Interstate Route 95 : Location and Economic Study : Portsmouth, New Hampshire-Kittery, Maine (Summary Report)

Wilbur Smith and Associates

Follow this and additional works at: http://digitalmaine.com/interstate_95

Recommended Citation

Wilbur Smith and Associates, "Interstate Route 95 : Location and Economic Study : Portsmouth, New Hampshire-Kittery, Maine (Summary Report)" (1962). Interstate 95 Historical Collection. 1.
http://digitalmaine.com/interstate_95/1

Location and Economic Study

INTERSTATE
 PORTSMOUTH
 NEW HAMPSHIRE

 ROUTE 95KITIERY
MAINE

SUMMARY REPORT

Withar Smith and Asooaides

ACKNOWLEDGMENT OF TECHNICAL ASSISTANCE

In addition to the assistance and cooperation given by federal, state and city officials, and other public bodies, acknowledgment is made of the technical advice and assistance of the following:

BRIDGE ENGINEERS

HARDESTY AND HANOVER Consulting Engineers 101 Park Ave
New York, New York

RIGHT-OF-WAY APPRAISERS

MR. JOHN L. HYDE
Appraiser
6 Columbus Avenue Concord, New Hampshire
MR. JEROME KNOWLES, JR. Appraiser
Jerome Knowles Junior Associates Northeast Harbor, Maine

Location and Economic Study

Interstate ROUTE 95

PORTSMOUTH
 NEW HAMPSHIRE

KITTERY

MAINE

[^0]MAINE STATE HIGHWAY COMMISSION
AND
LEGISLATIVE RESEARCH COMMITTEE 100th LEGISLATURE

Commission

- David H. Stevens-Chairman

Perry S. Furbush-Member
R. Leon Williams-Member

Vaughan M. Daggetf-Chief Enginee
Charles A. Whitten-Bridge Engineer
Ralph H. Sawyer-Planning and Traffic Enginee
Vaughn B. Everett-Assistant Bridge Design Engineer, Study Liaison Engineer

Legislative Research Committee

Senate

Hollis J. Wyman, Milbridge
William R. Cole, Liberty
Dwight A. Brown, Ellsworth
Norman K. Ferguson, Hanover
James S. Erwin, York
Robert A. Marden, Waterville
James S. Stanley, Bangor

House

Vinal G. Good, Sebago
Harold Bragdon (Chairman), Perham
Richard N. Berry, Cape Elizabeth
John L. Baxter, Jr., Pittsfield
Bradford S. Wellman, Bangor
David J. Kennedy, Milbridge
Gilman B. Whitman, Bryant Pond
Sidney D. Maxwell, North Jay

NEW HAMPSHIRE DEPARTMENT OF
 PUBLIC WORKS AND HIGHWAYS

AND
LEGISLATIVE INTERIM STUDY COMMITTEE

Department

John O. Morton-Commissioner
Robert H. Whitaker-Deputy Commissioner and Chief Engineer
John T. Flanders-Assistant Commissioner
Revel W. Webb-Assistant Chief Engineer
Bernard H. Langley-Bridge Enginee
Frederick M. Aver-Planning and Economics Engineer
George W. Harris-Assistant Planning and Economic Engineer, Study Liaison Engineer

Legislative Interim Committee

```
Andrew Jarvis, Governor's Councilor from the Second District
Senator Cecil Charles Humphreys, Member, New Hampshire Port Authority
Senator Thomas C. Dunnington, Chairman Senate Public Works Com mittee
Representative Robert L. Galloway, Sr., Chairman House Public Works Committee
Dr. James J. Powers, Member, Maine-New Hampshire Interstate Bridge Authority
Clayton E. Osborn
James R. Kelly
John O. Morton, Commissioner, Chairman
Robert H. Whitaker, Deputy Commissioner
```


BUREAU OF PUBLIC ROADS

John A. Swanson-Regional Engineer
Robert D. Hunter-Division Engineer, Maine
John P. McAllaster-Division Engineer, New Hampshire
Robert E. Johnson-Regional Planning and Research Engineer
Ray E. Pomeroy, Jr.-Planning and Programming Engineer, Maine
Leon F. Walker-Planning and Programming Engineer, New Hampshire

IN BRIEF...

Improved highways, more leisure time, and a generally higher standard of living have served to enhance the position of upper New England as a major recreational region. The resultant acceleration in tourist activity, coupled with sharp upturns in commercial and industrial development, have produced substantial growth in the area's traffic volumes.

The cities of Portsmouth, New Hampshire, and Kittery, Maine, are centered in the principal coastal traffic corridor to upper New England and Canada. Because of their dual role as gateway to the region and market center for a large area, the impact of the increased travel has been keenly felt. Heavy streams of traffic are funneled through the area via U. S. Routes 1 and 4 and Interstate Route 95.
To cross the Piscataqua River separating Portsmouth and Kittery, this traffic must use one of two bridges Memorial Bridge, a two-lane toll-free structure built in the

1920's to serve U. S. Route 1, or the Maine-New Hampshire Interstate Toll Bridge built in 1950, connecting the New Hampshire and Main Turnpikes (both now designated as Interstate Route 95).

Traffic over the Interstate bridge has increased markedly in recent years, especially during the summer months. Daily traffic over this facility in July, 1962, averaged 24,000 vehicles; over Memorial Bridge, the

total was 19,400 . For the entire year, average annual daily traffic on the Interstate Bridge is 14,000 and on the Memorial Bridge, 17,000.

During peak traffic periods, the existing 30 -foot wide Interstate bridge is sometimes operated as a three-lane facility. The lift bridge must be opened frequently for passing boats, with the result that vehicles are often backed up for more than a mile in each direction on the bridge approaches. While bridge openings average only three per day, each of about 10 minutes duration, the frequency of openings is greatest in summer and on weekends when highway travel is heaviest. It is estimated that as many as 5,000 vehicles are delayed on a busy summer
weekend day - 15 to 20 per cent of the total daily volume.
Although existing traffic conditions are bad, anticipated future movements dwarf present volumes. By 1985, trans-river trips in the area should average 67,500 daily - a 122 per cent increase over the total of 30,400 Trips in $1961 .{ }^{1}$

Problems stemming from the growing traffic volumes and plans to extend Interstate Route 95 through the Portsmouth-Kittery area necessitated a thorough engineering and economic study to determine the best means for locating, constructing, and financing a crossing over the Piscataqua River.

[^1]

> Numerous separate but related investigations and analyses were undertaken during the year-long study. These included:

Comprehensive origin-destination surveys.

Analysis of supplemental traffic volume data.

- Field reconnaissance and capacity studies.

Location studies involving all physical factors affecting the feasibility of eight possible alignments. The three most feasible of these were studied in detail.

Development of cost estimates for the three selected routes, including costs of right-of-way as estimated by qualified appraisers.

Detailed economic impact investigations, including economic comparisons, conventional benefitcost studies, comparative cost estimates, and impacts on land use.

Comparative analyses of toll financing versus financing with 90 per cent Federal Interstate highway funds.

In addition, noted bridge authorities (Hardesty and Hanover, consulting engineers, New York City) were consulted relative to design of the bridge itself, following criteria prescribed by the U. S. Bureau of Public Roads and the Maine and New Hampshire highway departments.

Three alternate locations for the proposed Interstate Route 95 river crossing and its approaches were developed. Consideration was given to traffic service, topography, culture, land use, and navigational requirements. Design criteria were established and feasible alignments and profiles prepared. Particular attention was given to the bridge location, navigational clearances, comparative bridge costs, functional design and cost of major interchanges, right-of-way acquisition and construction costs.

All of the routes studied begin about 3,500 feet south of the traffic circle in New Hampshiire and terminate on the north near the toll booth locations on the Maine Turnpike.

- Alternate A, about one half mile upstream from the present route, extends from the New Hampshire Turnpike south of its present terminus in a northerly and northeasterly direction, west of the present Interstate bridge approaches and south of Kearsarge Way to a proposed interchange with the Maine Turnpike and U. S. Route 1 in Kittery. Major interchanges are proposed with U. S. Route 4 (Spaulding Turnpike) and Bypass U. S. Route 1 (present Interstate bridge) in Portsmouth, Maine Route 236, and U. S. Route 1 in Kittery. The crossing of the river will be on a high-level bridge, providing a vertical clearance of 130 feet above mean high level.
- A second location for the Interstate connector, Alternate B, proposes interchanges at the same
locations as on Alternate A. The approaches to and the main span over the river would, however, be immediately west of and closely parallel to the present Interstate bridge. A lift bridge will be required.
- The third location, Alternate C, utilizes the present Interstate bridge right-of-way in New Hampshire. Northbound traffic would use the existing right-of-way in Maine and southbound traffic would use a separate right-of-way immediately west of the present Interstate bridge alignment. Since this location pre-empts the present location of Bypass U. S. Route 1, additional interchanges with the local street system would be required between the major interchanges near the southern and northern extremities of the route section.

A location (Alternate A) north of the existing Maine-New Hampshire
Interstate Bridge was selected for Interstate Route 95 through Ports-mouth-Kittery area because it affords the maximum benefits for current and projected 1985 conditions:

TRAFFIC SERVICES

NAVIGATION
ECONOMIC IMPACT

DEVELOPMENT COSTS
FINANCING

LEGEND
1961 ANNUAL AVERAGE DAILY TRAFFIC VOLUMES 1985 ANTICIPATED ANNUAL AVERAGE DAILY TRAFFIC VOLUMES

ALTERNATE ROUTES
Wilbur Smith and Associates

> The relative advantages and disadvantages of the alternate route locations are presented in the summary table．Alternate A，the upstream high－level bridge， excels in just about ALL areas of comparison：
＊Alternate A is the shortest of the three alignments studied．
＊Estimated cost of development on this location would be over $\$ 6,600,000$ less than the two alter－ nate schemes．
＊Service for through traffic would be better with Alternate A．

漛 There would be no delays for bridge openings． However，such delays would occur on either Alter－ nate B or C．

素 Local traffic service with Alternate A would be identical with that provided by Alternate B，and considerably more favorable than that provided by Alternate C．
＊Considering the design controls of route termini， topography，and the present development of the area－a quite moderate displacement of existing dwellings and businesses would be required．While Alternate A would require the taking of more resi－ dential dwellings，it would be less disruptive to service stations and other commercial buildings． The public information building in Maine would not be disturbed although the weight station serv－ ing southbound traffic in Maine would have to be relocated．
＊River navigation and development would be better with development of Alternate A than either of the other alternates．
＊Access to key military installations would be im－ proved by development of the Alternate A align－ ment．

畨 The impact on restaurant and motel sales would be slight with all alternates．While service station sales would be affected more by Alternate A than Alternate B or C，the volume of sales should be equivalent to present levels within five years after the highway improvement is completed and opened to traffic．In subsequent years，normal traffic growth and new land use developments would result in substantial increases in sales at all business establishments along the Interstate Bridge ap－ proaches．
＊All alternates were developed for high design standards．Under the recommendations，it would be necessary to relocate the toll plazas on the Maine Turnpike to maintain high standards of design and to provide good traffic services．
＊Accessibility to the Portsmouth－Kittery area would be improved with the Alternate A alignment；this should increase the development of customer mar－ kets and make the area inviting for commercial－ industrial growth．

Total development cost estimated for Alternate A would be $\$ 13,587,000$, divided between the two states.

In Maine, about $\$ 975,000$ of construction costs would probably be ineligible for Federal participation unless the legislature amends the statutes relating to the Main Turnpike Authority, to provide that the turnpike become toll-free after payment of the turnpike's indebtedness.

* If a toll-free facility is constructed, New Hampshire's share of construction costs would approximate $\$ 750,000$. Maine's share would vary from $\$ 620,000$ to about $\$ 1,500,000$, with the amount contingent upon the extent to which approaches to the Maine Turnpike are eligible for financing under the Interstate highway program.

It is recommended that the route be developed on the Alternate A alignment, with a high-level fixed-bridge over the Piscataqua River. This route provides a higher quality of traffic service for both through and local motorists, could be constructed at considerably less cost, would not have a significant adverse impact upon the roadside businesses presently located along the Interstate Bridge approaches, and would create greater opportunities for new development.

COMPARISON OF ALTERNATE LOCATIONS

Interstate Route 95 - Portsmouth, New Hampshire and Kittery, Maine

Alternate B, Central Location
New Hampshire Maine Total

Alternate C, Eastern Location

Alternate C, Eastern Location		
New Hampshire	Maine	Total
2.24	2.24	4.48
2.12	2.24	4.36

37.4

Very Good: No marginal interference Good: Some marginal interferencéá from frontage roads or intermediate ramp connections; some delays due to bridge openings.

Good: Through traffic diverted to new bridge; Interstate Bridge available for local motorists; no decrease in access points to Interstate Bridge required.

Adequate: Low-level lift bridge provides adequate horizontal (225 ft. min .) and vertical (135 ft . open; 36 ft . closed) clearances.

Undesirable: Prolongates narrow channel of present Interstate Bridge; close proximity to Interstate Bridge makes navigation difficult.
due to extensive frontage roáds and some intermediate ramp connections; some delays due to bridge openings. © $\}$
Fair: Local traffic intermixed with through traffic; number of present access points to Interstate Bridge eliminated.

Adequate: Low-level lift bridge provides adequate horizontal (225 ft . min .) and vertical (135 ft . open; 36 ft . closed) clearances.

Undesirable: Prolongates narrow channel of present ${ }^{\circ}$ Interstate Bridge; close proximity to Interstate Bridge makes navigation difficult.

COMPARISON OF ALTERNATE LOCATIONS (Continued)

$\xlongequal{\circ}$ Item \quad| Alternate A, Western Location |
| :---: |
| New Hampshire Maine Total |

Functional Design
 Mainline Roadways

Estimated Costs (Thousands of Dollars)
Right-of-Way_\$ 550 \$ 165 \$ 715

Construction
(1) EPiscataqua River Bridge-_

2,117	3,033	5,150
1,404	1,313	2,717
$\frac{3,368}{}$	$\frac{1,637}{}$	$\frac{5,005}{}$
$\$ 7,889$	$\$ 5,983$	$\$ 12,872$
7,439	$\$ 6,148$	$\$ 13,587$

Alternate B, Central Location
New Hampshire Maine Total

Alternate C, Eastern Location	
New Hampshire Maine Total	

COMPARISON OF ALTERNATE LOCATIONS (Continued)

The feasibility of revenue financing of the different alternates was examined. It appears that such financing could be used IF tolls are retained on the existing Interstate bridge, IF bond obligations are effected for a 40-years period, IF costs of toll collections and operations are added to the usual maintenance and operating costs, IF a 10-cent per axle toll schedule is applied, IF financing costs (including an interest rate of approximately 4.75 per cent) are added to other costs, and IF all motorists using the two bridges are delayed for the collection of tolls.

IT IS RECOMMENDED THAT INTERSTATE ROUTE 95 THROUGH THE PORTSMOUTH-KITTERY AREA BE CONSTRUCTED ON THE ALTERNATE A LOCATION, WITH A HIGH-LEVEL BRIDGE OVER THE PISCATAQUA RIVER, AND THAT CONVENTIONAL FEDERAL INTERSTATE HIGHWAY FUNDS BE USED IN FINANCING.
+a).
(9) 0
e)

00
0.

AND ASSOCIATES

[^0]: This report summarizes the findings and recommendations of a comprehensive engineering and economic study relating to the proposed Interstate Route 95 bridge over the Piscataqua River. Location, construction, and financial aspects of this crossing are elaborated in the detailed 164. page report.

 By
 Wilbur Smith and Associates
 NOVEMBER, 1962

[^1]: ${ }^{1}$ The future traffic estimates assume a toll-free facility.

