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Abstract 
Undiscovered relationships in a data set may confound 
analyses, particularly those that assume data 
independence. Such problems occur when characters used 
for phylogenetic analyses are not independent of one 
another. A main assumption of phylogenetic inference 
methods such as maximum likelihood and parsimony is 
that each character serves as an independent hypothesis of 
evolution. When this assumption is violated, the resulting 
phylogeny may not reflect true evolutionary history. 
Therefore, it is imperative that character non-
independence be identified prior to phylogenetic 
analyses. To identify dependencies between phylogenetic 
characters, we applied three data mining techniques: 1) 
Bayesian networks, 2) decision tree induction, and 3) rule 
induction from coverings. We briefly discuss the main 
ideas behind each strategy, show how each technique 
performs on a small sample data set, and apply each 
method to an existing phylogenetic data set. We discuss 
the interestingness of the results of each method, and 
show that, although each method has its own strengths 
and weaknesses, rule induction from coverings presents 
the most useful solution for determining dependencies 
among phylogenetic data at this time. 
Keywords:  Data mining, character independence, 
phylogenetic data, machine learning. 

1 Introduction1 
Undiscovered relationships of data in a data set may 
confound analyses, particularly those that assume data 
independence. In biological data, one such problem 
occurs when characters used for phylogenetic analyses 
are non-independent. A main assumption of phylogenetic 
inference methods such as maximum likelihood and 
parsimony is that each character serves as an independent 
hypothesis of evolution (Felsenstein, 1973; Kluge and 
Farris 1969). When this assumption is violated, correlated 
or non-independent characters are effectively 
overweighed in analyses (Chippendale and Wiens 1994), 
and the resulting phylogeny does not reflect the true 
evolutionary history. Therefore, it is imperative that 
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 character non-independence is identified prior to 
phylogenetic analyses. 
There are several ways that characters or attributes can be 
non-independent. One attribute can depend upon another, 
or a set of attributes can be co-dependent.  Attributes can 
also be correlated, wherein they are not dependent upon 
one another, but share a set of dependencies with other 
characteristics. In the context of phylogenetics, we expect 
characters that reflect homology (= similarity due to 
common ancestry) to share a set of dependencies that 
reflect the true evolutionary history of the group.  This 
sort of dependency is referred to as phylogenetic 
dependence or phylogenetic autocorrelation.  This type of 
dependency is the basis of all methods of phylogenetic 
analysis and is the expected demonstration of 
synapomorphy (= homologous characters that unite 
groups).  However, if a set of non-independent characters 
reflects parallel or convergent events, their presence may 
lead to the wrong reconstruction of evolutionary history.  
 For example, let us suppose that a single evolutionary 
event gives rise to several seemingly unrelated 
characteristics. If those characteristics are each coded as 
an independent hypothesis of evolution (i.e., separate 
transformation series in the analyses), the resulting tree 
could be biased toward that evolutionary event. If that 
event was in fact merely a single convergence, the 
presence of several instances reflecting the event in the 
data set may outweigh the true homology in the data set, 
and thus, the analysis will not reflect the true evolutionary 
history of the group. As an oversimplified example, 
imagine the problems in resolving relationships that 
would result if one were to independently code all of the 
different morphological characteristics that a dolphin (a 
mammal) and a shark (a fish) share because they both 
have aquatic lifestyles (e.g., pectoral fins, anal fins, etc.). 
Recognizing character non-independence in a small 
morphological data set is difficult enough, let alone 
attempting to determine character non-independence in a 
large molecular data set (often with thousands of 
transformation series). 
Although most systematists recognize the problems with 
character dependence (e.g., Maglia 1998; McKracken et 
al. 1999), few quantitative attempts have been made to 
identify non-independence of phylogenetic characters.  
Of those methods available, nearly all examine 
phylogenetic independence/autocorrelation of characters 
after phylogenetic analyses are conducted (e.g., Cheverud 
et al., 1985; Felsenstein, 1985; Maddison, 1990; 
Abouheif, 1999). However, to conduct these tests requires 
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a model phylogeny upon which to test hypotheses of 
independence, and thus, requires the assumption of 
independence of characters used to generate the 
phylogeny. Obviously, a better approach would be to test 
for character non-independence prior to conducting 
phylogenetic analyses. 
O’Keefe and Wagner (2001) developed a “pre-tree” 
approach for visualizing suites of correlated characters 
using character compatibility. By calculating an 
association matrix between characters in a data set, and 
subsequently conducting eigenvector analyses on the 
matrix, they were able to identify characters with similar 
patterns of compatibility, and showed that some suites of 
characters were more correlated with one another than 
expected by chance alone.  
Although the methods used by O’Keefe and Wagner 
provide an initial means to examine non-independence 
among phylogenetic characters, the results are limited in 
the understanding of relationships they provide. From 
these methods, it is only possible to identify characters 
that are correlated.  Dependency or co-dependency 
relationships may exist in the data set that can not be 
determined using their methods.  Furthermore, if 
dependencies could be determined, knowing the direction 
of the dependence relationships could be extremely 
helpful in furthering the understanding of the biological 
connections among the data in the data set.  To 
understand the true nature of character non-independence 
in a data set, we must be able to identify correlation, 
dependency, and co-dependency. 
Fortunately, the methodologies of data mining are 
dedicated to finding and describing structural patterns 
(such as dependency) in data (Witten and Frank).  
Therefore, applying additional data mining methods to 
the problem of non-independence in phylogenetic data 
may provide alternative and/or additional interpretations 
of the relationships of the characters in a data set.  
Because different problems yield to different techniques, 
it is never clear which techniques are suitable for a given 
situation (Han and Kamber). Therefore, to identify 
dependencies between phylogenetic characters, we 
applied three different data mining techniques: 1) 
Bayesian networks, 2) decision tree induction, and 3) rule 
induction from coverings. We briefly discuss the main 
ideas behind each strategy and show how each technique 
performs on a small sample data set. We then apply each 
method to the Wilkinson (1997) data set analyzed by 
O’Keefe and Wagner (2001) and compare our results to 
the results of O’Keefe and Wagner’s (2001) statistical 
analysis. Finally, we comment on the interestingness of 
each method relative to the problem presented above.  

2 Data 
We analyzed several data sets to compare the various 
methods discussed here, including the Wilkinson (1997) 
data set reported in O’Keefe and Wagner (2001), a 
phylogenetic data set of Maglia (1998), and several small 
sample data sets found in Busse (67:table 3.10).  For ease 
of discussion of the three methods, we will focus our 
initial comparisons on analyses of a simple fabricated 
data set shown in Table 1. Note that Characters B, C, and 

G have equivalent codings and could represent non-
independency (as could Characters A, F, and J). 

3 Description of Data Mining Methods 

3.1 Bayesian Belief Networks 
A Bayesian belief network is a graphical depiction of 
causal relationships between attributes. It is represented 
as a directed acyclic graph, where each node represents 
 

 Characters 

taxa A B C D E F G H I J 

i 0 1 0 0 0 0 1 1 0 1 

ii 0 0 1 1 1 0 0 1 0 1 

iii 1 0 1 2 1 1 0 1 0 0 

iv 1 0 1 2 2 1 0 1 1 0 

v 1 1 0 2 2 1 1 0 1 0 

vi 1 1 0 0 2 1 1 0 1 0 

Table 1: Data set used in comparisons of three data 
mining methods  

an attribute and each edge represents a probabilistic 
dependence between the two attributes (nodes) that are 
the endpoints of the edge. These dependencies are 
quantified using Bayes’ theorem, which states: 

P(H | X) = P(X | H) P(H) 
P(X) 

where P(H | X) is the probability of X given H. A node 
(representing a character from the data set) is considered 
to be conditionally independent of its nondescendant 
(attribute) nodes in the graph (Han and Kamber 2001).  
Thus, Bayesian networks should be appropriate for 
testing hypotheses of character dependencies in 
phylogenetic data sets. 
We used BK2 (http://biodi.sdsc.edu/bk2_home.html), a 
Bayesian network program developed by David 
Stockwell at the San Diego Supercomputer Center, to 
analyze the sample data set in Table 1. A subset of results 
is presented in Figure 1. 
 The network in Figure 1a resulted from running BK2 
with the maximum of parents per node set at 5, the search 
method set to all combinations, and characters specified 
in the following order: B,C,D,E,F,G,H,I,J,A (where A is 
the root). Figure 1b. resulted from an analysis with the 
same settings, except the order of the characters was: 
C,D,E,F,G,H,I,J,B,A (where A is the root).  
The networks shown in Figure 1 provide some 
understanding of the dependency relationships in the 
sample character data. For example, in both networks, 
Characters B, C, and G have some dependency 
relationships among one another (i.e., B and C are 
dependent on G in Fig. 1a; C and G are dependent on B in 
Fig. 1b), an expected result given the codings in Table 1. 
Independence can also be ascertained from these 
networks—both networks show that Characters D and I 
are conditionally independent (given Character A) and  
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Figure 1: Bayesian networks of data set in Table 1. 

(See text for details) 

that Characters C and H are conditionally independent 
(given A, G, and B).  However, Figure 1a shows that 
Character H is not conditionally independent of A and F, 
whereas in Figure 1b H is conditionally independent of A 
and F. 
Unfortunately, as shown by this example, the very nature 
of the Bayesian network model limits is usefulness for 
determining character dependencies independent of 
phylogenies.  To build a Bayesian network, one must 
have some a priori knowledge of at least some of the 
relationships of the data and must specify a “starting 
point” (e.g., the root of the graph) from which all 
character relationships are built. Bayesian networks 
constructed from the same data set can yield different 
networks depending on the order that the characters are 
listed in the data set. This can occur even if the same 
attribute is always designated as the root, as is the case in 
Figure 1. For k attributes, there are k! permutations (i.e., 
orderings) of the attributes. Therefore, applying Bayesian 
networks to the problem of character non-independence 
necessitates constructing networks for every possible 
combination of characters. 
Chickering (2002) proposed the concept of equivalent 
Bayesian networks to identify networks that may differ 
structurally, but still imply the same set of independence 
statements. One could imagine using this concept to 
apply a heuristic to reduce the number of perturbations 
necessary. Unfortunately, because different networks can 
be generated using the same root but with other 
characters in different order, these different networks are 
not always equivalent in their dependency relationships. 
Thus applying a heuristic could result in partial or even 
contradictory information.  

3.2 Decision Tree Induction 
Decision tree induction is a classic machine learning 
technique where one or more attributes are identified as 

“decisions” or “classifiers”, and a flow-chart-like tree 
structure is generated to identify which combinations of 
attribute values result in which “decision” values. Each 
internal node in the decision tree denotes a test on an 
attribute, each branch represents an outcome of the test, 
and leaf nodes represent decisions or classes (Han and 
Kamber 2001). The particular decision tree algorithm 
utilized in our investigation is ID3 (Quinlan 1986), 
implemented in the well-known program C4.5 (Quinlan 
1993). 
The basic strategy of this algorithm is given in Han and 
Kamber (2001) as follows. The tree starts as a single node 
representing the entities in the data set.  If the entities at 
this node all have the same value for the decision 
attribute(s), the node becomes a leaf. Otherwise, an 
entropy-based measure known as information gain is 
used as a heuristic for selecting the attribute that will best 
separate the samples into individual classes. The 
objective of this heuristic is to minimize the information 
needed to partition (i.e., classify) the entities in the data 
set. The selected attribute thus becomes a test at the 
current junction of the tree. A branch is created for each 
known value of this attribute, and the entities are 
partitioned accordingly. 
The partitioning continues recursively until any one of the 
following conditions is satisfied: (i) all samples for a 
given node belong to the same class, (ii) there are no 
remaining attributes on which the entities can be further 
partitioned, or (iii) there are no entities for a branch 
corresponding to the assignment of a particular known 
value for that attribute. Conditions (ii) and (iii) may 
necessitate the application of a majority voting strategy 
whereby a node is made into a leaf and labeled with the 
decision value that occurs in the majority (but not 
necessarily all) of the entities partitioned at that node. 
Rules for determining the values of the decision attributes 
can be formed from the paths from the root of the tree to 
the various leaf nodes. These rules also provide 
information about the dependencies between attributes 
and decisions.  
We used Ross Quinlan’s latest version of the C4.5 
Algorithm, See5 (available at the RuleQuest website: 
http://www.rulequest.com), to analyze the sample data 
set. We ran 10 analyses, each with a different character 
assuming the role of the decision class.  For all analyses, 
the rule-sets option was chosen. Table 2 shows a 
summary of the results. 
The results of the C4.5 analysis give some understanding 
of the dependency relationships of the data in Table 1. 
For example, when Character B is the decision class (i.e., 
the character of interest), C4.5 identified rules involving 
Character C (e.g., if C is 1, then B is 0). This result was 
expected given the codings in Table 1. Similarly, the 
analysis identified the dependency of Character G on 
Character B.  However, note that this method did not 
identify rules that included the relationships G  C or C 

 G.  (Similarly, it did not identify the relationships 
between J and F that are obviously present in Table 1). In 
this very small data set, it is easy to see the dependency 
relationship between C and G, but in a larger, more 

(a) 

(b) 
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realistic data set, this relationship and others would likely 
be lost. 

decision  rules 
A Rule 1: J = 1  A = 0  (0.75) 

Rule 2:  J = 0  A = 1  (0.83) 
B Rule 1: C = 1  B = 0  (0.80) 

Rule 2: C = 0  B = 1  (0.80) 
C Rule 1: B = 1  C = 0  (0.80) 

Rule 2: B = 0  C = 1  (0.80) 
D None 
E Rule 1: I = 0  E = 1  (0.60) 

Rule 2: I = 1  E = 2  (0.80) 
F Rule 1: A = 0  F= 0  (0.75) 

Rule 2: A = 1  F= 1  (0.83) 
G Rule 1: B = 0  G = 0  (0.80) 

Rule 2: B = 1  G = 1  (0.80) 
H Rule 1: B = 1   H = 0  (0.60) 

Rule 2: B = 0  H = 1  (0.80) 
I Rule 1: E = 1  I = 0  (0.75) 

Rule 2: E = 2  I =1  (0.800) 
J Rule 1: A = 1  J = 0  (0.833) 

Rule 2: A = 0  J = 1  (0.750) 

Table 2. Results of C4.5 analysis of Table 1 showing 
rules generated for each decision attribute. Values in 

parentheses indicate error rate for rules. 

The reason for the loss of information is that decision tree 
induction is constructed to optimize information gain, and 
selects a tree with the maximum number of classes at 
each node. Therefore, at a given node, a decision tree 
induction algorithm might not report other trees that 
could determine the decision attribute(s) in terms of other 
possible combinations of attributes (such as C  G in the 
sample data set). Thus, the amount of attribute-
dependency information reported is limited. 
 A second concern with the use of decision tree induction 
is that because decision trees must select one attribute to 
split on first, a decision tree can be much larger than an 
equivalent set of rules (Witten and Frank 2000). This 
could be a problem in phylogenetic data sets because of 
their potential large size (e.g., thousands of characters). 
A final area of concern is that the rules generated from a 
decision tree may not be “perfect” or “correct.” In other 
words, the rule may pertain to only some of the rows (i.e., 
taxa in a phylogenetic data set), and an alternative rule 
may apply to other rows. For example, the rules for 
decision attribute E in Table 2 state that I = 0  E = 1.  
However, examining the codings in Table 1, we see that it 
is also true that I = 0  E = 0. This can occur for a 
number of reasons including the application of the 
majority voting strategy mentioned above, anomalies that 
can occur in the tree from outliers or noise in the data set, 
and the effects of various tree pruning techniques that 
may be applied to simplify the tree. Programs such as 
C4.5 report the error rate for the application of each rule 
to the given data set (such as the values in parentheses in 
Table 2) and thereby quantify the confidence with which 
each rule can be applied.   
Because the rules generated are not 100% correct, 
applying such algorithms to phylogenetic data could 
result in the identification of dependencies that not apply 

to all of the taxa in the data set. Therefore, it is possible 
that algorithms such as C4.5 would report only one rule 
for character combinations that, in reality, show all 
possible combinations (e.g., 0  0, 0   1, 1  0, 1  
1).  Characters such as these can not be dependent 
because the fact that every combination of states is 
present proves that they are free to evolve independently 
from one another. Therefore, applying decision tree 
induction to inferring relationships of phylogenetic 
characters can also result in identification of false 
dependencies. 

3.3 Rule Induction from Coverings 
Decision tree algorithms such as those used in C4.5 are 
based on a divide-and-conquer approach, successively 
finding an attribute to split on that best separates the 
partitions of entities determined thus far. An alternative 
approach is to take each possible decision and determine 
a minimal set of attributes that can determine or “cover” 
all instances of it (Witten and Frank 2000). 
RICO (Rule Induction from COverings; available at: 
http://web.umr.edu/~bioinf/biominer/) is a Java 
implementation of an algorithm given in Grzymala-Busse 
(1991) for finding all possible coverings for a given data 
set. The approach taken in this algorithm uses some of the 
concepts introduced by (Pawlak 1984) for rough sets, a 
classification scheme based on approximations of 
partitions of entities in a data set.  
For this covering algorithm, if S is a set of attributes and 
R is a set of “decision” attributes, a covering P of R in S 
can be found if the following three conditions are 
satisfied:   

(i) P is a subset of S;  
(ii) (ii) R depends on P. That is, if a pair of 

entities x and y cannot be distinguished by 
means of attributes from P, then x and y also 
cannot be distinguished by means of 
attributes from R. If this is true, then entities 
x and y are said to be indiscernible by P (and, 
hence, R), denoted x ~P y. An indiscernibility 
relation ~P is such a partition over all entities 
in the data set;  

(iii) (iii) P is minimal.  
Condition (ii) is true if and only if an equivalent condition 
≤, known as the attribute dependency inequality, holds 
for P* and R*, the partitions of all attributes and 
decisions generated by P and R, respectively, where, for a 
set of attributes A: 

A* = π a є A ~ {a}*. 
The inequality P* ≤ R* holds if and only if for each block 
B of P*, there exists a block B′ of R* such that B is a 
subset of B′.  
Once a covering is determined, it is a straightforward 
process to induce rules from it. Although any single 
covering may be a basis for computing a rule set that 
describes the entire data set, it can be even more useful to 
identify all possible coverings. The more extensive rule 
set that results not only facilitates classification in terms 
of different combinations of attributes (an advantage 
when the values for some attributes may in practice be 
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more “expensive” for the scientist to obtain), but also 
defines a set of essential attributes (Grzymala-Busse 
1991) for each decision; that is, attributes that occur in at 
least one covering for a decision, and thus can play some 
role in determining that decision. Similarly, knowing all 
coverings for a decision identifies non-essential 
attributes; attributes that are in no way involved with 
determining that decision. The concept of essential 
attributes can be further qualified as highly useful 
attributes; that is, essential attributes that are involved in 
a large number of coverings, and/or can be used to 
classify a large number of the entities in the data set. Of 
course, it would be up to the data expert to specify what 
is considered “large.” 
Finding all coverings can be computationally expensive 
since, in theory, each possible subset of attributes must be 
tested as a potential covering (unless that subset is a 
superset of a covering that has already been identified). 
For a data set of k attributes, there are 2k different subsets. 
In a morphological data set, this may be 50-80 characters, 
but in the typical molecular data set this may be closer to 
2,000 characters. For phylogenetic data sets, some 
constraints can be applied to the covering algorithm to 
reduce the execution time. For example, the cardinality of 
the candidate subsets could be limited to a small number 
(e.g., 3 or 4) because most systematists analyzing the 
character data will likely find it difficult to conceptualize 
combinations of many characters to determine the state of 
the character of interest. Furthermore, it is reasonable to 
limit the number of rules reported to only those that cover 
a certain number of entities in the data set. For example, a 
rule that only applies to one taxon is far less 
phylogenetically informative than a rule that applies to 
75% of the taxa. Again, it is up to the expert to identify 
those limits.  
Table 3 shows all coverings resulting from a RICO 
analysis of the data set in Table 1.  Note that, as expected 
from the codings in Table 1, the coverings indicate that  
 

decision coverings 
A {F}, {J}, {E, D}, {H, D}, {I, D} 
B {C}, {G}, {H, D}, {H, E} 
C {B}, {G}, {H, D}, {H, E} 
D None 
E {I, B}, {I, C}, {I, D}, {I, G} 
F {A}, {J}, {E, D}, {H, D}, {I, D} 
G {B}, {C}, {H, D}, {H, E} 
H {B, A}, {C, A}, {G, A}, {E, B}, {F, B},  

{I, B}, {J, B}, {E, C}, {F, C}, {I, C},  
{J, C}, {G, E}, {G, F}, {I, G}, {J, G} 

I {E} 
J {A}, {F}, {E, D}, {H, D}, {I, D} 

Table 3. All coverings resulting from RICO analysis of 
data in Table 1.  

there are dependency relationships among A, J, and F 
(e.g., A is dependent upon F and A is dependent upon J; F 
is dependent upon A and F is dependent upon J, etc.), as 
well as B, C, and G.  Interestingly, RICO identified all of 
the obvious potentially non-independent characters in the 
data set, but also identified several other additional 

dependencies (e.g., A is dependent upon a combination of 
E and D). 
To further evaluate the dependency relationships among 
the characters, we examined the rules produced from the 
coverings in Table 3.  To reduce the volume of data 
reported here (given that RICO identified 172 rules from 
the coverings in Table 3), we will discuss only those rules 
identified for Characters A as the decision attribute 
(Table 4).  Note that the rules show a one-to-one 
dependency of Character A on Character F and on 
Character J. Although this information is also conveyed 
in the coverings in Table 3, examining the rules in Table 
4 gives a more specific view of the relationships.  In other 
words, we can say that with 100% accuracy, in this data 
set, if we know the state of Character J (e.g., 0), we can 
know the state of Character A (e.g., 1). 
 

decision rules 
A Rule set 1: F = 0  A = 0 

                  F = 1  A = 1 
Rule set 2:  J = 0  A = 1 
                   J = 1  A = 0 
Rule set 3: E = 0 & D = 0  A = 0 
                  E = 1 & D = 1  A = 0 
                  E = 1 & D = 2  A = 1 
                  E = 2 & D = 0  A = 1 
                  E = 2 & D = 2  A = 1 
Rule set 4: H = 0 & D = 0  A = 1 
                  H = 0 & D = 2  A = 1 
                  H = 1 & D = 0  A = 0 
                  H = 1 & D = 1  A = 0 
                  H = 1 & D = 2  A = 1 
Rule set 5: I = 0 & D = 0  A = 0 
                  I = 0 & D = 1  A = 0 
                  I = 0 & D = 2  A = 1 
                  I = 1 & D = 0  A = 1 
                  I = 1 & D = 2  A = 1 

Table 4. Rules produced from the coverings of 
Character A as the decision attribute in the RICO 

analysis of the data in Table 1. 

It is important to remember that RICO produces rules 
from all coverings, meaning that the combined set of 
rules describes the entire data set.  Therefore, we can be 
confident that, unlike the rules produced by C4.5, we are 
not overlooking possible character combinations (thus 
resulting in misidentified dependencies). However, this 
can result in very large sets of rules (such as those in 
Table 4). Interestingly, RICO identified rules for 
Character A that include Characters E and D, H and D, 
and I and D.  Note that some combinations of character 
states result in a similar state in the decision attribute 
(e.g., E = 0 & D = 0  A = 0 and E = 1 & D = 1  A = 
0).  Although RICO identified a dependency relationship 
among these characters, the fact that there are multiple 
combinations of characters associated with the same state 
in the decision attribute could indicate that rules such as 
these (with multiple combinations identified) may not 
necessarily reflect phylogenetic character non-
independence.  Rules such as those in Rule set 1 and Rule 
set 2 in Table 4 in which there is only one character state 
combination for each decision attribute state clearly 
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reflect character non-independence. However, the expert 
user must carefully examine rules with multiple 
combinations data to insure that all the rules produced do 
in fact represent phylogenetic character non-
independence.  

4 Performance on Real Data Set 
In this section we compare the performance of each of the 
data mining methods above to the statistical analysis 
presented by O’Keefe and Wagner (2001).  
Unfortunately, as discussed by O’Keefe and Wagner 
(2001:672), their methods do not have the power to 
determine character independence on data sets of fewer 
than 20 characters.  Therefore, rather than making 
comparisons using our sample data set (Table 1), we will 
compare the methods to the results obtained by them 
when they analyzed the phylogenetic data set of 
Wilkinson (1997). This data set was chosen because 
Wilkinson (1997) suspected that there were several suites 
of correlated characters in the data. 
Here we present a simplified overview of the methods 
presented by O’Keefe and Wagner (2001); see their 
original text for a more thorough description of the 
methods. First, a dissimilarity matrix is generated using 
the following steps. A character-by-character pairwise 
compatibility matrix is created, wherein 1 indicates 
characters i and j are compatible (e.g., they do not show 
all possible character state combinations; O’Keefe and 
Wagner, 2001), and 0 indicates that they are 
incompatible. The resulting matrix is converted to a 
mutual compatibility matrix in which each value mi,j 
represents the number of characters with which both i and 
j are compatible. A dissimilarity matrix is then 
constructed a wherein di,j = 1-mi,j/(n-2) where n is the 
 

 

Figure 3. Results of Principle Cordinates analysis of 
Wilkinson’s (1997) data set presented by O’Keefe and 

Wagner (2001). Shaded shapes identify correlated 
suites of characters. See text for further description. 

(Redrawn from O’Keefe and Wagner 2001.)  

number of characters. The matrix is Gower transformed 
(Gower 1966), and decomposed for corresponding 
eigenvectors using principal coordinates analysis. The 
eigenvectors (PO) are plotted to reveal mutual 
compatibilities and separation of correlated characters, 
specifically those below the first PO. The results are 
compared to Monte Carlo simulations to determine if they 
are statistically significant from those expected at 
random. Figure 3 shows the results of O’Keefe and 
Wagner’s (2001) analysis of Wilkinson’s (1997) data set 
of 78 morphological characters.  They were able to 
identify two separate suites of correlated characters, 
shown here in Figure 3 by the gray squares and black 
circles.  
The largest correlated suite of characters O’Keefe and 
Wagner (2001) were able to identify included Characters 
E1.1, E1.3, E1.5, E1.6, E3, R43, and T57 (original 
character numbering). These include characters pertaining 
to specific muscles of the eye (E1.1, E1.3, E1.5, E1.6), 
the optic nerve (E3), the process of metamorphosis (T43), 
and the teeth (T57).   The second largest partition they 
uncovered included Characters T4, T5, T6, T16, T31, and  
 

E1.1 E1.3 E1.5 E1.6 E3 T43 T57 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
? ? ? ? ? 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 1 1 1 1 1 
1 ? ? 1 1 1 1 
? ? ? ? ? 1 1 
? 0 ? 0 1 1 1 
0 1 1 0 1 1 1 
1 0 1 1 1 1 0 
? ? ? ? ? 1 1 
1 ? 1 1 1 ? 1 
1 ? 1 1 1 ? 1 
0 0 0 0 1 1 0 
? ? ? ? ? 1 0 
0 0 0 0 0 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
0 ? ? ? 1 1 0 
0 ? ? ? 1 0 0 

Table 4. Character codings for first suite of correlated 
characters reported in OKeefe and Wagner (2001).  
Question marks indicate missing data. See text for 

character descriptions. 

T56.  These are characters describing bones of the 
cranium (T4, T5, T6, T16) the cloaca (T31) and a cranial 
muscle (T56). These results were consistent with the 
suites of dependent characters identified by Wilkinson 
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(1997) in his original paper. Character codings for the 
first set of correlated characters are presented in Table 4. 

4.1 Bayesian Belief Networks 
Because of the size of Wilkinson’s (1997) data set, it was 
not practical to run Bayesian analyses for all of the 
possible permutations of characters. Therefore, we ran a 
Bayesian analysis of the characters in Table 4 as well as 
three additional characters randomly chosen from 
Wilkinson’s (1997) data set.  The resulting network is 
depicted in Figure 2. The network indicates that there are 
several dependency relationships between the characters 
listed in Table 4.  However, the randomly chosen 
characters (A1, H1.4, and T20a) cluster out apart from the 
other characters.  This is consistent with the findings of 
 

 
Figure 2. Sample Bayesian belief network of 

characters listed in Table 4 and three other randomly 
selected characters from Wilkinson (1997).  

O’Keefe and Wagner (2001), in that the Bayesian 
network identifies dependency relationships among the 
correlated characters in Table 4, but not the non-
correlated characters. Therefore, this would suggest that 
the Bayesian analysis can identify some relationships 
within the data set.  
It is important to remember that the characters included in 
the analysis and the order of those characters will 
influence the resulting belief net and dependency 
relationships depicted.  Therefore, it is impractical to use 
Bayesian networks to identify all of the dependency 
relationships in the data set.  But, this method could be 
used to validate/refute relationships among characters that 
have been identified by an expert as potentially correlated 
or dependent. 

4.2 Decision Tree Induction 
We analyzed the entire data set of Wilkinson (1997) 
using See5 (a C4.5 implementation).  For the sake of 
brevity, we included only those rules relevant to the 
characters listed in Table 4. Note that for a few of the first 
suite of characters identified as correlated by O’Keefe 
and Wagner (2001), C4.5 identified dependency rules that 
include characters in that suite.  For example, Character 
E1.5 was identified as being dependent upon Character 
E3 and Character E1.6 is dependent on Character E1.1.  
However, for the other characters, dependency 
relationships were found that did not correspond to those 
expected from O’Keefe and Wagner’s (2001) results. 

The results of the C4.5 analysis indicate relationships 
among the data that were not identified by the correlation 
analysis of O’Keefe and Wagner (2001).  Interestingly, 
the C4.5 analysis identified dependency relationships 
among several characters of the eye (as identified by “E” 
in the character numbering). This seems to indicate that 
decision tree induction may be a useful tool in addition to 
the analysis of O’Keefe and Wagner (2001) in identifying 
additional hidden relationships in the data.  

decision rules 
E1.1 Rule 1: E1.2 = 0  E1.1 = 0 (0.864) 

Rule 2: E1.2 = 1  E1.1 = 1 (0.900) 
E1.3 Rule 1: E1.4 = 0  E1.3 = 0 (0.846) 

Rule 2: E1.4 = 1  E1.3 = 1 (0.857) 
E1.5 Rule 1: E3 = 0  E1.5 = 0 (0.875) 

Rule 2: E3 = 1  E1.5 = 1 (0.833) 
E1.6 Rule 1: E1.1 = 0  E1.6 = 0 (0.900) 

Rule 2: E1.1 = 1  E1.6 = 1 (0.910) 
E3 Rule 1: T1 = 0  E3 = 0 (0.857) 

Rule 2: T1 = 1  E3 = 1 (0.889) 
T43 Rule 1: T1 = 0  T43 = 0 (0.875) 

Rule 2: T1 = 1  T43 = 1 (0.895) 
T57 Rule 1: A51 = 0 & 

             A75 = 0  T57 = 0 (0.867) 
Rule 2: A75 = 1  T57 = 1 (0.900) 
Rule 3: A51 = 1  T57 = 1 (0.900) 

Table 5. Results of C4.5 analysis of Wilkinson’s (1997) 
data set.  Only data for the first suite of correlated 

characters (Table 4) identified by O’Keefe and 
Wagner (2001) are reported. 

However, it is important to remember that applying 
decision tree induction in order to infer relationships of 
phylogenetic characters is problematic because of the 
issues discussed earlier (including loss of information and 
the identification of false relationships).  

4.3 Rule Induction from Coverings 
Because of the size of the Wilkinson (1997) data set, 
finding all coverings in the data set would have been 
computationally expensive.  Therefore, we restricted the 
analysis to only report coverings containing three or 
fewer characters and rules that applied to at least three 
taxa. Despite these restrictions, RICO identified more 
than 575 coverings and more than 700 rules just for the 
characters listed in Table 4. Thus, it was necessary to 
further limit the results of the analyses reported here. To 
restrict the information presented (and thus allow for a 
manageable discussion of the results), we identified 
highly useful attributes (Table 6)—characters that were 
involved in at least five rules (for a given decision 
attribute).  Although this number is completely arbitrary, 
it is quite small considering that RICO reported 100+ 
rules for most of the decision attributes. We chose to err 
on the side of overestimating dependency relationships 
(some of which could subsequently be ruled out by 
further examination), rather than to exclude true 
dependency relationships. (Note: It is important to 
remember that in some cases, RICO will report rules with 
different combinations of states resulting in the same state 
in the decision attribute, as discussed previously.  Thus, 
although identifying highly useful attributes provides a 

187



good “first pass” at determining dependency 
relationships, it is important to subsequently examine the 
rules in which the attributes were involved.) 
 For Character E1.3, there were only three rules 
identified, each of which included Characters E1.1, E1.4, 
and E1.5.  Therefore, the values reported for E1.3 in 
Table 6 are all of the characters that E1.3 are dependent 
upon, not just highly useful characters as defined 
previously.  
The RICO analysis identified several dependencies that 
are consistent with the findings of O’Keefe and Wagner 
(2001).  For example, Character E1.1 was dependent on 
Characters E1.5 and E1.6.  Similarly, E3 was found to be 
dependent on E1.1, E1.3, and E1.5. However, several 
other relationships were uncovered that were not found 
using the methods of O’Keefe and Wagner (2001).  For 
example, the rules pertaining to Character E3 as the 
decision indicate that E3 also has a dependency 
relationship with additional characters (E1.2, E1.4, E4, 
O4, T1, T35, T50, T52). 
 

decision highly useful attributes 
E1.1 E1.2, E1.5, E1.6, E6, A10, H1.4, 

H2, T46, T47 
E1.3 E1.1, E1.4, E1.5 
E1.5 E1.3, E1.6 
E1.6 E1.1, E1.2, E1.3, E1.4, E1.5, 

A10, O3, O6, T53, T55, T56 
E3 E1.1, E1.2, E1.3, E1.4, E1.5, 

E1.6, E4, O4, T1, T35, T50, T52 
T43 E1.1, E1.4, A4, H1.4, H2, H5, 

O3, T15a, T20a, T28, T42, T46, 
T47, T50, T51, T57, T58 

T57 E1.2, E1.3, H2, T28, T32, T53 

Figure 6. Highly useful attributes identified by a RICO 
analysis of the Wilkinson (1997) data set.  

As with the C4.5 analysis, the RICO analysis identified 
dependency relationships among several characters of the 
eye, but RICO also included characters pertaining to other 
parts of the body (e.g., muscles, cranial bones, etc.). This 
suggests that RICO may be a useful tool in addition to the 
analysis of O’Keefe and Wagner (2001) in identifying 
additional non-obvious relationships in the data.  Because 
RICO identifies all relationships (and is only limited by 
the constraints that the user imposes), it is possible that 
all dependency relationships in the data set could be 
uncovered.  Furthermore, the RICO analysis does not 
report false relationships as could C4.5.  

5 Conclusions 

5.1 Interestingness of the Methods  
Based on the performance of the three methods on both 
the test data set and the Wilkinson (1997) data set, we are 
able to comment on the interestingness of the results 
reported by each method.  Data patterns can be said to be 
interesting if: (1) they are easily understood (by humans), 
(2) they are valid on new data with a degree of certainty, 
(3) they are potentially useful, and (4) they are novel 
(Han and Kamber 2001). All of the methods presented 

herein are equal in the novelty of their results; however, 
they all vary to some degree relative to the first three 
criteria.  
Inherent in the idea of a Bayesian belief network is a 
method of presenting dependencies in visual, easy-to-
identify form.  However, Bayesian analyses, when 
applied to the problem described herein, are limited with 
respect to the ordering of characters and the necessity of 
prior knowledge of relationships. Therefore, the patterns 
of dependencies inherent in phylogenetic data sets are not 
obvious through Bayesian analysis.  Furthermore, 
because of the number of different perturbations required 
to uncover a complete picture of the dependency 
relationships, the validity of the method when applied to 
new data is suspect. Thus, the utility of the method is 
limited in this application, and the usefulness of the 
Bayesian networks here is poor. 
The results of decision tree induction provide a more 
readily understandable pattern of dependencies in 
phylogenetic data sets.  The reported rules give clear 
statements of dependency relationships from one attribute 
to the next.  However, because those rules are not 
“perfect,” their degree of certainty when applied to novel 
data (or even some portions of the existing data set), is 
suspect. Furthermore, because there is the possibility of 
reporting false dependency relationships, or missing some 
dependency relationships altogether, the usefulness of 
decision tree induction for understanding phylogenetic 
character non-independence is limited. 
The results of the rule induction from covering analyses 
are somewhat difficult to understand because of the sheer 
number of rules reported. Furthermore, when multiple 
combinations lead to the same decision state, results 
become slightly obscure. But because RICO reports all 
coverings, and all rules are “perfect,” it can be applied to 
new data with complete certainty. Furthermore, coverings 
can be used to identify all dependency relationships, and 
rules from coverings can be used to examine further the 
nature of those relationships. Overall, RICO provides the 
most useful results for the problem described herein.   

5.2 Using RICO Results in Phylogenetic 
Analyses 

Now that we have identified the most suitable method for 
determining character dependence in phylogenetic data, 
we want to caution the reader to use the information 
gained from RICO carefully. In typical phylogenetic 
practices, if one has reason to believe that a set of 
characters is non-independent, usually one of two steps is 
taken: (1) all but one of the non-independent characters is 
deleted (or all are combined into one character describing 
a single “character suite”) or (2) a weighting scheme is 
invoked that results in each character having less 
importance in the phylogenetic analysis.   
Neither of these steps should be taken solely on the basis 
of RICO results. The results of RICO analyses should be 
used as a way to identify possible character non-
dependence problems in phylogenetic data sets—in other 
words, it provides hypotheses of character non-
independence that should be tested by phylogenetic 
analysis. Because data mining techniques are based on 
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recognizing patterns in data, it is possible that some of the 
patterns recognized by RICO reflect homology (= true 
evolutionary history), and thus should be preserved in the 
data set.   
The best possible scenario for utilizing RICO results 
would be to: 1) run the RICO analysis before any 
phylogenetic analysis; 2) run the phylogenetic analysis 
and plot the distribution of characters on the resulting 
tree; and 3) compare the RICO results to the resulting 
phylogeny. If there is a high degree of homoplasy (e.g., 
reversals, parallelisms) in the phylogenetic analysis, 
particularly at nodes where several characters identified 
as dependent by RICO show support, then it is likely that 
there is non-independence in the data set. The next step 
would be to run the analyses presented by O’Keefe and 
Wagner (2001), paying special attention to those sets of 
characters identified as non-independent by RICO 
(including homologies and homoplasies). 

5.3 Application to Molecular Data Sets 
One area that we have made little mention of thus far is in 
the application of these methods to genomic data. In this 
paper we concentrated our discussion of the various 
methods on morphological data sets for three reasons: (1) 
they are relatively small and easy to work with, (2) 
character non-independence is easier to conceptualize 
(and identify) in morphological data, and (3) very little is 
known about character non-independence in molecular 
phylogenetic data.   
Certain characteristics of DNA indicate that character 
non-independence poses as much of a problem in 
molecular data sets as it does in morphological data. For 
example, some regions of DNA are highly conserved, 
suggesting that some areas evolve independently, 
whereas other regions evolve as a character “suite”. Also, 
some DNA sequences are selected for because of their 
structural properties (e.g., preferential binding, molecular 
stability, etc.), suggesting that some nucleotide positions 
are dependent upon those around them. Thus, applying a 
method such as RICO to understand the inter-
relationships of molecular data would be highly valuable. 
An additional impetus to applying RICO to molecular 
data sets is that by determining all coverings in a data set, 
we are able to generate rules that can be used for 
predictions. If we could identify dependency relationships 
among loci, we could use known sequence information to 
estimate unknown sequences. 
Unfortunately, because of the size of most molecular data 
sets, applying RICO and other data mining techniques to 
large data sets is currently intractable. However, we plan 
to explore the implementation of RICO using parallel and 
distributed processing, so that we can examine all 
coverings in large genomic data sets. Furthermore, we 
plan to explore the use of other data mining techniques 
alone and in combination with RICO to further examine 
the problem of phylogenetic character non-independence. 
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