analysis of the results was performed using R and Microsoft Excel. Each

agent was randomly initialized using a single tanh-Neuron and trained with total of 86

inputs over a total of roughly 66 years of data. The inputs were standardized using estimates

of the maxima and minima which were estimated using the first few observations and a

heuristic based on extreme value theory. This allows for true online optimization without

incorporating knowledge of future data points whatsoever. Furthermore, we used a total

of 791 months of data (note that we used a moving time window of 21 months as inputs).

Macroeconomic data was lagged by one month to account for reporting. The data set was

split into 3 disjunct subsets as seen in Table 2. The algorithm was then trained offline

using an ADAM-optimizer for the first 20 years of data over 100 to 500 epochs and then

compared while using online Stochastic Gradient Decent for the validation period of 200

months. The remaining data remains untouched for out of sample testing to prevent data

snooping [Sullivan et al., 1999]. Transaction costs were fixed to 0.5% and the model eights

were randomly initialized. We regularized the weights to prevent overfitting and saturation.

Contrary to previous works [Moody and Saffell, 2001], we found that L1 regularization

performed uniformly best. This seems plausible since it is more likely to produce parameters

which equal zero and it can therefore also be used for variable selection [Tibshirani, 1996],

which could be beneficial because some of the parameters may be insignificant and should

be discarded for out-of-sample application. Hence, using L1-regularization may have similar

effects to applying a filter to the inputs. For each objective function, we trained 30 models

(traders) to test for consistency. We found that the parameters in Table 3 yielded the most

promising results. We chose a small adaptation rate η for the Differential Downside Deviation

Ratio since the denominator can vanish if we adapt too quickly to a series of returns, which
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lie above the expectation h. In contrast, quick adaptation is beneficial for the optimization

of the Differential Sharpe Ratio since it becomes maximal for R∗n =
Bn−1
An−1

as noted in 4.2.

Moment estimates and An and Bn, which do not adjust “quick enough” may therefore reduce

the likelihood of or slow the convergence to positive results.

Table 3. Summary of parameter values used.

Utility of Trader Reg. type Reg. Coeff. η epochs
Differential Sharpe Ratio (DSR) L1 0.01 0.08 100
Differential Downside Deviation Ratio (DDDR) L1 0.025 0.001 500
Return L1 0.005 - 500

6. RESULTS AND DISCUSSION

In this section, we will observe and analyze findings made during the validation

phase. Afterwards, we will compare these to the results yielded by the test phase. Here

we will compare two different approaches. Firstly, we will initialize the weights of the

traders with the weights at the end of the validation period. Then we will compare the

results with those of the same model using both the training and the online-validation set for

offline-training (using the same parameters as established during validation).

6.1. FINDINGS DURING VALIDATION

A surprising result was that the Return-Trader performed most consistently during

validation and resulted in the highest terminal value as visible in Figure 2. It is worth pointing

out that all 30 Return-Traders also converged to a similar policy, which yields the degenerated

box-plot. Both the DSR-Trader and the Return-Trader significantly outperformed the market

over this period. This result is especially pleasing due to use of few and freely available

macroeconomic data-series.
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Figure 2. Comparison of the traders utilizing different performance functions. The buy-
and-hold portfolio is represented as the red line and serves as a baseline. All portfolios are
standardized to 100 at the beginning of the validation phase.

(a) Comparison of the traders utilizing differ-
ent performance functions. The buy-and-hold
portfolio is represented as the red line.

(b) Comparison of the picked traders utilizing dif-
ferent performance functions. The buy-and-hold
portfolio is represented as the red line. Accord-
ing to our observation, we select the traders in
each category which lie close to the top 10%
quantile of Terminal Value during the Validation
phase. The number of remaining traders is given
on the x-axis.

Figure 3. Comparison of the a) traders utilizing different performance functions and b) the
traders picked during validation.

6.2. FINDINGS DURING ONLINE TESTING

We observe that the Return-Traders continued to perform best on average. This

can partly be explained by a lower trading frequency of the Return-Traders. Generally, the

results of our Testing phase without retraining resemble those found during our Validation

phase (compare Figure 3a and Figure 2). Contrasting our findings during validation, it
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seems that the higher returns of the DDDR-Traders where purchased by more then the

proportional amount of standard deviation as the Sharpe Ratio falls below the market’s one.

Again, the Return-Traders incurred a reduced Maximum Draw Down. We notice however,

that the observed statistics of the DDDR-Traders are widely spread out, as seen in Figure

3a. It turns out that they are bimodally distributed, with some traders performing very

well and other doing badly. It is noteworthy that the terminal value on the test data of the

DDDR-Traders shows a correlation of about 0.92 with those during validation. All traders

which performed poorly during validation also performed poorly or mediocre during the test

phase. Furthermore, all the DDDR-Traders performing exceptionally during the validation

phase also did exceptionally well during testing. Thus, it seems that trader selection during

validation could boost the overall performance. The traders utilizing the Differential Sharpe

Ratio and Returns seem less effected. This may have to do with a lower range of terminal

values. The results of picking the traders that perform close to the top 10% quantile in their

category can be seen in Figure 3b.

Figure 4. Comparison of the retrained traders utilizing different performance functions. The
buy-and-hold portfolio is represented as the red line. DDDR [1k] refers to the DDDR-Traders
with a total of 1000 training epochs.

We observed similar findings with the retrained model (now trained on the training

and validation set). We conclude that the online optimization of the traders is either well

at work or that no significant structural change was found. The Return-Traders benefited
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the most from the extended training period, whereas the DSR-Traders remained largely

unchanged and the DDDR-Trader became less profitable, although further training of another

500 epochs drastically improved profitability as seen in Figure 4.

7. CONCLUSION

We have shown that both the DDDR-Traders, optimizing the Differential Downside

Deviation Ratio, and the Return-Traders outperform the S&P500 over a time window of

roughly 19 years. These results are enhanced when incorporating knowledge from the

Online-Validation phase and selecting the Traders that performed close to the upper 10%

quantile in their category. It is noteworthy that little and only freely available macroeconomic

data was used to yield these results, which shows the power of the algorithm. Given that the

Return-Traders perform the most consistently and also perform relatively well in the risk

assessments, we conclude that for this data less is more, and the direct avoidance of negative

returns and seeking maximal positive returns does better than incorporating risk. However,

there could be multiple explanations for this effect. On one hand, the risk estimates may not

have statistical significance in our case and may therefore lead to “confusing” reinforcements

for our agents. On the other hand, we may require more inputs to effectively optimize these

more complex performance functions. On limited data, there is less risk of overfitting when

learning a simpler function.

The stated results should, however, be taken with a grain of salt. It is not assured that

the method would perform this well if employed in actual capital markets. Firstly, only past

prices can be observed. It merely monitors the price at which the last transaction took place

and it is not guaranteed that the system will be able to transact at the closing price. When

trading, one must deal with bid-ask spreads which are assumed to be represented in the 0.5%

transaction cost. When trading larger positions, this assumption may be problematic as one

may incur larger slippage costs. Furthermore, breaking up orders and execution over time

exposes oneself to unaccounted market risks. Secondly, the structure of capital markets
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may have changed. Third, it is not clear that the analyzed employed risk measures actually

measure risk adequately. Risk lies in the future but we use metrics which rely on past data in

the evaluation. This effects the trading system less than the evaluation presented here, since

the reinforcement functions penalize future (incurred) risk. Moreover, the shift to automated

trading may already be capturing the alpha which is observable in the past, hence leaving

less of a profit opportunity.
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SECTION

4. FURTHER OBSERVATIONS

While analyzing the results, we made additional observations, which were not

published in Section 6 of the paper. During validation, we observe in Figure 4.1 that the

Return traders trade the least, closely followed by the DDDR traders. Further, the general

pattern of asset allocations of the Return and the DDDR traders is largely similar. However,

the DDDR traders seem to converge to two different optima (the yellow curve contains

far more short positions then the others). In comparison, the DSR traders seem to have

converged to a common policy, which is by far more noisy and indecisive. These findings

are reflected in the overall developments of the portfolios. The return traders do best, closely

followed by the DDDR traders, wheras the DSR traders are outperformed by the market and

show a similar performance to the t-bill portfolio.

(a) Portfolios and actions of
30 Differential Sharpe Ratio
traders.

(b) Portfolios and actions of 30
Differential Downside Deviation
Ratio traders.

(c) Portfolios and actions of 30
Return traders.

Figure 4.1. Comparison of the portfolios and positions of 30 recurrent reinforcement learner
traders employing (a) the Differential Sharpe Ratio, (b) the Differential Downside Deviation
Ratio and (c) returns as reinforcement. In the upper graphs, the blue dotted line represents
the market portfolio and the red dotted line represents a portfolio of reinvested t-bills. The
faint lines represent a trader each. Below, the asset allocation of the different traders is given.
All data is from the validation period.
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One could argue, that the box plots (Figure 2 - Figure 4), which presented in the

paper, contain limited information regarding the risk involved in investing in these portfolios.

A general issue is that all traders were trained on the same data and therefore they are not

independent from each other. Given the setup of the experiment, there is little we can do to

avoid this problem. Another problem, however, arises from only considering the terminal

values and the risk factors and the end of the presented time horizons. This neglects the path

of arriving at these values, which might have been more or less volatile across different time

frames. Hence, we present histograms of 24-month investments in the different strategies

during the validation phase in Figure 4.2. These confirm the observations we made in the

paper on basis of the presented box plots (Figure 2).

(a) Distribution of 2 year returns
for the different traders.

(b) Distribution of 2 year Sharpe
Ratios for the different traders.

(c) Distribution of 2 year Down-
side Deviation Ratios for the dif-
ferent traders.

Figure 4.2. Histograms giving the distributions of (a) returns, (b) Sharpe Ratio and (c)
Downside Deviation Ratio over a random 2-year investment in the presented portfolios
during validation. Notably, the observations are not independent. The traders were trained
on common data and there is 23-month-dependence since there may be up to a 23-month
overlap in observations. The blue curves indicate a kernel density estimate and the vertical
red lines give the location of the estimates of the distribution means.
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