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Abstract 
Detecting and monitoring the development of radioactive releases in the 
atmosphere is important. In many European countries monitoring networks have 
been established to perform this task. In the Netherlands the National 
Radioactivity Monitoring network (NRM) was installed. Currently, point maps are 
used to interpret the data from the NRM. Automatically generating maps in real-
time would improve the interpretation of the data by giving the user a clear 
overview of the present radiological situation and provide an estimate of the 
radioactivity level at unmeasured locations. In this paper we present a prototype 
system that automatically generates real-time maps of radioactivity levels and 
presents results in an interoperable way through a Web Map Service. The 
system defines a first step towards a emergency management system and is 
suited primarily for data without large outliers. The automatic interpolation is done 
using universal kriging in combination with an automatic variogram fitting 
procedure. The focus is on mathematical and operational issues and on 
architectural considerations on how to improve the interoperability and portability 
of the prototype system. 
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1. INTRODUCTION 
 
Knowing when and where a radioactive release occurs and how the radioactive 
cloud evolves in space and time is important information in nuclear emergency 
management. Radioactive releases can for example originate from accidents at 
nuclear power stations, crashes of satellites carrying nuclear energy sources or 
from the use of dirty bombs. The Chernobyl accident in 1986 has acted as a 
catalyst in the development of monitoring networks across Europe to detect and 
monitor radioactive releases. In the Netherlands the National Radioactivity 
Monitoring network (NRM, Twenhöfel (2005)) was established. This network 
consists of 153 monitoring stations distributed more or less uniformly over the 
Netherlands, with increased density near the Borssele nuclear power plant 
(Figure 1). Radioactivity measurements are obtained from the NRM every 10 
minutes. In case of an emergency these raw data provide input for a risk 
assessment of the radiological situation on which a counter-measure and 
recovery strategy are based. Real-time automatically generated radioactivity 
maps would help decision makers. Two large statistical exercises (Dubois (2003); 
Dubois and Galmarini (2005); Dubois (2005)) have dealt with mapping 
radioactivity data and showed that automatic mapping in emergency cases 
presents a great challenge. In this paper we present a first step towards an 
automatic mapping system by building a prototype system most suitable for 
natural radioactivity, i.e. background radiation without large local extremes. 
Automatic means that no human intervention is required to perform the 
interpolation. The maps provide a better overview of the radiological situation 
than the point maps that are currently used for interpretation. The interpolation is 
done using kriging (Chilès and Delfiner, 1999; Journel and Huijbregts, 1978). An 
advantage of kriging over deterministic methods such as inverse distance 
interpolation is the ability to quantify interpolation accuracy and include trends 
such as precipitation and soil type into the interpolation. In this study we use the 
fact that different types of soil contain different concentrations of radionuclides 
(Smetser and Blaauboer, 1997) and thus the amount of background radiation 
differs between soil types. Figure 2 shows the soil map that was used in this 
study. In general loess and clay have higher radiation levels. In this study we 
concentrate on (background) gamma radiation, expressed in ambient dose rate 
(ICRU, 1993) with unit nano Sievert per hour (nSv/h).  
 
In emergency management systems many types of information are needed, such 
as vector maps showing municipal boundaries, locations of potential release 
sources or population density information. These data typically come from a 
range of sources (e.g. MySQL databases, files) and may use different data 
formats (e.g. GeoTIFF, Shapefile). A further complication is that some data are 
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available on the local computer, but much of it is stored on remote servers. In 
order to make use of these data, the computer systems must be able to work 
together (i.e. be interoperable). To achieve interoperability we need strict 
definitions how the user requests data and how a remote server provides them. 
The output maps of our system are published in an interoperable way through a 
Web Map Service (Open Geospatial Consortium, 2002). A WMS serves images 
of the data, not the actual interpolated data themselves. 
 

 
 
We first describe the automatic interpolation algorithm followed by a section on 
how the algorithm was incorporated into an operational system. The discussion 
will point out some mathematical and operational issues and then focus on 
architectural considerations on how to improve interoperability and portability to 
other environmental variables (e.g. ozone, water pollution). 

Figure 1: Locations of the monitoring stations of the National Radioactivity 
Monitoring network in the Netherlands. The star marks the location of the only 

nuclear powerplant in the Netherlands.  
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2. AUTOMATIC SPATIAL INTERPOLATION 
 
2.1 Theory of spatial prediction 
 
The real-time automatic interpolation algorithm generates maps of ambient dose 
rate using data from the NRM. Interpolation refers to estimation of the 
radioactivity level at unknown locations based on surrounding observations. The 
interpolation method we use is called universal kriging (UK) (Chilès and Delfiner, 
1999; Journel and Huijbregts, 1978). UK can take into account trends that are 
present in the data, based on predictors such as soil type or precipitation. 
Predictions are made on a regular, 1 km x 1 km grid. The observations from the 
NRM z(xi), i = 1,…,n are considered to be taken from a realization of the random 
function Z(x), x ∈ D that satisfies the linear model (Christensen, 1996): 

 

Figure 2: Simplified soil map of the Netherlands, based on Steur et al. (1985) 
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where fi(x) is the i-th known predictor at x, βi an unknown regression coefficient, h 
a distance vector, C the covariance function of e and D the geographical domain 
of interest.  Note that we assume intrinsic stationarity of the residual e, i.e. we 
assume that it has a constant mean and that the covariance between e(x) and 
e(x+h) only depends on the separation distance h (Chilès and Delfiner, 1999), 
and not on their location in the domain of interest. The best linear unbiased 
prediction for an arbitrary unobserved grid node x0, given this model and 
observations z(xi), i = 1,…,n, is given by: 

 
 ( ) ( ) ( ),ˆˆ'ˆ 1'

000 ββ XzxfxZ −ΣΣ+= −      (2) 
 

where z = (z(x1),…,z(xn))’ is the vector of observations, f(x0) = (f1(x0),…, fp(x0)), X 
is the n x p design matrix whose i-th row equals f(xi), Σ is the variance-covariance 
matrix of the e(xi), i = 1,…,n and Σ0 is the covariance vector between the 
residuals of the observations and the residual of the prediction (Σ0 = (Cov(e(x1), 
e(x0)), . . . , Cov(e(xn), e(x0)))’).  
 
The best linear unbiased estimator of β is given by  
 

β̂ =(X'Σ−1X)−1X'Σ−1z(x).   (3) 
 

The prediction error variance (kriging variance) is 
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where ( )

2
0xZσ = Var(Z(x0)). The kriging variance provides a measure of the 

uncertainty of the prediction. In this study we include the soil type as a predictor. 
This involves a stepwise trend because soil type is a categorical variable. In the 
stationary case, covariances are defined as C(0) – γ(h), where γ(h) is the 
variogram of e and C(0) is the variance of e, which is identical to the sill of the 
variogram (Cressie, 1993; Christensen, 1991). The term variogram refers to the 
variogram model that is fitted to the sample variogram, calculated from the data. 
Under the assumption that the kriging prediction error is normally distributed 
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around the kriging prediction, approximate 95% prediction intervals can be 
computed by:  
 

( ) ( ) ( ) ( )[ ]0000 2ˆ,2ˆ xxZxxZ σσ +−      (5) 
 

where σ(x) equals the square root of equation 4. 
 
2.2 Automatic fitting of the variogram model 
 
Commonly, fitting a variogram model to a sample variogram is done interactively. 
An expert changes the parameters of the variogram model until a visually 
acceptable fit is obtained. In our interpolation system this step needs to be 
performed automatically. First we obtain an initial guess of the variogram model. 
Applying the following rules of thumb to the sample variogram to obtain the initial 
guess seemed appropriate:  
 

• the minimum semivariance in the sample variogram is used as initial 
estimate for the nugget,  

• a spherical variogram model is used,  
• multiplying the diagonal of the study area times 0.35 is used as an initial 

estimate for the range,  
• the average of the maximum semivariance and the median semivariance 

in the sample variogram is taken as an estimate for the sill,  
• bin distances used are: 0, 3, 6, 8, 12, 15, 21, 34, 48, 68, 89, 110, 138 km.  

 
The final sample variogram is fit using the initial guess by iteratively reweighted 
least squares (Gauss-Newton fitting, Cressie (1993)). The weights are dependent 
on the number of point pairs in a particular bin (Nk) and the bin distance (hk), and 
are calculated through Nk / h2

k. Figure 3 shows an example of an initial guess and 
the associated fitted variogram model.  
 
2.3 Automatic kriging 
 
Applying equation 2 to all unknown grid nodes results in a map. We need 
information regarding all predictors on both the measurement locations and the 
prediction locations. For the soil type this is extracted from the soil map shown in 
figure 2. In this study we use global kriging, i.e. all available observations are 
used for prediction. The variogram model was assumed to be isotropic. 
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Figure 3: Example of an initial guess and the associated fitted variogram 
model. The number of point pairs within the bin are shown next to the points 

in the sample variogram. 

Figure 4: Flowchart describing the real-time automatic interpolation system. 
The data processing component completely lacks user interaction. 
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2.4 NRM specific issues 
 
A few stations around the nuclear power plant of Borssele (see figure 1) show 
different spatial behaviour than the other stations. This caused problems in 
constructing the sample variogram. Not including these stations resulted in a 
better sample variogram. Note that choosing the stations that need to be 
removed was not done automatically, but was done beforehand. The lack of 
observations close to each other (<15 km) prohibits the accurate fitting of the 
nugget. Additional short range measurements where performed using mobile 
measuring devices. Based on these data the nugget was fixed to 11 nSv/h. 
 
3. REAL-TIME AUTOMATIC INTERPOLATION SYSTEM 
 
The implementation of the real-time automatic interpolation system concerns the 
flow of data from the monitoring network to the user who analyzes the map. 
Figure 4 shows a flowchart of the implemented system. The system can be 
divided into two parts: a part that processes the data from the National 
Radioactivity Monitoring network (NRM) and produces a map and a part that 
processes the requests made by user to view these maps. 
 
3.1 Generating the map 
 
We extract the NRM data, stored in text files, from an FTP server located at the 
RIVM using a Python (Van Rossum and Drake, 2001) program. Python then calls 
the statistical software package R (R Development Core Team, 2006) to perform 
the interpolation and produce the output maps. The interpolation in R is done 
using the package automap (Available for download at 
http://intamap.geo.uu.nl/~paul/Downloads.html). This package implements the 
interpolation routine described in section 2. The automap package uses R 
packages gstat (Pebesma, 2004) and sp (Pebesma and Bivand, 2005). R 
produces three output maps for each time step: a map with kriging predictions, a 
map with kriging errors (σ(x0)) and a map where the approximate 95% prediction 
intervals have been classified relative to 95 nSv/h. We chose this threshold value 
because it clearly demonstrates the potential of this type of output. The third 
output type contains three classes: 1) the entire prediction interval is below the 
threshold, 2) the entire prediction interval is above the threshold and 3) the 
threshold is within the prediction interval and is not distinguishable from the 
predicted value. R stores the output maps in GeoTIFF files on the hard drive of 
the server, this is done using the R-package rgdal (Keitt et al., 2007). The 
colour scale is fixed for all GeoTIFF files. The colours were chosen to give good 
contrast between areas with high and low background radiation. Figure 5 shows 
an example for each output type. A Python script finally updates the catalogue 
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database that records where the maps associated with a certain time step are 
stored. 
 

 
 
3.2 Serving the map 
 
The maps are made available in an interoperable way through a Web Map 
Service (WMS, Open Geospatial Consortium, 2002). A WMS allows three types 

Figure 5: An example for each type of output from the automatic interpolation 
service: (a) kriging prediction (nSv/h), (b) kriging error (nSv/h) and (c) 

approximate 95% prediction interval classified relative to 95 nSv/h. The NRM 
stations are marked by crosses.  

 
 (a)             (b)  

 
(c) 
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of operations: GetCapabilities, GetFeatureInfo and GetMap. The first 
operation provides information on what the WMS has to offer, in our case three 
layers for each available time step, one for each type of output. A user can 
request more detailed information about a specific layer using the 
GetFeatureInfo operation. GetMap returns the map the user specifies. We 
chose to implement the WMS using the open source program UMN MapServer 
(Vatsavai et al., 2006). To read and display the maps from the WMS we 
developed a simple CGI-based client in Python. A screenshot of this client is 
shown in figure 6. 
 

 
 
4. DISCUSSION 
 
4.1 Mathematical and operational considerations 
 
An important assumption underlying kriging is intrinsic stationarity of the residual 
(section 2.1), e(x). In case of a large, local release, a small group of stations may 
have values that are up to two or three orders of magnitude larger than 
background ambient dose rates. In that case the assumption of intrinsic 

Figure 6: A simple Python CGI-based client application that reads images from 
the WMS. 
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stationarity is highly unrealistic and fitting a variogram model becomes difficult 
(Pebesma, 2005). A possible way of dealing with these outliers is to use data 
transformation techniques (e.g. Box-Cox transformation (Christensen, 1996)). 
 
Universal kriging includes trends into the prediction. In our case we only used the 
soil type as an additional source of information. Including other sources of 
additional information could improve the prediction. One example of such a 
source is the amount of precipitation, which can be derived from rainfall radar 
images. Precipitation causes wet deposition of radon progeny from the 
atmosphere. This results in short-lived ground surface activity, increasing the 
ambient dose rate (Smetsers and Blaauboer, 1997). Another candidate predictor 
is the height of the mixing layer, as this influences the radionuclide activity 
concentrations in this layer. The output of an atmospheric dispersion model 
(NPK-PUFF, Van Egmond and Kesseboom (1983)) could also be used as a trend 
in case of a radioactive release. 
 
4.2 System architecture considerations 
 
The interoperability of our system is limited in the way the output of the 
interpolation is delivered. The prototype system is highly customized towards the 
problem of interpolating radiation measurements:  
 

• data from the NRM network are retrieved using text files stored on an 
FTP server,  

• the additional data (soil map) are stored on the server’s hard drive,  
• the code to retrieve the data, interpolate these and save the results is 

customized and is not directly portable to other environmental variables,  
• the results are presented through a WMS, providing the user with little 

flexibility with regard to the output. 
 
There are OGC specifications that could make the automatic interpolation system 
much more generic, easier to maintain and easier to port to other environmental 
variables. Figure 7 shows a flowchart that uses a number of OGC specifications 
to improve interoperability and portability. The different OGC specifications and 
their role in the system are now briefly discussed. The data from the NRM are 
implemented in a Sensor Observation Service (Open Geospatial Consortium, 
2006c). A SOS supports three core operations:  
 

• GetCapabilities returns the metadata on the SOS,  
• DescribeSensor returns information on the sensor that performs the 

measurements,  
• GetObservation gives access to the available measurements of the 

SOS.  
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A Web Processing Service (Open Geospatial Consortium, 2008) can be used to 
implement the automatic interpolation service described in section 2. A WPS can 
implement any kind of GIS operation, such as map algebra or buffering. It 
provides three operations:  
 

• GetCapabilities returns the metadata on the WPS, e.g. available 
processes for execution,  

• DescribeProcess returns information on a specific process such as 
input parameters or the resulting outputs,  

• Execute starts the specified process. The user needs to provide all 
necessary input parameters and receives the output in response.  

 
Implementing the interpolation service as a WPS makes it much easier to use for 
other environmental variables. A WPS also provides the user with a means of 
directly influencing the interpolation through the input parameters. 
 

 
 
The additional data are usually provided by third parties, e.g. a weather service in 
case of rainfall radar. Additional data in raster format can be provided by a Web 
Coverage Service (Open Geospatial Consortium, 2006a). A WCS supports the 
same kind of operations as a WMS (see section 3.2) but returns a raster rather 
than an image. Additional data consisting of points, lines or polygons can be 
accessed through a Web Feature Service (Open Geospatial Consortium, 2006b). 
A WFS supports the following operations:  

 
Figure 7: An interoperable automatic interpolation service providing maps to an 

emergency management system.  
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• GetCapabilities returns the metadata on the WFS, i.e. the available 

features,  
• DescribeFeatureType returns information on the requested feature 

type,  
• GetFeature returns the requested features allowing spatial and non-

spatial queries.  
 
A special WFS type is the Transaction WFS that allows users to modify features, 
that is to create, update or delete geographic features. In figure 7 the output of 
the WPS is retrieved by an emergency management system. It uses the output 
rasters from the WPS and combines these with other relevant data. The position 
of fire trucks and a municipal boundary layer map are just a few examples of the 
kinds of data that can be incorporated into this kind of emergency management 
system. 
 
5. CONCLUSIONS 
 
The automatic real-time interpolation system introduced in this paper presents a 
significant improvement in interpretation of data from the Dutch National 
Radioactivity Monitoring network. The system creates maps using universal 
kriging in combination with an automatic variogram fitting routine. Kriging delivers 
both a prediction and an associated prediction error estimate. Under additional 
assumptions the prediction and the error yield approximate 95% prediction 
interval maps. These intervals can be used to asses where a given threshold has 
been exceeded or not. The resulting maps are published through a Web Map 
Service, making these results interoperable with existing systems. Soil type is the 
only predictor currently included in the system. Adding more predictors would 
likely improve the prediction. Candidate predictors include rainfall radar images, 
height of the mixing layer and the output of atmospheric dispersion models. The 
interpolation routine is not suitable for data containing large outliers. The 
assumption of intrinsic stationarity is not very realistic in this case. A possible way 
to deal with outliers is to use data transformation techniques. Implementing all 
components of the system in OGC specified web services would make the 
system interoperable at a more basic level and would make the system more 
portable to other environmental variables. 
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