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Abstract 

The globally hyped notion of Big Data has increasingly influenced scientific and 
technical debates about the handling and management of geospatial information. 
Accordingly, we see a need to recall what has happened over the past years, to 
present the recent Big Data landscape from an infrastructural perspective and to 
outline the major implications for the SDI community. We primarily conclude that 
it would be too simple and naïve to consider only the technological aspects that 
are underpinning geospatial (web) services. Instead, we request SDI 
researchers, engineers, providers and consumers to develop new methodologies 
and capacities for dealing with (geo)spatial information as part of broader 
knowledge infrastructures. 
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INTRODUCTION 

Spatial Data Infrastructures (SDIs) have been recently challenged by Big Data. 
The notion emerged when volume, velocity and variety were mentioned for the 
first time as the three dimensional challenges in data management by Doug 
Laney (2001). This was followed by Tim O’Reilly’s (2005) publication on Web 2.0 
and more intensively by James P. Collins’s (2010) postulation of data-intensive 
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scientific discovery. As a response to these milestones, the term “Big Data” has 
been featured in hundreds of SDI and geodata-handling conference papers and 
journal articles; and discussions on the impacts of Big Data on SDIs, Digital Earth 
and Geographic Information Systems (GIS) have been held on each continent. 
Having been the subject of many heated debates, we considered that now is the 
right time to dedicate an Editorial of the International Journal of Spatial Data 
Infrastructure Research (IJSDIR) to a brief stocktaking at the technical and 
infrastructure level of Big Data; and to reflect on its actual impact on the SDI 
community. 

GENERAL OBSERVATIONS 

While Big Data now seems a widely accepted term, it is worthwhile mentioning 
that – in spite of the growing volumes of data made available every day from 
sensors, social media sources, Web logs, medical histories, etc. – Big Data was 
completely removed from Gartner’s hype cycle for emerging technologies in 2015 
(Vorhies, 2015). This occurred at the same time as the introduction of terms that 
describe the Big Data landscape in both generic and abstract ways. They include, 
for example, the data lake: “If you think of a datamart as a store of bottled water 
– cleansed and packaged and structured for easy consumption – the data lake is 
a large body of water in a more natural state. The contents of the data lake 
stream in from a source to fill the lake, and various users of the lake can come to 
examine, dive in, or take samples” (Dixon, 2010). 

Nonetheless, as a notion, Big Data has become popular as it satisfies the 
requirements that led to its initial appearance – including, for example, the need 
of the scientific research community to unify the traditionally separated disciplines 
of high-performance computing and analytics (Reed and Dongarra, 2015). It also 
became clear that the Big Data challenges have to be resolved at the service 
level, leading to a “Big Service” ecosystem (Xu et al., 2015). Where the “five Vs” 
(volume, variety, velocity, veracity and value) are frequently used to 
characterise Big Data, seven main features represent Big Services: 
massiveness, heterogeneity, complexity, convergence, customer focus, 
credibility and value (BDVA, 2016). 

Simultaneously, the way that humans are involved in the data life-cycle has 
changed drastically during the past ten years, where roles such as developers, 
business analysts and end-users, used to be clear. Nowadays, however, the 
same person may play multiple roles and some roles may be served by multiple 
actors, as seen in crowdsourcing (Howe, 2006). According to the Beckman report 
(Abadi et al., 2016), for example, humans can be assigned different roles in the 
Big Data era and they can be classified as data producers, data curators, data 
consumers, and community members. The socio-organisational dimension to 
Big Data should, as with any data infrastructure, not be overlooked. 
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THE CURRENT BIG DATA LANDSCAPE 

The Big Data landscape, including both the Big Data Technologies (i.e. data 
lakes) and Big Data Infrastructures (i.e. databases and analytical tools) is 
evolving quickly. An overview of the main players and disciplines is, for example, 
maintained at the Big Data Landscape website (Feinleib, 2016). Due to the scope 
of this journal, we focus on its infrastructural aspects. 

The Hadoop ecosystem  

The Big Data technology level is undoubtedly dominated by the Hadoop 
ecosystem (ApacheTM, 2016), which is currently the only viable example of a 
data lake. The heart of the Hadoop ecosystem is Apache Hadoop, a Java based 
open source software library that supports the distributed processing of large 
data sets across clusters of computers using simple programming models. It is 
designed to scale up from single servers to the thousands of machines that offer 
local computation and storage. A whole ecosystem of infrastructures for Big Data 
analysis has been developed around Apache Hadoop, including infrastructures 
for cluster and data management (e.g. Ambari, Avro, Chukwa, Pig, ZooKeeper, 
Mesos, etc.), database and data warehousing infrastructures (e.g. Cassandra, 
HBase, Hive, Drill, etc.), and analytical infrastructures (e.g. MapReduce, Tez, 
Spark, Flink, Mahout, S4, Samza, Storm, Kafka, etc.). Notably, in order to join the 
Hadoop ecosystem, some commercial tools have become open source and are 
undergoing the incubation process in the Apache Software Foundation (ASF), 
such as the In-Memory Data Fabric which is now included in the ecosystem as 
Apache Ignite.   

Databases 

As far as databases and data management are concerned, research and practice 
indicate that the traditional architecture of relational Structured Query Language 
(SQL)-based Data Base Management System (DBMS) hardly satisfies Big Data 
requirements (Pokorny, 2013). The various approaches that have been adopted 
in order to satisfy different subsets of these requirements include: 

 NoSQL databases to provide a mechanism for data storage and retrieval 

not based on the tabular relations of relational databases. NoSQL 

is interpreted as Not only SQL, in order to emphasize that a NoSQL 

database may also support an SQL-like query language. The 

performance of NoSQL databases scales with increasing read-write 

workloads, but they compromise part of the guarantees in respect to 

Atomicity, Consistency, Isolation and Durability (ACID) (Rafique et al., 

2015). Different types of NoSQL databases have been developed in order 
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to address competing requirements (NoSQL, 2016). The most 

common NoSQL database types include key-value stores, column 

databases, document stores, XML databases, graph databases and array 

databases. Some of these are equipped with particular spatial-processing 

capabilities. Examples include the column store MonetDB (used for point 

clouds), the document store MongoDB (used for spatial objects), and the 

array databases rasdaman and SciDB (both used for spatial fields). 

 NewSQL databases to modernize relational database management 

systems in order to reach the scalable performance of NoSQL 

approaches (especially for On-Line Transaction Processing – OLTP), 

while preserving the ACID guarantees of a traditional SQL-based DBMS 

(Aslett, 2011). NewSQL systems vary greatly in their internal architectures 

but they all support the relational data model and use SQL as their 

primary interface. 

 NoDB approaches to introduce a new generation of data management 

systems (Alagiannis et al., 2015). The NoDB approach eliminates major 

bottlenecks of current state-of-the-art technology to make database 

systems more accessible to the user, while still maintaining the features of 

modern DBMSs. To achieve this, traditional database architectures are 

extended to perform query processing in situ on the data, depending on 

the demands of a particular request. 

Data analytics 

The analytics supported by Big Data infrastructures can be divided into three 
types (Bertolucci, 2013): (a) Descriptive Analytics, which apply descriptive 
statistics in order to gain insight from historical data, such as time series; (b) 
Predictive Analytics, a form of data mining which involves extracting information 
from data and using it to predict trends and behaviour patterns; and (c) 
Prescriptive Analytics, which is a current trend involving the automatic 
synthesis of Big Data with multiple disciplines of mathematical sciences and 
computational sciences, and business rules, to make predictions and then 
suggest decision options taking advantage of these predictions.  

This typology is accompanied by three major strategic approaches (Shneiderman 
and Plaisant, 2015): (i) Extraction Strategies, which use only the relevant 
records, event types, or events from a large dataset, thereby making detection of 
meaningful patterns easier; (ii) Folding Strategies, which replace a single long 
data sequence with many shorter ones so that cyclic patterns, such as weekend 
days in a week, are easier to recognize; and (iii) Pattern Simplification 
Strategies, which re-label similar structural types, in order to cope with the 
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variety of (event) types and to reduce the volume of structures that often makes it 
difficult to see meaningful patterns. 

Not surprisingly, supporting tools are (again) primarily situated within the Hadoop 
ecosystem. Initial solutions for Big Data analytics used the MapReduce 
programming model (Dean and Ghemawat, 2008), which essentially applies 
batch processing. A MapReduce job usually splits an input data-set into 
independent chunks that are processed by the map tasks in a completely 
parallel manner. The MapReduce framework sorts the outputs of the maps, which 
are then inputs to the reduce tasks. Typically, both the input and the output of 
the job are stored in a file-system. The framework takes care of scheduling tasks, 
monitoring them and re-executing the failed tasks. Several extensions of 
MapReduce have been developed, including SpatialHadoop (2013), a fully-
fledged MapReduce framework with native support for spatial data (Eldawy and 
Mokbel, 2013), and Hadoop-GIS (Aji et al., 2013), a scalable and high 
performance spatial data warehousing system for running large-scale spatial 
queries on Hadoop. 

Specialised real-time analytics provide the capacity to handle continuously 
generated data streams from application logs, events or a large pool of devices 
that deliver data in high velocity (Thaploo, 2014). Such stream processing 
applies streaming analytics, i.e. the continuous calculation of mathematical or 
statistical analytics on-the-fly within the data stream. Stream processing solutions 
are designed to handle high volumes in real-time with a scalable, highly available 
and fault tolerant architecture (Wähner, 2014). The new requirements imposed by 
the need for stream processing and stream analytics have overthrown 
MapReduce in favour of Spark (2016), since MapReduce supports only batch 
parallel processing, while Spark is an up-to-100-times-faster generic engine for 
large-scale parallel data processing that also allows the integration of data 
streams (Goth, 2015). 

An important development is the availability of open-source machine learning 
software, including MLlib scalable machine learning library of Apache Spark, 
Apache Samoa (2014) (initially developed by Yahoo!) and Google TensorFlow 
(2015). 

Considering the other side of the spectrum: programming languages for the Big 
Data ecosystem, the Scalable Language (Scala) (2016) has become highly 
popular. Scala is object-functional, and its functional nature makes it easier to 
write safe and performant multi-threaded code. 
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IMPLICATIONS 

The implications from these generic observations and evolving landscape on the 
SDI community are twofold. On the one hand, one might argue that many of the 
technical evolutions reside in back-end technologies; and that existing (web) 
service solutions already cover parts of the challenges related to data volumes, 
real-time access and the integration of heterogeneous sources. For example, (1) 
the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of 
standards (SWE, 2016) is equipped to deliver real-time information and trigger 
events; (2) the OGC Web Coverage Processing Services (WCPS) (2016) 
provides the means to extract value-added information out of massive raster or 
point cloud databases, moving processing capacities close to the data store; and 
(3) the INSPIRE geospatial interoperability standards (INSPIRE, 2016) provide a 
flagship for integrating public sector information from a variety of domains, 
administrative levels and cultural borders. In this way – while continuously 
working on technological improvements of the infrastructures and platforms that 
underlie geospatial services by including parts of the Hadoop ecosystem or 
developing specialised geospatial solutions – SDIs continue to ease data use 
and integration from remote sensing images (especially from the Sentinel 
satellites of Copernicus), point clouds, cartographic databases, in situ sensor 
networks (now also including contributions from Citizen Scientists) and much 
more. 

To this respect, the (simplified and naïve) technological challenge of the SDI-
community would be the addition of semi- and unstructured data sets and data 
streams into the existing data-handling structures and serving them as part of the 
established architectures, already including cloud storage and processing. This 
would particularly address ad hoc integration of sources with formats that are not 
known a priori. Such activities address new and much more dynamic work areas, 
i.e. go far beyond the current business cases. New methodological approaches 
have to be researched in order to cover the extended suite of possible analytics 
and the diverse implementation strategies. These methodologies also have to 
take into account the new roles of humans as part of the data life-cycle, thereby 
supporting arising notions such as “deep-learning” (Bengio et al., 2013) and 
“edge intelligence” (Serrano et al., 2015) for the SDI community in itself. 

On the other hand, however, the growing user base for spatial data that is not 
well served with the existing technologies, and the overall request paradigm is 
changing. Many of the traditional SDI users know relatively well what they are 
looking for, and can deal with the typical standards of, for example, OGC, ISO 
TC211, and CEN TC287. This will no longer be applicable to the new generation 
of potential customers. They demand “all data that is available for an area X”, “all 
that is available about an object Y” or “everywhere that is related to this Z”. In 
addition, they rarely have a background in geomatics or in any particular field of 
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space, earth, environmental or geographical information science. In other words: 
WE NEED NEW INTERFACES! 

Several years ago, it became clear that the Linked Data paradigm (Bizer et al. 
2009) would not lead to the next-generation of SDIs (Schade and Smits, 2012) – 
as a silo community in itself. While, for example, INSPIRE already breaks the 
barriers between the SDI community and eGovernment (ISA 2015; ISA 2016), 
the Big Data era now urges us even more to simplify our service models and 
adopt existing solutions to more conventional approaches. Spatial cannot be 
treated as special any more. We are all challenged to contribute to the capacity 
building of new analytical approaches and in the sense of building geospatial 
capabilities into the newly emerging “Big Services” of mainstream IT. The 
required solution has to build on interconnected technical infrastructures. In 
addition, it should equally rely on the appropriate training and education of a new 
generation of service providers and consumers. 

Simultaneously, while updating to the latest technology and continuing to connect 
to the mainstream, we must be mindful of the evolving trajectories, where the 
future of Big Data is difficult to predict. If Big Data is a transient problem and data 
grows slower than the hardware that allows us to cope with it, then the Big Data 
of today will be in our pockets tomorrow. If, however, we see a data oversupply 
from an infrastructure point of view, we could expect research to prosper or 
disruptive forces completely reshaping the computing landscape (Lin, 2015). How 
likely is it that the concept of an SDI will find a prominent place in this possible 
future? 

CONCLUSION 

So, is Big Data a step change for the SDI community? At least, it forces us to 
reflect on its impact and our role. While affecting underlying technical 
infrastructure and system connectivity, the new data providers, data extractors 
and knowledge sharers should not be underestimated, along with an opportunity 
to re-think our overall approach to SDI. 

Researchers have to develop new integrative methodological approaches. 
Standardisation communities and geospatial software engineers should ease the 
use of the current services of SDIs for mainstream application developers and to 
enable new user experiences. Industry and academia have to adopt their 
educational approaches accordingly. And the research community is additionally 
challenged to anticipate future developments and explore promising new 
scientific frontiers. 
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We hope, therefore, to see some of these reflections and experiments on a new 
way of dealing with (geo)spatial information as part of knowledge infrastructures 
in the future issues of the journal. 
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