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Resonance strengths for K LL dielectronic recombination of highly charged mercury ions and
improved empirical Z-scaling law
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Theoretical and experimental resonance strengths for KLL dielectronic recombination (DR) into He-, Li-,
Be-, and B-like mercury ions are presented, based on state-resolved DR x-ray spectra recorded at the Heidelberg
electron-beam ion trap. The DR resonance strengths are experimentally extracted by normalizing them to
simultaneously recorded radiative recombination signals. The results are compared to state-of-the-art atomic
calculations that include relativistic electron correlation and configuration mixing effects. Combining the present
data with other existing ones, we derive an improved semiempirical Z-scaling law for DR resonance strengths as
a function of the atomic number, taking into account higher-order relativistic corrections, which are especially
relevant for heavy highly charged ions.

DOI: 10.1103/PhysRevA.99.012506

I. INTRODUCTION

Charge-state-changing processes have an essential impor-
tance for the dynamics of plasmas. The corresponding re-
action rates do not have a monotonic dependence on the
absolute charge state, but they rather display a more pro-
nounced effect characteristic of the isoelectronic sequence
in which the processes take place. Understanding these pro-
cesses therefore requires the knowledge of various atomic
processes. One of the strongest and most important processes
is photorecombination of electrons with ions. It can proceed
in a direct, nonresonant, and a two-step resonant channel.
In the process of radiative recombination (RR), a photon is
directly emitted by the recombining electron, i.e., it is a time
reversal of the photoelectric effect. Alternatively, in a two-step
process, an incoming electron excites a bound electron during
recombination, leading to dielectronic recombination (DR).

Such resonant photorecombination processes involving
highly charged ions (HCIs) in collisions with energetic elec-
trons are relevant for a number of applications. Indeed, res-
onant mechanisms are highly efficient in either ionizing or
recombining ions and hence DR is of paramount importance
for the understanding of the physics of outer planetary atmo-
spheres, interstellar clouds. It is also a very effective radiative
cooling mechanism in astrophysical [1–3] and laboratory plas-
mas [4,5]. Thus, a precise quantitative understanding of such
a process is indispensable. Dielectronic recombination often
represents the dominant pathway for populating excited states
in plasmas and consequently for inducing easily observable x-
ray lines which are used as a diagnostic tool for fusion plasmas

*harman@mpi-hd.mpg.de
†chintan@mpi-hd.mpg.de

[6,7], triggering a range of DR studies with highly charged
ions [8–10]. In addition to RR and DR, trielectronic recom-
bination was recently emphasized to be crucial for plasma
models. Recent experiments have shown that intrashell tri-
electronic recombination dominates the recombination rates
in low-temperature photoionized plasmas [11,12]. Also, an
intershell trielectronic recombination channel was measured
to have sizable and even high cross sections relative to first-
order DR for low-Z elements [13–17] and hence is crucial for
high-temperature collisionally ionized plasmas.

From a more fundamental point of view, the selectivity of
DR allows stringently testing sophisticated atomic structure
calculations, in particular of relativistic and quantum electro-
dynamics (QED) effects in bound electronic systems. Investi-
gating HCIs with DR offers additional important advantages,
including large cross sections, the simplification of the the-
ory due to a reduced number of electrons, and pronounced
relativistic and QED contributions. These have been investi-
gated in experiments both in electron-beam ion traps (EBITs)
(see, e.g., [18–23]) and in storage rings [11,12,24–33].
Even if direct EBIT spectroscopic measurements have
achieved higher precision [34], we can point out that the
2s1/2-2p1/2 splitting in lithiumlike ions was determined in
a storage ring employing DR with an accuracy capable of
testing two-loop QED corrections [28]. Similarly, using DR in
an ultracold electron target, the same splitting in Li-like Sc18+

has been indirectly determined with a 4.6-ppm precision [30].
Dielectric recombination experiments have also been shown
to be sensitive to isotopic shifts in Li-like 142,150Nd [31,35].

Early EBIT measurements of DR cross sections and studies
at high collision energies, involving quantum interference
effects between the RR and DR processes in ions up to
U88+ [18], demonstrated the tremendous potential of the
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method. Previously, we observed the quantum interference
phenomenon in a state-specific manner [19]. We have also
succeeded in determining the absolute DR resonance en-
ergies in HCI in a state-resolved fashion, including He-like
mercury ions (Hg78+) [20] with high precision of a few eV
in a 50-keV energy range. These results have been com-
pared to advanced relativistic theoretical calculations, such
as the multiconfiguration Dirac-Fock (MCDF) method and
a configuration-interaction scheme employing a combined
Dirac-Fock-Sturmian basis set, both including QED contri-
butions [21]. While generally very good agreement between
theory and experiment has been observed (on the level of a
few ppm), some potentially interesting disagreements remain
to be addressed.

In addition to such structural investigations, other im-
portant features of photorecombination processes are cross
sections and strengths. Since the resonant excitation in DR
is solely evoked by the interaction of the active electrons, the
experimental determination of cross sections provides insights
into relativistic electron interactions in a dynamical process.
Recently, the experiments became sensitive to the contribution
of the generalized Breit interaction [23,36] to DR resonance
strengths as well as to the linear polarization of x rays emitted
during DR [37,38]. Also, the theoretical description of the
process requires nontrivial additions to the many-body theory
of atomic structures. In our case, the MCDF method is applied
to describe the bound few-electron states involved in the pro-
cess, and a relativistic distorted-wave model of the continuum
electron is employed.

Several experimental and theoretical studies on DR cross
sections σ DR and resonance strengths SDR have been per-
formed for intra- and intershell transitions. A specific example
of intershell dielectronic excitations is the KLL transitions.
These take place when a free electron is captured in a va-
cant state of the L shell of an ion, while a bound electron
of the ion from the K shell is simultaneously promoted
to the L shell, thus forming an intermediate autoionizing
1s2l2l′ state. So far, many experimental investigations have
been reported on KLL DR resonances of various low- and
mid-Z ions [9,25,39–47], while data are rather scarce for
very heavy ions where relativistic and QED effects play
a critical role [48,49] and therefore a full scope is still
missing.

In the present paper we investigate and determine state-
resolved KLL DR resonance strengths for highly charged
mercury ions in different charge states (Hg78+ to Hg75+)
using the Heidelberg EBIT and compare them to calculations
based on the MCDF method and the Flexible Atomic Code
[50] (FAC). Experimental DR spectra are normalized to the
radiative recombination cross section in order to obtain the
resonance strengths. In Sec. II the theoretical calculations
are briefly described. The experimental procedure and data
analysis are described in Sec. III, and theoretical and exper-
imental results are compared. Then, in Sec. IV, combining
the experimental results available so far, including the data
for Hg ions in the present work, we provide a semiempirical
formula to describe KLL DR strengths for He-like ions over
a wide range of nuclear charges. The paper concludes with a
summary in Sec. V. Atomic units are used (h̄ = me = e = 1),
unless noted otherwise.

II. THEORY AND CALCULATION OF
RESONANCE STRENGTHS

The cross section for a given dielectronic recombination
channel is given (in atomic units) as a function of the electron
kinetic energy E as (see, e.g., [51–53])

σ DR
i→d→f (E) = 2π2

p2
V i→d

a

A
d→f
r

�d

Ld (E). (1)

The Lorentzian line-shape function

Ld (E) = �d/2π

(Ei + E − Ed )2 + �2
d

4

(2)

is normalized to unity on the energy scale and p = | �p | =√
(E/c)2 − c2 is the modulus of the free-electron momen-

tum associated with the kinetic energy E. Furthermore,
�d denotes the total natural width of the intermediate au-
toionizing state, given as the sum of the radiative and au-
toionization widths �d = Ad

r + Ad
a (note that the rates and

the associated linewidths are equivalent in atomic units).
In Eq. (1), i is the initial state of the process, consist-
ing of the ground-state ion and a continuum electron with
an asymptotic momentum �p and spin projection ms . The
wave function of the latter is represented by a partial-wave
expansion [54]

|E �pms〉 =
∑
κm

ilei�κ

∑
ml

Y ∗
lml

(θ, ϕ)

×C

(
l
1

2
j ; mlmsm

)
|Eκm〉, (3)

where the orbital angular momentum of the potential wave
is denoted by l and the corresponding magnetic quantum
number is ml . The phases �κ are chosen so that the con-
tinuum wave function fulfills the boundary conditions of an
incoming plane wave and an outgoing spherical wave, as
necessary for the description of an incoming electron (see
Ref. [54]). In the above expression, κ = 2(l − j )(j + 1/2)
is the relativistic angular momentum quantum number. The
total angular momentum quantum number of the partial wave
|Eκm〉 is j = |κ| − 1

2 . The spherical angular coordinates are
denoted by θ and ϕ, Ylml

(θ, ϕ) is a spherical harmonic, and
C(l 1

2j ; mlmsm) stands for the vector coupling coefficients.
The partial-wave functions are represented in the spherical
bispinor form as

〈�r |Eκm〉 = ψEκm(�r ) = 1

r

(
PEκ (r )�κm(θ, ϕ)

iQEκ (r )�−κm(θ, ϕ)

)
. (4)

Here PEκ (r ) and QEκ (r ) are the radial parts of the large and
small component wave functions, respectively, and �κm(θ, ϕ)
is the spinor spherical harmonic in the l-s-j coupling scheme.

The index d in Eq. (1) denotes quantities related to
the autoionizing state formed which constitutes the in-
termediate state in the dielectronic capture process. This
intermediate state then decays radiatively to the final
state f . Here V i→d

a denotes the dielectronic capture (DC)
rate and Ad

r = ∑
f A

d→f
r is the total radiative rate of

the autoionizing intermediate state |d〉. The DC rate is
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given by

V i→d
a = 2π

2(2Ji + 1)

∑
Md

∑
Mims

∫
sin(θ )dθ dϕ

|〈�d ; JdMd |VC + VB |�iE; JiMi, �pms〉|2

= 2π
∑

κ

|〈�d ; Jd‖VC + VB‖�iE; Jij ; Jd〉|2. (5)

In this equation, the matrix element of the Coulomb and
Breit interaction [55] (V C and V B , respectively) is calculated
for the initial bound-free product state i and the resonant
intermediate state d. After integration over the initial magnetic
quantum numbers and the direction (θ, ϕ) of the incoming
continuum electron, and after performing the summation over
the magnetic quantum numbers of the autoionizing state,
we obtain the partial-wave expansion of the reduced matrix
elements, as given in the last line of Eq. (5).

The dielectronic capture rate is related to the rate of its
time-reversed process, i.e., the Auger process, by the principle
of detailed balance

V i→d
a = 2Jd + 1

2(2Ji + 1)
Ad→i

a . (6)

Here Jd and Ji are the total angular momenta of the interme-
diate and the initial states of the recombination process, re-
spectively. Neglecting the energy dependence of the electron
momentum in the vicinity of the resonance, the dielectronic
resonance strength, defined as the integrated cross section for

a given resonance peak

SDR
i→d→f ≡

∫
σ DR

i→d→f (E)dE, (7)

is given as

SDR
i→d→f = 2π2

p2

1

2

2Jd + 1

2Ji + 1

Ad→i
a A

d→f
r

Ad
r + Ad

a

, (8)

where Ad→i
a is implicitly defined in Eq. (6). The factor 2π2

p2

defines the phase-space density and the 1/2 stems from the
spin degeneracy of the free electron.

To obtain the cross section corresponding to a given pho-
ton emission polar angle θ , the differential cross section
for dipole x-ray emission has to be determined. For electric
dipole transitions relevant to the current study, it is given
by [56]

dσ DR
i→d→f

d�k

= σ DR
i→d→f

4π
W (θ ),

W (θ ) = 1 + βi→d→f P2(cos θ ). (9)

Also, the resonance strength has to be modified accordingly,
i.e., multiplied by the angular distribution function W (θ ). In
the above formula, βi→d→f is the dipole anisotropy parameter
depending on the matrix elements of dielectronic capture and
on the angular momentum quantum numbers of the initial
and intermediate states involved in the electron recombina-
tion, while P2 is the second-order Legendre polynomial. The
anisotropy parameter can be expressed as [56,57] (see also
[58,59])

βi→d→f = (−1)1+Jd+Jf P
(2)
JiJd

P
(0)
JiJd

√
3
2 (2Jd + 1)

{
1 1 2
Jd Jd Jf

}
, (10)

with

P
(L)
JiJd

=
∑
κκ ′

(−1)Ji+Jd+L−1/2il−l′ cos(�κ − �κ ′ )[j, j ′, l, l′, L]1/2

(
l l′ L

0 0 0

){
j ′ j L

l l′ 1
2

}{
Jd Jd L

j j ′ Ji

}

×〈�d ; Jd‖VC + VB‖�iE; Jij ; Jd〉〈�d ; Jd‖VC + VB‖�iE; Jij
′; Jd〉∗. (11)

Here the shorthand notation [j1, j2, . . . , jn] = (2j1 +
1)(2j2 + 1) · · · (2jn + 1) is used. We denote 3j symbols
by parentheses and represent 6j symbols by curly brackets.

In this work we observe the x-ray radiation at a 90◦ angle
with respect to the electron-beam propagation direction. Thus,
according to Eq. (9), the angular correction factor for electric
dipole x-ray transitions can be given as

W (90◦) = 3

3 − P DR
, (12)

where P DR is linear polarization of DR x rays.

III. EXPERIMENTAL RESONANCE STRENGTHS

A. Experiment and data analysis

The present experiment with highly charged mercury ions
(He- to B-like) was carried out using the Heidelberg EBIT

[60] at the Max Planck Institute for Nuclear Physics in
Heidelberg. Experimental details have already been discussed
in previous papers [19,20,44]. It should be pointed out that
relative resonance energies were precisely determined with
uncertainties of approximately 4 eV at a 50-keV DR reso-
nance region, corresponding to a resolution of �E/E ≈ 10−4,
while the electron-beam energy spread was estimated to have
an FWHM of about 60 eV at 50 keV.

We generate two-dimensional (2D) plots displaying the
x-ray energy against the electron-beam energy which is slowly
scanned over the region of KLL DR resonances. Figure 1(a)
shows a typical 2D plot of such scans for Hg ions including
different charges, with an acquisition time of about 100 h.
For a given charge state and capture level, the energy scan
registers a unity-slope band, broadened by both the energy
spread of the electron beam and the energy resolution of the
photon detector. The two broad bands in Fig. 1(a) correspond
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FIG. 1. (a) Typical 2D plot of the observed KLL DR and RR
x rays from Hg ions in different charge states as a function of the
electron-beam energy. The element symbol refers to the initial charge
state of the Hg ions. (b) Example of projections of the sliced portions
in the J = 1/2 region at different RR x-ray energies, along the
electron energy axis. Cut 1 corresponds to a slice at the highest RR
x-ray energy. The background is due to RR and the observed peaks
are due to KLL DR of Hg ions in different initial charge states as
indicated with He-, Li-, Be-, and B-like Hg ions. See the text for a
further detailed explanation.

to the RR into n = 2 states with different total angular mo-
menta J of the final, bound many-electron state: The one at
higher x-ray energy (lower electron-beam energy) is due to

RR into the n = 2 state with J = 1/2, while the other band
at lower x-ray energy is due to n = 2, J = 3/2 states. A
number of bright spots (DR resonances) appear at specific
electron and photon energies. They are mostly overlapping
with the RR broad bands and are observed to cluster around
three energy regions such as KL12L12, KL12L3, and KL3L3.
These resonances correspond to different ionic states involved
in the DR process. For example, KL12L12 represents KLL

DR with both the initially free electron and a K-shell electron
being promoted into an n = 2, J = 1/2 state, forming a
1s2s2

1/2, 1s2s1/22p1/2, or 1s2p2
1/2 intermediate excited config-

uration state.
The data on the 2D plot can be sliced and projected

onto either the electron-beam energy or x-ray energy axis.
In fact, the projection into the electron-beam energy axis of
thin portions sliced along the RR band (at either J = 1/2 or
J = 3/2) in this 2D plot allows us to investigate the detailed
properties of the DR resonances for a given charge state
[19,20]. In Fig. 1(b) we demonstrate how we have sliced this
plot into relatively narrow widths (white lines), separating the
contribution to the DR resonances of Hg ions in different
ionic charge states and electronic states, namely, the sliced
band at the highest x-ray energy (marked as cut 1) mainly
consists of those from He-like and Li-like ions. The former
are hardly seen in Fig. 1(a) but are clearly seen in the projec-
tions of Fig. 1(b). Some examples sliced into narrow widths
(≈500 eV) along different RR x-ray energies and projected
onto the electron energy axis are shown in Fig. 1(b), where one
can see a number of peaks corresponding to DR resonances of
Hg ions in different initial charge and ionic states. In Fig. 1(a)
sliced at the highest RR x-ray energy region (cut 1), we
can clearly see the DR resonances of He-like ions (one into
KL12L12, marked as He1, and another into a KL12L3 state,
He3) and Li-like ions (into KL12L12, Li1) at different electron
energies. On the other hand, cut 5 at the lowest x-ray energy is
dominated by the contribution of KL12L3 DR into B-like ions
(marked as B1). The labeling of these resonances has been
described in Refs. [20,21].

Most experiments could not separate the DR into different
states due to limited energy resolutions; their DR strengths
should be considered as values summed over the possible
DR resonances within a certain manifold of atomic states
[43,45,61]. Because of the good electron-beam energy reso-
lution and a relatively large separation among different elec-
tronic states of heavy Hg ions in the present experiment, we
can determine experimental resonance strengths of each DR
resonance by integrating the counts under the observed DR
peak shown in Fig. 1(b). However, determining the absolute
resonance strengths requires the knowledge of the number of
ions in the trap and the overlap between the electron beam and
ion cloud. Since DR and RR occur in the same ion-electron
collision volume in the present EBIT experiment and RR
rates are proportional to the ion number density and overlap
factors, it is most convenient to normalize the observed DR
x-ray intensities to the RR x-ray intensity to determine the
absolute resonance strengths. Moreover, the RR cross sections
(σ RR) can be calculated very accurately when the electron-
beam energy is high, as in our case. The theoretical RR
cross sections are also less susceptible to correlation effects.
Therefore, using the method used by Smith et al. [62], we can
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write

SDR = IDR(3 − P DR)

IRR(3 − P RR)
σ RR�E4π, (13)

where IDR is the x-ray intensity integrated under a particular
KLL DR resonance peak, observed at 90◦ in the present work,
and IRR is the integrated intensity of the RR contribution in
the range of the DR peak that has a width of �E. Since the
ions in the EBIT are excited by a unidirectional electron beam,
the x-ray photons emitted from the trap are usually anisotropic
and polarized [17,38,56]. The factors P DR and P RR are the
polarization factors of x rays emitted from the KLL DR
and the RR processes, respectively, given as P = 3β/(β − 2)
in terms of the electric dipole anisotropy parameter β [see
Eqs. (10) and (9)]. The factor 4π converts differential cross
sections for emission at 90◦ to the electron beam to the total
cross sections.

It is important to note that a significant distortion of the
continuous and smooth RR x-ray backgrounds (IRR) can be
caused by quantum mechanical interference between the DR
and RR pathways which becomes significant for very heavy
ions [19]. To avoid such effects, we have taken IRR at slightly
below and above the beam energies at which DR resonances
occur and used their average in the analysis of Eq. (13) instead
of those directly under the DR resonance peak.

In the present experiment, the ion charge in the EBIT is
not well defined but it is distributed over a range of possible
charge states of the ions; as an example, He- to F-like Hg
ions can contribute to the present RR bands into n = 2 states.
Therefore, we need to accurately know the relative fractional
distributions of ions in different charge states to obtain the DR
strength for a particular charge state as the observed RR x rays
(IRR) are the sum of those from all of the possible ions with
different charges.

To obtain information on the charge fraction distributions
of Hg ions in the trap, we have used the diagonal RR bands.
We then selected four electron energy regions (well outside
the DR resonances to avoid any distortion effect of the
RR spectrum) after being sliced vertically and projected the
summed spectrum onto the x-ray axis. The final profile has
been found to contain two strong bumps as shown in Fig. 2,
where a peak at higher energy corresponds to the RR J = 1/2
band, while a broader peak at lower energy corresponds to
the RR J = 3/2 band. The peak observed at higher RR x-ray
energy is composed of four subpeaks, corresponding to RR
into the four possible vacancies in the 2s1/2 and 2p1/2 states
with J = 1/2 in He-, Li-, Be-, and B-like ions. Because the
observed RR spectrum depends on RR cross sections and on
the number of ions in different charge states present in the
EBIT, we can estimate the fractional charge distribution of the
ions contributing to RR via an analysis of the RR spectrum
distributions.

In the present analysis of the RR band spectrum at higher
energies (recombination into J = 1/2 states), we have first
set a single constraint: The difference of the observed RR
x-ray peak energies among different ion charges is set equal to
that of the respective theoretical ionization energies as the RR
x-ray energy is linearly varied against the ionization energy
of ions to be recombined [63]. Convolving the calculated
RR cross sections for each ion charge state with the energy

FIG. 2. Fractional distribution of Hg ions in different charge
states contributing to two RR bands (J = 3/2 on the left-hand side
and J = 1/2 on the right-hand side). Note that the RR band with
J = 1/2 consists of four charge states, while that with J = 3/2
consists of eight charge states. The vertical thin lines show the
cuts corresponding to the cuts in Fig. 1. The brown-colored area
corresponds to RR into He-like ions, yellow into Li-like ions, red
into Be-like ions, green into B-like ions, blue into C-like ions, light
green into N-like ions, magenta into O-like ions, and dark blue into
F-like ions.

resolution of the detector, we could fit the observed RR
band reasonably well (on the right-hand side in Fig. 2) with
these four RR peaks from He- to B-like Hg ions. The charge
fractions obtained are shown in the first row of Table I. The
fraction of He-like ions is indeed very small compared to those
of the Be- and B-like ions.

The second, broader band at lower energies due to RR into
J = 3/2 states shown in Fig. 2 originates from RR into ions
with eight different charge states ranging from He- to F-like
because the corresponding x-ray energies lie in a close range.

TABLE I. Percentages of Hg ions in various charge states con-
tributing to the two RR bands (the J = 1/2 and J = 3/2 are in the
upper and lower parts, respectively) as well as to x-ray intensities
in the corresponding selected cuts. The designation of the cuts
corresponds to that in Fig. 1. A large fraction (≈66%) in the J = 3/2
RR band is due to the relatively lower charge states, i.e., C- to F-like.
Note that their fractions are not shown here.

He Li Be B

RR, n = 2, J = 1/2 1.6 17.8 33.9 45.0
cut 1 13.3 74.7 11.2
cut 2 45.8 42.0 9.5
cut 3 9.3 50.7 39.5
cut 4 27.0 70.0
cut 5 78.1

RR, n = 2, J = 3/2 0.2 2.9 8.4 22.9
cut 6 4.5 40.6 35.9
cut 7 13.7 38.0 38.6
cut 8 13.4 46.0
cut 9 1.8 21.0
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The constraint in fitting the second band was analogous to
the one used in the analysis of the first band. Additionally,
to ensure the relation of RR into both J = 1/2 and J = 3/2
peaks, two more constraints were set in the present analysis.
First, all peak widths were set to the x-ray detector resolution
≈676 eV at 73 keV. Second, the radiative recombination
into Be-like has only two possible direct electron captures,
RR into J = 1/2 and J = 3/2, yielding B-like (2p) Hg.
Therefore, the difference between the RR x-ray peak energies
into J = 1/2 and J = 3/2 bands of Be-like ions was fixed
to the theoretically calculated one. The best fitting obtained
in the second band (J = 3/2) is shown on the left-hand
side of Fig. 2. Thus, we were able to determine the relative
fractions of Hg ions in different charge states contributing to
the observed RR band with J = 3/2 which are summarized in
the second row in Table I. Roughly 2/3 of ions in the trap are
in lower charge states such as C-like to F-like, which do not
contribute to the present data analysis.

Now we have to find the real fractions of ions in a particular
charge state contributing to RR and DR in a series of the
present cuts shown in Fig. 1. According to the slice lines
corresponding to the RR x-ray energies in Fig. 1, we estimate
the fraction of ions in a particular charge state in a specific cut
through the fitted Gaussian distributions. They are shown in
the lower part of Table I. Using these fractional distributions
of ions in different charge states, we can obtain the DR reso-
nance strengths using Eq. (13). Using this procedure which
combines theoretical analysis of a well-understood process
(RR) into ions with different charge states with experimental
input from the two broad bands structures in Fig. 1, we could
finally normalize the DR resonances to the RR cross sections
for each individual DR process.

B. Comparison with theory

Using the data analysis procedure which combines theoret-
ical analysis of a well-understood process (RR) into ions with
different charge states with experimental input from the two
broad-band structure in Fig. 1, we could finally normalize the
DR resonances to the RR cross sections for each individual
DR resonance peaks. According to Eq. (13), the theoretical
factors such as P DR, P RR, and σ RR are required for the deter-
mination of experimental resonance strengths. These factors
are calculated using three different approaches: the multi-
configuration Dirac-Fock theory (we denote by MCDFs the
results of Ref. [63] and by MCDFm the results of this work)
and using the flexible atomic code (FACv1.1.3) [50] (results
of this work). Recently, the linear polarization of DR x rays
P DR was measured and benchmarked the FAC polarization
predictions [38]. Here we follow the theoretical description
given in Refs. [38,64] to calculate the DR x-ray polarization
using the FAC. The RR cross sections σ RR into n = 2 state
and linear polarization of RR x rays P RR are calculated
according to Refs. [50,65]. Note that, in a KLL DR process,
there are several energetically close final states available for
an intermediate state to decay into. This is due to the different
fine-structure components occupied by the excited electrons.
These transitions are characterized by different values of the
degree of linear polarization. Hence, the P DR represents the
intensity-weighted average of polarization of those multiple

final states. Since all parameters in Eq. (13) are known now,
we can determine the experimental resonance strengths and
its uncertainties for each DR channel, as summarized in the
fourth column in Table II, together with the observed DR
resonance energies [20] in the third column.

In Table II we also compare the experimental results of res-
onance strengths with three theoretical calculations obtained
through the MCDF and FAC methods, taking into account
relativistic Breit interactions terms [21]. Figure 3 compares,
graphically, the experimental results (closed circles) and the
three calculations (open squares for MCDFm, open triangles
for MCDFs , and open diamonds for FAC results). We observe
that the He-like data show very good agreement with all the
calculations. All the observed DR resonance strengths due to
Li-like ions are slightly lower than the predictions. The FAC
calculations appear closer to experimental values compared to
MCDF values. Here the Li6 resonance shows good agreement
with FAC prediction.

The Be-like resonance strengths, in general, appear slightly
scattered around the theoretical values. For the Be1 reso-
nance, we found that it is essential to include the mixing of
initial-state ionic configurations. In each initial state of DR,
the total electronic wave function is described by the ionic
ground state, complemented by the corresponding partial
wave of the incoming continuum-state electron, as implied
in Eq. (5). Specifically, in the case of the Be1 line, the
mixing of the 1s22s2 and 1s22p2

1/2 configurations is relevant,
as the latter has an almost identical orbital occupation to
the Be1 [1s2s22p2

1/2]1/2 autoionizing state, thus they largely
overlap in space and yield a sizable capture matrix element.
The MCDFm and FAC calculations account for this effect,
while MCDFs does not. Other resonances and charge states
were found to be unaffected by such initial-state mixing
effects. The Be3 line shows the best agreement with the FAC
prediction, while the Be4 and Be5 resonances agree with both
FAC and MCDF results. We did not find a particular reason
for the difference between FAC and MCDF results for Be3

line. For B-like resonances, both MCDF and FAC predictions
agree with the experimental strengths.

In all cases, the agreement between theoretical and exper-
imental resonance strengths can be regarded as satisfactory,
given the complexity of the autoionizing states involved.
Furthermore, as the strength of a resonance as observed by
detecting the emitted x rays depends on the angular dis-
tribution of the radiation emission, such measurements are
more sensitive to the details of the theoretical calculations
than experiments where total recombination cross sections
are directly determined. For example, as it was shown by
Fritzsche et al. [66], the mixing of the E1 and M2 multipolar-
ities in the radiative decay process may cause an observable
change in the angular differential cross sections for high-Z
ions. Moreover, the influence of electron interaction correc-
tions due to magnetic and retardation effects (i.e., the Breit
interaction) was shown to modify the linear polarization of
DR x rays as well as the resonance strengths [37,38,64]. Note
that the present experiment was performed using a mixture of
naturally abundant Hg isotopes. It contains 199Hg (17%) and
201Hg (13%) with nuclear spins 1/2 and 3/2, respectively. The
hyperfine interaction may reduce the resulting anisotropy of
DR x rays, as it was shown in Refs. [67–70], and its inclusion
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TABLE II. Comparison of measured and calculated KLL DR strengths SDR (in 10−20 eV cm2) for different He-, Li-, Be-, and B-like
states. The DR resonances with the centroid energies EDR

res are labeled by the initial charge states of the recombining ion followed by a number
and identified by the autoionizing states. The resonances are given in j -j coupling notation, where the subscripts after the parentheses stand
for the angular momentum of the coupled subshells and those after the square brackets denote the total angular momentum of the state.
The theoretical DR strengths SDR and radiative recombination cross sections σ RR (in 10−23 cm2) are calculated with various atomic codes,
MCDFm (this work), MCDFs (by Scofield), and FAC (this work). Here P DR and P RR represent the calculated polarization of x rays emitted
in the radiative recombination and dielectronic recombination processes, respectively. The theoretical results are given for the case of the full
interelectronic interaction with the Breit term included, represented by (C+B). Experimental uncertainties are given as 1σ .

Theory

Experiment SDR (C+B) P DR (C+B) σ RR P RR

Label Autoionizing state EDR
res (keV) SDR MCDFm MCDFs FAC MCDFm FAC MCDFs FAC MCDFs FAC

He1 [1s(2s2)0]1/2 46.358(4) 3.61 ± 0.72 3.16 3.16 3.49 0.00 0.00 5.43 4.96 0.87 0.88
He2 [(1s2s )02p1/2]1/2 46.611(6) 6.30 ± 0.97 4.86 4.97 5.39 0.00 0.00 5.39 4.92 0.87 0.88
He34 [(1s2s )02p3/2]3/2 blend 5.48 ± 1.10 6.07 5.90 5.55 0.60 0.55 5.03 4.62 0.85 0.85

[(1s2p1/2)02p3/2]3/2

He6 [1s(2p2
3/2)2]5/2 51.064(6) 2.00 ± 0.40 2.27 1.78 1.89 0.50 0.50 1.89 1.91 0.55 0.68

Li1 [1s2s22p1/2]1 46.686(5) 2.31 ± 0.11 3.77 2.80 2.85 0.94 0.15 3.68 3.48 0.83 0.88
Li5 [((1s2s )12p1/2)3/22p3/2]3 48.970(5) 1.49 ± 0.14 2.10 2.14 1.82 0.44 0.44 2.02 2.08 0.56 0.69
Li6 [(1s2s )1(2p2

3/2)2]3 51.154(5) 1.11 ± 0.10 1.31 1.48 1.13 0.44 0.44 1.87 1.89 0.55 0.68
Be1 [1s2s22p2

1/2]1/2 47.135(5) 0.87 ± 0.06 0.58 0.32 0.67 0.00 0.00 1.93 2.04 0.64 0.66
Be3 [(1s2s22p1/2)02p3/2]3/2 49.349(6) 1.75 ± 0.12 2.03 2.11 1.82 0.60 0.44 1.77 1.86 0.63 0.65
Be4 [(1s2s22p1/2)12p3/2]5/2,3/2 49.265(17) 3.67 ± 0.32 3.60 3.77 3.43 0.50 0.50 1.99 2.03 0.56 0.69
Be5 [1s2s2(2p2

3/2)2]5/2 51.433(6) 2.29 ± 0.08 2.02 2.47 2.31 0.50 0.47 1.83 1.85 0.55 0.68
[(1s2s )0(2p2

3/2)2]2

B23 [1s2s22p2
1/22p3/2]2 blend 3.04 ± 0.14 2.75 – 2.68 0.06 0.06 1.92 2.00 0.67 0.69

[1s2s22p2
1/22p3/2]1

B4 [(1s2s22p1/2)1(2p2
3/2)2]3 51.603(8) 0.89 ± 0.02 0.76 0.83 0.96 0.44 0.44 1.77 1.82 0.66 0.68

in the theoretical description of resonance strengths could
potentially improve the agreement with the experiment.

IV. SCALING FORMULAS

A. Total K LL DR strength

The total DR resonance strength for He-like Hg ions can
be summed up over all levels and charge states (see Table II)
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FIG. 3. Comparison of experimental (closed circles) and theo-
retical DR strengths from MDCFm (open squares), MDCFs (open
triangles), and FAC (open diamonds). The labeling of the resonances
is explained in Table II.

and is found to be (20.4 ± 1.9) × 10−20 eV cm2, which can
be favorably compared with the theoretical values of 20.3
(MCDFm), 19.7 (MCDFs), and 22.2 (FAC) × 10−20 eV cm2.
In previous years, the total KLL resonance strengths of He-
like ions have been measured by a number of experiments
in various low- and mid-Z ions [9,25,39–47], while data for
very heavy ions, where the relativistic and QED effects play
a critical role, are still scarce [48,49]. By using the results
of the present experiment along with previously reported
measurements, we can shed light on the tendency of the
strength as a function of the nuclear charge number and
provide information on its behavior at the upper end of the
curve.

It is known that most of the quantities describing the DR
resonance strength in Eq. (8) have a clear dependence on the
atomic number Z. In a completely nonrelativistic formalism,
the DR resonance strengths are expected to be proportional
to Z2 at low Z. This is due to the fact that the autoionization
rate Ad

a is roughly independent of Z, the radiative transition
rate Ad

r scales as Z4 [71], and the DR resonance energy EDR

is approximately proportional to Z2. Therefore, using Eq. (8),
the Z dependence of the DR resonance strength SDR can be
described as

SDR ∝ 1

Z2

Z4Z0

m1Z4 + m2Z0
= 1

m1Z2 + m2Z−2
, (14)

where m1 and m2 are fit parameters and can be calculated,
in a first nonrelativistic approximation, from nonrelativistic
hydrogenic wave functions [61]. In a similar way, beyond
first-order dielectronic recombination, the Z-scaling laws for
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FIG. 4. (a) Observed total and (b) partial KLL DR resonance
strengths for He-like ions as a function of the atomic number Z.
The closed black circles with a vertical dashed line represent the
experimental results of Hg78+ ions. The other data shown by smaller
closed gray circles are from C4+ [25], S14+ [39], Ar16+ [40], Ti20+

[41], Fe24+ [42,48], Ni26+ [43], Ge30+ [44], Kr34+ [9], Y37+ [48],
Mo40+ [45], I51+ [46,48], Xe52+ [47], Ba54+ [45], Ho65+ [48], W72+

[49], and Bi81+ [48]. The dashed blue curve represents the Eq. (14)
fit to the FAC data (open triangles), whereas the best-fit DR strengths
according to Eq. (15) are shown by a solid red curve. The fit
parameters are presented in Table III.

trielectronic and quadruelectronic recombination were also
derived [see Eqs. (9) and (10) of Ref. [14]].

Figure 4(a) shows the result of the present experiment
and all previous experimental results of total DR resonance
strengths for He-like ions as a function of atomic number.
With the help of the FAC, we also calculated total DR reso-
nance strength from Z = 6 to 92 taking into account the Breit
interaction in the calculation of the Auger rates. The theoret-
ical FAC data are shown as open triangles in Fig. 4. Since
most of the experiments at mid and high Z show satisfactory
agreement with FAC predictions and experimental data at low
Z are very sparse, we determined that Eq. (14) [61] should be
fitted to the FAC data instead of experimental data in order to
improve the uncertainties in the parameters m1 and m2. The
blue dashed curve in Fig. 4 represents the fit via Eq. (14). The
best-fit parameters were found to be m1 = (1.00 ± 0.02) ×
1015 eV−1 cm−2 and m2 = (3.81 ± 0.11) × 1020 eV−1 cm−2

with χ2/D = 27.9 (where D denotes degree of freedom).
In this plot, a slight deviation between the FAC and the

Eq. (14) fit curve can easily be noticed for the ions with higher

nuclear charge. The experimental values for Z = 67 (Ho),
Z = 74 (W), Z = 83 (Bi), and our present results for Hg Z =
80 show likewise disagreement with the Eq. (14) fit curve.
Such deviation can be expected since relativistic effects give
a large correction to the nonrelativistic autoionization rates
Ad

a [52]. In Eq. (14), the leading nonrelativistic autoionization
term corresponds to the expression m2Z

−2 in the denominator.
We correct Eq. (14) with relative order (αZ)2 in order to
describe the leading Breit term and a correction of relative
order (αZ)3 in order to take higher-order many-electron rel-
ativistic correction into account. With these amendments, the
following functional form appears suitable, and we would like
to refer to it as a semiempirical scaling law:

SDR = 1

m1Z2 + m2Z + m3 + m4Z−2
. (15)

The red curve in Fig. 4(a) show a fitting result with the use of
Eq. (15) and the best-fitting parameters are given Table III. It
can easily be observed that this semiempirical formula fits the
FAC data exceptionally well compared to Eq. (14). Moreover,
it also improves the χ2/D value from 27.9 to 2.1.

B. The 1s2s2 DR resonance

The particular DR channel via the 1s2s2 state is interesting
because the radiative decay of this autoionizing state prefer-
ably proceeds via electric dipole (E1) transition involving
simultaneous two-electron decay, forming a final 1s22p state
while emitting a single x-ray photon (see, e.g. Ref. [72]). As
its DR strength is expected to be small in low-Z ions, only
a few experimental observations have been reported so far
[22,42,44,73]. The observed partial DR strengths including
the present data for Hg are plotted in Fig. 4(b). It is easily
found that the partial strengths for low-Z ions are indeed very
small (less than 1% of the total DR strength), but in Hg ions
the partial DR strength for this state, labeled as He1 in Table II,
reaches nearly 20% of the total DR strengths.

Figures 4(a) and 4(b) show that the total and partial DR
strengths reach a maximum at very different nuclear charges.
It can be understood as follows: According to recent calcu-
lations [72], the radiative rates from this state in low-Z ions
increase as Z4 but are still orders of magnitude smaller than
the autoionization rates which are nearly independent of the
nuclear charge number of the ion. It should also be noted
that, although higher-order transitions, in particular, magnetic
dipole (M1) transitions, increase proportionally to Z10, their
transition rates are still too small to significantly influence
the overall transition rates of this particular state. Thus, as
expected from Eq. (8), a few observed data of the partial DR
strength shown in Fig. 4 seem to follow such a scaling ∼Z2

in the low-Z regime, similarly to the total DR strength shown
in Eqs. (14) and (15). However, the observed partial strength
data for high Z, though deviating from the ∼Z2 dependence,
still increase roughly as Z1 with increasing Z. This feature
is in sharp contrast to that observed in total DR strengths
which decrease roughly as Z−2 in the high-Z region. This
can be explained in following way: Although for very heavy
ions, the autoionization and radiative rates increase as Z2 and
Z4, respectively, both rates become comparable and the total
transition rates [in the denominator of Eq. (8)] increase, on
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TABLE III. Parameters obtained by fitting Eq. (15) to both total and partial (1s2s2) resonance strength data obtained by FAC. The
uncertainties here are given as 1σ .

Resonance strength m1 (×1015 eV−1 cm−2) m2 (×1016 eV−1 cm−2) m3 (×1017 eV−1 cm−2) m4 (×1020 eV−1 cm−2)

total 0.11 ± 0.04 5.62 ± 0.35 −7.00 ± 0.81 3.47 ± 0.09
1s2s2 −5.30 ± 0.15 70.5 ± 2.19 20.55 ± 8.47 252.67 ± 2.93

average, roughly as Z3 in the very-high-Z ion regime. Thus,
following Eq. (8), it is found that the partial DR strengths
for this particular state increase as Z1, agreeing with those
observed and shown with the red solid curve in Fig. 4(b).

As the experimental data for the partial DR strength for this
particular state are too scarce, we cannot provide any definite
conclusion in regard to the present scaling law. Therefore,
we use again Eq. (15) to fit the theoretical FAC data and
the parameters obtained by fitting are given in Table III. By
comparing the fits of Eq. (14) (blue dashed curve) and Eq. (15)
(red solid curve) in Fig. 4(b), one can see that the scaling
law gives a considerably better fit even for the state-resolved
resonance strength of the 1s2s2 state.

V. SUMMARY

In the present work we have determined KLL DR res-
onance strengths for charge- and electronic-state-specific
highly charged mercury ions, ranging from the He-like to
the B-like charge state through observing x rays emitted
from both the DR and RR processes. Our work leads to a
pathway of determining KLL DR resonance strengths in an
absolute normalization and has allowed us to gain insight into
a dynamical aspect of processes in an EBIT driven at high
fields. The measured DR resonance strengths were compared
with two different atomic structure methods, MCDF and FAC.
The effect of the Breit interaction, a relativistic retardation and
magnetic correction to the electron-electron interaction, was
included in the dielectronic capture matrix elements. Theoret-

ical results have been found to be generally in good agreement
with the experimental data, except for some resonances, given
in Table II. The reason for the discrepancies is unknown at
present.

The present work also sheds light on the tendency of the
resonance strength SDR as a function of the atomic number,
especially on the behavior of the resonance strengths in the
high-Z regime. We presented a compact Z-scaling formula
for both the total and partial KLL DR strengths as a function
of the atomic number Z of the ions involved. The difference
in the Z scaling between the total (integrated) and partial
(1s2s2 state in initially He-like ions) resonance strengths was
discussed in detail. A semiempirical formula (15) improves
the nonrelativistic Z-scaling formula [61] by including rela-
tivistic corrections, thus extending the range of applicability
to the high-Z domain. Such an improved Z-scaling law for
DR strengths can also be useful to produce large sets of atomic
data needed for the modeling and diagnostics of magnetically
confined fusion plasmas [7] and hot astrophysical plasmas
[74,75].
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