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Electrospun microfibers (MFs) composed of pH and temperature responsive polymers can be used for controllable and variable
delivery of ibuprofen. First, electrospinning technique was employed to prepare poly(𝜀-caprolactone) (PCL) and poly(N-
isopropylacrylamide-co-methacrylic acid) (pNIPAM-co-MAA) MFs containing ibuprofen. It was found that drug release rates
from PCL MFs cannot be significantly varied by either temperature (22–40∘C) or pH values (1.7–7.4). In contrast, the ibuprofen
(IP) diffusion rates from pNIPAM-co-MAAMFs were very sensitive to changes in both temperature and pH. The IP release from
pNIPAM-co-MAAMFs was highly linear and controllable when the temperature was above the lower critical solution temperature
(LCST) of pNIPAM-co-MAA (33∘C) and the pHwas lower than the pK

𝑎

of carboxylic acids (pH 2). At room temperature, however,
the release rate was dramatically increased by nearly ten times compared to that at higher temperature and lower pH. Such a
unique and controllable drug delivery system could be naturally envisioned to find many practical applications in biomedical and
pharmaceutical sciences such as programmable transdermal drug delivery.

1. Introduction

Controllable and programmable drug delivery systems have
found many applications in medical and pharmaceutical
sciences [1, 2]. Controlled drug delivery systems have been
successfully applied to cancer treatments and tissue engineer-
ing with a better improved efficacy [3–5]. However, there are
still two major challenges to overcome (1) reducing initial
burst effects and (2) realizing a programmable drug delivery
[6, 7]. In the past decade, multiple technologies have been
proposed and developed, purposing to solve or partially
relieve the above-mentioned challenges [7–12]. For example,
electrospinning technology is deemed as one of those most
facile and low-cost methods to produce nano- and micro-
materials with many novel functionalities. Drug delivery
rates from these electrospun fibers can be manipulated by
controlling the diameter, materials, structures, compositions,
and so forth [5]. The relative large specific surface area of
these materials can also benefit an enhanced solubility for
most hydrophobic potent drugs. In addition, various coaxial
electrospinning techniques have been adopted to realize

a controllable protein delivery with minimum burst effect
(protein-core and cellulose acetate shell) [13–15].

Poly(N-isopropylacrylamide-co-methacrylic acid) (PNI-
PAM-co-MAA) is an interesting polymer that is responsive
to both pH and temperature changes. This type of polymers
is biocompatible and has been explored widely in drug
delivery and tissue engineering [16–18]. When heated above
its lower critical solution temperature (LCST), the polymer
undergoes a reversible phase transition from hydrophilic to
hydrophobic, leading to the change of drug release rates [19].
In addition, when the pH is below the p𝐾

𝑎
of carboxylic acid

(such as pH 2), the polymer becomes more hydrophobic due
to the protonation of carboxyl groups [20]. Although PNI-
PAM has been fabricated into various particle formulations
for drug delivery, very few studies have been reported using
PNIPAM-co-MAA microfibers as drug delivery vehicles.
p(NIPAAm-co-PAA) microgel was used as a host material
to deliver the basic fibroblast growth factor (bFGF) [21]. It
was found that the release rate of bFGF was much higher
at pH 7.4 compared to pH 5 because the carboxylic acid
is deprotonated at higher pH, thus making the polymer
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more hydrophilic. Thereby water can permeate more easily
into the polymeric matrix and result in a faster diffusion
rate [21]. Very recently, pNIPAAm-co-pAAm copolymer
was used to mask a peptide ligand that binds a widely
distributed receptor (integrin𝛽1) on the surface of silica core–
gold shell nanoparticles. Because gold is an efficient near
infrared (NIR) absorber, NIR photons can be employed to
manipulate the temperature of nanoparticles, leading to the
collapse of pNIPAAm-co-pAAm copolymer mask layer and
resulting in a targeting drug delivery [22]. It was reported
that electrospun PNIPAM-co-MAA fibers can be employed
as scaffolds for tissue engineering, demonstrating excellent
cell compatibility [17]. Polyvinyl alcohol (PVA) and pNIPAM
coelectrospun fibers containing levothyroxine were used for
transdermal delivery by Azarbayjani et al., showing a certain
degree of burst effects [23]. Noteworthy, burst effects were
observed under the conditions they investigated, probably
because the drug is highly hydrophilic.

In this study, we fabricated pNIPAM-co-MAA electro-
spun microfibers loaded with hydrophobic ibuprofen drug
molecules and investigated the possibility to control the drug
delivery rates and burst effects by varying pH values and tem-
peratures for potential pharmaceutical applications which
work has never been reported to the best of our knowledge.
Electrospun poly(𝜀-caprolactone) (PCL) microfibers were
also studied for comparison. It was found that controlled and
variable release of ibuprofen from pNIPAM-co-MAA can be
obtained by applying temperature and pH as stimuli, whereas
the ibuprofen release rates fromPCL fibers are not responsive
to these stimuli at all.

2. Materials and Methods

2.1. Materials. PCL with an average 𝑀
𝑛
of 45,000 and

pNIPAM-co-MAA with an average 𝑀
𝑛
of 30,000–50,000

were purchased from Sigma-Aldrich. PCL pellets were sold
in 100 g contained in a polybottle, whosemelting point ranges
from 56 to 64∘C. pNIPAM-co-MAA powder with 5mol% in
methacrylic acid was sold in 5 g hold in a glass vial, whose
melting point is higher than 300∘C. The pNIPAM-co-MAA
polymer has a lower critical solubility temperature (LCST)
of ∼33∘C. Ibuprofen (IP) powder with a purity > 99.0%
was obtained from ACROS Organic. Ethanol and acetone
with purity higher than 99.5% were purchased from EMD
Millipore. Acetonitrile used forHPLC analysis was purchased
from EMDMillipore also.

2.2. Fabrication of Microfibers. Two types of microfibers
(MFs) (PCL and pNIPAM-co-MAA) containing ibuprofen
were fabricated using a homebuilt electrospinning setup
(Figure 1(a)). The electrospinning working parameters for
MFs were as follows: applied voltage was direct current
(DC) 25 kV (Spellman P/N230-30R); distance between the
syringe needle (16 gauge, Air-Tite Products Co.) containing
the solution and the grounding collector (aluminum foil) was
10 cm; and pumping rate of syringe was 4mL/hr. The syringe
pump was purchased fromNew Era Pump Systems Inc. (NE-
1000). Fabrication of PCL/IP MFs: first, 50mg IP and 1.0 g

PCL pellets were dissolved in 10mL acetone under magnetic
stirring and sonication. Then the solution was electrospun
into PCL/IPMFs using a single nozzle spinneret. Noteworthy,
it is very difficult to dissolve more than 10% w/v PCL in
acetone. Although the solubility of PCL can be enhanced
usingmore toxic organic solvents such as DMF, it would raise
safety concerns when they are applied to pharmaceutical and
biomedical devices because residual solvent molecules could
be trapped in these MFs. Fabrication of pNIPAM-co-MAA
MFs: 50mg IP and 1.0 g pNIPAM-co-MAA powders were
dissolved in 5.0mL ethanol undermagnetic stirring.Then the
solution was used to fabricate pNIPAM-co-MAA MFs using
a single nozzle spinneret. A high w/v percentage was used to
form pNIPAM-co-MAA microfibers due to its relatively low
viscosity.

2.3. Characterization of Microfibers. As-prepared samples
were characterized using a Field Emission Electron Micro-
scopy (JEOL JSM-7600F) at Georgia Southern University
for morphology examinations. Fourier transform infrared
(FTIR) spectra of microfiber samples were recorded in
the attenuated total reflection (ATR) mode using an IR
spectrophotometer (Thermo-Nicolet AVATAR 370 FT-IR
Spectrometer) in the range of 4000 to 650 cm−1 at Georgia
Southern University. Micromeritics ASAP 2020 Surface Area
and Porosimetry Analyzer was used to measure the surface
area ofMFs using the 5-point Brunauer-Emmett-Teller (BET)
method with nitrogen gas adsorption.

2.4. Drug Diffusion Studies. All ibuprofen studies involving
the two types of MFs were carried out using a 5mL Perme-
Gear Franz cell (Figure 1(b))with a 10mmdiameter orifice for
sampling. ∼20±1mgMFs were wetted and suspended in the
receptor chamber containing 4.0mL of pH 7.4 distilled water
or pH 1.7 aqueous solution. The pH 1.7 acidic solutions were
prepared by dissolving 0.74 g KCl and 1mL concentrated HCl
in 1 L deionized water. Magnetic stirring bar was used during
the drug diffusion studies. 1mL solution was pipetted from
the receiver chamber per hour and stored into 1.8mL amber
glass vials for HPLC analysis. The chamber was back-filled
with 1.0mL deionized water after each sampling. All drug
release profiles were averaged from triple measurements.

2.5. HPLC Measurements and Data Analysis. All ibuprofen
samples were analyzed by a Shimadzu LCAT High Perfor-
mance Liquid Chromatography (HPLC) consisting of SIL-
20AHT autosampler, LC-20AT HPLC pump, and SPD-20A
dual UV/Vis absorbance detector set at a wavelength of
254 nm and utilizing LabSolutions software. Thermo Scien-
tific (250mm × 4mm; L × I.D.) was used for the separation.
The mobile phase consisted of 0.1 wt% H

3
PO
4
aqueous

solution : acetonitrile (55 : 45) and flow rate of 1.0mL/min.
Calibration plots were prepared using IP standards with
concentrations over a range of 20–100 ppm. The correlation
coefficient (r2) obtained was ≥0.99 for standard curves.
The cumulative quantity of drug collected in the receiver
compartment was plotted as a function of time.
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Figure 1: Schematic of (a) the electrospinning setup for the fabrication of PCL and pNIPAM-co-MAA MFs containing ibuprofen; (b) the
Franz diffusion cell used for the drug diffusion studies.
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Figure 2: Scanning electron spectroscopy images of (a) PCL/IP MFs; (b) pNIPAM-co-MAA/IP MFs; (c) and (d) are their diameter distribu-
tion histograms, respectively.
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Figure 3: FTIR spectra of PCL/IP and pNIPAM-co-MAA/IPmicro-
fibers (MFs), as well as spectra of PCL, pNIPAM-co-MAA, and IP
for comparison.

3. Results and Discussion

Figure 2 shows that the average diameter of PCL/IP MFs
was ∼1237 nm with a large standard deviation of 422 nm.
The average diameter of bifunctional pNIPAM-co-MAA
microfibers was ∼1608 nm with a standard deviation of
444 nm (Figure 2). Notably, there were no apparent drug
particles on the surface of these MFs, which can help reduce

Table 1: Surface area of PCL/IP and pNIPAM-co-MAA/IP MFs.

Sample PCL/IP MFs pNIPAM-co-MAA/IP MFs
Surface
area
(m2 g−1)

0.974 ± 0.036 0.662 ± 0.104

the burst effect due to the quick dissolution of these surface
drug molecules. Surface area analysis shows that the specific
surface area of PCL/IP and pNIPAM-co-MAA/IP MFs is
0.974 and 0.662m2 g−1, respectively, which is highly consis-
tent with their SEM data (1237 and 1608 nm in diameter) and
literature reported value [24] (Table 1).

Fourier transform infrared (FTIR) spectroscopy
(Figure 3) was utilized to characterize theseMF samples. PCL
fingerprint peak at 2948 cm−1 is derived from asymmetric
CH
2
stretching [25]. Strong peaks at 1736 cm−1 and 1176 cm−1

can be assigned to C=O and C–O stretching, respectively
[26]. In the FTIR spectrum of pNIPAM-co-MAA/IP
microfibers, characteristic peaks of pNIPAM located at 1650
and 1558 cm−1 can be assigned to amide carbonyl stretching
and amide N–H bending, respectively [27]. Carbonyl
stretching from MAA carboxylic acid groups can be seen
at 1716 cm−1. C–O stretching peak at 1172 cm−1 was also
observed. For better comparison, FTIR spectra of pure PCL,
IP, and pNIPAM-co-MAA were also shown in Figure 3. The
IP peaks cannot be clearly identified due to their low weight
percentage (5 wt%) and the significant overlapping with
other polymers (Figure 3).

The diffusion rates of ibuprofen from two types of MFs
were investigated at 22 and 40∘CandpH 1.7 and 7.4 (Figure 4).
It can be seen that 0.85 𝜇mol of ibuprofenwas quickly released
from pNIPAM-co-MAA/IP MFs in the first one hour at
22∘C and pH 7.4, and then the rest was released at a much
slower rate, 0.29𝜇mol hr−1. Similarly, ibuprofen was released
at a rate of 0.97 𝜇mol hr−1 in the first two hours at pH
1.7 and 22∘C, which was then followed by a slower rate of
0.54 𝜇mol hr−1. Because the LCST of pNIPAM-co-MAA is
∼33∘C, the polymer is quite hydrophilic at 22∘C. So water
can easily permeate through the polymer matrix, resulting in
a fast diffusion rate. In contrast, IP was released at a much
slower rate when the temperature was increased to 40∘C.
The average release rate was only 0.09 𝜇mol hr−1 at pH 7.4
and 40∘C. It is because pNIPAM-co-MAA became much
more hydrophobic above its LCST and thus functioned like
a drug depot to prohibit the fast release of hydrophobic IP
molecules. This rate was ∼10 times slower than that at room
temperatures. In addition, the standard deviation bar is also
smaller, indicating that the drug delivery is more repeatable
at high temperature using pNIPAM-co-MAA as the host
material. At pH 1.7 and 40∘C, the drug release rate of IP from
pNIPAM-co-MAA MFs was even slower (0.05𝜇mol hr−1)
and there was no burst effect. It is because when the pH was
lower than the p𝐾

𝑎
of carboxylic acid the carboxyl groups of

the polymer were protonated,making the polymer evenmore
hydrophobic. Thereby the hydrophobic IP release rate was
further reduced and better controlled. It should be pointed
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Figure 4: Ibuprofen release profiles from (a) PCL MFs containing 50mg Ibuprofen/g MFs, (b) pNIPAM-co-MAA MFs containing 50mg
Ibuprofen/g MFs. ∗std. bars were obtained from the measurements of triple diffusion studies. RT: room temperature 22∘C.

out that although PNIPAM-co-MAA is biodegradable in the
presence of catalytic enzymes, the rate is quite slow (several
percent by weight in 3 days) [28]. Our diffusion timewas only
4 hours and there were no catalytic enzymes. Thereby, the
effect of biodegradation on drug diffusion rates is negligible.
We also believe that the release of ibuprofen is mainly from
the passive diffusion through PNIPAM-co-MAA microfiber
matrix. No drug particles were observed on the surface
or in between the fibers under SEM imaging, indicating
that ibuprofen was not released through the interconnected
microfiber networks.

In dramatic contrast, the IP release fromPCL/IPMFswas
not sensitive to either pH or temperature changes (Figure 4)
because PCL molecules have no functional groups that can
respond to either pH or temperature stimuli. The average
release rate of IP was ∼0.2 𝜇mol hr−1 and there was a serious
burst effect in the first one hour. The diffusion rate of
ibuprofen from PCL MFs was slower at room temperature
and pH 1.7. It is because the IP was protonated at such a
low pH and thus had a low solubility, leading to a slower
diffusion rate. Additionally, IP drug molecules would diffuse
more slowly at lower temperatures as governed by thermo-
dynamics. Notably, the relative large standard deviation bar
may be due to the bundling of these MFs, which can affect
the diffusion rates. But the trend remains the same for all
measurements.

4. Conclusion

Two types of polymeric microfibers with dramatically dif-
ferent drug release behaviors were fabricated using a sim-
ple electrospinning method. It was found that both pH

and temperature have negligible effects on the IP diffusion
rates from PCL/IP MFs. In dark contrast, the ibuprofen
release rates from pNIPAM-co-MAA MFs are highly con-
trollable with minimum burst effect, owing to the synergetic
effects of both pH and temperature. Ibuprofen release rates
from pNIPAM-co-MAA MFs are also highly switchable;
that is, the release rate of IP at 22∘C was ∼10 times faster
than that at 40∘C. Such a unique controllable drug delivery
system has many potential applications in biomedical and
pharmaceutical sciences with a highly efficient treatment
efficacy.
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