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     Abstract -There is an urgent need for tools to unravel the 
complex interactions and functionalities of genes. As such, 
there has been much interest in reverse-engineering genetic 
regulatory networks from time series gene expression data. We 
use an artificial neural network to model the dynamics of com-
plicated gene networks and to learn their parameters. The 
positive and negative regulations of genes are defined by a 
weight matrix, and different genes are allowed to have differ-
ent decaying time constants. We demonstrate the effectiveness 
of the method by recreating the SOS DNA Repair network of 
Escherichia coli bacterium, previously discovered through 
experimental data. 

I. INTRODUCTION

With the sequencing of the human genome [1], tools are 
urgently needed to unravel the interactions and functional-
ities of genes. Fortunately, microarray technology provides 
the opportunity to perform large-scale gene expression 
analyses [2]. However, the overwhelming complexity of 
signal transduction pathways, and the cascade of informa-
tion sent from the plasma membrane to the gene, hinder the 
understanding of the mechanisms and control of gene ex-
pression. This is further exacerbated, because gene expres-
sion is controlled by many elements, including the presence 
of gene-specific transcription factors. 
      Fortunately, as additional gene expression data are col-
lected, the modeling of gene expression pathways is becom-
ing a reality. Currently, the most popular approach to mod-
eling gene expression, and a major area in the field of bioin-
formatics, is to develop gene networks. Gene networks can 
be thought of simply as logical networks of nodes that influ-
ence each other's expression levels. Using microarray ex-
pression data, gene networks can be reverse-engineered to 
describe the expression and control pathways. 
     Several methodologies have been proposed for construct-
ing genetic network inference based on gene expression or 
protein data, including Boolean networks [3][4], linear dif-
ferential models [5][6] and Bayesian networks [7][8]. How-
ever, finding a model that successfully infers a genetic net-
work has been elusive for many reasons [9]. 

      Herein, we propose an alternative approach to reverse-
engineering gene networks, namely Recurrent Neural Net-
work (RNN). The motivation for exploring RNN’s architec-
tures is its potential for dealing with temporal behavior. Re-
current network is capable of settling on a solution, such as 
in a vision system, that gradually solves a complex set of 
conflicting constraints to arrive at an interpretation 
[10][11][12]. In using RNN for genetic network inference, 
we are mainly concerned with the ability of RNN to inter-
pret complex temporal behavior. By using RNN, we are 
able to overcome the unrealistic properties of linear model 
by introducing a nonlinear transfer function (similar to a 
dose-response curve), and an explicit mRNA decay term. 
Generalized recurrent neural network model can be consid-
ered as signal processing units forming a global regulatory 
network. The most relevant work to ours, so far, has been 
[13][14][15]. Our work is distinct from these because we 
report specific results on both weight matrix and decay time 
constant learning. 
      The remainder of this paper is organized as follows. In 
the next section, we will describe the RNN model. We will 
then discuss the results of the experimental data related to 
the SOS DNA Repair network of Escherichia coli bacterium. 
Finally, we present the conclusions. 

II. MODEL 

The proposed model is based on the assumption that the 
regulatory effect of genes can be expressed as a neural net-
work, wherein nodes represent genes and the connections 
between nodes define regulatory interactions. We consider 
the most common neural network formulation, 

                       ( )i
i i i i

dy
T y x I

dt
σ= − + + ,                             (1) 

where iy  is the state or activation level of node i , and 

                          i ji j i
j

x w y b= +                                       (2)                       

is the total input to node i ; ijw  is the connection from node 

i  to j ; ib is the bias term; 1( ) (1 )e ξσ ξ − −= + . The initial 

conditions 0( )iy t  and driving functions ( )iI t  are the inputs 

to the system. Since the output of each node has a connec-
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tion back to its input, this model is generally considered a 
recurrent network. It can represent positive and negative 
regulatory effects between genes by having positive or 
negative connections. The production term and decaying 
term also have implications in the biological process. Exter-
nal inputs, ( )iI t , represent additional stimuli outside of the 

genetic network, such as effects from regulatory elements, 
related protein levels, and other genes that are not in the 
network. We can develop a more general format of Equation 
(2) by introducing time delays between the output of a gene 
and its effect on another, as: 
                       ( )i ji j ji i

j

x w y t bτ= − + ,                            (3) 

where jiτ  represents the time delay between the output of 

gene j and its effect on gene i. This could correspond to time 
delays incurred during the transcription and translation steps 
of gene expression, possible transport of the generated pro-
tein through the cell, or simply the effect of a series of in-
termediate steps that are not explicitly being modeled as 
nodes in the network [13]. As a result, the learning rule is 
generalized and this general model more closely approxi-
mates biological reality. Thus, the recurrent neural network 
is similar to the genetic regulatory network. It is an obvious 
advantage to infer a genetic network with a model that 
shares common properties with it. 
     The model is shown in Fig. 1 and is derived by discretiz-
ing Equation (1), as: 

( ) (1 ) ( ) ( ( )) ( )i i i i
i i i

t t t
y t t y t x t I t

T T T
σ∆ ∆ ∆+ ∆ = − + + .       (4) 

Fig. 1. A recurrent network model of a gene regulatory network, described 
by Equation (4). It depicts the evolvement of gene expression level of 
genes in the network. 

    Given the gene expression measurement in a time series, 
the objective is to recover the genetic network, which be-
haves in a manner reflected in the collected data. In other 
words, the regulatory interactions strength, ijw , and node 

parameters, iT , are to be recovered. Details of the learning 

algorithms are available in [16]. To add to the completeness 
of our description, we present the learning rule in a continu-
ous-time format with concise notes.       
    Consider minimizing ( )E y , some function of the trajec-

tory taken by y  between 0t  and 1t . For instance:  

                        
1

0

2

1
( ( ) ( ))

t n

i i
t i

E y t d t
=

= − ,                          (5) 

where ( )d t  is the measured expression level of gene i  at 

time t  and n  is the total number of genes in the measure-
ment. More elaborate error terms can be easily added. 
Backpropagation Through Time (BPTT) [17] is used to find 
the derivatives of an error term E with respect to the indi-
vidual weights ijw  of the network, updating them in the 

direction that minimizes E.
       The learning rule in the continuous-time form, by tak-
ing the limit as 0t∆ →   is: 
                                

'( ) 1 1( ) ( ) ( ( )) ( )i
i i ij j ij j ij

ji j

dz t
z t e t w x t z t

dt T T
σ τ τ= − − + + ,  (6) 

            
1

0

'1 ( ) ( ( )) ( )
t

i j ij j ijt
ij j

E
y t x t z t dt

w T
σ τ τ∂ = + +

∂
,           (7) 

                        
1

0

'1 ( ( )) ( )
t

i it
i i

E
x t z t dt

b T
σ∂ =

∂
,                       (8) 

                        
1

0

( )1 ( )
t

i
it

i i

dy tE
z t dt

T T dt
∂ = −
∂

,                       (9) 

where +∂ denotes the ordered derivative [17].  
      Instead of regarding the time delays as a fixed part of the 
architecture, we can also consider them as tunable parame-
ters. We could learn the time delays in the continuous-time 
format: 

          
1

0

' ( )1 ( ) ( ( ))
t i ij

j j ijt
ij j

dy tE
z t x t w dt

T dt

τ
σ

τ
−∂ = −

∂
,        (10) 

or in the discrete format: 
1

0

'1 ( ) ( ( ) ( ( )
t

j j ij i ij
t tij j

E
z t t x t w y t t

T
σ τ

τ =

∂ = − + ∆ + ∆ −
∂

                     ( ))i ijy t τ− − .                                                (11)  

      We use the learning rule described above to learn the 
weight matrix and the time constants associated with each 
gene from a public known biological data set. The most 
relevant work to ours, so far, has been [13][14][15]. 
D’haeseleer [13] conducted preliminary exploration on the 
use of dynamic recurrent neural networks to restore a sparse 
genetic network from simulated data, but the network was 
restricted only by learning ijw , and no time constant iT

learning or time delays ijτ tuning was involved. The ijw

values had significant discrepancies, due to limited data. 
Vohradský [16] also discussed the biological plausibility of 
the neural network model of gene expression. No attempt 
was made to learn ijw  and iT . Our work is distinct from 

these because we report specific results on both weight ma-
trix and decay time constant learning. 

III. EXPERIMENTAL RESULTS 

To determine if the model is as efficient in predicting real 
biological data, we test our methods using the gene regula-
tory network published by Ronen et al. [18] for the SOS 
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DNA Repair network of the Escherichia coli bacterium (Fig. 
2).

Fig. 2.  An example of genetic regulatory network - the SOS DNA repair 
network. Inhibitions are represented by - , while activations are repre-
sented by .

       Although four experiments were conducted by [18] 
under various light intensities (Exp. 1&2: 5 Jm-2, Exp. 3&4: 
20 Jm-2), we use only the data for experimental condition 1. 
Data are expression kinetics of the eight main genes of the 
SOS network. Each experiment is composed of fifty time 
points, sampled every six minutes, and eight major genes 
are monitored: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA 
and polB. All data collected by [18] are available for 
download at Uri Alon’s homepage (http://www.weizmann.
ac.il/mcb/UriAlon/Papers/SOSData/).
     We proceed to several learning experiments on the data 
provided by Ronen et al.. Fig. 3 shows the plots of the real 
gene expression profile and the learned profile from the 
experimental data after averaging the results of thirty simu-
lations. The trends of the most-expressed genes are fairly 
well modeled. It is important to keep in mind that the goal 
of genetic network inference is to recover the regulatory 
interaction weight matrix. In principle, a positive connection 

ijw  indicates that gene j activates gene i, and a negative 

weight ijw  represents that gene j inhibits gene i. Normally, 

when the weight coefficient ijw  is zero or nearly zero, we 

assume that gene j has no regulatory effect on gene i. We 
use the same approach as in [28] to identify regulatory rela-
tionships so that we could compare our results with those 
from dynamic Bayesian network models [28]. The learned 
values of each parameter ijw  are distributed with mean ijµ
and variance 2

ijσ  in the thirty simulations. The mean and 

variance of all 64 coefficients, µ  and 2σ , also are com-

puted. Weight coefficients are then discretized into four 
classes according to their mean and standard deviation: 

Class[+] : ijµ  > µ  + σ  and ijσ  < | |ijµ ,

Class[-] :  ijµ  < µ  •  σ  and ijσ  < | |ijµ ,

Class[0] :  | |ijµ  < σ  and ijσ  < σ ,

Class[X] : other coefficients. 
(a) 

(b) 

Fig. 3. The comparison of the dynamic behavior in terms of gene expres-
sion level between the learned network and the real genetic network. (a) 
Real gene expression profile under the experimental condition 1 – UV light 
dose: 5 Jm-2;(b) Learned gene expression profile from the data under the 
experimental condition 1 after averaging the results of 30 simulations. 

Classes are built to represent, respectively, probable activa-
tions (Class[+]), probable inhibitions (Class[-]), probable 
absence of regulation (Class[0]), and probable presence of 
unknown regulations (Class[X]). The network was simu-
lated thirty times under different configurations. Fig. 4 
shows the identified discretized regulatory matrix W.

                

0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

X X
X X

± +
− +
± +
±

+
−
−

uvrD
lexA
umuD
recA

uvrA
uvrY
ruvA
polB

Fig. 4. Weight identified after thirty simulations. The jth column shows all 
identified regulations inflicted by jth gene on the other genes. Inversely, the 
ith row shows all regulations the ith gene is submitted to. Genes are listed 
on the right. 

     Compared to the nine probable regulations identified in 
[28], our recurrent neural network model identifies seven of 
them with an additional six probable regulations. The results 
show that we can identify the inhibition of LexA on umuD,
ruvA, and polB, and the activation  of  recA  on  lexA,
umuD, recA  and uvrY. The regulations of LexA on lexA,
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recA  and  uvrA  are  likely  because they are always identi-
fied in the results. These discretized weights are marked 
with  ±  in Fig. 4 because both  +  and  •   are identified in 
the results under different regularization parameter configu-
rations. When conflicts such as these occur, it may be nec-
essary to investigate further those particular regulatory rela-
tionships through laboratory experimentation. 
      Another interesting result from our experiments is the 
learned time constants of the genes. Fig. 5 depicts the mean 
and standard derivation of the learned time constants.  

Fig. 5. The learned time constants (from thirty simulatins) vs. genes. 1 – 
uvrD, 2 – lexA, 3 – umuD, 4 – recA, 5 – uvrA, 6 – uvrY, 7 – ruvA, 8 – polB.
Error bars indicate their mean and standard deviation.

As shown in Fig. 5, gene uvrA always has a relatively large 
time constant, while the gene lexA always has a relatively 
small time constant, in all simulations, compared to the 
other genes. These inferred time constants give us hints of 
the real decaying rate (as represented by iT  in Equation (1)) 

of the gene expression level under certain environmental 
conditions, and might be used to explain the kinetics of all 
SOS genes. Furthermore, they can provide initial evidence 
that can be used to design experiments to explore other 
regulations between inside and outside of the network. 

IV. CONCLUSIONS AND DISCUSSIONS 

Although the use of recurrent neural network models to re-
verse-engineering gene networks has been proposed by oth-
ers, to date, the design and simulation of recurrent network 
models have not been discussed in details or simulated us-
ing real biological data. In this paper, we use the general 
recurrent neural network to model the dynamics of compli-
cated gene networks and to learn their parameters. At the 
learning of the real biological data set – the data from the 
SOS DNA Repair Network of the E. Coli bacterium, the 
model is able to discover more complex regulation relation-
ships among genes in the SOS network, compared to the 
results from the dynamic Bayesian network model. At the 
same time, with a learning regulatory matrix, the RNN 
model can further infer the gene decaying rate iT , which can 

be used to explain the kinetics of the genes. It is also highly 
adaptable, in that it can accommodate the addition of time 
delay factors ijτ  and other applicable error terms into the 

model. 

     Given the similarity between recurrent neural network 
and gene regulatory network, RNN should play an important 
role in unraveling the mystery of gene regulation relation-
ships and their roles in controlling developmental, physio-
logical and pathological processes. 

ACKNOWLEDGMENT 

Support for this research from the National Science Founda-
tion, and from the M.K. Finley Missouri endowment, is 
gratefully acknowledged. 

REFERENCES 
[1] B. R. Jasny, L. Roberts, Building on the DNA Revolution. Science

300: 277, 2003. 
[2] L. F. A. Wessels, E. P. Van Someren, M.J.T. Reinders, “A comparison 

of genetic network models,” Pac Symp Biocomput, 508-519, 2001. 
[3] T. Akutsu, S. Miyano, S. Kuhara, “Identification of genetic networks 

from a small number of gene expression patterns under the Boolean 
network model,” Pac Symp Biocomput, 17-28, 1999. 

[4] S. Liang, S. Fuhrman, R. Somogyi, “Reveal, a general reverse engi-
neering algorithm for inference of genetic network architectures,” Pac 
Symp Biocomput, 18-29, 1998.  

[5] J. L. Michael De Hoon, S. Imota, K. Kobayashi, N. Ogasawara, S. 
Miyano, “Inferring gene regulatory networks from time-ordered gene 
expression data of Bacillus subtills using differential equations,” Pac 
Symp Biocomput, 17-28, 2003. 

[6] T. Chen, H. L. He, G. M. Church, “Modeling gene expression with 
differential equations,” Pac Symp Biocomput, 4:29-40, 1999. 

[7]  N. Friedman, M. Linial, I. Nachman, D. Pe’er, “Using Bayesian net 
work to analyze expression data,” J. Comp. Biol., 7, 601-620, 2000. 

[8] S. Imoto, T. Gota, S. Miyano, “Estimation of genetic networks and 
functional structures between genes by using Bayesian networks and 
nonparametric regression,” Pac Symp Biocomput, 175-186, 2002. 

[9]  R. Xu, X. Hu, D. Wunsch, “Inference of genetic regulatory networks 
with recurrent neural network models,” Engineering in Medicine and 
Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th 
Annual International Conference of the Volume 2, 1-5 Sept. 2004
Page(s):2905 –2908 Vol.4. 

[10] J. F. Kolen, S. C. Kremer, A Field Guide to Dynamic Recurrent Net- 
works, Wiley-IEEE Press, New York, March 2001.  

[11] F. J. Pineda. Generalization of back-propagation to recurrent neural 
networks. Physical Review Letters 59, 19, 2229-2232, 1987. 

[12] B. A. Pearlmutter, “Learning state space trajectories in recurrent neu-
ral networks,” Neural Computation 1, 2, 263-269, 1989. 

[13] P. D’haeseleer, Reconstructing gene networks from large scale gene 
expression data. Ph.D. Thesis, 2000. 

[14] E. Mjolsness, D. H. Sharp, J. Reinitz, "A Connectionist Model of  
Development." J. Theoretical Biology 152, 429-453, 1991. 

[15] Ji í Vohradský, “Neural network model,” J Biol Chem 276, 39, 36168-
36173, 2001. 

[14] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural 
networks: a survey,” IEEE Transactions on Neural Networks 6(5), 
1212-1218, 1995. 

[15] P. J. Werbos, “Backpropagation through time: what it does and how to 
do it,” Proceedings of IEEE, 78(10), 1550-1560, 1990. 

 [18] M. Ronen, R. Rosenberg, B. I. Shraiman, U. Alon, “Assigning num-
bers to the arrows: parameterizing a gene regulation network by using 
accurate expression kinetics,” Proc. Natl Acad. Sci. USA, 99, 10555-
10560. 

4738


	A General Recurrent Neural Network Approach to Model Genetic Regulatory Networks
	Recommended Citation

	A General Recurrent Neural Network Approach to Model Genetic Regulatory Networks

