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Abstract 

 

This research presents an operational framework to assess organizational 
Spatial Data Infrastructures (SDIs) from a risk perspective to develop a stable 
SDI. The core of the framework is constructed based on a survey, fuzzy inference 
system and cluster analysis, providing quantitative indicators to measure and 
prioritize the risks to SDI. This framework could mainly contribute to identifying, 
mitigating or avoiding the potential risks of different aspects of an SDI, such as 
spatial data and information, organizational and technological aspects. 
Additionally, it could be considered as an approach that supports multi-view SDI 
assessment framework toward a more comprehensive assessment of SDIs. A 
prototype implementation to assess and prioritize the risks of the spatial data and 
information demonstrates the framework merit, flexibility and usability for 
assessing the risks of SDI initiatives at different levels, such as organizational, 
local and national levels; however, the risks and SDIs change over time; thus, the 
development of stable SDI initiatives depends on a continuous process for coping 
with the risks. 
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1. INTRODUCTION 

Over time, Spatial Data Infrastructures (SDI) assessment activities have 
increased significantly, resulting in the development of many assessment views 
to assess SDIs. The most important activities performed in this respect include 
examining the eleven national initiatives as the first generation of national spatial 
data infrastructures (Masser, 1999), the survey of the worldwide status of 
clearinghouses (Crompvoets and Bregt, 2003), the study of the organizational 
aspects of SDI (Kok and Loenen, 2005), the assessment of the SDI readiness 
index (Delgado et al., 2005), measuring SDI performance (Giff and Crompvoets, 
2008), multi-view assessment framework (Grus et al., 2010) and an online self-
assessment methodology for SDIs (Giff and Jackson, 2013). Though the efforts 
of these authors and the SDI community are commendable, it seems that those 
efforts ignore assessing SDIs from a risk perspective, which contributes to 
developing stable infrastructures that operate in normal and abnormal conditions 
and is also considered to be a very important task of the managerial process of 
every complex system, such as transportation, communication or information 
systems. In the case of SDIs, de Man (2008) argues that the assessment of SDIs 
is non-trivial for a number of reasons. First, the concept is ambiguous, and its 
understanding requires cross-disciplinary research. Moreover, SDIs are multi-
faceted and have a reciprocal (dual) relationship with their (societal) context. 
Finally, the assessment itself, including that of SDIs, is non-trivial, as the general 
evaluation and assessment discourse clearly demonstrate that the development 
of stable SDI initiatives has to cope with risk (de Man, 2008). The literature 
reviews clearly indicated that there is an information gap regarding the availability 
of the operational assessment framework to assess risks to SDIs (risk-based 
study); also, little is known regarding how to incorporate the risk concept into SDI 
assessment. Therefore, the main objective of this research is to develop and 
introduce a practical framework to assess the risks of an SDI at the 
organizational level. It is expected that the proposed risk assessment framework 
raises SDI resiliency and stability, namely, the ability of SDIs to maintain their 
functionality and processes after experiencing changes in policies, technology, 
the environment and so forth. The results could contribute 1) to identifying SDI 
initiatives’ strengths, weaknesses and threats so that by planning for unexpected 
events, decision makers can be ready to respond if they arise; 2) to ensuring the 
SDI initiative's success through the process of identifying, mitigating or avoiding 
potential risks to SDIs; and 3) to broadening the knowledge of the SDI community 
in the context of SDI risk assessment as a novel methodology to assess SDIs. 

Risk is defined as the probability of a particular critical infrastructure’s 
vulnerability being exploited by a particular threat weighted by the impact of that 
exploitation (Axelrod, 2003). In the context of SDI, the vulnerabilities include not 
only the damage to the SDI itself but also the harm to all those who rely on the 
SDI. The SDI risk assessment could be mainly conducted to identify what the 
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risks (possible obstacles) are and then establish a prioritization of these risks to 
concentrate on the serious concerns. In the risk assessment process, the 
methodology of calculation of risk and the comparison of risks to determine the 
priorities play an important role. Two factors, including the probability of 
occurrence and impact, are introduced as factors affecting the risk. However, the 
concept of risk is noticeably wide. It can refer to financial, organizational, security, 
technology and other types of risk; finding a pattern or mathematical relation 
between the affecting factors and the value (level) of the risk seems to be 
impossible for researchers (Jasbi and Khanmohammadi, 2009). Thus, based on 
the literature review, the judgment and knowledge of experts can help to 
determine the level of risk and to find suitable solutions for risk management. As 
the literature review shows, there are different methods for analyzing and 
evaluating experts' judgments in assessing risk. After analyzing the advantages 
and disadvantages of every method, it seems that no theory is perfect; however, 
the fuzzy logic model was chosen to assess SDI risks because this model is 
more objective and suitable for the risk analyses of highly dynamic systems such 
as SDIs, whereas other approaches are often impractical and cannot be used 
with the non-accurate inputs obtained from experts' opinions. Therefore, a 
practical framework based on the fuzzy logic model is proposed in this paper to 
assess the risks to organizational SDIs.  

This paper is organized as follows: the second section provides some basic 
concepts regarding the experts' judgments evaluation methods, fuzzy logic model 
and cluster analysis. Section 3 develops an organizational SDI risk assessment 
framework. Section 4 explains an application of the proposed framework, with an 
emphasis on spatial data and information possible risks; Section 5 discusses the 
conclusions and recommendations of the research. 

2. BASIC CONCEPTS 

This section provides some basic concepts in the context of the different methods 
of analyzing and evaluating experts' judgments, fuzzy logic principles and cluster 
analysis theory to support the framework and methodology of the research.  

2.1. The Experts' Judgments Evaluation Methods  

As mentioned earlier, the judgment and knowledge of experts can be used to 
determine the level of risk based on different methods. A number of those 
methods include statistical methods (Orabi 2003), the matrix method (KarimiAzari 
et al., 2011), decision trees (Sherali et al., 2008), artificial neural networks 
(Angelini et al., 2008), sensitivity analysis (Mokhtari and Christopher, 2005) and 
fault trees (Abdelgawad and Fayek, 2010), Monte Carlo simulation (Sadeghi et al, 
2011) and fuzzy logic models (Dikman et al., 2007).  
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Statistical methods are fast and easy to use; however, they require numerical 
data and cannot address imprecise and vague data, which is common in risk 
assessments. The matrix method is another technique that is simple and 
adjustable to fit any project. However, it prioritizes the risks based on a very 
subjective and inaccurate approach. The third technique is the decision tree 
method, which is flexible and based on the probability and impact of risks; 
however, its application depends on the availability of historical data. Another 
technique is Monte Carlo simulation (or probability simulation), which is used to 
understand the impact of risk and uncertainty in financial, project management, 
cost, and other forecasting models. Additionally, it can simulate real results 
based on the probability functions, but it requires a huge amount of data, and 
most importantly, its estimation of the risks is inaccurate. Another technique is a 
sensitivity analysis, which provides the possibility to rank risk items based on 
their significance; however, it suffers from the lack of an indication of the overall 
risks in the project. The fault tree technique is another method that can identify 
the root causes of risk items, but it is unable to define the importance of weights 
for the experts. The artificial neural network is another method that is used to 
quantify risks. It has been applied to identify the most common risk factors in 
infrastructure projects and presents a tool to predict the possible cost of risks; 
nevertheless, it requires historical data. The last technique used to assess risk 
items is fuzzy logic. The term fuzzy logic was introduced by Zadeh in 1965; it is a 
form of many-valued logic in which the truth values of variables may be any real 
number between 0 and 1. It has been applied to many fields, from control theory 
to artificial intelligence. Fuzzy logic provides a clear methodology to aggregate 
experts’ opinions linguistically and also incorporates experts’ qualifications. 
Moreover, fuzzy logic can calculate using non-accurate and vague data; 
therefore, the assessment does not rely only on data that can be exactly 
measured. The fuzzy approach is suitable for assessing highly dynamic systems 
where there are regular changes in the values of input data (Bok et al, 2012). The 
main disadvantage of this method is related to the problem of the execution of 
the arithmetic procedure. Moreover, depending on the conjunction, disjunctions, 
implications and defuzzification choices, many different fuzzy system 
configurations may arise in practice. 

2.2. Fuzzy Inference System 

The fuzzy logic process is defined by a number of names, such as the fuzzy logic 
model, the fuzzy expert system, the fuzzy rule-based system, the fuzzy system 
and the Fuzzy Inference System (FIS), in which the crisp input is first converted 
to a fuzzy set (fuzzification), and then an inference engine, using the knowledge 
in the form of fuzzy rules contained in a rule-base, computes the output of each 
rule. These outputs are subsequently aggregated and converted to a crisp 
number (defuzzification). Figure 1 shows the structure of a fuzzy inference 
system. 
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Figure 1: Structure of a Fuzzy Inference System 

 

As figure 1 depicts, a fuzzy inference system addresses linguistic variables. The 
linguistic variable is a key concept and is defined as a variable whose values are 
words or sentences in natural or artificial languages. Every linguistic variable can 
have values in word form, which are called terms or labels of linguistic variables. 
To illustrate the concept of linguistic variables, we consider the word risk, which 
cannot be characterized precisely and is described approximately in natural 
language. Here, the risk is called a linguistic variable, whose values can be 
words (terms) such as very low, low, moderate, high and very high. The terms of 
linguistic variables are defined by appropriate membership functions or fuzzy sets, 
such as triangular, trapezoidal, Gaussian or bell-type shapes. Moreover, the rules 
play an important role in the fuzzy logic model. A rule composed of two parts, 
including an antecedent (If part) and a consequent (Then part), is used to define 
the relationship between the inputs and outputs of fuzzy inference systems. In 
practice, fuzzy inference systems have dozens of rules, which are combined 
using fuzzy logic operators, such as AND, OR, and NOT. The number of linguistic 
variables and the number of terms of each linguistic variable determine the 
number of possible rules (Zimmermann, H.J., 2010). The construction of the rules 
is implemented based on the experience and knowledge of human experts 
and/or the available literature (Ahadi Oroumieh, A., 2015). 

The inference is also derived from the evaluation of a set of fuzzy rules 
(implication) and then the aggregation of the results of rules for given inputs. 
Typical methods for inference are the Mamdani, Larsen, Tsukamoto, and TSK 
methods (Lee, 2005). Mamdani is the most used method in many applications for 
implication and aggregation processes. The Mamdani method uses the minimum 
(MIN) and MAX-MIN operators for implication and aggregation, respectively. 
Based on the Mamdani method, the fuzzy implications of the individual rules 
using the MIN operator are performed, and the MAX-MIN operator then combines 
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the results of the individual rules to produce one membership function as the 
output.  

2.3. Cluster Analysis 

The results obtained from a fuzzy inference system (the risk scores) need to be 
classified into groups for better understanding, comparison and management. 
The cluster analysis is a statistical classification technique in which cases, data 
(observations), or objects (events, people, things, etc.) are sub-divided 
into groups (clusters) such that the items in a cluster are very similar (but not 
identical) to one another and very different from the items in other clusters 
(Business Dictionary, 2015). There are a number of different methods that can be 
used to carry out a cluster analysis. These methods can be classified as 
hierarchical methods or non-hierarchical methods (K-means clustering methods). 
Hierarchical methods produce a set of nested clusters organized as a 
hierarchical tree and can be represented on a diagram known as a dendrogram 
(the root of a tree consists of a single cluster containing all observations, while 
the leaves correspond to individual observations.). They can be either 
agglomerative, meaning that groups are merged, or divisive, meaning that one or 
more groups are split at each stage. Agglomerative methods are used more often 
than divisive methods. Non-hierarchical methods or K-means clustering aim 
to partition n observations into k clusters, in which each observation belongs to 
the cluster with the nearest mean. In these methods, the desired number of 
clusters is specified in advance, and the best solution is chosen (Tan et al. 2006). 

3. SDI RISK ASSESSMENT FRAMEWORK  

The development of a framework for assessing the risks to SDI is carried out in 
six steps, including the following: (1) identifying the key risks impacting SDI, (2) 
developing assessment criteria and fuzzy linguistic rating scales, (3) rating risk 
factors using a survey, (4) developing a fuzzy inference system, (5) performing 
cluster analysis and (6) implementing a case study to validate the model (figure 
2). The following sub-sections describe each of these steps in greater detail: 
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Figure 2: Steps of SDI Risk Assessment Framework 

 

 

3.1. Identifying Risks to SDI  

Before getting into the subject of risk identification, there is a need to clarify the 
concept of risk in this paper. As the literature review shows, there are many 
obstacles that influence the development, implementation and maintenance of 
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SDIs; many studies have tried to develop a methodology to distinguish these 
obstacles. However, none of them have examined an obstacle of SDI 
development as a risk event. Different definitions of risk can be found in the 
literature. Here, a risk is considered to be an obstacle to SDI development and is 
defined as an event that may possibly occur, and if it did occur, it would have a 
negative impact on the goals of the SDI and the relevant components (spatial 
data and information, access network and so on).  

As figure 2 depicts, identifying risks is the first and perhaps most critical step in 
the SDI risk assessment framework because SDI custodians cannot be expected 
to control the risks they are unaware of. Risk identification is defined as the 
process of finding, recognizing, and describing risks. The risk identification 
process precedes risk assessment and produces a comprehensive list of risks, 
organized by risk category. A comprehensive risk identification of an 
organizational SDI should mainly cover the possible risks to the spatial data and 
information, access network, policies, people, organizational, security and 
financial issues. Although a list of risks will never be exhaustive, it can be the 
focus of attention in the management of risks. 

The techniques that can be used in risk identification are as varied as the 
projects they serve. However, some most common techniques include literature 
review, historical data, expert knowledge and risk questionnaire. The literature 
review and the use of historical data would seem to be easy tasks. However, to 
the authors' knowledge, no attempt has been made to identify and document the 
SDI risks. The only applicable resources include the International Standard 
Organization (ISO) and National Institute of Standards and Technology (NIST) 
standard documents, e.g., ISO/IEC 27005, ISO/IEC 27002, ISO/IEC 27001 and 
NIST Information Security publications, which can be proposed as the most 
important resources. The risk items introduced in these documents were mainly 
used in the information technology area; however, a noticeable number of them 
can be applied in the SDI risks identification process. Expert interviews are an 
especially useful technique in risk identification. A risk questionnaire that includes 
a series of questions can also be applied effectively to identify risk. The objective 
is to obtain straightforward, clear narrative statements describing the SDI risks. 

To make risks manageable, they must be classified. As the literature review 
shows, there is no suggestion for classifying risks of SDI. A general method of 
categorizing risks of SDI could be as operational, financial, organizational, legal, 
policy, cultural and security categories. It is expected that these categories could 
cover the SDI components’ risks (spatial data, policy, people, standards, and 
technical aspects) and contribute to achieving rather comprehensive risk 
categories affecting SDI development.  
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The operational risks are inherent in all infrastructures, systems, processes, 
products and activities. The operational risk category refers to an unexpected 
failure in SDI day-to-day operations. This definition mainly includes human error, 
failures of information systems, software, hardware and the access network, and 
problems related to personnel management, fires, floods and a server/service 
outage. The category of financial risk refers specifically to money issues. The 
organizational, legal and policy categories cover all unwanted events that arise 
from the deficiency or lack of coordination, communication, regulation, vision, 
privacy, access, data sharing and so forth. The security risk category points to 
events that can stem from intentional failure in SDI operations. In most cases, 
attention is paid to the events that impact the access network and spatial data 
and information to protect them from unauthorized use, disruption, modification or 
destruction (information security). The cost of not paying adequate attention to 
the security risks can be, for example, the loss of valuable data (spatial and non 
spatial) or loss of information integrity needed to run an SDI. 

It is worth mentioning that once the risks are identified, an assessment of 
whether a risk is acceptable or it needs to be addressed must be performed. 
Typically this assessment should consider the severity of the impact of the risks 
on the SDI components (data, people, access network, standards, policies and 
financial issues).  

As the impacts of the risks on the SDI have not been adequately addressed, the 
following subjects are presented to give a clear idea of the possible effects. The 
risks may: 

1. Increase the overall cost of the SDI projects in the development, 
implementation and maintenance phases. 

2. Hinder spatial information sharing among organizations. 
3. Lead to a loss of integrity, confidentiality and availability of critical spatial and 

non-spatial information of an SDI. 
4. Cause problems of accessing Geo-portals and resources (data and services). 
5. Lead to a lack of SDI stability. 
6. Impede coordination and cooperation among organizations. 
7. Cause time delays in the development of SDIs. 

The risks with the high severity of the impacts could destabilize societies. For 
instance, when the basic infrastructures of a society (such as, 
telecommunications, energy, transportation, water supply systems, agriculture 
and emergency services), become highly dependent on the reliable functioning of 
SDIs, the risks of SDIs could disrupt the orderly functioning of this society. 
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3.2. Developing Assessment Criteria and Fuzzy Linguistic Rating Scales 

A fundamental activity within the risk assessment process is to define a set of 
assessment criteria. Risk is typically assessed in terms of the probability and 
severity of the impact factors. Probability indicates the possibility that an event 
will occur; the impact or consequence indicates the extent to which a risk event 
might affect the SDI components and its goals. 

Most often, the risk, probability and impact factors cannot be identified 
unequivocally and are considered as vague, imprecise, uncertain, ambiguous 
and inexact concepts. These factors can be assessed only by using the 
knowledge of experts. However, due to the difficulty in precisely assessing the 
risk and relevant factors, experts evaluate them by using a number of linguistic 
terms or labels. The linguistic terms are words or sentences in a natural or 
artificial language and are used to rate vague or fuzzy concepts, such as the risk, 
probability and severity of impact factors. Therefore, here, the rating scales to 
assess the risk and the relevant factors are constructed based on the linguistic 
terms.  

As the literature review showed, there is no linguistic rating scale available to use 
in the SDI risk assessment process. Here, this was determined based on the 
knowledge of competent experts. To create the linguistic rating scales for the risk, 
probability and severity of impact factors, interviews with eight experts, who had 
adequate knowledge in the context of SDI, were conducted. The experts 
recommended one linguistic rating scale composed of five rating points, including 
very high, high, medium, low and very low (as linguistic terms), to maintain the 
right balance between simplicity and comprehensiveness. Moreover, the 
transformation of the linguistic variables to numerical data seems a very difficult 
task; however, it was accomplished based on the knowledge of experts, resulting 
in numerical rating scales. The numerical rating scales of probability and impact 
factors are considered as the input data of the fuzzy inference systems, while the 
numerical rating scales of the risk factor are used to compare and determine the 
level of the risk items in the evaluation process. The developed rating scales and 
their description of the probability, severity of the impact and risk are illustrated in 
tables 1, 2 and 3, respectively. 

Table 1: Probability Factor Assessment Criteria 

Linguistic Terms 
Rating 
Scales 

Description 

Very Low 0 - 0.20 
The risk event (obstacle) is negligible and highly 
unlikely to occur in the process of the development 
of an SDI. 

Low 0.21 - 0.33 
The risk event (obstacle) is unlikely to occur in the 
process of the development of an SDI. 
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Medium 0.34 - 0.50 
The risk event (obstacle) is somewhat likely to 
occur in the process of the development of an SDI. 

High 0.51 - 0.66 
The risk event (obstacle) is highly likely to occur in 
the process of the development of an SDI. 

Very High 0.67 - 1 
The risk event (obstacle) is almost certain to occur 
in the process of the development of an SDI. 

Table 2: Impact Factor Assessment Criteria 

Linguistic 
Terms 

Rating 
Scales 

Description 

Very Low 0 - 0.20 

The risk event (obstacle) could be expected to have a 
negligible adverse effect on SDI components and its objectives 
(data, people, access network, standards, policies, financial 
issues and so on) in the process of the development of an 
SDI. 

Low 0.21 - 0.33 

The risk event (obstacle) could be expected to have a limited 
adverse effect on SDI components and its objectives (data, 
people, access network, standards, policies, financial issues 
and so on) in the process of the development of an SDI. Here, 
a limited adverse effect means that the obstacle might, for 
instance, result in a minor effect on SDI components or a 
minor financial loss. In general, these obstacles are of less 
importance in SDI development. 

Medium 0.34 - 0.50 

The risk event (obstacle) could be expected to have a 
relatively noticeable adverse effect on SDI components and its 
objectives (data, people, access network, standards, policies, 
financial issues and so on) in the process of the development 
of an SDI. Here, a relatively noticeable adverse effect refers to 
the obstacles that, for example, might result in a relatively 
negative effect on SDI assets and objectives. These obstacles 
could reduce the progress of SDI development.  

High 0.51 - 0.66 

The risk event (obstacle) could be expected to have a serious 
adverse effect on SDI components and its objectives (data, 
people, access network, standards, policies, financial issues 
and so on) in the process of the development of an SDI. A 
serious adverse effect means that the obstacles might, for 
example, result in major financial loss or cause a significant 
degradation in the progress of SDI development. These 
obstacles may impede the development, implementation and 
maintenance of an SDI. 

Very High 0.67 - 1 

The risk event (obstacle) could be expected to have a severe 
adverse effect on SDI components and its objectives (data, 
people, access network, standards, policies, financial issues 
and so on) in the process of the development of an SDI. A 
severe adverse effect means that, for example, the obstacles 
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could result in a serious effect on one or more components 
and impede the development, implementation and 
maintenance of an SDI. 

Table 3: Risk Assessment Criteria 

Linguistic 
Terms 

Rating 
Scales 

Description 

Very Low 0 - 0.20 

Very low risk means that an obstacle could be expected 
to have a negligible adverse effect on SDI components 
and its objectives in the development, implementation 
and maintenance of an SDI. 

Low 0.21 - 0.33 

Low risk means that an obstacle could be expected to 
have a limited adverse effect on SDI components and its 
objectives in the development, implementation and 
maintenance of an SDI. 

Medium 0.34 - 0.50 

Medium risk means that an obstacle could be expected to 
have a relatively noticeable adverse effect on SDI 
components and its objectives in the development, 
implementation and maintenance of an SDI. 

High 0.51 - 0.66 

High risk means that an obstacle could be expected to 
have a serious adverse effect on SDI components and its 
objectives in the development, implementation and 
maintenance of an SDI. 

Very High 0.67 - 1 

Very high risk means that an obstacle could be expected 
to have a severe adverse effect on SDI components and 
its objectives in the development, implementation and 
maintenance of an SDI. 

Table 1 provides a guideline to help experts rate the probability factor. This scale 
includes a combination of a 5-level linguistic scale and a 1-point numerical scale 
(1 being the greatest probability).  

A guideline to assess the impact factor (consequence) has been introduced in 
table 2. As this table shows, the impact of the events is rated though a 
combination of a 5-level linguistic scale and a 1-point numerical scale (1 being 
the greatest consequence). The consequences here are mainly expressed with 
respect to the SDI components and its objectives and assessed based on the 
available evidence, experience, and expert judgment.   

Table 3 provides a guideline to determine the level of risk events as a 
combination of probability and impact factors. The level of risk events ranges 
from very low to very high and contributes to evaluating and prioritizing the risk 
events that affect SDI components and the relevant objectives.  
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In general, the dynamic nature of the whole SDI concept requires that the 
probability, impact and risk criteria be continually reviewed.  

3.3. Rating Risk Factors Using a Survey 

To rate the risk factors, a questionnaire was designed and delivered to the SDI 
experts of the organizations. The questionnaire comprises two sections. The first 
section focuses on the demographic information of the experts, such as affiliation, 
years of experience, academic degree and the role in the organization, which are 
used to determine the experts' importance weight. The second section of the 
questionnaire measures the probability and the impact factors for each identified 
risk item. These questionnaires include a combination of closed questions with a 
5-level linguistic scale, including "very low", "low", "moderate", "high" and "very 
high", to rate SDI risk items. 

In most cases, the experts participating in the survey process consist of different 
experts of the Geomatics community, with a variety of experience, knowledge 
and expertise. These inequalities are conquered by assigning an importance 
weight factor for each expert, derived from the survey, based on the following 
equation:   

C1 + C2 + … Cn =1 (1) 

where C refers to a normalized weight factor of each expert (ranges from 0 to 1). 
The weight values are multiplied by risk factors in the process of risk calculation. 

3.4. Developing a Fuzzy Inference System for Assessing Risks to SDI  

There are, essentially, four fundamental stages in the construction of a fuzzy 
inference system to assess SDI risks.  

3.4.1. Determination of Input and Output Variables, Fuzzification and 
Membership Functions 

This stage defines what data flows into the system and what information is 
eventually output from the system. An SDI risk assessment fuzzy inference 
system is built, with the probability and impact factors as two input variables and 
a risk factor as the output variable (figure 3).  
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Figure 3: Structure of the Fuzzy Inference System for SDI Risk Assessment 

 

Fuzzification of the inputs and output variables is carried out by dividing them into 
five different fuzzy linguistic sets (terms): Very Low (VL), Low (L), Medium (M), 
High (H), and Very High (VH). In what follows, each of these terms is modeled by 
a Gaussian membership function, as presented in figures 4, 5, and 6. The 
Gaussian function is considered as a fuzzification function; it is selected because 
it is tractable, smooth, nonzero at all points, a reliable performer and used in 
many risk assessment applications (Ahadi, 2015). 

Figure 4: The Probability 
Variable Membership 

Function 

Figure 5: The Impact 
Variable Membership 

Function 

Figure 6: The Risk 
Variable Membership 

Function 

   

3.4.2. Construction of Rules Base 

The rules describe how the system operates. In relation to rules for SDI risk 
assessment, no attempt so far has been made; however, an SDI risk fuzzy 
inference system is built using 25 fuzzy rules. In this process, the input variables 
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and corresponding linguistic terms are written in the antecedent part, while the 
output variable and corresponding linguistic terms are used in the consequent 
part of each rule. Rules are constructed based on experts' knowledge and 
available literatures. A number of developed rules for use in the SDI risk fuzzy 
inference system are presented in table 4. 

Table 4: Some Developed If … Then Rules 

Rule 1: If (Impact is VL) and (Probability is VL), then Risk is VL 
Rule 2: If (Impact is L) and (Probability is L), then Risk is L 
Rule 3: If (Impact is L) and (Probability is H), then Risk is L 

Rule 4: If (Impact is VH) and (Probability is M), then Risk is H 
Rule 5: If (Impact is L) and (Probability is H), then Risk is L 

3.4.3. Determination of Inference Method 

In general, the inference is determined based on two factors: the implication 
operator and the composition operator. The SDI risk fuzzy inference system 
benefits from the Mamdani implication MIN and the Mamdani aggregation MAX-
MIN operators for implication and aggregation, respectively. 

3.4.4. Determination of Defuzzification Method 

The defuzzification procedure for the SDI risk fuzzy inference system is achieved 
via the center of area method, which returns the center of the area under the 
curve and is the commonly used method for defuzzification in risk assessment. 

The input to the defuzzification process is a fuzzy set (the aggregate output fuzzy 
set), and the output is a single number. This number is considered as a risk index, 
a quantity that provides information regarding the risk level, for each risk item. 
The overall risk index value can also be achieved using geometric mean, which 
presents our knowledge and belief regarding a specific aspect of the risk of a 
future system operation such as SDI. 

3.5. Cluster Analysis 

Having determined the SDI risk item indices, a cluster analysis can be used to 
divide SDI risks, based on the corresponding risk index, into groups (clusters) 
such that the risks in a cluster are very similar (but not identical) to one another 
and very different from the risks in other clusters. As in utilizing the hierarchical 
methods, there is no need that the number of clusters be specified in advance; 
therefore, the hierarchical agglomerative procedure is applied as a clustering 
technique to group SDI risk items.  

 

http://www.businessdictionary.com/definition/group.html
http://www.businessdictionary.com/definition/cluster.html
http://www.businessdictionary.com/definition/item.html


International Journal of Spatial Data Infrastructures Research, 2016, Vol.11, 98-127 

113 

 

3.6. Model Validation Using a Case Study 

3.6.1. Study Area 

Iran, a country located in the Middle East, was the study area of the research. 
Iran consists of 31 provinces and 18 ministries. Concerning SDI development, 
the Iranian National Cartographic Center (NCC) is in charge of developing SDI in 
the country. Currently, the ministries attempt to take advantage of the SDI at the 
national and organizational levels. 

3.6.2. Case Study 

A case study was conducted to validate and illustrate the application of the 
proposed methodology. Due to the large number and the diversity of possible 
risks of an SDI and its components, this case study was limited to assessing the 
possible risks that affect spatial data and information of an SDI at the 
organizational level. To do so, six of Iran's public organizations, with experience 
in GIS and SDI activities, were chosen to be studied in this case study (table 5). 
First, in the risk identification step, 160 risk items were identified based on the 
opinion of the eight experienced Geomatics industry experts, ISO (ISO 2005, 
2011) and NIST (NIST, 2012) documents. However, only 32 risk items that were 
mainly associated with spatial data and information were selected for further 
processes. The list of selected risk items and relevant categories is shown in 
table 6. In what follows, the selected public organizations, i.e., water organization, 
municipality, national cartography center, industry, mine and trading organization, 
agricultural organization and Gas Company, were visited to conduct a 
questionnaire-based survey and receive the opinion of competent experts (the 
respondents) during 2015 (table 5). Due to the scarcity of competent SDI/GIS 
experts in the organizations, the number of respondents was limited to 18 experts. 
Additionally, there was a limitation in finding organizations involved in SDI-related 
activities. This limitation confined the scope of the research to six organizations.  

The respondents were asked about the probability of occurrence and the degree 
of loss (severity of impact), measured on a five-point linguistic scale (from very 
low to very high), for each risk item. After completing the survey, a fuzzy 
inference system was constructed using the risk, the probability of occurrence, 
the degree of loss (severity of impact) variables, the 25 "If ... Then" rules and the 
Mamdani inference method. The scores of risk items were calculated using the 
developed inference system within the MatlabR software and then all were 
evaluated on the basis of the risk assessment criteria of table 3. The results are 
shown in table 6.  
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Table 5: Information Regarding Organizations and Respondents 

Organizations 
Number of 

respondents 

Academic 
degree 

Geomatics 
experience 

(Year) 

Role in the 
organization 

Water organization 3 MSc 15,10,12 
GIS manager & 
expert 

Municipality 3 MSc 15,10,9 
SDI & GIS 
manager & expert 

National Cartography 
Centre 

4 PhD & MSc 
20, 
14,15,15 

SDI & GIS 
manager & expert 

Industry, mine and 
trading office 

2 MSc & B.S. 10,11 
GIS manager & 
expert 

Agriculture 
organization 

4 
PhD, MSc, 
B.S. 

12,20,18,10 
GIS manager & 
expert 

Gas Company 2 MSc 15,10 
GIS manager & 
expert 

Total 18   

Table 6: The 32 Selected Risk Items, Categories, Risk Scores and Risk Levels 

Risk 
level 

Risk 
scores 

Risk description 
Risk 

category 
Risk 
no. 

Very High 0.70 Lack of metadata creation process Operational 1 

Very High 0.69 
Lack of a mechanism to update spatial data 
and metadata 

Operational 2 

Very High 0.71 Inadequate or irregular metadata creation Operational 3 

Very High 0.69 Inadequacy of the budget of SDI projects Financial 4 

Very High 0.69 
Lack of a mechanism to control the proper 
functioning of the backups /archives. 

Operational 5 

Very High 0.69 
Improper maintenance (environmental 
conditions) of spatial data and information of 
SDI 

Operational 6 

High 0.62 
Lack of backup/archive of spatial data and 
information 

Operational 7 

High 0.62 
Lack of inter-agency cooperation and 
coordination for data sharing 

Organizational 8 

High 0.65 
Increased costs due to incomplete or wrong 
hardware / software selection 

Financial 9 

High 0.57 
Lack of support for SDI on behalf of top-
level managers 

Organizational 10 

High 0.66 
Employing temporary technical personnel in 
relation to SDI project 

Operational 11 

High 0.61 Lack of training courses in relation to spatial Security 12 
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data and information security 

High 0.61 
Lack of scheduling and forecasting 
regarding how to use SDI in emergency 
situations (disasters) 

Operational 13 

High 0.66 
Problem of retrieving spatial data in the 
shortest time in an emergency situation 

Operational 14 

High 0.56 Employing irrelevant experts in SDI project Operational 15 

High 0.62 
The lack of spatial data and metadata 
standards in SDI project 

Operational 16 

High 0.62 
Lack of a mechanism to protect spatial data 
and information against virus, Trojan. 

Security 17 

High 0.55 
Inadequate or irregular backup/archive 
making for spatial data and information 

Operational 18 

High 0.63 Lack of backup server/s Operational 19 

High 0.59 
Disclosure of important spatial data and 
information of SDI 

Security 20 

High 0.64 
Lack of password for important spatial data 
and information of SDI 

Security 21 

High 0.65 
Lack of responsible person for security of 
spatial data and information of SDI 

Security 22 

High 0.58 
Establishment of main servers and backup 
servers in a single place 

Security 23 

High 0.53 
Unauthorized copying and reproduction of 
spatial data and information of SDI 

Security 24 

Medium 0.40 
Damage to spatial data and information due 
to a power outage/oscillation 

Operational 25 

Medium 0.47 
Lack of access to spatial information due to 
lack of required hardware 

Operational 26 

Medium 0.41 
Manipulation or falsification of SDI 
databases and metadata 

Operational 27 

Medium 0.47 
Incorrect classification of spatial data and 
information 

Security 28 

Medium 0.39 
Lack of native spatial data and metadata 
management applications 

Operational 29 

Low 0.33 
Damage to spatial data and information from 
disgruntled employees 

Security 30 

Low 0.28 
Damage to spatial data and information from 
external parties 

Security 31 

Low 0.29 Password theft Security 32 

0.5520 Overall Geometric Mean 

Based on the results, the most important critical risk items to organizational SDIs 
were the lack of metadata creation, lack of a mechanism to update spatial data 
and metadata, lack of a mechanism to control the proper functioning of the 
backups/archives and inadequacy of the budget of SDI projects, lack of 
backup/archive of spatial data and information, lack of inter-agency cooperation 
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and coordination for the SDI project and the lack of support for SDI on behalf of 
top-level managers. It should be noted that the status of metadata creation and 
updating issues were not the same for all of the organizations. For instance, the 
National Cartography Center has created many ready to use metadata records, 
while other organizations suffer from the lack of minimum required metadata. 
Regarding the budget of SDI projects, all of the organizations depend on the 
central government, and it seems that there is not an appropriate financial 
support for development of SDI on behalf of the central government. Moreover, 
the issue of the backup/archive of spatial data and information was identified as a 
common problem for entire organizations. Though it is a vital problem in crisis 
conditions, it seems, however, that the organizations have no solution to 
overcome this problem. Regarding inter-agency cooperation and coordination to 
share spatial data and information, it seems that the lack of a policy for data 
sharing (access, restriction and pricing) and the lack of partnership between data 
producers and legal issues, such as copyright, liability and privacy, may restrict 
the process of spatial data sharing. Additionally, in most of the organizations, the 
view of the top-level managers concerning SDI initiatives was identified at a low 
level of awareness in relation to SDI benefits and the roles that SDI could play in 
the organization missions. 

Moreover, the statistical analysis showed that risk level of 18.75% of risk items 
was identified as very high, 56.25% as high, 16% as medium and 9% as low 
(table 7). Moreover, the overall geometric mean value of the 32 risk items (risk 
index) for organizational SDIs was calculated as 0.5520 or 55.20% (figure 7). 
Based on the criteria provided in table 3, this overall index shows that the impact 
of the risk items on SDI is at a relatively high level, and the implementation of the 
SDI initiatives in most organizations requires coping with many risk items. The 
overall risk index ranges from 0 to 100%, where 0 indicates a risk-free 
environment (without obstacles), and 100 denotes a very high risk environment 
(maximum obstacles).  

Figure 7: Overall SDI Risk Index 

 

Table 7: The Statistical Results of 32 Risk Items in Terms of Level of Risk 
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Geometric 
mean (%) 

of risk 
item 

indices 

Percent 
Number 
of risk 
items 

Risk 
level of 
32 risk 
items 

 

69.31 
18.75 6 Very 

High 
 

60.83 56.25 18 High  

42.73 16 5 Medium  

29.95 9 3 Low  

 100 32 Total  

Analyzing the results in terms of the four types of risk revealed that the financial, 
operational, organizational and security risk categories obtained a 67, 59, 59 and 
47% overall risk index, respectively (figures 8, 9, 10 and 11). With regard to this 
result, it seems that the operational, organizational and financial issues play a 
more important role than the security issues in the development of an 
organizational SDI. 

Figure 8: Overall Risk Index of the Financial Risk Items 
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Figure 9: Overall Risk Index of the Operational Risk Items 

 

Figure 10: Overall Risk Index of the Organizational Risk Items 

 

Figure 11: Overall Risk Index of the Security Risk Items 
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Moreover, by applying a hierarchical cluster analysis, based on the risk item 
indices, we categorized the 32 SDI risk items into six homogenous groups 
(clusters). The dendrogram for this analysis is shown in figure 12. 

Figure 12: The Dendrogram of Cluster Analysis for the 32 Risk Items

 

As figure 12 shows, each cluster contained different numbers of risk items, which 
are explained in the following: 

8. The SDI risk items of the first cluster: the SDI risk items with the highest risk 
level, including the inadequate or irregular metadata creation, lack of 
metadata creation process, lack of a mechanism to update spatial data and 
metadata, lack of a mechanism to control the proper functioning of the 
backups /archives, inadequacy of the budget of SDI projects and improper 
maintenance (environmental conditions) of spatial data and information of 
SDI, were classified in this cluster. This cluster contained 18.75% of the total 
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risk items, and its geometric mean value was higher than the mean of all 
clusters and the overall risk mean value. 

9. The SDI risk items of the second cluster: the largest number of SDI risk items 
was classified in this cluster (37.5%). Risk items of this cluster include: 
problem of retrieving spatial data in the shortest time in an emergency 
situation, employing temporary technical personnel in relation to SDI project, 
increased costs due to incomplete or wrong hardware / software selection, 
lack of responsible person for security of spatial data and information of SDI, 
lack of password for important spatial data and information of SDI, lack of 
backup server/s, lack of a mechanism to protect spatial data and information 
against virus, Trojan, lack of backup/archive of spatial data and information, 
lack of spatial data and metadata standards in SDI project, lack of inter-
agency cooperation and coordination for data sharing, lack of training courses 
in relation to spatial data and information security, and lack of scheduling and 
forecasting regarding how to use SDI in emergency situations. The geometric 
mean value of this cluster was less than the cluster 1 mean value and higher 
than the overall risk mean value. 

10. The SDI risk items of the third cluster: 18.75% of the SDI risk items belonged 
to this cluster. The cluster risk items include: establishment of main servers 
and backup servers in a single place, lack of support for SDI on behalf of top -
level managers, employing irrelevant experts in SDI project, inadequate or 
irregular backup/archive making for spatial data and information, 
unauthorized copying and reproduction of spatial data and information of SDI 
and disclosure of important spatial data and information of SDI. The 
geometric mean value of the risk items of this cluster was less than the 
cluster 1 and cluster 2 mean values but relatively close to the overall risk 
mean value. 

11. The SDI risk items of the fourth cluster: this cluster contained three risk items 
(9.375%) including damage to spatial data and information from external 
parties, password theft and damage to spatial data and information from 
disgruntled employees. The geometric mean value of this cluster was the 
lowest compared to other clusters.  

12. The SDI risk items of the fifth cluster: the lowest number of SDI risk items was 
classified in this cluster (6.25%). Risk items of this cluster include: incorrect 
classification of spatial data and information and lack of access to spatial 
information due to lack of required hardware. The geometric mean value of 
this cluster was less than the overall risk mean value and higher than the 
clusters 3 and 6 mean values. 

13. The SDI risk items of the sixth cluster: manipulation or falsification of SDI 
databases and metadata, damage to spatial data and information due to a 
power outage/oscillation and lack of native spatial data and metadata 
management applications risk items were classified in the fifth cluster. The 
geometric mean value of this cluster was less than the overall risk mean 
value and higher than the cluster 4 mean value. 
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Taking a closer look at the results provided in table 6 and the results of cluster 
analysis revealed that SDI risk items with a very high risk level were classified in 
cluster 1; high level items in cluster 2 and 3; low level items in cluster 4 and 
medium level items in clusters 5 and 6 (figure 12). Table 8 shows the statistical 
analysis results of the cluster analysis. The level of risk of clusters shown in table 
8 was determined on the basis of the criteria introduced in table 3. Based on this 
table, the priority ranking of the six SDI risk clusters can be identified as: 

Cluster 1>Cluster 2>Cluster 3>Cluster 5>Cluster 6>Cluster 4 

This ranking plays an effective role in situations where there is not enough time 
and/or resources to cope with all risk items. 

Table 8: The Statistical Results of the Cluster Analysis 

Cluster  
number 

Number of  
risk items 

Percent 
Geometric mean (%) 
of risk item indices 

Level of risk 

1 6 18.75 69.35 Very High 

2 12 37.5 63.10 High 

3 6 18.75 56.52 High 

4 3 9.375 29.95 Low 

5 2 6.25 47.21 Medium 

6 3 9.375 39.98 Medium 

Total 32 100  

As table 8 shows the level of risk of clusters 2 and 3 as well as clusters 5 and 6 
were similar. So, the number of clusters, in terms of the level of risk, can be 
reduced to 4 clusters.  

In sum, it could be concluded that in the absence of specific criteria of risk 
assessment, such as the criteria provided in table 3, the cluster analysis as a 
primary and effective tool can contribute to grouping the criticality of risk items in 
the SDI risk assessment process. To do so, it is required that the geometric mean 
of the clusters to be compared and prioritized with the expert's knowledge. 

3.6.3. Model Validation 

To evaluate the validity of the model, a survey was conducted by eight competent 
experts, having 15 to 20 years experience in the SDI, Geomatics and GIS fields, 
to rank the different risk items according to their criticality to organizational SDI 
initiatives development. The survey questionnaire contained questions with the 
five-point linguistic rating scales (Very High, High, Medium, Low and Very Low) to 
determine the criticality of the 32 risk items. In what follows, the results of the 
survey (a real rating) were compared to the model results, and the mean 
percentage of the error for each risk item was then determined using equation (2), 
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where k refers to the number of experts, and the model and the real ratings are 
results of the fuzzy model and the expert-based survey, respectively. 

 

𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 (%) =
|∑

𝑀𝑜𝑑𝑒𝑙 𝑅𝑎𝑡𝑖𝑛𝑔𝑖 − 𝑅𝑒𝑎𝑙 𝑅𝑎𝑡𝑖𝑛𝑔𝑖 
𝑅𝑒𝑎𝑙 𝑟𝑎𝑡𝑖𝑛𝑔𝑖

𝑘
1 |

𝑘
× 100 

(2) 

 

Based on equation 2, the overall mean percentage error was calculated as 
8.85%. This value is relatively low and could imply the merit of the model to 
assess the SDI risk items. The most important risk items that were different in the 
model, and the survey results included the damage to spatial data and 
information from disgruntled employees, the lack of access to spatial information 
due to a lack of required hardware, the disclosure of important spatial data and 
information of SDI, the password theft and damage to spatial data, and 
information from external parties. With regard to this result, it seems that the lack 
of complete agreement between the model and survey results might be 
associated with the different conditions of the organizations and also the different 
levels of knowledge and experience of the experts that participated in the 
research.    

4.  CONCLUSIONS 

SDIs need to strengthen their stability to ensure continued operation and survival 
in the face of risks. Therefore, the main objective of this research was to develop 
an operational framework for assessing organizational SDIs from a risk 
perspective, which makes it possible to develop a stable SDI. The proposed SDI 
risk assessment framework can be used to assess and prioritize the possible 
risks (obstacles) that may have a negative impact on the different components of 
SDI, including spatial data and information, technology (network, software, 
hardware, and processes), organizational/legal issues, policies, people and 
standards. Due to the wide diversity of the risks affecting the SDI components 
and its objectives, the focus of this research was limited to assessing the risks of 
spatial data and information component, which is known as the central pillar of 
the SDIs. This research does not attempt to provide a comprehensive list of the 
risks to SDI and its components. The list of risks provided in this research was 
designed to help implement and demonstrate the application of the proposed 
framework of SDI risk assessment in the real world.  

The model validation was conducted using a survey, and it was found that the 
overall mean percentage error of the model was at a low level. Moreover, the 
framework was flexible because it is built on a fuzzy inference system that 
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permits different risk items and logic rules to be added, removed or corrected 
without the need to modify the whole system. This flexibility allows the framework 
to be applied to SDIs at different levels, such as local and national levels. 
However, the dynamic nature of the SDIs requires coping with the risks in a 
continuous process. Therefore, it seems that the risk studies should be a 
continuous and regular activity in the organizations implementing SDI to keep 
SDIs robust and stable over time and during normal and crisis conditions. 

The results from the case study indicated that in the organizational SDIs, 
operational, organizational and financial risks are more important than security 
risks, and the major risk items that could prohibit the success of an SDI are the 
lack of creation and updating of the documentation of data (metadata) and spatial 
data, the inadequacy of the budget of SDI projects, the lack of a backup/archive 
of spatial data and information, the lack of a mechanism to control the proper 
functioning of the backups/archives, the lack of inter-agency cooperation and 
coordination in an SDI project for data sharing, and the lack of support for SDI on 
behalf of top-level managers. Moreover, the scarcity of competent SDI experts 
and the inadequate number of organizations involved in SDI-related activities 
were identified as the main limitations that can influence the results of the study. 

Generally, it is expected that the experience of the proposed framework could 
contribute to supporting multi-view SDI assessment framework. The multi-view 
SDI assessment framework has been introduced for assessing SDI initiatives 
around the world; the strength of this assessment design lies in its flexibility, the 
multidisciplinary view of SDI and a reduced bias in the assessment results. This 
framework contains methods that not only evaluate SDI performance but also 
deepen our knowledge regarding SDI functioning and may assist in its 
development (Grus et al. 2008). However, as Grus (2010) argues, the relatively 
small number of operational SDI assessment views and their approaches limits 
the potential of the multi-view SDI assessment framework for a comprehensive 
SDI assessment; thus, the proposed framework in this paper could be considered 
as a novel view towards completing the multi-view SDI assessment framework 
views, approaches and methods.  

Finally, to the best of the authors' knowledge, in the future, new technologies, 
policies, organizational structures, legal issues, standards and other types of 
changes are needed to achieve SDIs’ goals, but with these changes come new 
risks imposing instability on SDI initiatives, which need to be managed so that 
what has been presented in this research can be considered as a solution to 
cope with the possible challenges of the future generations of SDI.  
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5. RECOMMENDATIONS 

1- This research has only carried out a case study of SDI at an organizational 
level; the research needs to be expanded to include other SDIs at different levels. 
In this context, an important project would be a risk assessment of the national 
spatial data infrastructure (NSDI).  

2- Exhaustive assessment is not feasible in this research due to the limitations of 
time and resources. The present research does not consider comprehensively all 
the risk items and organizations; there are many specific risks and their 
interactions that have not been addressed and require further research.  

3- Developing standards of probability, impact, risk assessment criteria and also 
a knowledge base (logical rules) to utilize in SDI assessment is recommended for 
the SDI community and international organizations such as the Global Spatial 
Data Infrastructure (GSDI) as future work. 

4- In this research, the processes of data collection were conducted through a 
simple survey with a number of experts. It is recommended that the simple 
survey be replaced by a Delphi technique. 

5- The focus of this paper was on the risks affecting the spatial data and 
information.  Further research is of crucial importance for the assessment of the 
risks that are mainly pertinent to access network, legal, policies, financial and 
organizational cooperation issues of SDI at different levels. 
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