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1. Introduction and Literature Review 

One of the earliest studies in System of Systems (SoS) is the work of Jackson and Keys [1] that discusses SoS as a 
methodology to tackle complex problems. Currently, SoS concepts are widely accepted as a tool to understand 
complex systems and help decision makers prepare organizations in response to new challenges and changes in the 
environment [2,3]. According to [4], service operations, space exploration, electric power systems grids, renewable 
energy, environmental management, healthcare, national security, and infrastructure are among the areas that can 
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benefit from SoS concepts, in addition to transportation [5] and military applications [6,7,8]. All aspects of decision 
making in the areas noted above, face an increasing complexity and subject to fast changes that the traditional 
management techniques cannot handle [9] and SoS has emerged as a method to handle these issues. 

This paper explores some definitions and properties of SoS and architecting of a SoS. Furthermore, a generic 
mathematical formulation is presented for a domain-independent SoS architecting problem. We acknowledge that the 
literature of SoS architecting is much larger than what is covered in this text. This text extends the formulation of SoS 
architecting problems to cover variety of interfaces one may use to create a SoS.  

Kotov [10] define SoS as a system that is comprised of complex systems, while in [11], SoS is defined as a set of 
systems to perform a set of functions with at least one function that a single system cannot perform, individually. A 
similar approach to define SoS is followed in other works by using the concept of capabilities of systems instead of a 
functional concept [7,8,12]. In other definitions of SoS, one can see the presence of properties and characteristics of 
SoS within the definition. For example, both [13,14] define a SoS considering five characteristics, which are the 
operational independence of systems, managerial independence, geographical distribution, emergent behavior, and 
evolutionary development. Based on these definitions and characteristics, and being inspired by Bertalanffy’s General 
System Theory [15], SoS and its properties are defined separately as follows: 
Definition 1. SoS is a set of interacting systems.  
Definition 2. SoS properties are: 

i. SoS is capable or functional [7,8,11,12], 
ii. SoS is connected [12,17,18],  

iii. SoS exhibits emergent behavior [13,14], 
iv. SoS develops and evolves over time [13,14],  
v. SoS temporarily assembles systems [16]. 

Property (i) announces the most important property of a SoS. A SoS should be designed to have a specific set of 
capabilities. This property is utilized in this work to formulate a generic SoS problem. Property (ii) is related to 
interface design, i.e., connectivity of systems in the SoS is managed through interfaces. A variety of interfaces types 
are discussed in [18] and a SoS can have different layers of interfaces with different structures. Designing different 
interface structures is important as it dictates how systems are connected and communicate with each other; and, the 
main contribution in this study is analyzing different design approaches to connecting the systems. Property (iii) 
highlights a very important property of a SoS; emerging behavior, which means SoS exhibits some characteristics and 
behavior that it is not designed for; see e.g. [19] for more discussion on the emergence property of systems. Although 
very important, this property is not being addressed in this paper.  Property (iv) dictates the development of SoS over 
time: a SoS develops and evolves through time. Property (v) states the temporarily nature of the SoS, which means 
systems will come together and connect temporarily, otherwise systems will dissemble the components and 
subsystems that do not contribute to the SoS capabilities to reduces their costs. As a result, systems will reduce to 
subsystems and SoS will reduce to a complex system.  

In the literature of SoS, a variety of methods exists for creating and developing a SoS, referred to as SoS 
architecting. For example, Caffall and Michael [7] provide a design of a network of systems that are connected through 
interfaces and controlled by an architect. The work of [18] similarly presents a network design for SoS architecting. 
Another example is [12], where an abstract model is described for the SoS architecting. Among others, Khalil et al. 
[20] describe a hypergraph for architecting a SoS, Ricci et al. [21] discuss the application of the Theory of Ilities in 
SoS architecting, an application of graph theory in SoS architecting can be found in [18,22], an application of 
Multilevel Bong Graph can be seen in [23], and mathematical programming approaches can be seen in [24,25,26,27]. 
In this work, similar to [24,25,26,27], we follow an analytical method by using Mathematical Programming tools. 
More precisely, we architect a SoS based on the Definition 1 and Properties (i) and (ii). In other words, we select a 
subset of available systems for the SoS to provide a set of capabilities, and we connect them through interfaces. The 
assembly of systems and the connections created should be temporary. It is important to note that our analytical model 
does not quantify emergent and evolutionary properties of the SoS at this point. We post such analyses as future 
research areas.  

Flexibility in systems and SoS is crucial as a system or SoS needs to respond to the environmental changes [29,30]. 
Flexibility can be defined as a system or a SoS ability to respond to internal or external changes [29,30] within 
acceptable time and cost ranges [28,29]. By this definition, one can incorporate the responding time and cost in the 
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corresponding model by adding a higher responding time and cost to inflexible systems and a lower responding time 
and cost to flexible systems. Konur et al. [24] define flexibility as a systems’ response to provide capabilities, i.e. if a 
system cannot drop a capability, it is inflexible. In the problem formulation section, we use this definition. Although 
this definition is extended by considering different dissembling costs for dropping a capability in [25], we only 
consider the former case. 

In Section 2, a capable and connected SoS is presented based on set covering problem, SoS structure constraints, 
and the availability of performance improvement funds. Section 3 discusses different problem formulations, solution 
methods, some drawback of solution methods, and future research directions in mathematically formulating the SoS 
architecting problem. Section 4 concludes the text with a summary. 

2. Problem Formulations 

In this section we formulate the SoS architecting problem. We use a similar notation for the indices, sets, and 
variables as of [24,25,26] and later extend the models by considering various structures for connecting the systems. 
The set of systems is � � ���� ���, an example is shown in Figure 1. (a), and it is indexed by �. The set of capabilities 
is � � ���� � �� and it is indexed by � and � ∈ � is a special capability of interest. The set of inflexible systems is �� 
and the set of flexible systems is �� such that �� � �� � � and �� � �� � �. The set � � �� is a set that contains systems 
with � capability and � is a non-empty subset of �. Let � be the capability matrix of ���’s such that ��� � � if system 
� can provide capability � and it is 0, otherwise. In addition, let ���  be the performance of system � in providing 
capability �, ��� be the cost of system � in providing capability �, ��� be the deadline for system � to provide capability 
�. Moreover, three sets of variables are defined as follows: �� is equal to 1 if system � ∈ � is selected for the architecture 
and it is 0, otherwise. Variable ��� is equal to 1 if system � ∈ �� is asked to provide capability �, otherwise it is 0. A set 
of selected systems is shown in Figure 1. (b). Variable �� is equal to 1 if system � ∈ � provides the capability �, 
otherwise it is 0. Based on this initial definition of variables, following constraints, which are adapted from [24,25], 
should hold: 

�� � ∑ ����∈�   ∀� ∈ ��  (1) 

���� � ∑ ����∈�   ∀� ∈ ��  (2) 

��� � ���  ∀� ∈ ��� ∀� ∈ �  (3) 
Constraints (1) and (2) guarantee that if a flexible system is asked to provide a capability, it should be included in 

the architecture. Constraints (3) guarantee that we do not ask a flexible system to provide a capability that it cannot 
provide. The resulting SoS should be capable based on property (i), in which, every capability should be provided by 
at least one system. This property can be captured by the following constraints which cover all the required capabilities 
and are set covering constraints (adapted from [25]): 

∑ ������∈�� � ∑ �������∈�� � �  ∀� ∈ �  (4) 
The resulting SoS should also be connected based on property (ii). The connectedness of SoS is achieved through 

the interface design for the selected systems. One may define several types of interfaces, each of which exhibits a 
different type of structures to connect systems. Borrowing network topology concepts of [31,32,33], we define the 
Complete, Star, Tree, and Ring structures as shown in Figure 1. (c)-(f), noting that an architect may use different types 
of structures for connecting systems.  

Figure 1. (a) a set of systems in circles; (b) a set of selected systems in filled circles; (c) Complete structure of selected 
systems; (d) Star structure; (e) Ring structure; (f) Tree structure
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Complete Structure. This structure is adapted from [24,25,26,27]. This connection, i.e. the interface as depicted 
in Figure 1. (c) as edges that connect all selected systems, is defined by variable ����  which is equal 1 if two systems 
�� � are selected (�� � �� � �) and it is 0, otherwise. The constraints for the complete structure are as follows: 

 
���� � �� � �� � �  ∀� ∈ �� ∀� ∈ �� � � �  (5) 

���� � ��  ∀� ∈ �� ∀� ∈ �� � � �  (6) 

���� � ��  ∀� ∈ �� ∀� ∈ �� � � �  (7) 
 
Constraints (5) enforce ���� � � if both systems � and �  are selected (�� � �� � �) and constraints (6) and (7) 

enforce ���� � � if at least one of the systems �� � is not selected (�� � �� � �) [24].  

Star Structure. There may exist some capabilities, such as command-and-control, that only one system should 
provide. This structure is depicted in Figure 1. (d) as edges that create a Star structure from the selected systems. The 
set of systems with these special capabilities should be flexible because, if included in the architecture only one of 
them should provide this special capability and the rest should not provide it. We use variable ����  that is defined 
similar to ����  in the complete structure. The constraints for the complete structure read as follow. 

 
�� � ��  ∀� ∈ �  (8) 

∑ ���∈� � �   (9) 
���� � �� � �� � �  ∀� ∈ �� ∀� ∈ �����  (10) 

���� � ��  ∀� ∈ �� ∀� ∈ �����  (11) 

���� � ��  ∀� ∈ �� ∀� ∈ �����  (12) 

��� � ��  ∀� ∈ �  (13) 
 
Constraints (8) and (9) use new variable �� to enforce that only one system with the special capability is selected. 

Constraints (10), (11), (12) connect all the other systems to this system and the resulting structure has a star shape. 
Constraints (13) guarantee that the other systems that can provide the special capability are not asked to provide it. It 
is important to note that the star structure is very suitable for communication interfaces among systems, where the 
special capability becomes the command-and-control capability.  

Tree Structure. For the tree structure, as depicted in Figure 1. (e) as edges that create a Ring structure from the 
selected systems, the variable ����  is defined similar to ���� . The constraints for the undirected Tree structure, adapted 
from [31,32,33], reads as follows:  

 
∑ ∑ �����∈������∈� � ∑ ���∈� � �   (14) 

∑ ∑ �����∈������∈� � ∑ ���∈�����   ∀� ∈ ��� � �� � � |�| � |�| � � (15) 
 
Based on the definition of a tree [31], the total number of edges must be equal to the number of nodes minus one. 

Constraints (14) impose this definition. Furthermore, every subset of nodes � (� � �� � � |�| � |�| � �) must be 
connected by at most |�| � � edges (∑ ���∈����� � |�| � �), which is addressed in constraints (15).  

Ring Structure. In the ring structure, as depicted in Figure 1. (f), every selected system is connected to exactly 
two other systems such that there exists only one cycle that passes through all selected systems. By this characteristic, 
it is evident that the ring is an undirected Hamiltonian cycle over the selected systems. The constraints that can capture 
this characteristic of the ring are as follows which are adapted from [31], where the variable ����  is defined similar to 
���� .  
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∑ �����∈����� � ∑ �����∈����� � ���  ∀� ∈ �  (16) 

�
� �∑ �����∈����� � ∑ �����∈����� � � �� � ��� � �� � ��� � �  ∀� ∈ �� ∀� ∈ ����   

� � �� � � |�| � |�| � �  
(17) 

 
If a system is not selected, constraints (16) impose that all structure variables coming to that systems and going out 

are zeros. If a system is selected, these constraints enforce two interfaces to connect the selected system to two other 
selected systems. Constraints (17) are sub-tour elimination constraints for the resulting Hamiltonian cycle. Note that 
constraints for a Hamiltonian cycle is the same as Traveling Salesman constraints, since the Traveling Salesman 
problem finds the optimum Hamiltonian cycle, given an objective function. 

The SoS architect may want to improve the systems’ performances by allocating funds. We formulated the 
constraints related to the fund allocation similar to the [26,33]. Particularly, we defined variables ��� as the amount of 
fund that we can allocate to system � to improve its performance in providing capability � at ��� rate. Furthermore, we 
assume that system � cannot improve its capability � performance more that �������. Let �� be the total available fund and 
we assume there is upper bound on the amount of funds the we can allocate to system � to improve its performance in 
capability � that we show by  �������. Then, we have the following constraints: 

 
∑ ∑ ����∈��∈� � ��   (18) 

∑ ����∈� � �� ��  ∀� ∈ �  (19) 

����� ���� � �������  ∀� ∈ �� ∀� ∈ ��  (20) 

������ ���� � �������  ∀� ∈ �� ∀� ∈ ��  (21) 

� � ��� � ����������  ∀� ∈ �� ∀� ∈ �  (22) 
 
Constraints (18) guarantee that the total allocated fund is less than the available fund �. Constraints (19) guarantee 

that we only allocate fund to the selected systems. Constraints (20) provide an upper bound to the achieved 
performances after allocating fund. The performance of the inflexible system can be improved by any function of ��, 
i.e. ����� ���� can have different forms. One can use a linear form as ����� ���� � �������� � ������. The same is true 
for constraints (21) as the linear version will be ������ ���� � ��������� � ������  for flexible systems. Finally, 
constraints (22) force a lower bound and an upper bound to ��� variables, i.e. these variables cannot be negative and 
we only assign funds to a system to provide a capability that it originally can provide with the maximum amount of 
�������.  

As discussed in [25], the architect may have different objectives (cost, performance, and deadline are some 
examples) to construct a SoS. In what follows, some forms for these objective functions will be presented. Similar to 
[25], let ��, ��, and �� denote the aggregate performance, aggregate cost, and the aggregate deadline of the SoS, 
respectively.  

To capture the aggregate performance of the SoS, one may use different objective functions. In [25], a linear form 
is used that we adapt as follows, where the first two parts of �� are the summation of systems performances in 
providing the required capabilities and the last part is the improvement in systems performances after allocating funds.  

�� � ∑ ∑ ���������∈���∈� � ∑ ∑ ����������∈���∈� � ∑ ∑ �������∈��∈�   (23) 
To formulate the aggregate cost, one can address the flexibility of systems by assigning penalty cost of not including 

a capability from a flexible system [25]. Here, we neglect that and formulate the cost as a linear function of the cost 
to provide a capability by a system plus the cost of interfaces between systems and total allocated funds. This function 
is an extension of �� function in [26].  

 
�� � ∑ ∑ ���������∈���∈� � ∑ ∑ ����������∈���∈� � ∑ ∑ ���� �����∈������∈� � ∑ ∑ ���� �����∈������∈� �
∑ ∑ ���� �����∈������∈� � ∑ ���� �����∈����� � ∑ ���� �����∈����� � ∑ ∑ ����∈��∈�    (24) 
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The first two terms in �� are the cost of providing capabilities by inflexible and flexible systems, respectively. The 
third part is the cost of connecting systems via a complete structure, where ����  is the cost of connecting system � to 
system � in complete structure. The fourth part is the cost of star structure. The fifth part is the cost of tree structure; 
and the sixth and seventh parts are the cost of ring structure. The corresponding cost coefficients are shown by ���� , 
���� , and ���� , respectively, for the Star, Tree, and Ring structures. The last part is the total allocated funds.  

To formulate the aggregate deadline, one may use different functions. For example, in [25], it is assumed that 
systems work in parallel to provide capabilities and every individual system works on each capability in parallel, as 
well. As the result, [25] formulated the aggregate deadline as follows:  

�� � max��� �max����
���������� ,max����

������������  (25) 

 
Based on how systems work on their capabilities, this function can take different forms. For example, if we assume 

that systems work in parallel in the SoS, but they work on providing their capabilities in series, then the function takes 
the following form. 

 
�� � max��� �∑ ����������� , ∑ ������������ �  (26) 

 
In the next section, different variation of the SoS architecting problems will be discussed.  

3. Analysis and Future Research 

The generic SoS architecting problem (SoS-AP) can be stated as follows: 
SoS-AP max��, min��, min�� 

 s.t. Constraints (1) - (22) 

  Binary Definition of ��, ���, ��, ���� , ���� , ���� , ����  and ��� � � 
In what follows, we use SoS-AP to address a generic SoS architecting problem disregarding the SoS structure type. 

Note that, depending on SoS structure, the architect may decide to remove some variables and constraints or add more. 
For example, if architect only considers a complete structure, then only constraints (1) - (7) and variables ��, ���, ����  
should be considered for SoS-AP [24,25,34]. Similarly, having all types of interfaces will force the architect to use all 
variables and constraints (1) – (22). Moreover, if the SoS needs two similar interfaces, e.g. two Start structures, then 
we need to define additional variables such as ���, ����  and duplicate constraints (8) – (13) using these new variables. 
Finally, if there is no fund allocation, variables ��� and constraints (18) – (22) should be removed from the SoS-AP. 
Nevertheless, SoS-AP is a Multi-Objective Mixed-Integer Non-Linear Programming problem. In what follows, a short 
analysis of this problem, appropriate solution methods, and future research directions are discussed. 

As noted in the first section, constraints (1) - (22) guarantee properties (i) and (ii). Indirectly, property (v) is also 
satisfied as long as solutions to the SoS-AP is being carried out for a limited period of time. Further research is needed 
to guarantee the temporary implementation of the SoS structure. In addition, the evolving nature of the SoS, as stated 
in property (iv), is not addressed in SoS-AP and it is a subject of the future research.  

Note that problem SoS-AP is NP-Hard due to constraints (4) that come from Set Covering problem and constraints, 
constraints (14) and (15) that come from minimum spanning tree problem, and constraints (16) and (17) that come 
from Traveling Salesman problem. There exist various solution methods for solving such a problem. One may either 
search for the exact set of Pareto efficient solutions, or find a subset of efficient solutions, or approximate efficient 
solutions. One may read [35] for a review on the appropriate solution methods. If we choose to use linear functions 
for ��  and �� , or linearize them, then the problem will become a Multi-Objective Mixed-Integer Linear 
Programming problem. For the literature of solution methods for solving such problems, one may study [36].  

Problem SoS-AP faces several issues to be implemented effectively, which includes different types of interfaces, 
funding allocation, number of objectives, and number of solutions. First, Problem SoS-AP may have fewer constraints, 
as formulated and solved in [24,25,26,27], or it may have more operational constraints that are application dependent. 
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Heuristic methods for solving such problems should be adjusted according to the new constraints. If there is no 
funding, the case that we only have binary variables, the problem will reduce to a Multi-objective Combinatorial 
Optimization problem. For a survey of appropriate solution methods, one may read [37,38].  

Second, an architect may decide to use more or fewer objective functions. The resulting model may remain a Multi-
Objective Mixed-Integer Linear Programming problem or it may reduce to a Mixed-Integer Linear Programming 
problem. The case of two objectives is recently solved in [26] via an adaptive epsilon-constraint method and a two-
stage evolutionary algorithm.  

Finally, when number of objectives increases, generating efficient solutions becomes difficult. More precisely, 
generating efficient solutions may not be tractable even for approximation methods. Hence, it is critical to reduce the 
number of objective functions and the number of efficient solutions. To reduce the number of objective functions, one 
can use ranking methods similar to [39]. To reduce the number of efficient solutions, it is necessary to develop post-
processing tools based on the decision maker’s preferences. Furthermore, Pareto-efficient solutions cannot capture the 
dynamic and stochastic environment [9]. This means that we need to search for solutions that can address the rapidly 
changing environment and the evolving property of the SoS. To tackle this issue, it is important to address the Property 
(iv) of the SoS, i.e. the evolutionary development of the SoS. Mathematically formulating evolving SoS architectures 
is another future direction for this research.  

4. Conclusion  

In this paper, a short review of the SoS definitions and properties is conducted. Using the definitions of SoS and 
its properties, SoS architecting problems with different interface layers are presented. It is discussed the SoS 
architecting problem in this sense is a Multi-objective Mixed-Integer Non-Linear Programming problem that can be 
changed to a linear problem and reduced to combinatorial problems. A short review on the existing solution methods 
for the linear case of the problem is presented. It is discussed that formulating the evolution of the SoS in the form of 
mathematical programming is one of the future direction of SoS architecting problems. 
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