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Abstract. In the last several decades, significant efforts have
been directed toward better understanding the gaseous and
particulate matter (PM) emissions from aircraft gas turbine
engines. However, limited information is available on the hy-
groscopic properties of aircraft engine PM emissions which
play an important role in the water absorption, airborne life-
time, obscuring effect, and detrimental health effects of these
particles. This paper reports the description and detailed lab-
based performance evaluation of a robust hygroscopicity tan-
dem differential mobility analyzer (HTDMA) in terms of hy-
groscopic properties such as growth factor (GF) and the hy-
groscopicity parameter («). The HTDMA system was subse-
quently deployed during the Alternative Aviation Fuel EX-
periment (AAFEX) II field campaign to measure the hy-
groscopic properties of aircraft engine PM emissions in the
exhaust plumes from a CFM56-2C1 engine burning sev-
eral types of fuels. The fuels used were conventional JP-8,
tallow-based hydroprocessed esters and fatty acids (HEFA),
Fischer—Tropsch, a blend of HEFA and JP-8, and Fischer—
Tropsch doped with tetrahydrothiophene (an organosulfur
compound). It was observed that GF and « increased with
fuel sulfur content and engine thrust condition, and decreased
with increasing dry particle diameter. The highest GF and
« values were found in the smallest particles, typically those
with diameters of 10 nm.

1 Introduction

The increase in aviation related activities has led to concern
about the emissions from aircraft operations and their impact
on local air quality (Unal et al., 2005; Woody et al., 2011),
global climate (Lee et al., 2009; Brasseur et al., 2016), and
public health (Levy et al., 2012; Brunelle- Yeung et al., 2014).
The primary products of conventional jet fuel combustion in
an aircraft engine are NO,, unburned hydrocarbon (UHC),
CO, SOy, CO,, Hy0, and soot aerosol or soot particulate
matter (PM). As the aircraft engine exhaust plume expands,
mixes with ambient air, and cools, volatile species present
in the gas phase at the engine exit plane undergo gas-to-
particle conversion and begin to condense onto existing soot
particles and form new particles (Onasch et al., 2009; Lobo
et al., 2012; Timko et al., 2013). The black carbon compo-
nent of the PM is referred to as non-volatile particulate mat-
ter (nvPM), while the volatile component consists of sulfates,
nitrates, and organic compounds (Onasch et al., 2009). The
composition of the volatile PM in the expanding aircraft en-
gine exhaust plume varies greatly and depends on a number
of factors such as fuel composition, ambient meteorological
conditions, and plume age (Lobo et al., 2007, 2012, 2015a;
Timko et al., 2013).

The commercial aviation sector has been focused on devel-
oping and implementing sustainable alternative jet fuels for
use by airlines to diversify fuel supplies and mitigate the im-
pacts of aircraft engine emissions. The American Society for
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Testing and Materials (ASTM) and other fuel specification
bodies have established a standard specification for the man-
ufacture of aviation turbine fuel consisting of conventional
and synthetic blending components under ASTM D7566
(ASTM International, 2016). The pure alternative fuels have
low to negligible amounts of aromatic, naphthalene, and sul-
fur content when compared to conventional jet fuel. Studies
have shown that nvPM and sulfur oxide emissions are dra-
matically reduced during alternative fuel combustion in air-
craft engines (Timko et al., 2010; Lobo et al., 2011, 2015b,
2016; Beyersdorf et al., 2014; Moore et al., 2015). The nvPM
at the engine exit plane is hydrophobic, but as the nvPM
evolves in the expanding plume, its aging results in enhanced
hydrophilicity (Weingartner et al., 1997; Zhang et al., 2008).

Investigation of atmospheric pollution, and in particular
atmospheric visibility, has shown that aerosol optical prop-
erties are affected by size, composition, and hygroscopic
growth of particles (Tang et al., 1981; Horvath, 1995; Kim et
al., 2006; Meier et al., 2009). In urban environments, emis-
sions from vehicles including soot, sulfates, and nitrates have
been found to be the main contributors to visibility degrada-
tion (Ferron et al., 2005; Kim et al., 2006).

Hygroscopicity tandem differential mobility analysis (HT-
DMA) systems have been widely used to measure the hygro-
scopic growth properties of PM in the subsaturated regime
in different environments (Massling et al., 2007; Swietlicki
et al., 2008; Park et al., 2009b; Wu et al., 2013). HTDMA
measurements of PM emissions from jet engine combustors
(Gysel et al., 2003; Popovicheva et al., 2008) have also been
performed. However, the application of a HTDMA system
to measure the hygroscopic properties of PM emissions in
evolving aircraft engine exhaust plumes from the combustion
of different fuels has not been previously performed.

For field measurements, where ambient temperature and
humidity cannot be controlled, the HTDMA system must be
fairly rugged, stable, and versatile. The Missouri University
of Science and Technology (MST) has developed a HTDMA
system to quantify the hygroscopic properties of PM emitted
from aircraft engines. The HTDMA system was automated
to operate such that it could determine the hygroscopic prop-
erties for an aerosol in approximately 45s. This is critical
when conducting aircraft engine emission tests which can be
quite expensive, and where the expanding exhaust plumes are
subject to perturbations in wind speed and wind direction.
This paper reports the results of lab-based experiments to
evaluate the performance of the MST HTDMA system and
in-field measurements of PM emissions in exhaust plumes
from the combustion of conventional and alternative fuels in
a CFM56-2C1 engine during the Alternative Aviation Fuels
EXperiment (AAFEX) II field campaign.
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Figure 1. Schematic of the MST HTDMA system.

2 Experimental method

The MST HTDMA system consists of two differential mo-
bility analyzers (DMAs), a humidifier (HUM), and a con-
densation particle counter (CPC), similar to other systems
(McMurry and Stolzenburg, 1989). Figure 1 presents the
schematic of the MST HTDMA system. The polydisperse
aerosol was first preconditioned by passing through an ice
bath (IB-0) to remove excess water vapor as much as rea-
sonably possible and returning it to room temperature with
a saturation ratio of ~ 0.15. The aerosol was then brought
to charge equilibrium by passing it through a bipolar charger
(BC), which can contain 500 to 2000 pCi of polonium-210
prior to entering the first DMA (DMA1). The DMAs used
in the HTDMA system were custom designed and have been
used in previous studies to classify aerosols based on elec-
trical mobility (Schmid, 2000). The DMAs were of cylin-
drical geometry and had the following dimensions: effective
inner length of 72.77 cm, a sample flow annulus with an in-
ner diameter of 5.07 cm, and an outer diameter of 8.88 cm.
The polydisperse aerosol flow rate (Qp) was setto 3L min~!
and the sheath flow rate (Qg) was adjusted to 15 L min~!
using mass flow meters (Aalborg Instruments GFM 371)
which were calibrated periodically. In DMALI, the polydis-
perse aerosol was classified by size, and monodisperse par-
ticles with a “dry” size (Xq) selected. The excess flow in

www.atmos-chem-phys.net/18/17029/2018/
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the DMA was recirculated as Qyj, after passing through a
second ice bath (IB-1) and a high-efficiency particulate air
(HEPA) filter to further ensure that the sample remained dry
and had not prematurely deliquesced to a solution droplet.
DMAI1 was set at a fixed voltage, permitting the selection of a
monodisperse aerosol. The monodisperse sample flow (Qp1)
out of DMAI1 entered the humidifier (HUM) section of the
HTDMA system, where it is referred to as the polydisperse
flow, Qp>. The HUM brought the aerosol sample to a con-
trolled, precisely known saturation ratio (SR), typically 0.91
to 0.99, which caused the particles to deliquesce to a new
equilibrium “wet” diameter (Xy). Valves V2 and V3 were
used to direct the aerosol flow Qp, to either pass through
HUM (wet mode) or to bypass it (dry mode). Valves V4 and
V5 were used to achieve the same function for the sheath air
flow (Qg2). The third ice bath (IB-2) in the Q; loop removed
the water vapor from Qg and minimized any unwanted va-
pors co-emitted from the combustion process. The second
DMA (DMAZ2) in conjunction with a CPC (TSI 3022) mea-
sured Xy,. The MST HTDMA system was designed to pro-
vide only one SR condition and to hold that value regardless
of variations in ambient temperature and humidity or sam-
pling duration. The water bath that encased HUM/DMA?2
was maintained at a fixed temperature by a refrigerated wa-
ter re-circulator that controlled the water temperature around
the HUM/DMA?2 to 16 £0.1°C. This water passed along-
side the Q> and Qg lines (not shown in figure). Thus, the
dew point achieved in HUM was well below room tempera-
ture. The water flow rate through the water bath surrounding
HUM/DMA?2 was approximately 5L min~!.

The SR values in flows Oy and O, were brought to near
unity at 16 °C by passing the aerosol through stainless-steel
tubes lined with wet cloth. The flow Qp, passed through
four such tubes (11 mmID x 762 mmL), thus having a to-
tal length of 3048 mm and a residence time of 5.8s. The
flow Q> passed through eight similar tubes, thus having a
total length of 6096 mm and a residence time of 2.3 s. The-
oretical studies have shown that the lengths of wet-walled
tubing should be sufficient to bring the Qp» and Oy to very
near SR of 1 (Fitzgerald et al., 1981). Just before entering
DMAZ2, the SR of Qs, was measured by a dew point hygrom-
eter (DPH) (Vaisala HMP247). The flow Qg, in parallel with
the CPC, reduced the lag time (LT2) between when voltage
was imposed on DMA2 and when particles selected by that
voltage reached the CPC.

During routine operation, to maximize the data acquisition
frequency, the HTDMA system was computer controlled by
a LabVIEW program (LV). When the program was initiated,
it (1) set the desired voltage (HV1) in DMA1 causing it to de-
liver dry particles of diameter X4, (2) waited long enough for
this monodisperse aerosol to travel from the outlet of DMA1
through the HUM and into DMAZ2, (3) set the high voltage in
DMAZ2 (HV2) to some fraction of that in DMAI (typically
0.1 x HV1), and (4) caused HV?2 to step through 104 incre-
ments such that the final value was a multiple of HV1 (typ-

www.atmos-chem-phys.net/18/17029/2018/
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ically 10 x HV1). During the stepwise voltage increase of
HV2 (the logarithm of the voltage was linear with time.), LV
recorded (at 1 Hz) values of HV1, HV2, Qs1, Qs2, Qq, P1,
P2, SR, CPC concentration, and elapsed time (d¢). The op-
erator provided the general region (in time) where the peak
in CPC readings occurred as input, and LV fitted a quadratic
function to the CPC concentration time series. The quadratic
function was differentiated and the value of dr at the maxi-
mum was obtained (d#nax ). Based on calibrations performed
previously, LV computed the lag time (LT2) between when a
certain diameter of droplet was selected by DMA?2 and when
it arrived at the CPC. This lag time has been found to be a
function of Qs> and Qp». LV found the value of the high volt-
age on the central rod of DMA?2 at that time. It then computed
the wet diameter (X ) of the solution droplet (using the op-
erating equation of the DMA?2) and finally computed the hy-
groscopic properties. LV was developed such that the hygro-
scopic properties could be determined on more than one X§.
LV changes the particle diameter produced by DMA1 before
the end of the voltage sweep on DMA2. The new particle
diameter selected did not arrive at DMA?2 while the current
HV2 voltage sweep was running but did arrive immediately
after that sweep had been completed. DMA?2 then immedi-
ately started the sweep on this new wet diameter. Thus, the
time taken to flush the tubing and the HUM is minimized.
This reduced the time for performing HV2 sweeps on 12 dif-
ferent dry diameters to ~ 9 min.

Periodically, experiments were performed where a chal-
lenge aerosol of a pure inorganic salt (sodium chloride, NaCl,
ammonium sulfate, (NH4)2SO4, potassium iodide, KI, or
potassium chloride, KCl) was used to validate/update the cal-
ibration of DPH (as described in Suda and Peters, 2013).
During an automated stepwise increase of HV2, the diam-
eters X4 and X, were precisely determined. The calculated
saturation ratios (SR-calc) were obtained from knowledge of
the dry diameter X4, the wet diameter Xy, and the fact that
the particles were a pure chemical of known properties. The
SR-calc values were computed and compared to the value
reported by the dew point hygrometer (SR-DPH). A calibra-
tion for the DPH was thus obtained. Typically, a value of 0.85
to 0.99 is obtained for SR-calc.

In the MST HTDMA system, the SR is measured in the
growth region by performing experiments (as recommended
by Johnson et al., 2008). The SR is a function of not only
the water vapor—air mixing ratio but also a function of gas
temperature. Even though the mixing ratio will not change
as Qg travels from the region of the DPH to the middle of
DMAZ2, the temperature may, resulting in a potential change
in SR. Thus, it is better to self-calibrate the HTDMA system
using this method. Furthermore, it is generally known that
reliable measurements of SR from commercial instruments
become very hard to obtain the closer one gets to SR of 1.

All HTDMA systems described in the literature are de-
signed to provide precise values for the hygroscopic growth
factor. Furthermore, almost all of these systems have the abil-

Atmos. Chem. Phys., 18, 17029-17045, 2018
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ity to vary the SR, thus requiring separate thermostating for
the HUM and for DMA?2 (Suda and Peters, 2013; Woods et
al., 2013; Shi et al., 2012; Fors et al., 2010; Park et al., 2009a;
Massling et al., 2011; Hu et al., 2010; Biskos et al., 2006;
Lopez-Yglesias et al., 2014). Others (Johnson et al., 2008;
Cubison et al., 2005) utilize controlled mixing of humid and
dry air to achieve the desired humidity. Some systems in-
clude water baths (Hennig et al., 2005; Weingartner et al.,
2002), temperature-controlled cabinets (Cocker et al., 2001),
and passive, insulated regions (Virkkula et al., 1999; Johnson
et al., 2008).

Although these designs offer very good precision and the
ability to vary the SR, they may not be well suited for field
measurements, since most of them involve two separate vol-
umes that must have their temperatures maintained very pre-
cisely. It is the temperature difference between these two vol-
umes that is the critically important parameter. The MST HT-
DMA system was designed to be less susceptible to ambi-
ent temperature fluctuations. This was achieved by encasing
both the HUM and DMA?2 in the same thermostated con-
tainer (volume ~ 14L). Other systems have also immersed
DMAZ2 and the HUM in a water bath (Cubison et al., 2005;
Hennig et al., 2005; Weingartner et al., 2002) to minimize the
temperature gradients. In the MST HTDMA system, temper-
ature drifts are not critical, since the temperature difference
between the HUM and the DMA?2 (and the exposure time of
the Op2 and Qg in HUM) is what determines the SR, and
that remains constant (zero temperature difference).

Suda and Peters (2013) discussed the problem of DMA
offset, whereby the diameter as measured by DMA1 may be
slightly different from the diameter as measured by DMA?2,
even if they both sample the same aerosol simultaneously.
This situation was avoided in the MST HTDMA system by
performing a self-calibration. To accomplish this, an inor-
ganic challenge aerosol (e.g., (NH4)2S0O4)) was delivered to
DMALI, and LV directed DMAI1 to deliver sample particles
with a given diameter Xy. The HUM was bypassed and LV
initiated a voltage sweep on DMA?2, which yielded a diame-
ter Xwswp. This was repeated for a series of X4 values rang-
ing from 10 to 160 nm, establishing a calibration curve be-
tween Xgq and Xyswp, With Xg taken as the true diameter.
Within LV, this calibration was utilized to synchronize the
two DMAs. Since DMAT1 was static during a voltage sweep
and its X4 involves no error from uncertainties in the lag
time (LT2), DMA1 was chosen as the reference.

3 Hygroscopic properties
3.1 Determining the saturation ratio
The SR can be calculated from Kohler theory (Pruppacher

and Klett, 1978). For hybrid particles that are composed of
a spherical, insoluble core of diameter X, surrounded by a

Atmos. Chem. Phys., 18, 17029-17045, 2018
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spherical shell of soluble material, SR can be calculated from

24 8B
In(SR) = —— —

Xo (G -x3) o

where X, is the diameter of the solution droplet. By expand-
ing In (SR) in a Taylor series and keeping only the first term
in the expansion, an error of less than 4.5 % is introduced.
Thus, Eq. (1) can be approximated as

SR=1+ 22 i )
O Xw o (x3_x3)
(2Myows)  (3.12x 10’ nmK~!)
~ RTpy T
3.12x 107" mK™!
= , 3)
T
5o (4.297 x 106m3) v, @
mol M

where My, is the molecular weight of water, oy, is the sur-
face tension of the solution—air interface (7.2 x 1072 N m™1),
R is the universal gas constant [8.31 (NmK~!mol~")], T
is the absolute temperature, py is the density of water, v is
the number of ions into which the solute material disassoci-
ates, mg is the mass of the dry (salt or solute) particle, Py is
the osmotic coefficient of the solution droplet, and M is the
molecular weight of the solute.

For particles composed of a single, pure chemical species
with no insoluble core (X, = 0),

2A 8B

SR=1+ X (X%) , 5)
and A and B remain as defined above. The mass of the dry
(salt or solute) particle is given by

= () (1)

The osmotic coefficients for selected solute materials as a
function of the molality have been reported in the literature
(Hamer and Wu, 1972; Robinson and Stokes, 2002; Staples,
1981). We find that @ can be related to the square root of the
molality () by a sixth-order polynomial function. Hence,
®d, is dry and wet diameter dependent, and this must be taken
into account. The molality (/) (number of moles of the so-
lute/mass of solvent in kilograms) is given by

_ n(solute) B 1000 (%) ps (x3) MS_1
mass of solvent(kg) (%) Pw (X\3N — Xg)

10000 (X3)

oM (X3 - X3)

4

(7

where n is the number of moles of the solute. Examples of
how @y is determined are provided in the Supplement.

Thus, a pure chemical of known properties can be used to
self-calibrate the HTDMA and verify SR.

www.atmos-chem-phys.net/18/17029/2018/
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3.2 Determining the water activity factor, ay

The Kohler theory (Pruppacher and Klett, 1978) describes
how the SR over an aqueous solution droplet is related to
other parameters characterizing the water droplet.

4. (Uw/a) -MW)’

8
R-T:pw-Xw ®

SR:aw~exp(

where ay is the activity of water in solution, and X, is the
diameter of the droplet determined by the voltage sweep of
DMAZ2/CPC. Thus, ay can be calculated from Eq. (8).

3.3 Determining the growth factor

The growth factor (GF) is the most commonly used param-
eter to describe the hygroscopic properties of particles. It is
defined as

X
GF =Y

where X, is the wet particle diameter and X4 is the dry parti-
cle diameter. GF is a function of SR and provides a measure
of the relative change in size of the particle as a result of
water absorption.

3.4 Determining the hygroscopicity parameter («)

Petters and Kreidenweis (2007) proposed that a single
parameter representation for hygroscopicity was better to
model complex, multicomponent particle types such as at-
mospheric particles containing insoluble components. The
hygroscopicity parameter (k) is defined through its effect on
the water activity of the solution by

1 \%
—=1+K( solute)’ (10)

Aw water

where Vgoluee 1S the volume of the dry particulate matter and
Vwater 1 the volume of the water. It should be noted that
Visolute also includes the volume of the insoluble core, if there
is one. For clarity, we note that

Vsolute = % (Xg) (11)
Vivater = % (Xi — Xﬁ) : (12)

The «, calculated from Eq. (10), is an excellent choice when
studying ambient aerosols that derive from the agglomera-
tion of particles from multiple sources. It should be noted
that « can also be calculated from the GF and ay, without de-
termining the wet and dry volumes (Holmgren et al., 2014).

k= (GF—1) x (1 —ay) /aw (13)
(1)

Thus, for an aerosol of unknown composition, Eq. (8) is used
to compute ay, Eq. (9) to compute GF, and then Eq. (13)

www.atmos-chem-phys.net/18/17029/2018/
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to compute «. It should also be noted that, for an aerosol
of unknown composition, only Egs. (8)—(13) are used, and
none of these require any prior knowledge of the physical or
chemical properties of the aerosol.

4 MST HTDMA performance evaluation
4.1 Performance evaluation using pure inorganic salts

The performance of the MST HTDMA system was evalu-
ated by measuring GFs of pure inorganic salts and comparing
them to theory. The values of GF vs. X4 were measured and
plotted for NaCl, (NH4)>SOg4, KI, and KCl in Fig. 2. To ob-
tain the theoretical GF, the SR-calc (Eqs. 3-5) for the largest
two or three dry particle diameters was computed and an av-
erage was obtained. From this SR-calc, a non-linear equa-
tion solver was utilized to compute the theoretical X, (using
Egs. 3-5) for the other sizes. The GF could then be computed
(Eq. 9). There is excellent agreement between the measured
growth factor and the value predicted from theory. It should
also be noted that the osmotic coefficient @y is quite different
from unity in several of the cases.

The dry diameter estimate (Xg) requires knowledge of
the average particle diameter actually exiting DMAIL. A
weighted average (neglecting doubly charged particles) is
given by

N
Xd =Xavg = Z (SNNy - Xy - Fi - TFy - dlogXy) /
k=1
(SNNy - F - Ty - dlogXy) , (14)

where SNN; is the differential size distribution entering the
HTDMA system (measured here by a Cambustion DMS500),
Xy is the particle diameter, Fy is the fraction of particles
of diameter X that carry one elementary charge (Hagen
and Alofs, 1983), TF; is the transfer function of DMAI,
and dlog Xy is the differential in logX between adjacent data
points in SNN.

The use of Eq. (14) rather than the DMA1 set point value
for the average particle diameter provided a more accurate
Xq value for these pure chemicals. The DMS500 reported
the peak in SNN; at approximately 27 nm for the nebu-
lizer and the solutions of pure solute chemicals used. Since
SNNy and Fj were both monotonically increasing over the
range where TF; was non-zero, the X,y was greater than the
set point diameter of DMA1. For example, when DMA1 was
set to extract particles with X4 = 12.76 nm, the value of Xy,
from Eq. (14) was found to be 13.49 nm, which resulted in a
change to the GF from 2.33 to 2.22 (a 5 % correction). This
correction was taken into account for particle diameters less
than 20nm. For particles diameters larger than 20 nm, the
correction is insignificant. This correction can be utilized for
any diameter X4 as long as the SNNp, the Fi, and the TFy, are
known.

Atmos. Chem. Phys., 18, 17029-17045, 2018
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Figure 2. Growth factor as a function of dry particle diameter (X4) for NaCl (a), (NH4)2SO4 (b), KI (c), and KCI (d).

Most HTDMA systems for which data are reported in the
literature are designed to scan the SR (called humidigrams)
and report (1) the GF for a wide SR range (0.20 < SR < 1),
and (2) the deliquescence relative humidity, i.e., the SR at
which the dry particles abruptly begin to take on liquid water
and grow to much larger solution droplets. The MST HT-
DMA system was not designed to perform humidigrams. By
inspection of humidigrams in the literature and with knowl-
edge of the SR that was recorded in the MST HTDMA,
the GF from these other systems can be estimated. Figure 2a—
d present the experimentally obtained GF as a function of X4
for various inorganic salts. The theoretical values along with
those reported in the literature from other systems are in good
agreement with the GF determined by the MST HTDMA.

Figure 3 shows plots of x vs. Xq for the same four chem-
icals. Also plotted are the ranges of k values for (NH4)2SO4
and NaCl as reported by Petters and Kreidenweis (2007).
There is good agreement between the « values reported by
the MST HTDMA system and those from literature.

4.2 Residence time

Since the deliquescence technique is an equilibrium based
methodology, the closeness to equilibrium must be validated,
especially for the larger droplets (which grow more slowly).
For such a test, the HTDMA system was configured to se-
lect a dry diameter (Xq = 17, 30, or 51 nm) of (NH4)2SO4

Atmos. Chem. Phys., 18, 17029-17045, 2018
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Figure 3. Hygroscopicity parameter («) as a function of dry particle
diameter (X ) for NaCl, (NH4)>SOy4, KI, and KCI.

aerosol. The wet diameter (X ) was measured, allowing cal-
culation of GF and SR-calc. This was repeated for a series of
Op2 values, which varied the residence time. The results are
shown in Fig. 4.
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Figure 4. GF (a) and SR-calc (b) as a function of polydisperse flow
rate Opy, with challenge (NH4)2SOy4 aerosols of 17, 30, and 51 nm.

From Fig. 4a and b, a small dependence of GF and SR-
calc on Qp; is observed. Utilizing a small O, would be best
to achieve the highest SR value. However, very small values
of Qp> result in very low concentration delivered to the CPC.
In field measurements where the sample is diluted with am-
bient air, the concentration is already quite low, leading to
signal to noise issues. Alternatively, at large values of O,
the peak is too broad. To avoid both of these extremes, the
HTDMA system was operated at Q> = 3.0L min~!.

The HTDMA system, when deployed in the field, is pri-
marily intended to study particles with small X4 values and
small GFs. These particles will probably not grow large
enough to experience insufficient growth time problems.
However, it is good practice to periodically check the sys-
tem and the sample aerosol by choosing a large X4 (30 nm
or larger) to determine if changes to Qp; result in a change
to SR. If this is the case, then it is better to maintain Qp, at a
lower value (2.0L min~1).

4.3 Stability over long operating times

For field applications, the HTDMA system is required to
maintain stable operation for long periods of time. The HUM
tubes are wetted at the beginning of the day and need to be
periodically re-wetted to maintain a stable SR. The time af-
ter which the HUM tubes need to be re-wetted was experi-
mentally determined. Figure 5 displays the results of deter-
mining the SR-calc by using particles of pure (NHy);SO4
(Xy = 01n Eq. 1) and measuring the wet diameter X, given
that the dry diameter set in DMAL is held constant. Experi-
ments were performed where the HUM tubes were wet thor-
oughly, and then automated scans were conducted for several
hours with no further tube wetting. After the experimental
measurements were performed, the SR was calculated from
Eq. (5). Figure 5 shows the measured SR of the Qg» as de-
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Figure 5. SR as a function of elapsed time since last wetting for pure
particles of (NH4)2SO4. The uncertainty in the SR (calculated) is
approximately 0.008.

termined by DPH. It can be seen that the calculated and the
measured SR remained constant for a period of over 225 min
without having to re-wet the tubes.

When required, tube re-wetting was accomplished using
a LabVIEW program which acted through a relay board to
energize a peristaltic pump and sequentially opened 12 pinch
valves for a short period (set by the operator), allowing each
tube to be re-wet in sequence. After re-wetting, valves at the
bottom of the 12 stainless-steel tubes were manually opened
to allow excess water to drain. During normal operations in
the field, the HUM tubes were re-wetted every 150 min.

4.4 Stability over varying ambient temperature
conditions

The HTDMA must be able to operate under varying am-
bient temperature conditions in the field. The stability of
the HTDMA system was assessed using pure (NH4)2SO4 as
the challenge aerosol. DMA1 was set to extract dry parti-
cles of 30 nm. An automated voltage sweep with DMA2 was
performed every 2 min to determine X,,. The SR-calc was
computed using Eq. (1), with X, =0. At r =20min (and
40 min), the ambient conditions surrounding the HTDMA
system were abruptly changed by blowing cold air over the
bottom of the HUM tubes (or not blowing cold air over the
bottom of the HUM), which is not as well thermally insu-
lated as the rest of the HTDMA system (Fig. 1). This exper-
iment was repeated four times on four different days. The
SR-calc remained constant over the duration of any one run
as shown in Fig. 6. The average standard deviation in SR-calc
divided by the average SR-calc for that trial over all four tri-
als (120 measurements) was 0.0019, indicating that this sys-
tem was insensitive to ambient temperature fluctuations.

Atmos. Chem. Phys., 18, 17029-17045, 2018
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Table 1. Selected fuel properties.

M. B. Trueblood et al.: Application of a hygroscopicity tandem differential mobility analyzer

Property Method JP-8 HEFA FT HEFA-JP-8 FT plus THT
blend
Density at 15°C (kg’l) ASTM D4052 0.811 0.758 0.761 0.783 0.761
Viscosity at —20°C (mm? s~ 1) ASTM D445 4.1 49 37 43 3.2
Distillation temperature (°C) ASTM D86
10 % recovered 168 175 164 166 164
End point 268 254 226 263 224
Flash point (°C) ASTM D93 46 52 43 46 43
Net heat of combustion (MJ kgfl) ASTM D4809 42.8 43.6 43.8 433 43.8
Aromatics (% vol) ASTM D1319 21.8 0.4 14 10.2 2.1
Naphthalene (% vol) ASTM D1840 1.3 0 0 0.65 0
Sulfur (ppm) ASTM D2622 188 6 4 276 1083
Hydrogen content (% mass) ASTM D3343 13.5 15.3 15 14.4 15
Carbon content (% mass) Calculated 86.5 84.7 85 85.6 85
H / C ratio Calculated 1.86 2.15 2.10 2.00 2.10
00 —_————————— thrust conditions: 4 %, 7 %, 30 %, 65 %, 85 %, and 100 %
e ———— rated thrust. Two test cycles were run for each fuel — one step-
005 * ESSL R GRS F R (SRS e 9 S LK ping up from 4 % to 100 % rated thrust and the other stepping
. 2 down from 100 % to 4 % rated thrust. Five fuels were used
© o6 . 30 % during the campaign: (1) JP-8 (the military equivalent of con-
s g ventional Jet A/JetA-1), (2) tallow-based hydroprocessed es-
é -B-B-R-p-R-B-B-p-n_p % 3 ters and fatty acids (HEFA), (3) coal-derived Sasol Fischer—
© nos R O
5 0% : L E Tropsch (FT), (4) a blend of HEFA and JP-8, and (5) FT
@© m r o . .
% ' s/ 3 doped with tetrahydrothiophene (THT) to boost the sulfur
0.92+ : : / == —Day 1| 5 content of the fuel. A summary of selected fuel properties
. \-\_‘_7_7_7_1__»_» Ve Day is provided in Table 1. Chemical and physical analyses of the
0.90 R S S = ==~ I HEFA and FT fuels have been reported elsewhere (Corporan
0 5 10 15 20 25 30 35 40 45 50 55 60

Elapsed time (min)

Figure 6. SR-calc and room temperature as a function of elapsed
time.

5 Field deployment during the AAFEX II campaign

The MST HTDMA system was deployed as part of the Al-
ternative Aviation Fuels EXperiment (AAFEX II) campaign
conducted during 20 March-2 April 2011 at the NASA Dry-
den Aircraft Operations Facility (DAOF), Palmdale, CA,
USA. The NASA DC-8 aircraft equipped with CFM56-2C1
engines was utilized as the emissions source. The aircraft was
parked in an open-air run-up facility with no other aircraft or
emission sources in the vicinity of the test site. Detailed de-
scriptions of the test site and experimental setup have been
previously reported (Timko et al., 2013; Moore et al., 2015).
The main objective of the campaign was to investigate the
gaseous and PM emissions characteristics of the CFM56-
2C1 engine burning conventional and alternative fuels as a
function of engine thrust conditions at several sampling loca-
tions in the exhaust plume. PM emissions data were acquired
for a typical cycle which consisted of the following engine

Atmos. Chem. Phys., 18, 17029-17045, 2018

etal., 2011).

The emissions from the CFM56-2C1 engine were mea-
sured at several distances (1, 30, and 143 m) from the en-
gine exit plane to study the PM characteristics as the exhaust
plume cooled and mixed with ambient air. Only data acquired
at the 143 m location are presented and discussed here to in-
vestigate the hygroscopic properties of the evolving plume.

A 5.08 cm aluminum tube (~ 1.3m above the concrete
apron) positioned downwind from engine no. 3 on the star-
board side of the aircraft was used to extract exhaust plume
samples at the 143 m location. The exhaust was transported
through the tube to a small trailer approximately 18 m away
which housed the MST HTDMA system to measure hy-
groscopic properties. The exhaust gas flow rate through the
0.052mID x 18 m L tubing was well over 100 L min~!. Also
housed in the trailer was a Cambustion DMS500 (Reavell et
al., 2002; Hagen et al., 2009) which measured the real-time
particle size distributions, and a LI-COR 840A nondispersive
infrared (NDIR) detector that measured exhaust CO, concen-
tration. Ambient meteorological conditions such as temper-
ature, pressure, and relative humidity were also monitored
and recorded throughout the campaign. The exhaust samples
at 4 % and 7 % engine thrust conditions were impacted by the
ambient conditions, specifically, wind speed and wind direc-
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Figure 7. Total (T) and non-volatile (NV) PM number-based emission index (El,) size distributions for the various fuels at the 100 % engine

thrust condition.

tion. However, the CO, measurements during the 7 % trust
periods were approximately twice the background level, in-
dicating that the exhaust plume was being sampled.

The DMS500 measured total PM size distributions. The
nvPM size distributions were obtained by passing the sample
through a thermal denuder. The thermal denuder consisted
of a coil of stainless-steel tubing (0.457 cm ID) housed in a
temperature-controlled aluminium box heated to 300 °C, fol-
lowed by a cooling section. It is similar in design to that used
by Saleh et al. (2011) and has been used in a previous study
(Rye et al., 2012). Laboratory evaluations have demonstrated
that HSO4 droplets of diameter 10—100 nm are almost com-
pletely evaporated in the thermal denuder.

The total and nvPM number-based size distributions were
converted to number-based emission index (EI,;) distribu-
tions to account for varying amounts of dilution for each
plume, and are presented for selected fuels at the 100 %
thrust condition shown in Fig. 7. The total PM size dis-
tributions are bimodal with a strong nucleation mode (<
20 nm) and an accumulation mode. These observations are
consistent with those reported for PM emissions measured
downwind of several different aircraft engine types (Lobo
et al., 2007, 2012, 2015a). The enhancement of the nucle-

www.atmos-chem-phys.net/18/17029/2018/

ation mode in measurements made downwind of the engine
exit plane is due to gas-to-particle conversion in the exhaust
plume driven by fuel composition, ambient conditions, and
degree of mixing. Timko et al. (2013) found that the driving
force for gas-to-particle conversion in the expanding exhaust
plume was the ratio of particle precursors (both organic and
sulfate) to soot.

The sulfur in the fuel is oxidized to SO», a portion of which
then undergoes oxidation to SO3 and subsequently to sulfuric
acid (H2SOg) in the exhaust plume (Miake-Lye et al., 1998;
Schumann et al., 2002). The H>SOj4 either homogenously nu-
cleates to form pure H,SO4 droplets or condenses onto ex-
isting soot particles to form hybrid particles that have signifi-
cant water-soluble components (Gysel et al., 2003; Wyslouzil
etal., 1994).

The data acquired with the MST HTDMA system was
used to calculate GF and « of these particles as a function
of fuel type, engine thrust condition, and dry particle diame-
ter. The HTDMA was operated with a SR of 0.91. Figure 8
shows GF and « as a function of X for particles generated at
different engine thrust conditions and different fuels. The un-
certainty in GF was 9 % for particles with diameter ~ 10 nm
and 3 % for the larger diameters (26 nm). The uncertainty

Atmos. Chem. Phys., 18, 17029-17045, 2018
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Figure 8. GF and « as a function of X for particles generated at different engine thrust conditions and different fuels.
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in k was 7 % and 2 % for particles with diameter ~ 10 and
~ 26 nm, respectively.

Gysel et al. (2007) state that HySO4 is expected to re-
tain water at 5 %—10% relative humidity, corresponding
to a growth factor of ~ 1.15, and took this into account
when calculating the mixed particle growth factor in their
data. This procedure was similarly followed for the current
dataset. Thus, the measured X4 values were scaled by a fac-
tor of 0.869.

For a given engine thrust condition, both GF and « in-
creased with increasing fuel sulfur content. GF and « were
also observed to be dependent on particle diameter, with
the highest GF and « for particles ~ 10 nm, and decreasing
for large particle diameters. This increase in GF and « cor-
responds to the nucleation mode in the size distributions
(Fig. 7), which was composed of particles or droplets formed
by the homogeneous nucleation of low equilibrium vapor
pressure species, such as HySO4 and other water-soluble or-
ganic compounds. The GF and « were also found to increase
with increasing engine thrust condition for a given X4, with
the largest values observed at the 100 % engine thrust condi-
tion.

Gysel et al. (2003) reported GF of particles from a jet en-
gine combustor burning three different fuels with 50, 410,
and 1270 ppm of sulfur at two inlet temperature operating
conditions: 566 and 766 K. These data are in good agreement
with the current study for very low sulfur (HEFA and FT) fu-
els, conventional JP-8, and the sulfur-enhanced FT (FT plus
THT), respectively.

www.atmos-chem-phys.net/18/17029/2018/
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6 Conclusions

A robust, mobile HTDMA system has been developed for
field measurements that involve (1) particle sources that are
very expensive to operate, (2) exhaust plumes influenced by
wind speed and direction, and (3) varying meteorological
conditions. The GF exhibited by particles of four inorganic
salts was studied and found to be in good agreement with
theory and with other experimental data reported in the liter-
ature. The fixed SR provided by the HTDMA system dur-
ing laboratory evaluation (typically ~ 0.98) was found to
be quite constant over long periods of time, even when the
ambient temperature varied considerably, making the MST
HTDMA system suitable for field experiments. The HT-
DMA was demonstrated to perform a scan to determine GF
and « for one dry diameter in approximately 45s. It per-
formed scans over as many as 12 dry diameters sequentially
in ~ 9 min. The HTDMA system provided parameterization
for hygroscopic properties for aircraft engine exhaust plumes
in terms of GF and « during the AAFEX 1I field campaign.
It was observed that GF and « (1) increased with fuel sulfur
content, (2) increased with increasing engine thrust condi-
tion, and (3) decreased with increasing dry particle diameter.

Data availability. The data included in this paper can be obtained
by contacting the authors.
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Appendix A:

AAFEX
ASTM
BC
CPC
DPH
DMA
DRH

FT

GF
HTDMA
HEFA
HUM
HV1, HV2
1B

LV

MST
nvPM
PM

R

SR
SR-calc

SR-DPH
THT
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List of abbreviations

Alternative Aviation Fuels EXperiment

American Society for Testing and Materials

Bipolar charger

Condensation particle counter

Dew point hygrometer

Differential mobility analyzer

Deliquescence relative humidity — the humidity at which the dry
particles abruptly take on water and become solution drops
Fischer—-Tropsch

Growth factor, Xy,/X¢4

Hygroscopicity tandem differential mobility analyzer
Hydroprocessed esters and fatty acids

Humidifier

High voltage in DMA1 or DMA2

Ice bath

LabVIEW program

Missouri University of Science and Technology
Non-volatile particulate matter

Particulate matter

Ideal gas law constant

Saturation ratio

Value of SR calculated from measured values of X4 and Xy,
when using a pure salt

Value of SR measured by the dew point hygrometer
Tetrahydrothiophene
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Appendix B:

dr

dt max
Fr
LT2

M;

My

msg

P1, P2
Op1, Op2
Qsl, Qs2
Omi, Om2
Q4
SNNj

T

TF,

Xavg

X4

Xy

Xw

stwp

X

<

Ps
Pw
Ow/a
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List of symbols — symbol units’ quantity

S

gmol~!
gmol~!

psia

L min~
L min™
L min—

Lmin~!

nm
nm
nm
nm

nm

nm

molkg~!

gem™?

gcm™
Nm~!

elapsed time since a trial run began

value of d# when CPC reading is at its maximum

fraction of particles of diameter X that carry one elementary charge

lag time between when voltage is imposed on DMA?2 and when the particles
selected by that voltage reach the CPC

molecular weight of solute

molecular weight of water

mass of water-soluble portion of the dry particle

pressure in Qg1, Qg flow in either DMA1 or DMA2

polydisperse aerosol gas flow rate, either for DMA1 or DMA2

sheath gas flow rate, either for DMA1 or DMA2

monodisperse aerosol gas flow rate, either for DMA1 or DMA2

flow rate of dump gas in parallel with the CPC

differential size distribution entering the HTDMA system

absolute temperature

value of transfer function of DMAL for kth point in the series to determine X,y
average particle diameter exiting the dry DMA, DMA1

set point diameter of DMAL1

diameter of insoluble core in hybrid particle

diameter of wet particle or solution droplet formed from dry particle after passing
through the HUM

diameter of particles (solution drops) exiting DM A2 as measured by LV doing
an automated sweep

the kth particle diameter in the series to determine the Xy,

molality of the solution droplet

number of ions into which the soluble salt disassociates

osmotic coefficient of the solution droplet

density of soluble material in hybrid particle

density of water

surface tension of water against air
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