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ABSTRACT This paper develops an integral value iteration (VI) method to efficiently find online the Nash
equilibrium solution of two-player non-zero-sum (NZS) differential games for linear systems with partially
unknown dynamics. To guarantee the closed-loop stability about the Nash equilibrium, the explicit upper
bound for the discounted factor is given. To show the efficacy of the presented online model-free solution,
the integral VI method is compared with the model-based off-line policy iteration method. Moreover,
the theoretical analysis of the integral VI algorithm in terms of three aspects, i.e., positive definiteness
properties of the updated cost functions, the stability of the closed-loop systems, and the conditions that
guarantee the monotone convergence, is provided in detail. Finally, the simulation results demonstrate the
efficacy of the presented algorithms.

INDEX TERMS Coupled Riccati equations, integral reinforcement learning, non-zero-sum games, optimal
control.

I. INTRODUCTION
Game theory is a powerful and natural framework to rep-
resent the interactions among multiple players, where each
player seeks to maximize its own interest. Game theory has
been widely and successfully used in variety of engineer-
ing sectors, including, power systems [1], transportation [2],
and control systems [3]. In zero-sum (ZS) games, which
are strictly competitive games, each player’s gain or loss is
exactly balanced by others. In contrast, non-zero-sum (NZS)
games can take into account both individual self-interests,
as well as global group interest, such as mixed H2/H∞
control [4], etc. In this paper, NZS games with two players
for continuous-time linear systems are investigated.

Differential games, for which the states of agents evolve
based on differential dynamic equations, have been orig-
inally introduced in [5]. In ZS differential game theory,
the Nash equilibrium seeking results in solving coupled

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaoli Luan.

Hamilton-Jacobi equations (HJEs) [6]–[8]. For the linear sys-
tems, the HJEs reduce to coupled algebraic Riccati equations
(CAREs) [9], [10]. For NZS differential games, on the other
hand, the Nash equilibrium solution is found by solving
coupled HJEs for nonlinear systems and CAREs for lin-
ear systems [11], [12]. It is difficult or even impossible to
obtain an analytical solution to coupled HJEs or CAREs.
Many approaches are presented to approximate the solu-
tion to the CAREs, such as Newton’s method, Lyapunov
iteration [13], Riccati iteration [14], parallel synchronous
algorithm [15] etc. However, these numerical methods are
essentially off-line and require the complete knowledge of
systems dynamics. In reality, however, this knowledge might
not be available. Therefore, it is desired to develop an online
method and obviate the complete model requirement.

Adaptive dynamic programming (ADP)/ reinforcement
learning (RL) is a bio-inspired learning method trying to find
the optimal policy that optimizes the cumulative reward [16].
RL has been widely used in the dynamic optimization
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applications, such as ZS games with two players [17], NZS
gameswithmultiple players [18], optimal regulation/tracking
problem with only single-agent systems [19], [20], consen-
sus problem of multi-agent systems [21]–[24], etc. Value
iteration (VI) and policy iteration (PI) algorithms are typ-
ical ADP/RL methods to approximate the optimal value
policy [25], [26]. In PI algorithm, the initial policy has to be
admissible in order to guarantee the closed-loop stability in
the iterative learning process [27]–[29]. In contrast, VI algo-
rithm does not require an admissible initial policy [30]. How-
ever, the closed-loop stability of the VI algorithm in each
iteration can not be guaranteed. In this paper, a novel inte-
gral VI method is developed to obviate the requirement of
initial admissible policy while guaranteeing the closed-loop
stability during the learning process.

Typical model-free ADP/RL methods are
Q-learning [31]–[33] and off-policy RL [34]–[36]. In the
Q-learning algorithm, the action-dependent value function
representation is used to evaluate the action given the state.
However, only convergence is considered for Q-learning
algorithm in [32]. On the other hand, the off-policy RL
method is equivalent to the model-based PI algorithm, which
still requires the initial policy to be admissible. Therefore,
it is desired to obviate the admissibility of initial policy
while guaranteeing the closed-loop stability for model-free
ADP/RL methods. The main contributions of this paper are
summarized as follows:
1) A novel data-driven value iteration algorithm is devel-

oped for solving the NZS games for linear dynamical
systems.

2) An explicit upper-bound for the discounted factor is
given to ensure the asymptotic stability of closed-loop
systemwith the Nash equilibrium.Moreover, it is shown
that the undiscounted NZS games can be viewed as a
special case of the discounted NZS games.

3) For the presented data-driven value iteration algo-
rithm, theoretical analysis is discussed in terms of
the positive-definiteness of the iterative value function,
the closed-loop stability and the convergence to the opti-
mal case.

The rest of this paper is organized as follows. In Section II,
the problem formulations with preliminaries are presented.
It is shown that the coupled AREs are sufficient and necessary
to the Nash equilibrium. In Section III, an integral VI algo-
rithm and its equivalent form are considered. In Section IV,
the positive definiteness of the updated cost functions, the sta-
bility discussions concerning the closed-loop systems and
the conditions that guarantee the monotone convergence are
proven. In Section V, examples are given to demonstrate the
effectiveness of the proposed algorithm. Finally, the conclu-
sion is made in Section VI.

II. PROBLEM FORMULATION
We consider the continuous-time linear dynamical systems

ẋ (t) = Ax + B1u1 + B2u2, x (0) = x0, (1)

where x ∈ Rn is the system state with initial state x0, u1 ∈ Rm1

is the player one and u2 ∈ Rm2 is the player two.
Assumption 1: The matrix pair

(
A,
[
B1 B2

])
is

stabilizable. �
For each player, the NZS differential games on an infinite

time horizon aim to minimize the following discounted cost
function defined as

V1 (x0) =
∫
∞

0
e−2α1τ

(
xTQ1x + uT1 R11u1 + u

T
2 R12u2

)
dτ

V2 (x0) =
∫
∞

0
e−2α2τ

(
xTQ2x + uT1 R21u1 + u

T
2 R22u2

)
dτ

(2)

where Q1 ≥ 0,Q2 ≥ 0,R11 > 0,R12 ≥ 0,R21 ≥ 0,R22 > 0
are penalty functions for players one and two, and α1 >

0, α2 > 0 are discount factors for players one and two,
respectively. As shown later, the non-zero discounted factor is
given to ensure the asymptotic stability of closed-loop system
with the Nash equilibrium.

The following definitions are required for subsequent
discussions.
Definition 1 (Admissible Control): Feedback control pol-

icy pair µ = {u1, u2} is said to be admissible with respect to
the performance (2) on a compact set� ∈ Rn, denoted asµ ∈
ψ (�), if µ = {u1, u2} is continuous on �, µ stabilizes (1)
on �, ui (0) = 0 for i = 1, 2, and the performance functions
Vi(x0) in (2) take finite values for ∀x0 ∈ �. �
Definition 2 (Nash Equilibrium Strategies): A two-tuple

of strategiesµ∗ =
{
u∗1, u

∗

2

}
withµ∗ ∈ ψ (�) , i = 1, 2 is said

to constitute a Nash equilibrium solution for a two-player
finite games in extensive form, if the following two inequali-
ties are satisfied for i = 1, 2:

V1
(
x (0) ; u∗1, u

∗

2
)
≤ V1

(
x (0) ; u1, u∗2

)
, ∀u1

V2
(
x (0) ; u∗1, u

∗

2
)
≤ V2

(
x (0) ; u∗1, u2

)
, ∀u2. (3)

The two-tuple of quantities
{
u∗1, u

∗

2

}
is known as a Nash

equilibrium outcome of the two-player games. �
In this paper, the problem of interest can be formulated as

follows.
Problem 1 (Discounted Two-Player NZS Games): For the

two players in system (1), find the Nash equilibrium strategies
(u∗1, u

∗

2) with respect to the cost functions defined in (2). �

A. COUPLED ALGEBRAIC RICCATI EQUATIONS
FOR DISCOUNTED NZS GAMES
In this subsection, the sufficient and necessary conditions
of the Nash equilibrium of Problem 1, named the coupled
algebraic Riccati equations, are introduced.
Lemma 1 [6]: Under Assumption 1, consider the sys-

tem (1) with the performance functions defined by (2). Then,
(K∗1 ,K

∗

2 ), defined as

K∗i = R−1ii B
T
i P
∗
i , i = 1, 2,
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is a feedback Nash equilibrium if and only if (P∗1,P
∗

2) is a
symmetric stabilizing solution of the CAREs (4) and (5), as
shown at the bottom of this page, with

H1 = B1R
−1
11 B

T
1 ,H2 = B2R

−1
22 B

T
2

H3 = B2R
−1
22 R12R

−1
22 B

T
2 ,H4 = B1R

−1
11 R21R

−1
11 B

T
1 .�

Definition 3 (Riccati Operator): For each player, Riccati
operator Ricαi (X1,X2) is defined as in (6) and (7), as shown
at the bottom of this page. �
Remark 1: The Riccati operator Ric has an important role

in evaluating policy for each player with respect to the per-
formance defined by (2).
1) If Ricαi

(
P∗1,P

∗

2

)
= 0, then the performance indices

(2) are minimized and both players in system (1) has
reached the Nash equilibrium.

2) If 0 < Ricαi
(
P(k+1)1 ,P(k+1)2

)
< Ricαi

(
P(k)1 ,P(k)2

)
holds,

then the performance of step k+1 is closer to the optimal
solution than step k. �

B. OFFLINE POLICY ITERATION ALGORITHM
For iterative ADP algorithm, the optimal feedback gain
is obtained by successive approximation. In k-th iteration,
we denote the admissible policy for the player i as u(k)i =
−K (k)

i x, i = 1, 2. Then, the corresponding discounted
Bellman equation can be written as [37]:

V̇ (k)
1 (xt)− 2α1V

(k)
1 + r1

(
xt , u

(k)
1 , u

(k)
2

)
= 0, (8)

V̇ (k)
2 (xt)− 2α2V

(k)
2 + r2

(
xt , u

(k)
1 , u

(k)
2

)
= 0, (9)

where

V (k)
i (xt) = xTt P

(k)
i xt ,

ri
(
xt , u

(k)
1 , u

(k)
2

)
= (u(k)1 )

T
Ri1u

(k)
1 + (u(k)2 )

T
Ri2u

(k)
2 + x

TQix

(10)

Denote

Ā(k) = A− B1K
(k)
1 − B2K

(k)
2

Ā(k)αi = Ā(k) − αiI

Then, the Bellman equations (8) and(9) can be equivalently
written as the following Lyapunov equations,(

Ā(k)α1

)T
P(k)1 + P

(k)
1 Ā(k)α1 + Q1 +

(
K (k)1

)T
R11K

(k)
1

+

(
K (k)2

)T
R12K

(k)
2 = 0, (11)

(
Ā(k)α2

)T
P(k)2 + P

(k)
2 Ā(k)α2 + Q2 +

(
K (k)1

)T
R21K

(k)
1

+

(
K (k)2

)T
R22K

(k)
2 = 0. (12)

The PI algorithm has been successfully used to solve the
HJE and ARE in optimal control theory [20], [37]. Here,
the PI algorithm is extended to approximate the solution
to the CAREs iteratively. The closed-loop dynamics with
K (k)i = R−1ii B

T
i P

(k)
i can be written as ẋ(t) = Ā(k)x(t). Then,

the following offline PI algorithm can be presented to find the
solution to the CAREs (4) and (5).

Algorithm 1 Offline Policy Iteration Algorithm

1: Given initial admissible control gainK (0)1 ,K (0)2 , such that
the system (1) is a stable closed-loop system.

2: Policy Evaluation: solve (11) and (12) for P(k)1 , P(k)2 .
3: Policy Improvement: update the control policy gain as,

K (k+1)1 = R−111 B
T
1 P

(k)
1 (13)

K (k+1)2 = R−122 B
T
2 P

(k)
2 (14)

4: Stop at convergence, otherwise set k = k + 1 and go to
step 2

Remark 2: As shown in [8], the convergence of Algo-
rithm 1 to the solution of the CAREs (4) and (5), and the
closed-loop stability of the iterative control policy for each
player can be guaranteed. �
Note that in Algorithm 1, the solution to the CAREs

(4) and (5) is obtained offline, and it requires complete
knowledge of the system dynamics (1). In the subsequent
sections, an online integral VI algorithm is developed to solve
the CAREs (4) and (5) with only partial knowledge of the
system dynamics. In addition, the initial policy has to be
admissible in order to guarantee the closed-loop stability in
each iteration. In the following, this requirement can also be
relaxed.

III. INTEGRAL VI ALGORITHM
In this section, a novel integral VI algorithm is developed to
solve Problem 1.

A. INTEGRAL VI ALGORITHM
Consider the system (1) with the performance functions (2),
a novel equivalent representation with a stabilizing policy ui

0 = −2α1P∗1 + A
TP∗1 + P

∗

1A+ Q1 − P∗2H2P∗1 − P
∗

1H2P∗2 − P
∗

1H1P∗1 + P
∗

2H3P∗2, (4)

0 = −2α2P∗2 + A
TP∗2 + P

∗

2A+ Q2 − P∗1H1P∗2 − P
∗

2H1P∗1 − P
∗

2H2P∗2 + P
∗

1H4P∗1. (5)

Ricα1 (X1,X2) = ATX1 + X1A+ Q1 − 2α1X1 − X2H2X1 − X1H2X2 − X1H1X1 + X2H3X2, (6)

Ricα2 (X1,X2) = ATX2 + X2A+ Q2 − 2α2X2 − X1H1X2 − X2H1X1 − X2H2X2 + X1H4X1. (7)

VOLUME 7, 2019 82903
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can be described as

Vi (xt) = e−2αiTVi (xt+T )+
∫ t+T

t
e−2αi(τ−t)

×

(
xTQix + uT1 Ri1u1 + u

T
2 Ri2u2

)
dτ. (15)

From (15), the integral temporal difference error for a given
policy u(k)i can be defined as

δt

(
V (k)
i , u(k)1 , u

(k)
2 ,T

)
=

∫ t+T

t
e−2αi(τ−t)xT Q̄(k)i xdτ

+ e−2αiTV (k)
i (xt+T )− V

(k)
i (xt) , (16)

where Q̄(k)i = Qi +
(
K (k)1

)T
Ri1K

(k)
1 +

(
K (k)2

)T
Ri2K

(k)
2 .

To design the TD(0) algorithm, the value function update can
be represented with the learning rates η1 and η2 as

V (k+1)1 (xt) = V (k)1 (xt)+ η1δt
(
V (k)1 , u(k)

1
, u(k)

2
,T
)
,

V (k+1)2 (xt) = V (k)2 (xt)+ η2δt
(
V (k)2 , u(k)

1
, u(k)

2
,T
)
. (17)

The learning rates η1 and η2 should be properly designed to
guarantee the closed-loop stability and the convergence for
the learning process, as discussed later in Section IV.
The next control policy gain is designed by

K (k+1)i = R−1ii B
T
i P

(k+1)
i i = 1, 2 (18)

Note that the value function V (k+1)i (xt) is quadratic in it
argument xt . Then, V

(k+1)
i (xt) can be parameterized as

V (k+1)i (xt) = xTt P
(k+1)
i xt =

(
P̄(k+1)i

)T
x̄t ,

where x̄t ∈ Rn(n+1)/2 represents a column vector

x̄t =
[
x1x1 x1x2 x1x3 ... xn−1xn xnxn

]T
,

and P̄(k+1)i ∈ Rn(n+1)/2 represents a column vector

P̄(k+1)i =

[
P(k+1)i (1, 1) 2P(k+1)i (1, 2) 2P(k+1)i (1, 3)

· · · 2P(k+1)i (n, n− 1) P(k+1)i (n, n)
]T
.

Then, update rule (17) can be expressed as:

x̄Tt P̄
(k+1)
i = V (k)i (xt)+ ηiδt

(
V (k)i , u(k)

1
, u(k)

2
,T
)

1
= dki (19)

From the definition of δt in (16), the term dki in (19) contains
an integral term. Therefore, to solve dki , the following addi-
tional dynamics (20) is introduced:

Ẇi = 2αiWi + xT Q̄
(k)
i x, Wi (0) = 0, (20)

during the simulation, note that initial state for (20) is reset to
zero at each interval (t, t + T ). Then the integral term in (16)
can be calculated as

e−2αiTWi (xt+T )−Wi (xt) =
∫ t+T

t
e−2αi(τ−t)xT Q̄(k)

i xdτ .

(21)

Inserting (21) into (16), one has an equivalent form,

δt

(
V (k)i , u(k)1 , u

(k)
2 ,T

)
= −

(
V (k)i (xt)+Wi (xt)

)
e−2αiT

(
V (k)i (xt+T )+Wi (xt+T )

)
. (22)

Then, the term dki in (19) can be equivalently expressed as

dki = V (k)i (xt)+ ηie−2αiT
(
V (k)i (xt+T )+Wi (xt+T )

)
− ηi

(
V (k)i (xt)+Wi (xt)

)
.

Therefore, the update rule (19) can be rewritten as:

x̄Tt P̄
(k+1)
i = dki , (23)

Note that in k-th iteration, only the term P̄(k+1)i is unknown.
Therefore, the least squares method is employed to solve
P̄(k+1)i by collecting N

(
≥ n (n+ 1)

/
2
)
sample points is to

ensure the number of equations is greater than the number of
unknowns for (23).
Remark 3: It is worthwhile to highlight the role of the

discounted factor, αi, in the discounted NZS games. In Algo-
rithm 1, it is required that the matrix

Ā(0) = A− B1K
(0)
1 − B2K

(0)
2 (24)

is Hurwitz. In contrast, in the integral VI algorithm, the initial
policy does not need to be admissible. As given in Step 1 in
Algorithm 2, it is only required that the matrix

Ā(0)αi = A− H1P
(0)
1 − H2P

(0)
2 − αiI (25)

is Hurwitz. A comparison between (24) and (25) indicates
that the requirement of admissibility about the initial policy
is no longer needed for the integral VI algorithm. �
Remark 4: Existing results on the NZS games are usually

without discounted factors, such as the cases in [7]–[10].
In this paper, the discounted factor is allowed to be zero,
i.e., the NZS games without discounted factors can be viewed
as special cases in our formulation. �

In the optimal control theory, the discount factor in the
performance has effects on the closed-loop stability, which
is required to be within some certain range, as discussed
in [19]. To guarantee the closed-loop stability, the bound of
the discount factor αi for the NZS games is discussed in the
next theorem.
Theorem 1 (Upper Bound for the Discount Factor αi):

Consider the system (1), then the origin of system (1) is
asymptotically stable if (26) or (27) holds.

α1 ≤

∥∥∥(H1Q1)
1/2
∥∥∥ (26)

α2 ≤

∥∥∥(H2Q2)
1/2
∥∥∥ (27)

Proof: Denote Ā = A − H1P∗1 − H2P∗2. Then, the
CAREs (4) and (5) can be rewritten as:

ĀTP∗1 + P
∗

1Ā− 2α1P∗1 + Q1 +
(
P∗1
)TH1P∗1

+
(
P∗2
)TH3P∗2 = 0 (28)

ĀTP∗2 + P
∗

2Ā− 2α2P∗2 + Q2 +
(
P∗1
)TH4P∗1

+
(
P∗2
)TH2P∗2 = 0 (29)
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Assume that λ is an eigenvalue of the closed-loop system Ā,
one has Āx = λx. First, for the player one, multiplying both
sides of (28) by nonzero vector xT and x with x ∈ Rn, one
can obtain [19]

2 (Re (λ)− α1) xTP∗1x

= −xT
(
Q1 +

(
P∗1
)TH1P∗1 +

(
P∗2
)TH3P∗2

)
x. (30)

Using the inequality a2 + b2 ≥ 2ab and since P∗1 > 0, (30)
becomes

Re (λ)− α1

≤ −

∥∥∥∥(Q1
(
P∗1
)−1)1/2∥∥∥∥

×

∥∥∥∥((P∗1)TH1P∗1 +
(
P∗2
)TH3P∗2

)1/2(
P∗1
)−1/2∥∥∥∥ . (31)

To guarantee the stability of the closed-loop system, it is
required that Re(λ) < 0, i.e.,

α1 ≤

∥∥∥∥(Q1
(
P∗1
)−1)1/2∥∥∥∥

×

∥∥∥∥((P∗1)TH1P∗1 +
(
P∗2
)TH3P∗2

)1/2(
P∗1
)−1/2∥∥∥∥ . (32)

Since
(
P∗2
)TH3P∗2 ≥ 0, (32) holds if the following inequality

is satisfied,

α1 ≤

∥∥∥∥(Q1
(
P∗1
)−1)1/2∥∥∥∥ ∥∥∥∥[(P∗1)TH1P∗1

]1/2(
P∗1
)−1/2∥∥∥∥

≤

∥∥∥∥(Q1
(
P∗1
)−1)1/2∥∥∥∥ ∥∥∥(H1P∗1

)1/2∥∥∥
≤

∥∥∥Q1
1/2
∥∥∥ ∥∥∥H1

1/2
∥∥∥ (33)

Using the fact that ‖A‖ ‖B‖ ≥ ‖AB‖, one can obtain the
sufficient condition to (33) as given in (26). From the above
analysis, it is shown that the condition (26) guarantees the
asymptotic stability of the closed-loop system. Similarly, for
the discounted factor α2, one can obtain (27). This completes
the proof.

B. EQUIVALENT INTEGRAL VI WITH DISCOUNT FACTOR
In this section, we give an equivalent formulation with a
compact form of the integral VI algorithm developed in the
previous subsection.

Consider the system (1) and feedback control u(k)i =

−k(k)i x, we can obtain xτ = eĀ
(k)(τ−t)xt , substituting the

equation into (35), the following equation can be obtained

P(k+1)i = (1− ηi)P
(k)
i + ηi

(∫ T

0
e

(
Ā(k)αi

)T
t
Q̄(k)
i eĀ

(k)
αi tdt

+ e

(
Ā(k)αi

)T
T
P(k)i eĀ

(k)
αi T

)

= P(k)i + ηi

(∫ T

0
e

(
Ā(k)αi

)T
t
Q̄(k)
i eĀ

(k)
αi tdt

+

∫ T

0

d
dt

(
e

(
Ā(k)αi

)T
t
P(k)i eĀ

(k)
αi t

)
dt

)
= P(k)i

+ ηi

∫ T

0
e

(
Ā(k)αi

)T
t
Ricαi

(
P(k)1 ,P(k)2

)
eĀ

(k)
αi tdt (34)

where Ricαi
(
P(k)1 ,P(k)2

)
=

(
Ā(k)αi

)T
P(k)i + P

(k)
i Ā(k)αi + Q̄

(k)
i .

Algorithm 2 Online integral VI Algorithm With Discount
Factor

1: Let k = 0. Start with a pair of initial matrices
(
P(0)1 ,P(0)2

)
such that Ā(0)αi is Hurwitz for i = 1, 2.

2: Update the control policy for player i such that

u(k)i (x) = −K k
i x = −R

−1
ii B

T
i P

(k)
i x i = 1, 2.

3: For k ≥ 0, k ∈ N, first, collect N sample state data, then

use the LS method to solve (23) for P(k+1)1 , P(k+1)2 .
4: Stop the online algorithm when the following criterion is

satisfied for a specified value of ε:

max
(∥∥∥P(k+1)1 − P(k)1

∥∥∥ , ∥∥∥P(k+1)2 − P(k)2

∥∥∥) ≤ ε.
Otherwise, set k = k + 1 and go to step 2.

Algorithm 3 Equivalent Integral VI Algorithm With
Discount Factor

1: Start with initial matrices
(
P(0)1 ,P(0)2

)
and select a

suitable T .
2: Value Update: solve (34) for P(k+1)1 ,P(k+1)2 .
3: Stop until the following criterion is satisfied for a speci-

fied threshold ε:

max
(∥∥∥P(k+1)1 − P(k)1

∥∥∥ , ∥∥∥P(k+1)2 − P(k)2

∥∥∥) ≤ ε.
Otherwise, set k = k + 1 and go to step 2.

Remark 5: Algorithms 2 and 3 are equivalent to each
other. However, Algorithms 2 and 3 are different for imple-
mentation purpose. As shown (34), A(k)αi , which contains
the model knowledge A, is required to calculate P(k+1)i .
Therefore, Algorithm 3 is a model-based algorithm. In con-
trast, as shown in (23), the value function parameter P(k+1)i
is determined by collecting the online data instead of
model knowledge. Therefore, Algorithm 2 is a data-driven
algorithm. �
Remark 6: As shown in Figure 1-(a) and Figure 1-(b),

in classical VI and PI, the iterative algorithm is imple-
mented between the value function and the control policy.
The value function update in PI or VI depends on the pol-
icy in the previous iteration and includes two steps in each
iteration. However, in algorithm 3, one can observe that
P(k+1)i can be determined directly based on P(k)i using equa-
tion (34), as shown in Figure 1-(c). That is, the value function
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FIGURE 1. Diagram of VI, PI, and presented integral VI (IVI) algorithms.

update only depends on the value function itself. Therefore,
the integral VI algorithm can be viewed as a simple one-step
iteration. �

IV. MAIN RESULTS
In this section, we give the theoretical analysis of the inte-
gral VI algorithm in terms of three aspects, i.e., positive
definiteness properties of the updated cost functions, the sta-
bility discussions concerning the closed-loop systems, and
the conditions that guarantee the monotone convergence.

A. POSITIVE DEFINITENESS OF THE
INTEGRAL VI ALGORITHM
In this subsection, the positiveness of the iterative value func-
tion in the integral VI algorithm is analyzed.
Theorem 2: Suppose that ηi ∈ (0, 1] for i = 1, 2, and

V (0)i (x) is positive definite, then all the element in the value

function sequence
{
V (k)i (x)

}∞
k=0

is positive definite.

Proof: Suppose that V (k)i (x) is positive definite. Substi-
tuting (16) into (17), one can obtain

xTt P
(k+1)
i xt = (1− ηi) xTt P

(k)
i xt

+ ηi

∫ t+T

t
e−2αi(τ−t)xT Q̄(k)

i xdτ

+ ηie−2αiT xTt+TP
(k)
i xt+T (35)

Since V (k)i (xt) is a positive definite function, then
P(k)i is a positive definite matrix. Therefore, the first
and last terms in (35) are both positive definite func-
tions. In addition, the second term in (35) satisfies
ηi
∫ t+T
t e−2αi(τ−t)xTt Q̄

(k)
i xtdτ ≥ 0. Finally, V (k+1)i (xt) =

xTt P
(k+1)
i xt is also positive definite. This completes the

proof.

B. STABILITY DISCUSSION
In this subsection, the stability analysis of the closed loop
system (1) will be given.

Before moving on, the following lemma is required.
Lemma 2: For a symmetric matrix G ∈ Mn×n, and any

nonzero matrices E1 ∈ Cn×n,E2 ∈ Cn×n,F1 ∈ Cn×n,F2 ∈
Cn×n, it follows that

G+ E1E2 + ET2 E
T
1 + F1F2 + F

T
2 F

T
1 < 0 (36)

if there exists constant ε > 0 such that

G+ εE1ET1 + ε
−1ET2 E2 + εF1F

T
1 + ε

−1FT2 F2 < 0. (37)
Proof: Based on the Young’s inequality, one has

XTY T + YX ≤ εYY T + ε−1XTX (38)

for ∀ε > 0. Then, the following two inequalities holds

E1E2 + ET2 E
T
1 ≤ εE1E

T
1 + ε

−1ET2 E2, (39)

F1F2 + FT2 F
T
1 ≤ εF1F

T
1 + ε

−1FT2 F2. (40)

for any ε > 0. Inserting (39) and (40) into (37), one can
obtain (36). This completes the proof.

The next theorem discusses the stability of the closed-loop
system when applying the integral VI algorithm.
Theorem 3: Let Ā(0)αi be Hurwitz. Suppose that for each

player, there exists a positive definite matrix Y ki in k-th itera-
tion satisfying the Lyapunov equation(

Ā(k)αi

)T
Y ki + Y

k
i Ā

(k)
αi
= −I . (41)

If η1 and η2 satisfy

0 < ηmax < 1/2

×
1√(∥∥∥H1Y

(k)
i

∥∥∥2 + ∥∥∥H2Y
(k)
i

∥∥∥2)(∥∥∥M (k)
1

∥∥∥2 + ∥∥∥M (k)
2

∥∥∥2)
(42)

for ∀k ∈ N, where

M (k)
i =

∫ T

0
e

(
Ā(k)αi

)T
t
Ricαi

(
P(k)1 ,P(k)2

)
eĀ

(k)
αi tdt.

ηmax = max {η1, η2} (43)

Then, Ā(k)αi is Hurwitz for all k ∈ N.
Proof: We will prove this theorem by deduction.

First, from the assumption, Ā(0)αi is Hurwitz. Suppose that
Ā(k)αi is Hurwitz. In k-th iteration, there exists a positive defi-
nite matrix denoted by Y ki ∈ Rn×n

p such that (41) is satisfied.
Next, we need to show the Hurwitzness of the matrix

Ā(k+1)αi . As the following discussions, this will be done

by finding the sufficient condition
(
Ā(k+1)αi

)T
Y (k)i +

Y (k)i Ā(k+1)αi < 0 that guarantees the Hurwitzness of the
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matrix Ā(k+1)αi . Rewriting Ā(k+1)αi using the fact that P(k+1)i =

P(k)i + ηiM
(k)
i in (34) yields

Ā(k+1)αi
= A− H1P

(k+1)
1 − H2P

(k+1)
2 − αiI

= Ā(k)αi − η1H1M
(k)
1 − η2H2M

(k)
2 , i = 1, 2. (44)

Based on (41) and (44), one has(
Ā(k+1)αi

)T
Y (k)i + Y

(k)
i Ā(k+1)αi

= −I −
(
η1H1M

(k)
1 + η2H2M

(k)
2

)T
Y (k)i

−Y (k)i

(
η1H1M

(k)
1 + η2H2M

(k)
2

)
(45)

Based on (45) and Lemma 2,
(
Ā(k+1)αi

)T
Y (k)i +Y

(k)
i Ā(k+1)αi <

0 holds if

−

(
η1H1M

(k)
1 + η2H2M

(k)
2

)T
Y (k)i

−Y (k)i

(
η1H1M

(k)
1 + η2H2M

(k)
2

)
< 0

The above inequality can be guaranteed by

ε2i

((
H1Y

(k)
i

)T
H1Y

(k)
i +

(
H2Y

(k)
i

)T
H2Y

(k)
i

)
− εiI

+

(
η21

(
M (k)

1

)T
M (k)

1 + η
2
2

(
M (k)

2

)T
M (k)

2

)
< 0 (46)

Note that (46) is a matrix inequality quadratic in the vari-
able εi. To transform this into a scalar inequality, multiplying
both sides of (46) by nonzero vector xT and x with x ∈ Rn,
one can obtain

ε2i

(∥∥∥H1Y
(k)
i x

∥∥∥2 + ∥∥∥H2Y
(k)
i x

∥∥∥2)− εi‖x‖2
+

(
η21

∥∥∥M (k)
1 x

∥∥∥2 + η22∥∥∥M (k)
2 x

∥∥∥2) < 0 (47)

Since H1 and H2 are positive definiteness matrices, Y (k)
i is

also positive definiteness matrix and x 6= 0, then∥∥∥H1Y
(k)
i x

∥∥∥2 + ∥∥∥H2Y
(k)
i x

∥∥∥2 > 0. Therefore, (47) is a scalar

inequality quadratic in εi. In this case, the existence condition
for εi ∈ R+ can be determined as

Di = ‖x‖4 − 4
(
η21

∥∥∥H1Y
(k)
i x

∥∥∥2 + η22∥∥∥H2Y
(k)
i x

∥∥∥2)
×

(∥∥∥M (k)
1 x

∥∥∥2 + ∥∥∥M (k)
2 x

∥∥∥2)
≥ ‖x‖4 − 4η2max

(∥∥∥H1Y
(k)
i x

∥∥∥2 + ∥∥∥H2Y
(k)
i x

∥∥∥2)
×

(∥∥∥M (k)
1 x

∥∥∥2 + ∥∥∥M (k)
2 x

∥∥∥2) > 0

That is,

0 < ηmax < 1/2

×
1√(∥∥∥H1Y

(k)
i

∥∥∥2 + ∥∥∥H2Y
(k)
i

∥∥∥2)(∥∥∥M (k)
1

∥∥∥2 + ∥∥∥M (k)
2

∥∥∥2)
(48)

which ensures the existence of εi > 0 in (47). Finally,
the requirement of η1, η2 to guarantee that Ā

(k+1)
αi is Hurwitz

can be summarized as in (48). This completes the proof.

C. CONVERGENCE ANALYSIS
In this subsection, the effect of the parameters, the learning
rate ηi, on the convergence of the integral VI algorithm is
discussed.
Theorem 4: Define the following parameters

M (k)
i =

∫ T

0
e

(
Ā(k)αi

)T
t
Ricαi

(
P(k)1 ,P(k)2

)
eĀ

(k)
αi tdt

S(k)1 = e

(
Ā(k)α1

)T
T
Ricα1

(
P(k)1 ,P(k)2

)
eĀ

(k)
α1 T

− η2M
(k)
2 H2M

(k)
1 − η2M

(k)
1 H2M

(k)
2

β
(k)
1 = η2

(
M (k)

2 H3P
(k)
2 + P

(k)
2 H3M

(k)
2

−M (k)
2 H2P

(k)
1 − P

(k)
1 H2M

(k)
2

)
+ η22M

(k)
2 H3M

(k)
2

ρ
(k)−
1 =

∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥− ∥∥∥S(k)1

∥∥∥
σ
(k)
1 =

∥∥∥M (k)
1 H1M

(k)
1

∥∥∥
S(k)2 = e

(
Ā(k)α2

)T
T
Ricα2

(
P(k)1 ,P(k)2

)
eĀ

(k)
α2 T

− η1M
(k)
1 H1M

(k)
2 − η1M

(k)
2 H1M

(k)
1

ρ
(k)−
2 =

∥∥∥Ricα2 (P(k)1 ,P(k)2

)∥∥∥− ∥∥∥S(k)2

∥∥∥
σ
(k)
2 =

∥∥∥M (k)
2 H2M

(k)
2

∥∥∥
β
(k)
2 = η1

(
M (k)

1 H4P
(k)
1 + P

(k)
1 H4M

(k)
1

−M (k)
1 H1P

(k)
2 − P

(k)
2 H1M

(k)
1

)
+ η21M

(k)
1 H4M

(k)
1

Then, the following propositions hold.
a) If we consider (6) and (34), then the following matrix

recursive equation holds for P(k+1)1 and P(k+1)2 :

Ricα1
(
P(k+1)1 ,P(k+1)2

)
= (1− η1)Ricα1

(
P(k)1 ,P(k)2

)
+ η1S

(k)
1 − η

2
1M

(k)
1 H1M

(k)
1 + β

(k)
1 , (49)

Ricα2
(
P(k+1)1 ,P(k+1)2

)
= (1− η2)Ricα2

(
P(k)1 ,P(k)2

)
+ η2S

(k)
2 − η

2
2M

(k)
2 H2M

(k)
2 + β

(k)
2 . (50)

b) For player one, when the learning rate η1 satisfies η1 ∈
(0, 1] , if (48) and the following conditions hold:
– Condition 1:

111 =

(
ρ
(k)−
1

)2
− 4σ (k)1

∥∥∥β(k)1

∥∥∥ > 0, (51)
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ρ
(k)−
1 −

√
111

2σ (k)1

≤ η1 ≤
ρ
(k)−
1 +

√
111

2σ (k)1

,

(52)

0 <
ρ
(k)−
1 −

√
111

2σ (k)1

< 1, (53)

Then,∥∥∥Ricα1 (P(k+1)1 ,P(k+1)2

)∥∥∥ ≤ ∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥
holds for every k ∈ N.
For player two, when the learning rate η2 satisfies η2 ∈
(0, 1], and if (48) and the following conditions hold,
– Condition 2:

121 =

(
ρ
(k)−
2

)2
− 4σ (k)2

∥∥∥β(k)2

∥∥∥ > 0,

(54)

ρ
(k)−
2 −

√
121

2σ (k)2

≤ η2 ≤
ρ
(k)−
2 +

√
121

2σ (k)2

,

0 <
ρ
(k)−
2 −

√
121

2σ (k)2

< 1. (55)

Then,∥∥∥Ricα2 (P(k+1)1 ,P(k+1)2

)∥∥∥ ≤ ∥∥∥Ricα2 (P(k)1 ,P(k)2

)∥∥∥
holds for every k ∈ N.

c) If learning rate η1 and η2 does not vanish at
k = ∞, the pair (P(k)1 ,P(k)2 ) will monotonically
converge to the (P∗1,P

∗

2), i.e., Ricα1
(
P∗1,P

∗

2

)
=

lim
k→∞

∥∥∥Ricαi (P(k)1 ,P(k)2

)∥∥∥ = 0 for i = 1, 2.

Proof: a) First, for player one, (34) can be equivalently
rewritten as

P(k+1)1 = P(k)1 + η1M
(k)
1 . (56)

Then, applying (56) to the Riccati operator representation (6)
yields,

Ricα1
(
P(k+1)1 ,P(k+1)2

)
= −2α1P

(k+1)
1 + ATP(k+1)1 + P(k+1)1 A+ Q1

−P(k+1)1 H1P
(k+1)
1 − P(k+1)2 H2P

(k+1)
1

−P(k+1)1 H2P
(k+1)
2 + P(k+1)2 H3P

(k+1)
2

= −2α1
(
P(k)1 + η1M

(k)
1

)
+ AT

(
P(k)1 + η1M

(k)
1

)
+

(
P(k)1 + η1M

(k)
1

)
A+ Q1

−

(
P(k)1 + η1M

(k)
1

)
H1

(
P(k)1 + η1M

(k)
1

)
−

(
P(k)2 + η2M

(k)
2

)
H2

(
P(k)1 + η1M

(k)
1

)
−

(
P(k)1 + η1M

(k)
1

)
H2

(
P(k)2 + η2M

(k)
2

)
+

(
P(k)2 + η2M

(k)
2

)
H3

(
P(k)2 + η2M

(k)
2

)
= Ricα1

(
P(k)1 ,P(k)2

)
− η21M

(k)
1 H1M

(k)
1 + β1

+η1

[(
Ā(k)α1

)T
M (k)

1 +M
(k)
1 Ā(k)α1

−η2M
(k)
1 H2M

(k)
2 − η2M

(k)
2 H2M

(k)
1

]
. (57)

The terms
(
Ā(k)α1

)T
M (k)

1 +M
(k)
1 Ā(k)α1 in (57) can be written as

(
Ā(k)α1

)T
M (k)

1 +M
(k)
1 Ā(k)α1

=

∫ T

0

d
dt

(
e

(
Ā(k)α1

)T
t
Ricα1

(
P(k)1 ,P(k)2

)
eĀ

(k)
α1 t

)
dt

= e

(
Ā(k)α1

)T
T
Ricα1

(
P(k)1 ,P(k)2

)
eĀ

(k)
α1 T

−Ricα1
(
P(k)1 ,P(k)2

)
(58)

Finally, inserting (58) into (57) yields (49). Similarly, for
player two, one can obtain (50).

b) When the learning rate η1 satisfies condition 1 and (48),
combining the fact (49) in proposition a) and the properties
of the matrix norm yields∥∥∥Ricα1 (P(k+1)1 ,P(k+1)2

)∥∥∥
≤ (1− η1)

∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥+ η1 ‖S1‖ + η21σ k1 + ‖β1‖
= ψ11

∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥ (59)

where

ψ11 = 1− η1
ρ
(k)−
1∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥
+ η21

σ k1∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥ + ‖β1‖∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥
In order to satisfy∥∥∥Ricα1 (P(k+1)1 ,P(k+1)2

)∥∥∥ ≤ ∥∥∥Ricα1 (P(k)1 ,P(k)2

)∥∥∥
for each k ∈ N, a sufficient condition can be selected as
ψ11 ≤ 1 by (59), i.e.,

f1(η1) = σ k1 η
2
1 − ρ

(k)−
1 η1 + ‖β1‖ ≤ 0, (60)

To guarantee the existence of the solution to the above
quadratic inequality, the equation f1(η1) = 0 should have
distinct solutions, i.e., (51) should be satisfied. Then, the solu-

tion to the equation f1(η1) = 0 can be denoted as
ρ
(k)−
1 −

√
111

2σ (k)1

and
ρ
(k)−
1 +

√
111

2σ (k)1

. Therefore, (52) yields (60). On the other

hand, η1 ∈ (0, 1) is assumed in condition 1). Then,
to avoid the contradiction of the requirements η1 ∈ (0, 1)
and (52), (53) is needed. This completes the proof of condi-
tion 1. The proof of condition 2 for P(k)2 is similar to the case
for condition 1.
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c) First, note that
∥∥∥Ricαi (P(k)1 ,P(k)2

)∥∥∥ ≥ 0 for ∀k ∈ N,
i.e., it is lower-bound by zero. In addition, from proposi-
tion b, the sequence

{∥∥∥Ricαi (P(k)1 ,P(k)2

)∥∥∥}∞
k=0

is monoton-

ically decreasing. Therefore, P(k+1)1 = P(k)1 = P(∞)1 as
k →∞. In addition, from (34), one has

η1

∫ T

0
e

(
Ā(∞)αi

)T
t
Ricαi

(
P(∞)1 ,P(∞)

2

)
eĀ

(∞)
αi tdt = 0 (61)

Note that η1 6= 0, then (61) is equivalent to∫ T

0
e

(
Ā(∞)αi

)T
t
Ricαi

(
P(∞)1 ,P(∞)2

)
eĀ

(∞)
αi tdt = 0

Since the exponential function can not be zero, then
Ricαi

(
P(∞)1 ,P(∞)

2

)
= 0. Therefore, P(∞)1 = P∗1 and P

(∞)
2 =

P∗2. That is, (P
∗

1,P
∗

2) converges to the solution to the CAREs.
This completes the proof.
Remark 7: As the learning rate η1 and η2 increase, the

convergence speed of the integral VI algorithm will be faster,
when the learning rate of the integral VI algorithm is suffi-
ciently large, the integral VI algorithm outperforms the PI
algorithm. To guarantee the positive definiteness in Theo-
rem 2, the max value of η1 and η2 can not exceed 1. �
Remark 8: For player one, the learning rate η1 need to

satisfy (51), (52) and (53) in condition 1, which contain ρ(k)−1 .
Note that ρ(k)−1 is affected by η2. Then, the learning rate η1 is
not independent of η2. Similarly, for player two, the learning
rate η2 also depends on η1. �

V. SIMULATION STUDY
Here we present simulations of NZS differential games for
linear systems, the games can be solved by the integral VI
method and another method, Lyapunov iteration method that
is used as a reference to verify the effectiveness of the pro-
posed method for the NZS differential games.

Consider the following two-player continuous-time linear
systems with [38]

A =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.2855 −0.7070 1.3229

0 0 1 0

 ,

B1 =


0.4422
3.0447
−5.52

0

 ,B2 =


0.1761
−7.5922
4.99
0

 .
where Q1 = diag ([3.5, 2, 4, 5]), R11 = 1, R12 = 0.25 and
Q2 = diag ([1.5, 6, 3, 1]), R21 = 0.6, R22 = 2, α1 = 5,
α2 = 10, The initial state is slected as x (0) =

[
0 0 0 1

]T .
By using the PI algorithm, the solution, (P(∗)1 ,P(∗)2 ), to the

CAREs (4) and (5) can be obtained as

P(∗)1 =


0.3463 0.0068 0.0112 −0.0156
0.0068 0.1113 0.0576 −0.0139
0.0112 0.0576 0.2308 0.0250
−0.0156 −0.0139 0.0250 0.5112



FIGURE 2. The learning process of (P(k)
1 ,P(k)

2 ) for two-player when
η1 = η2 = 0.7.

FIGURE 3. Convergence of P(k)1 and P(k)2 to their optimal values P∗1 and
P∗2 with η1 = η2 = 0.7 during the learning process.

P(∗)2 =


0.0748 −0.0008 0.0011 −0.0016
−0.0008 0.2211 0.0351 −0.0284
0.0011 0.0351 0.1165 −0.0013
−0.0016 −0.0284 −0.0013 0.0598


The integral VI algorithm is implemented using T = 0.5.

The threshold of the stop criterion is selected as ε = 10−8.
The initial matrices P(0)1 , P(0)2 are selected as identity matri-
ces. In order to solve online for the values of the P(k)1 , P(k)2 ,
the LS method is chosen after a set of 15 data samples is
collected and thus the policy of the controller is updated
every 7.5 sec. Figures (2) and (4) presents the evolution of
the parameters of the value function for players one two
during the learning process when the learning rate is selected
as η1 = η2 = 0.7 and η1 = η2 = 1.0, respectively.
It can be shown that the learning algorithm converges within
5 steps. Moreover, to investigate the convergence of the inte-
gral VI algorithm to the solution of the CAREs (4) and (5),
The difference between (P(k)1 ,P(k)2 ) and (P(∗)1 ,P(∗)2 ) is shown
in Figures 3 and 5, respectively. One can observe that the
value functions for both players converge to (P(∗)1 ,P(∗)2 ).

A comparison between the integral VI algorithm with dif-
ferent learning rate and the PI algorithm is shown in Figure 6.
First, the larger learning rate results in faster convergence
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FIGURE 4. The learning process of (P(k)
1 ,P(k)

2 ) for two-player when
η1 = η2 = 1.0.

FIGURE 5. Convergence of P(k)1 and P(k)2 to their optimal values
P∗1 and P∗2 with η1 = η2 = 1.0 during the learning process.

FIGURE 6. The comparison between the integral VI algorithm with
different learning rate and the PI algorithm.

speed, i.e., the case of ηi = 1.0 converges to the optimal case
faster than the case of ηi = 0.7. Second, when the learning
rate of the integral VI algorithm is sufficiently large, the inte-
gral VI algorithm outperforms the PI algorithm, as shown
in Figure 6.

VI. CONCLUSIONS
In this paper, an integral VI algorithm is proposed to find the
Nash equilibrium of the NZS games. The presented integral
VI algorithm is implemented using the online data to obvi-
ate the requirement of the drift dynamics. First, the reward

function in the NZS games contains a discounted factor,
which is required to be within a given range to guarantee the
closed-loop stability. Compared with existing RL algorithms
with fixed convergence speed, the convergence of the inte-
gral VI method can be tuned by the learning rate. Moreover,
as discussed in Section IV, additional conditions on the learn-
ing rate are imposed to guarantee the positive definiteness
of the iterative value function, closed-loop stability during
learning and the convergence of the integral VI algorithm to
the solutions of CAREs. Simulation examples demonstrates
the effectiveness of the presented integral VI algorithm.
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