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ABSTRACT

The interest in the ability to monitor a structure and detect damage at the earliest 

possible stage is pervasive throughout the civil, mechanical and aerospace engineering 

communities. The thesis focuses on the application of a finite element model updating 

technique to monitor and detect damage in beams. A Sensitivity Based Element-by- 

Element (SBEBE) methodology is chosen as the finite element model updating 

technique. In this method, damage is detected by updating a finite element model with 

test data obtained from “healthy” and “damaged” structures and observing the relative 

changes in the updated finite element models. The performance, efficiency and sensitivity 

of the SBEBE algorithm in detecting the damage location and severity are studied 

through numerical and experimental test cases on a cantilever beam. The location and 

extent of damage are successfully predicted with all numerical cases. The presence o f 

noise in the numerical data and its effects on the damage detection process are examined. 

The SBEBE algorithm is capable of detecting the presence, location and extent o f 

damage for noise levels in the numerically generated data up to 5% of the signal 

amplitude. Also experimental studies are carried out on a cantilever beam with modal 

data measured using a laser doppler vibrometer. A small section of the cantilever beam is 

mechanically removed, and the SBEBE algorithm is used successfully to detect the 

damage location and severity.
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NOMENCLATURE

Symbol Description

i Mode number

Eigenvalue for mode i

<!>, Eigenvector for mode i

Modeshape at measured degrees of freedom

<X>
°iE
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{ ® * } Experimentally measured mode shape vector for mode i
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W Dynamic residual (modal force) error vector for mode i

{ 2 ,} Undamped Impedance matrix for mode i

[  L ,  [ i Measured and unmeasured partitions of [  ]

[M],[C],[Ar] Nominal mass, damping, and stiffness matrices

J Objective function

g Linearised gradient

G Hessian matrix



1. INTRODUCTION

1.1. BACKGROUND

On April 28, 1988, Aloha B-737-200 (N73711) lost a major section of its upper- 

forward fuselage (Figure 1.1) over the Hawaiian Islands. In the report given by the 

National Transportation and Safety Board (NTSB) for the cause of the accident, it was 

mentioned that disbonding and fatigue damage led to the failure of the lap joint causing 

the separation o f the fuselage upper skin. This incident brought attention and awareness 

o f the structural health-monitoring problem for aging aircraft and other mechanical 

systems into the public arena.

Figure 1.1. Side View of Damaged Aloha B-737

The process of implementing a damage detection strategy is referred to as 

structural health monitoring. Nearly all in-service structures require some form of 

maintenance for monitoring their integrity and to prolong their life span and prevent 

catastrophic failure of these structures. The ultimate objective for the end users,



maintenance crews and manufacturers is to have access to the knowledge of the integrity 

of in-service structures on a continuous real time basis. With such knowledge, they can 

count with confidence on the optimal use of the structures, minimize downtime and 

increase productivity. Thus, the indirect benefits from the development of the technology 

for the society as a whole can be very significant in many sectors of the industry.

Structural health monitoring processes involve the observation of the system over 

a period of time using periodically spaced measurements and the analysis of these 

features to determine the current state of health o f the system. The output of this process 

is updated information regarding the ability of the system to continue to perform its 

desired function in light of the inevitable aging and degradation resulting from the 

operational environments. For these processes, new methods of structural health 

monitoring are being explored to better determine the functional safety of structures.

Methods which determine the condition or health of a structure without altering 

the performance or integrity of the structure are referred to as Non-Destructive 

Evaluation (NDE) techniques. A good overview of NDE techniques can be found in 

Witherell [1], Some NDE approaches consist of visual inspection, sometimes preceded 

by application of a penetrating dye, which highlights cracks, deterioration, or other 

blemishes. This category also includes x-ray imaging, ultrasonic, and radiography. Other 

methods are based on local variations in the electro-mechanical properties of the structure 

and include eddy-current and magnetic particle inspections, among others. A third type of 

NDE depends on changes in the dynamic response characteristics of the structure. This 

thesis addresses NDE methodologies of this type. Systems of NDE testing which depend 

on changes in the dynamic response characteristics of the structure are often called modal 

based damage detection methods. These methods are typically based on vibration testing 

of the structure and measurement of the mechanical response of the structure to a 

specified excitation input.

Damage detection methods are based on changes in dynamic response 

characteristics, and this area is a subject that has been receiving considerable attention in 

recent times. This approach is based on the idea that damage will significantly alter the 

physical properties of the structure, such as stiffness, mass or energy dissipation 

properties of a system. This change in physical or material properties in turn alters the



measured dynamic response in the form of modal parameters, such as natural frequencies, 

mode shapes, and damping of that system. By observing these changes in the measured 

vibration response, damage detection can be performed.

Damage detection algorithms can be broken down into the following categories: 

non-model-based schemes and model-based schemes. Here, “model” refers to a set of 

parameters used to describe the structure in a mathematical representation, viz., a finite 

element model. Non-model-based schemes determine direct changes in the sensor output 

signal to locate damage in the structure. Model-based schemes depend on the finite 

element model and the data from the sensor output signal. One of the popular model 

based methods up to date is the model updating method. Model updating can be defined 

as the adjustment of an existing finite element model using the measured vibration data 

from an experimental-derived model. After adjustment, the updated model is expected to 

represent the dynamic behavior of the structure more accurately. This feature of model 

adjustment is used in detecting the damage. An excellent review of model-based damage 

detection methods has recently been compiled by Doebling et al. [2].

Classification of damage identification methods, as presented by Rytter [3], 

defines four levels of damage identification:

Level 1: Determination that damage is present in the structure 

Level 2: Determination of the geometric location of damage 

Level 3: Quantification of the severity of the damage 

Level 4: Prediction of the remaining service life of the structure 

Ideally, a robust damage detection scheme will be able to perform all the above 

four functions and be well suited to automation. To the greatest extent the method should 

not rely on the engineering judgment of the user or an analytical model of the stmcture. A 

less ambitious but more attainable goal would be to develop a method that possesses all 

the features described above, but one that uses an initial measurement of an undamaged 

structure as the baseline for future comparisons of measured response. Also, the methods 

should take into account any operational constraints. For example, a common assumption 

with most damage identification methods developed in the technical literature to date is 

that the mass of the stmcture does not change appreciably as a result of the damage.



“Damage” can be defined as the process when the structure undergoes a non- 

reversible change in composition. Examples of non-reversible changes are corrosion in 

metals, plastic deformation, cracks, delamination, brittle damage, etc. Damage in 

mechanisms typically results in a decrease in mechanical properties (such as elastic 

modulus) or in the physical properties (thickness o f a plate or other structural 

component), which is then manifested as a decrease in strength or life expectancy. In this 

thesis, damage from any source is assumed to affect parameter models as a decrease in 

stiffness based on a linear dynamic model. This corresponds to the effects o f cracks, 

delamination between composite plies, and necking, among other sources.

Damage due to fatigue (Figure 1.2) is a major cause o f crack formation. These 

cracks are initiated from regions of high stress. These cracks, when left unattended, can 

grow at alarmingly fast rates and can cause catastrophic failure. From safety 

considerations, repairs are done to arrest/retard further crack growth. The two popularly 

used repair techniques in the aerospace industry are riveting a metallic doubler with or 

without removing the damaged portion and bonding a composite material patch over the 

damaged portion.

Figure 1.2. Examples o f Fatigue Damage



The former technique is often not effective due to the introduction of fresh 

sources of stress concentrations, additions of weight, stress corrosion and stress 

altercation problems. The later one, bonded composite material patch repair, provides a 

highly efficient and cost effective method for repairing metallic aircraft components 

subjected to crack or delaminations. The bonded composite patch repair (Figure 1.3) 

enhances the fatigue resistance of the stmcture and restores the stiffness and strength of 

the damaged stmcture.

Figure 1.3. Bonded Composite Material Patch Repair

1.2. OBJECTIVE OF THESIS

The objective of the current study is to examine the performance of a sensitivity 

based element-by-element (SBEBE) model updating methodology in predicting the Level 

1 and Level 2 types of damage detection, namely the presence and 

location of damage. In this thesis an attempt is made to use experimentally measured 

modal parameters (i.e., natural frequencies and modeshapes) to improve the finite 

element models and then by comparing the updated finite element models from the 

healthy and damaged stmctures, to detect the presence and location of damage. In order 

to assess the performance of the method, a numerical study followed by an experimental



study on one specimen is has been carried out. Study has been carried out to determine 

the method4 s effectiveness to detect damage with noisy numerical data.

1.3. OVERVIEW OF THESIS
The thesis is organized as follows. Chapter 2 describes the literature behind the 

model updating methods and provides information regarding direct and iterative modal 

updating methods. Chapter 3 provides detailed theory and mathematical formulation of 

SBEBE method. The performance of the algorithm in detecting damage to a cantilever 

beam is studied using numerical data with out noise and noisy data in chapter 4. Chapter 

5 discusses the experimental setup, test specimens, finite element modeling of cantilever 

beam, correlation of experimental to FEM modal data and model updating procedure 

applied to the experimental modal data. Finally, conclusions about the performance o f the 

algorithm are discussed in Chapter 6.



2. LITERATURE SURVEY

2.1. INTRODUCTION

Finite Element Models of structures are not exact representations o f real 

structures because discrepancies exist due to uncertainty in the governing physical 

relations (for example, modeling non-linear elastic behavior with linear FEM theory), the 

use o f inappropriate boundary conditions or elemental material and geometrical property 

assumptions and modeling using too coarse of a mesh. In practice these ‘errors’ are rather 

due to lack o f information than modeling errors. Their effects on the FE analysis results 

should be analyzed, and improvements must be made to reduce errors associated with the 

FEM. Model updating has become the popular name for using measured structural data to 

correct the errors in a FEM. Model updating can be defined as the adjustment of an 

existing analytical model (FEM) in the light of measured vibration test data. After 

adjustment, the updated model is expected to represent the dynamic behavior o f the 

stmcture more accurately. This chapter is aimed to provide a review of the relevant 

literature related to model updating techniques.

2.2. MODEL UPDATING METHODS USING MODAL DATA

This section is a review o f existing model updating methods using modal test 

data. Two categories, namely direct and iterative methods, are considered.

2.3. DIRECT METHODS USING MODAL DATA

Direct methods update the complete structural stiffness and mass matrices so that 

the updated matrices are those closest to the initial analytical matrices that reproduce the 

measured modal data. Direct model updating methods have the great advantage of not 

requiring iteration, thus, the possibilities of divergence and excessive computation are 

eliminated. These methods are representational, meaning they reproduce the measured 

data exactly. The main advantages o f  these methods are:

• Assured convergence

• No iterations required

• Minimal CPU time is required compared to an iterative method



•  Measured data is reproduced exactly

• The disadvantages of direct model updating methods are:

• Connectivity of nodes is not ensured

• Updated matrices are fully populated

• Updated stiffness and mass matrices are not guaranteed to be positive definite 

(Non-singular)

2.3.1. Lagrange Multiplier Methods. Lagrange multiplier methods require 

two quantities as crucial to the updating process: the measured modal data and the finite 

elemental global mass and stiffness matrices. The Lagrangian multiplier method involves 

minimizing an objective function subject to some constraints on the independent 

variables (stiffness and mass matrices). Baruch [4] considered these methods as reference 

basis methods because one o f the three quantities (the measured modal data, the 

analytical mass or stiffness matrix) is assumed to be exact, or the reference, and the 

remaining two quantities are updated. Baruch and Bar Itzhac [5] considered the mass 

matrix to be reference and developed a technique that minimizes the weighted Euclidean 

norm of the eigenvectors. The measured eigenvectors are corrected so that they are 

orthogonal with respect to the mass matrix, and then an updated stiffness matrix is 

computed which is closest to the analytical mass matrix but reproduces the measured 

data. Berman [6] assumed that the measured modes were correct and therefore, applies 

the updating procedure to the mass matrix. Berman and Nagy [7] used the same 

assumptions and updated the stiffness and mass matrices sequentially. Caesar [8] 

suggested a range of methods that updated the mass and the stiffness matrices using 

different cost functions and constraints. To improve the physical meaning of the updated 

results, he also introduced additional constraints from rigid body considerations, such as 

the position of the center of gravity, total mass and moments of inertia. Wei [9] updated 

the mass and stiffness matrices simultaneously using the measured eigenvectors. He used 

constraints of mass orthogonality, the equations o f motion, and the symmetry o f the 

updated matrices. Fuh and Chen [10] developed a reference basis method for 

representational updating of stmctural systems with non-proportional damping. A 

detailed review of Lagrange multiplier methods is given by Heylen and Sas [11].



2.3.2. Matrix Mixing Methods. The matrix mixing method were originally 

developed by Thoren [12], and further developments have been introduced by Caesar, et 

al., [13]. If all vibration modes are measured at all degrees o f freedom, the mass and 

stiffness matrices can be directly constructed using a mass orthogonality concept. Often 

the number of measured modes is far fewer than the order of the analytical model. The 

matrix mixing approach works around this problem by using the data from the finite 

element model to fill in the gaps in the measured data.

2.3.3. Error Matrix Methods. Error matrix methods are a group of technique 

that directly estimate the error in the mass and stiffness matrices. One of the earliest 

papers in this subject is by Sidhu and Ewins [14], who obtained a flexibility matrix by 

considering the first order terms o f the Taylor series expansion o f the error matrix. 

Lieven and Ewins [15] proposed a modified version of the error matrix method [16] by 

using singular value decomposition. The advantage of this approach is that the analytical 

system matrices are no longer required. Lieven and Ewins [17] discussed the effects of 

incompleteness and noise on the quality of the results obtained from the error matrix 

method.

2.3.4. Eigen Structure Assignment Methods. The eigenstructure assignment 

method from control theory has also been used to update finite element models. As the 

name suggests, the method reproduces the measured eigenvalues and eigenvectors 

(natural frequencies, damping ratios and modeshapes). If only the eigenvalues are used in 

the process o f updating finite element models, then the method is called pole placement 

[18]. Using state feedback, Moore [19] formulated the necessary and sufficient conditions 

for simultaneous eigenvalue and eigenvector assignment for the case of distinct 

eigenvalues. Srinathkumar [20] addressed the problem of pole-assignment in linear time- 

invariant, multi-variable systems using output feedback. Andry and Chung [21] were 

among the first apply the technique to a linear mechanical system for the purpose of 

parameter identification. The method is very powerful in the control system design 

context. A system will have given output variables, which are measured, and some input 

variables, which are able to supply excitation to the system. The problem is then to 

reproduce a linear combination o f the output variables which gives the required input 

excitation signal and yields a satisfactory closed loop response. Thus, unstable poles, or



eigenvalues, o f the open loop system are transformed into stable poles in the closed loop 

system. In the application of these methods to model updating, these input and output 

variables are not given, but their number and form are chosen at will. The ‘controller’ is 

then designed to reproduce the measured eigenvalues and eigenvectors. Shulz and Inman 

[22] used the eigenstructure assignment technique with a number o f constraints that could 

be related to the physical properties of the system to be updated. The constraints were 

built into a non-linear optimization procedure that preserved the desired properties of the 

updated model. They considered small-order systems that were symmetric, banded and 

bounded. Ziaei and Imregun [23] modified this formulation to accommodate large 

systems by developing a quadratic linear optimization procedure, which is 

unconditionally stable. They also considered the updating of damping matrices. The 

advantages o f eigenstructure assignment methods are:

1. The measured eigenvalues and modeshapes are reproduced exactly.

2. The updated damping matrix can be explicitly calculated, something the Lagrange 

multiplier methods cannot do.

The four main disadvantages of these methods are:

1. A large amount of computation is required because it is a non-linear optimization 

problem.

2. Some or all o f the input and output matrices have to be specified.

3. No physical insight is provided into what is being minimized to obtain the 

updated matrices.

4. There is no guarantee that the updated matrices will be positive semi-definite.

2.4. ITERATIVE METHODS
The basic approach of iterative updating methods using modal test data is to 

improve the correlation between the experimental and analytical models via a penalty 

function. Penalty function method requires iterative optimization and linearization o f the 

analytical model parameters (FEM). Iterative methods have two main advantages. First, a 

wide range of parameters can be updated simultaneously, and second, both measured and 

analytical data can be weighted.



2.4.1. Penalty Function Methods. Penalty function methods are generally

based on the use o f a Taylor series of the modal data expanded as a function o f the 

unknown updating parameters. This series is often truncated to produce a linear set o f 

equations involving modeshapes, natural frequencies from the modal data and design 

parameters (physical parameter such as modulus o f elasticity, thickness, etc. from the 

FEM).

A sensitivity matrix is defined as the first derivative of the stiffness or mass 

matrix with respect to the design parameters. The sensitivity methods differ in the choice 

o f design parameters and the definition o f optimization constraints (orthogonality 

constraint). Individual elements o f the mass and stiffness matrices, sub-matrices, 

geometric or material properties can be used as design parameters to be updated or 

corrected with these methods. Constraints are usually imposed on natural frequencies and 

mode shapes.

Fox and Kapoor [25] calculated the sensitivities o f the eigenvalues with respect 

to the design parameters. They have also suggested two methods for calculating the 

sensitivities o f the eigenvectors to the design parameters. Lim [26] suggested an 

approximate method for calculating the sensitivities o f the eigenvectors, which is only 

valid for the low frequency modes. Other methods for calculating mode shape 

sensitivities have been suggested by Chu and Rudisill [27] , Ojalvo [28] and Tan and 

Andrew [29].

Usually, the number of design parameters and the number o f measurement 

locations are not equal, and, hence, the sensitivity matrix is not square. The case in which 

there are more design parameters than measurements was considered by Chen and Garba 

[30]. They found the solution to the problem by seeking a set of design parameters that 

minimizes the norm o f the residual obtained from stiffness and mass matrices and the 

eigenvalues and eigenvectors from modal data. Similarly, the singular value 

decomposition technique was used by Hart and Yao [31] and Ojalvo, et al., [32] for a 

case with less design parameters than measurements.

In practical situations, all measured data do not have the same accuracy. Usually, 

mode shape data are less accurate than natural frequency data. The accuracy of measured 

data can be incorporated into the updating process by including a positive definite



weighting matrix. Another approach [33] is to add an extra term to minimize the change 

of the design parameters. Many researchers have used this method with different sets of 

unknown parameters. Thomas [34] and Dascotte and Vanhonacker [35] used the 

approach to update the elements o f the mass and stiffness matrices. Dascotte [36] 

demonstrated and discussed the relative merit o f combining analytical and experimental 

modal data on a practical application. Physical parameters (modulus of elasticity, 

thickness, density, etc.) were also chosen by many authors. Such parameters allow an 

easier interpretation of the updated model. Wei [37] selected moments of inertia as design 

parameters to update a simple 3D beam structure. They compared the results with that of 

using a penalty function method, whereby each elemental matrix is corrected on a non

physical basis. Dascotte [38] updated a composite structure, selecting the material 

constant as design parameters. A second-order sensitivity method has been tried by Kuo 

and Wada [39], who produced correction terms to improve the convergence properties 

compared to that of the linearized algorithm. Ojalvo and Pilon [40] used second-order 

natural frequency sensitivities to update the system mass and stiffness matrices.

The present algorithm discussed in this thesis is an application of the Sensitivity 

Based Element-By Element (SBEBE) methodology to damage detection. There is a large 

body of literature available on the subject of the SBEBE model updating method. 

Friswell and Mottershead [41] provide a comprehensive overview that illustrates many of 

the different techniques and issues involved in the SBEBE updating procedures. The 

authors divide the SBEBE model update technique into two groups based on the form of 

the experimental data that they utilize: 1.) those that use modal data and 2.) those that use 

Frequency Response Function (FRF) data. The authors also discuss the selection of 

physical parameters to be updated during the procedure and several recommendations are 

made. The parameters should be chosen to correct a recognized uncertainty in the model, 

and the modal test data should be sensitive to the parameters chosen so that it effectively 

predicts the uncertainties in the FEM model and produces an improved match between 

model and test data.

Dascotte [42] provides details regarding the SBEBE updating methodology, 

illustrations of its efficiency and a comparison o f performance with commercially



available updating software. The research presented in this thesis brings together the 

frameworks presented by Dascotte [42], Friswell and Mottershead [43] and Alvin [44].



3. DAMAGE DETECTION BASED ON SENSITIVITY BASED ELEMENT-BY
ELEMENT METHOD

3.1. INTRODUCTION

The objective of this section is to discuss the application of the Sensitivity Based 

Element-By-Element (SBEBE) method in detecting damage to structures. A detailed 

description of the theory and mathematical formulation is discussed.

3.2. SBEBE METHOD

The SBEBE method is an iterative based model updating method. The method 

works by modifying the mass, stiffness, and damping parameters of the finite element 

model until an improved agreement between modal data predicted by the finite element 

model and the test data is achieved. Thus the goal of the method is to achieve an 

improved match between the finite element model and the test data by making physically 

meaningful changes to the model at the elemental level.

In comparison to other model updating methods, the SBEBE method has a unique 

feature of updating the model properties at the elemental level. Model properties, such as 

modulus of elasticity, thickness, density etc. can be selected. Model properties should be 

chosen so that they are sensitive to the changes in the structure properties. For example, if 

damage occurs in the structure the model property should be sensitive enough to 

represent it when updated with test data from the damaged structure.

To perform model updating using the SBEBE method, a finite element model and 

two sets of modal data from the test structure are required. In this thesis damping is 

ignored and only the stiffness and mass matrices are included in the analysis. Modal test 

data from the test structure is obtained using a Laser Doppler Vibrometer (LDV). Section 

5.4 describes in detail the method of collecting the modal test data from LDV.

The SBEBE method is a multi-step procedure requiring a finite element model 

and experimental vibration data from the test structure both before (when it is “healthy”) 

and after damage is presumed to occur. The first step is to update the original finite 

element model with modal test data from the “healthy” structure. This updated FEM 

represents a mathematical model of the healthy structure. It acts as a reference standard to 

which future measurements can be compared after the stmcture has



endured an extended period o f service. At any time when the structure has to be tested for 

damage, subsequent vibrational test data is captured, and then the SBEBE algorithm is 

applied to the reference finite element model using the new experimental data to yield a 

refined finite element model o f the structure. A comparison o f the refined finite element 

model to the reference finite element model can reveal the damage, if  any, (at the 

elemental level) that has occurred. This was the principal logic employed in the thesis for 

the damage detection process. Figure 1.5 depicts the flow chart o f the SBEBE algorithm 

in damage location and quantification.

The damage detection process occurs in two steps. In step 1, a refined finite element 

model of the healthy structure is obtained from updating the elemental parameters o f the 

FEM with modal test data from the healthy specimen. In step 2, the refined finite element 

model of the healthy structure is used as the base for updating with the modal test data 

from the supposedly damaged structure. The parameters that change between the two 

updating procedures can be used to predict the onset of damage as well as its location and 

severity. Severity of damage is assessed by comparing the relative change in the 

parameters selected before and after updating.

3.3. THEORY AND PROBLEM FORMULATION

The equations of motion for a structured modeled with ^-degrees o f freedom (neglecting 

damping, c=0) can be written as

[M ]{*}+ [£]{*} = { /(/)}  (1)

where [M] is a n x n mass matrix and [AT] is a n x n stiffness matrix, {*} is a column 

vector of n generalized coordinate variables corresponding to the degrees of freedom in 

the structure and j /(7 )}  is a column vector o f n generalized forcing functions.

Considering a homogeneous form of Eq. (1) ( f ( t )= 0 ) and substituting the general 

solution x(/1) = <̂ iel03t into Eq. (1) leads to the eigenvalue problem,



Original Analytical “Healthy” Experimental

Finite Element Model Test Stmcture

Figure 3.1 Flow Chart of SBEBE Method in Damage Location and Quantification



4 = (3)

In modal updating literature, and O. are referred to as modal parameters or modal

data. The modal parameters, are numerically computed to satisfy Eq. (3); they represent 

the modal parameters predicted by the FEM. However, these numerically computed 

modal parameters are inevitably different from the corresponding modal properties 

experimentally measured from the test structure. The discrepancies result from inherent 

modeling errors, errors in the experimental data (noise and measurement error), and 

uncertainty in boundary conditions from the experimental set up. Therefore, substituting 

the modal properties measured experimentally from the test structure into Eq. (2) yields a 

residual, referred as the dynamic force residual, given by

R i ^ K - ^ M )  O, (4)

The purpose of the SBEBE model updating procedure is to alter physically meaningful 

parameters that define the FE model (e.g., elastic modulus, thickness, etc.) with a goal 

toward minimizing the dynamic force residual

3.3.1. Modal Expansion Algorithm. From Eq. (4), the dynamic force residual 

depends on the natural frequencies and modeshapes measured from the structure. The 

number of degrees of freedom experimentally measured is typically much smaller than 

the number of degrees of freedom in the finite element model. The measured set is a 

subset of the complete set of modeshapes. Therefore, to apply Eq. (4), either the model 

must be reduced to the measured degrees of freedom, or the measured portion of the 

modeshapes must be expanded to the displacement basis, or the size of the finite element 

model. Reducing the model to the measured degrees of freedom destroys the connectivity 

between the elements o f the finite element model and, hence, is not recommended for 

iterative-based model updating procedures [44]. In the SBEBE method proposed in this 

thesis, a dynamic modal expansion method is used. This method is also referred to as 

“mode shape projection”, as discussed by Alvin [44].

The first step in the modal expansion algorithm is to partition the mode shape, 

0 ;£, into its measured and unmeasured components, and also to partition the associated 

columns o f the mass and stiffness matrices.



The first step in the modal expansion algorithm is to partition the mode shape, 

<f>j£, into its measured and unmeasured components, and also to partition the associated 

columns of the mass and stiffness matrices.

M K  m0])|M  (5)
where is the modeshape for mode i at the measured degrees of freedom, d>0 is the

unmeasured portion of the same modeshape, and the m and o subscripts correspond to the 

column sets of the degrees of freedom. The mode shape projection, or modal expansion 

algorithm, works by minimizing the dynamic residual with respect to , assuming no 

change in the model parameters, viz.,

min Y , R! Ri (6)
° °  i

Defining Z( = Ki -  XiM i as the dynamic stiffness for mode i and partitioning Zf into sets

m and o, the residual R can be written as

(7)

Substituting Eq. (7) into Eq. (6) and expanding yields the following minimization 

problem

m in fo  TZmTZm <D„ +2<D„ rZ /Z „0> „ + <D„ T Z r Za <t>0 ) (8)
ffy \  m iE  m i m i m iE ° \E  ° i  m i m iE  ° i E  ° i  ° i  ° i E  /  V 7

° iE

which leads to the mode shape projection

%e=-(zJ zJ ' z, Tz. ^ , c <9>
Therefore,

iE
J L /
" r - l z  T z )_1 z j z

l  ° iE  J y  o i o i )  Oj rrij

( 10)

In Eq. (10), 0 /£ represents the complete eigenvector matrix formed from the

mass and stiffness matrices of the finite element model and the measured modal data 

from the experiment. Thus, employing a modal expansion algorithm leads to the



approximations for the degrees of freedom from each eigenvector, Oi£, that are not 

measured from the experiment.

3.4. SBEBE MATHEMATICS

Consider an idealized, correct FE model of the test specimen that has no errors 

due to modeling. The stiffness and mass matrices for such a model will be designated 

as Kc and M c , respectively. These idealized stiffness and mass matrices can be separated

into two components. One component is the portion of each matrix that is realistically 

feasible to develop with standard finite element methodology. The second part, AK  or 

A M , represents the error between the exact stiffness and mass matrices, K c and M c , 

and the realistic finite element model matrices, K  and M, respectively, giving 

K C= K  + AK

M c -  M  + AM

The correct model also satisfies the eigenvalue problem in Eq. (2), given by

Substituting for K  and M in  Eq. (11) in Eq. (12) leads to

$ = ( { * ,

( 11)

(12)

(13)

Making use of Eq. (12) reduces Eq. (13) to

=-(A£-/t,AA/)®,£ (14)

The stiffness and mass matrices depend on physical parameters, such as the 

elastic modulus, density, thickness, etc. A small set o f these parameters will be altered 

with the goal of matching the finite element model to the experimentally measured modal 

data using the SBEBE methodology. The set of physical parameters to be updated will be 

generally designated by the vector p. The changes in these parameters are defined by A p . 

The SBEBE method determines the changes, Ap , to a set of physical parameters of the

model, that minimize the norm of the dynamic force residual, viz.,
(  \
III*"mm

Ap V I 27



Deciding which parameters to be updated is an important step in model updating. 

The parameters selected to update should be sensitive to the changes expected to occur in 

the structure due to damage. In general, if a parameter cannot reflect a change due to 

damage, it should not be considered in the set of physical parameters for updating.

The next step after selecting parameters to update is computing the updated 

parameter values (Ap )  which satisfy Eq. (15). To facilitate this process, an estimate E is 

defined.

E = min V  R f (16)
An l

The estimator E is determined by expanding Rt in a first-order Taylor series with respect 

to the parameter variations, Ap ,

= Ri +BiAp

(17)

(18)

where the subscript i refers to the mode number j  refers to the j th element of the p  

parameter vector being updated and Btj represents the sensitivity of Rt to the j th

parameter being updated.

where J5
0 II

J?
 |

JN e (19)

and

B,=[Bn Bn Bn .......B„] (20)

also,

Z(. =K - \ M (21)

and

dZ, dK dM
dPj dpj ' ' dpj

(22)

Plugging Eq. (18) into Eq. (16) and minimizing with respect to the parameter 

variations Ap , gives



E = ml n H  (Ri + BiAP y  (Ri + BA p ) (23)

The estimator is minimized when the slope reaches a critical point, i.e.,

d
dAp

Y t (R, + BlAp)T(Rl + B,Ap)
i

= 0 (24)

Equation (23) reduces to

^  B j B{Ap + B[Ri = 0
i

(25)

or simply

GAp = - g (26)

where G = ^  B]Bj and
i i

(27)

The solution to Eq. (28) is
ii i o i (28)

From Eq. (27), the perturbed global stiffness (AK) and mass (AM) matrices are given 

by

A* = Z
j

r d K '

y dP j j
and dM  N

dp. J
(29)

The corrected stiffness and mass matrices are obtained by substituting the value of 

AK, AM from Eq. (28) into Eq. (11)

dK f  dM ^
(30)

Eq. (30) represents the updated global mass and stiffness matrices of the finite 

element model. Until equation (30), it is a one step procedure. The procedure of 

correcting the elemental stiffness and mass matrices with the modeshapes and 

frequencies obtained from test, should be continued until a maximum relative change in 

the selected parameter reaches a maximum. In the case considered the iterations continue 

until the change in the selected parameter vector (A/>) to the original parameter vector p  

reaches to a value of 10‘6, as given by Eq. (31),



4P, < 10"6
Pj

(31)

When the iteration process converges, the residual Rt approaches its minimum 

value, thus yielding a finite element model that more closely matches or represents the 

true test structure. When damage is present in the structure, the finite element model 

parameters at the elemental level are updated in such a fashion to represent the true 

natural changes that occurred as a result of the damage. Elements where the largest 

changes in the elemental properties have occurred are the most probable elements where 

damage has occurred. Later sections discuss the application o f the SBEBE method to 

different structures.



4. NUMERICAL RESULTS

4.1. INTRODUCTION

The aim of this section is to assess the performance of the Sensitivity Based 

Element-by-Element (SBEBE) algorithm to numerical experiments. Noisy and noise free 

numerical modal data are the two sub cases considered. The cases where noise is added to 

the numerical data are considered in order to mimic the physical experiment situation as 

close as possible. Numerical results are presented for a cantilever beam.

4.2. CANTILEVER BEAM
The finite element model of the cantilever beam will be developed using Euler 

Bernoulli beam theory. Consider the cantilever beam shown in Figure. 4.1, in which each 

node has two degrees o f freedom.

The subscripts 1 and 2 refer to the two end nodes of the element. Equations (20) and (21) 

define the elemental stiffness ( £ e) and mass matrices ( Me) for the two degree of

freedom beam element.



6 - 3  h - 6 - 3  h

2 E l -3  h 2 h1 3 h h2

h3 -6 3 h 6 3 h2

-3  h h2 3 h 2 h2

(33)

[ M e ] =

156 -2 2  h 54 13 h

pAh -22 h Ah2 -13 h - 3  h2
420 54 -13 h 156 22 h

13 h - 3  h2 22 h Ah2

"l 0 0 0 '
0 1 0 0

0.05 p  Ah
0 0 1 0

_0 0 0 1

(34)

(35)

where E  is the modulus of elasticity, /  is the moment of inertia, h is the element thickness, 

p  is the mass density of beam material, and A is the cross sectional area o f the element 

in the yz plane shown in the Fig. 4.1. Equations (34) and (35) represent the consistent and 

lumped mass matrices, respectively.

4.2.1. Damage Detection in Beam Using Numerical Modal Data. The objective 

of this section is to test the performance of the SBEBE algorithm to numerical modal data 

obtained for a cantilever beam. In order to achieve this, a cantilever beam (Figure 4.2) is 

divided into a number of finite elements. At each element the stiffness matrix is 

generated using equation (33). The mass matrix is either generated using equations (34) 

or (35), depending upon the choice of mass matrix. Every element in the beam is 

connected to neighboring element by a node, the complete set of such connecting node 

numbers is defined to be the connectivity matrix and is used to develop the global 

stiffness matrix. The global stiffness and mass matrices are obtained by assembling the 

elemental stiffness and mass matrices respectively, using the connectivity matrix. In 

equation form elemental assembly can be written as:

GK = f i Ke G M = f > e
n=1 n=1

(36)



where GK and GM represent the global stiffness and mass matrices, respectively. 

Typically, damage to a structure e.g., crack growth, fiber breaking, corrosion etc., 

manifests as an area o f localized weakness. This physical damage is simulated by 

reducing the modulus of elasticity for an element or small group of elements at the 

specific location o f damage. The elemental stiffness and mass matrices for the damaged 

structure are generated using equations (33), (34) and (35). The corresponding global 

stiffness and mass matrices are found using equation (36). It should however be 

remembered that stiffness and mass matrices simulating the “damaged” structure are used 

only to generate the modal test data and are not to be used as the input matrices for the 

SBEBE algorithm. Modal test data is then generated numerically by performing 

eigenvalue analysis using the simulated global stiffness and mass matrices.

The complete set of eigenvectors consists of modeshapes ranging from 1 to N, 

where N  is the number o f degrees of freedom in the finite element model. These 

eigenvectors are composed of transverse displacements and rotations at each node of the 

structure. In the numerical results obtained, only the transverse displacement parts of the 

eigenvector are considered. The rotational degrees of freedom are obtained through a 

modal expansion algorithm discussed in section 3.3.1. The complete set o f eigenvectors 

for the simulation cases are formed with the rotational DOF calculated using the modal 

expansion algorithm.

4.2.2. Numerical Modal Data Without Noise. With these simulated,

eigenvalues and eigenvectors or modeshapes from the “damaged” structure and the finite 

element model, the objective of the SBEBE algorithm is to locate the damage and specify 

its extent. In order to achieve this objective, a FE model of the cantilever beam is 

generated by dividing the beam into 10 finite elements. Damage is simulated at element 

number 5 (Figure 4.2) by reducing its elastic modulus by a prescribed percentage o f its 

original value. Elemental stiffness matrices are generated using equations (33). 

Consistent and lumped mass formulations (Eq‘s. (34) and (35)) respectively are 

considered. Global stiffness and mass matrices are generated using equation (36). 

Eigenvectors and eigenvalues from the simulated “damaged” structure are obtained using 

an eigenvalue analysis program in MATLAB.



Figure 4.2. Cantilever Beam with reduced Elastic Moduli at Element 5

Only first mode is used in the analysis and modal expansion is used to compute 

the rotational degree of freedom in the eigenvector. Figure 4.3 shows the relative 

percentage change in each elemental elastic modulus after updating with the SBEBE 

method. The bar plot shows a 10 percent relative change in the modulus o f elasticity at 

element number 5 after 87 iterations. This result matches exactly with the induced 

damage. Employing either a consistent or lumped mass matrix has no affect on the result 

or on the time of convergence. The following cases were run to test the performance of 

the algorithm using various number of modes, and the type of mass matrix employed in 

the finite element model.

Table 4.1 lists the number of iterations needed for convergence when employing 

lumped and consistent mass matrices. With 10-element beam case the number of 

iterations needed to converge depended on the number of modes used in the analysis. 

Increasing the number of modes improved the convergence rate. Employing either a 

lumped or consistent mass matrix made little difference to the convergence rate.

The location and extent of damage were predicted accurately using the SBEBE method 

for numerical modal data obtained for a 10-element beam with numerically induced 

damage. Only one mode from the numerical modal data was sufficient in detecting the 

damage.

4.2.3. Numerical Modal Data with Noise. The aim of this section is to test

the SBEBE algorithm using numerical modal data polluted with noise. The purpose of



Table 4.1 Cantilever Beam Case with 10 Elements and Varying Number of Modes

Number o f Modes 

Used In the 

Analysis

Number of Iterations 

necessary Using Lumped 

Mass Matrix

Number of Iterations necessary 

Using Consistent Mass Matrix

Mode 1 87 86

Mode 1 and 2 87 86

Mode 1, 2 and 3 36 35

Mode 1, 2, 3 and 4 15 21

assessing the performance of the algorithm to modal data with noise is to mimic a 

realistic test environment as close as possible. The section will allow a means to quantify 

the extent to which noise is present in the numerical data and still detect damage. Since 

the number of modes from an experiment will be limited, the minimum number o f modes 

needed to assess damage detection is also studied in this section.

As before, 10-element cantilever beam case is considered. In this case, however, 

noise is added to the numerically produced eigenvectors in the following way. An array 

o f random numbers from -1 to +1 is generated and then multiplied by an appropriate 

scaling factor equal to some small percentage of the maximum value in the eigenvector 

array. This new array of scaled random numbers is multiplied by the eigenvector array 

and the product is then added to the eigenvectors to simulate the noise. Noise is added 

only to the transverse displacements and not to the rotational degrees o f freedom. The 

rotational degrees o f freedom in the eigenvectors are approximated from the transverse 

displacements using the modal expansion algorithm as discussed in section 3.3.1. In 

Table 4.2, a study has been made by considering different percentages o f noise added to 

and number of modes needed to detect the location and extent o f damage. In general, 

more modes are needed to yield acceptable results as the percentage o f noise increases. 

For example, for noise levels less than 1 percent, (cases 1 and 2) the location and extent 

o f damage is successfully predicted only when the first three modes were used.
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Therefore, only one mode is needed to confidently yield the location and severity of 

damage. However, in cases 3, 4, 5 (Fig 4.4, 4.5) where the noise percent was more than 1 

percent three modes are needed to predict the location and severity. When the percentage 

of noise reaches to 5 the algorithm fails to predict the location and extent of damage in 

this case. This result suggests that the SBEBE algorithm is acutely sensitive to noise in 

the data so much so that it could in some cases inhibit this technique from being used as 

a, practical non-destructive testing method.

Table 4.2. Modal Updating with Varying Noise Percents and Number of Modes

Case

No

Percent

Noise

Modes

Employed

Number of

Iterations

Necessary

Extent of

Damage

Detected

Mass Formulation

1 0.1 1 84 Undetected Consistent

2 0.1 1 ,2 ,3 37 0.095 Consistent

3 3.0 1 ,2 ,3 33 Undetected Consistent

4 3.0 1,2, 3, 4 55 0.115 Consistent

5 5.0 1,2, 3 ,4 No

Convergence

Undetected Consistent
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5. EXPERIMENTAL CASE STUDY

5.1. INTRODUCTION

The overall aim of this chapter is to investigate the applicability of the introduced 

Sensitivity Based Element-by-Element (SBEBE) technique in experimentally detecting 

localized damage in a cantilever beam. A cantilever beam as shown in Figure 5.1, is 

chosen because of its simplicity and convenience in modeling and testing. The nominal 

dimensions of the beam are 22 x 0.75 x 0.1875 inches (See Fig. 5.1). For the finite 

element model, the material properties are estimated to be: elastic modulus, E=106 psi 

and density, p=0.0975 lb-force/in3.

/I

1 2 3 4 5 6 7 8 9 10

0.19”

/
/ 22’

Figure 5.1 Cantilever beam with 10 Finite Elements

5.2. “HEALTHY” AND “DAMAGED” TEST SPECIMENS
Two beam structures were used in assessing the performance of the algorithm 

using experimentally measured data. These two beams were geometrically the same, 

except in one beam a deep slot was removed to simulate damage. Approximately half of 

the thickness of the beam was removed. The beam in which the cut is present is referred 

to as the “damaged” beam, while the one with no cut is referred to as the “healthy” beam. 

Figure 5.2 depicts the location of the notch in the beam and gives a photograph of both 

beams.





5.3. FINITE ELEMENT MODELING OF CANTILEVER BEAM

As shown in Fig. 5.1, the cantilever beam is divided into ten finite elements. 

Euler-Bemoulii beam elements (Eq. (33) and (34)) are used in generating the elemental 

stiffness and mass matrices. Global stiffness and mass matrices are obtained by 

assembling the elemental stiffness and mass matrices, respectively, using the connectivity 

matrix, represented by Eq. (23).

5.4. EXPERIMENTAL TEST SET UP
The experimental data in the form of mode shapes and natural frequencies of the 

structure were obtained using a scanning laser doppler vibrometer (Model no# OFV 512, 

Manufacturer: Polytec). The laser vibrometer is a non-contact, full-field system for 

automated vibration measurement, visualization and analysis. A picture of the laser 

vibrometer is shown in Figure 5.3

Scan Head, Laser 
Generator

Monitor
Camera

Controller

Laser
Controller

Function
Generator

Figure 5.3 Experimental set up for the Collection of Modal Data from the Cantilever
Beam Structure



For measuring the vibration of points over an area, the laser is scanned over the 

test surface. Movement of the laser beam is controlled by a set o f mirrors mounted inside 

the scan head. A digital data management system controls the whole process of 

positioning the beam, mirror movements and velocity measurement at each scanned 

point. The analog velocity is digitized, processed and stored. The data acquisition 

consists o f defining the grid with points of measurement on the structure, specifying the 

test parameters such as type o f signal to excite the structure, frequency bandwidth, 

sampling ratios etc. Once these characteristics are defined, the structure is excited and 

scanned by the laser beam to measure the vibration signature at each point on the grid. 

The data is stored and made available for further analysis.

Figure 5.4 Experimental set up to Measure the Modal Properties of a Cantilever Beam



5.4.1. Experimental Set Up of Cantilever Beam. The first three transverse 

mode shapes of the “healthy” and “damaged” structures are measured by the laser 

vibrometer. To reduce experimental noise, the experiments are performed 6 times on each 

structure, and the mode shapes from all the experiments are averaged to obtain the final 

results. The beam is clamped in a cantilever position (See Fig. 5.4). It is excited using a 

magnetic stinger near the fixed end. The beam is excited using a periodic chirp function 

ranging between 0 to 200 Hz generated using an Hewlett Packard 8111A/001 pulse 

function generator, controlled by the laser vibrometer controller.

5.5. CORRELATION OF EXPERIMENTAL AND PREDICTED RESULTS 
FROM BEAM STRUCTURE

Prior to the updating the FE model of the beam structure, a comparison of the 

experimental and FE data was carried out. This involves correlation of modes and 

frequencies. The modes and frequencies obtained from finite element model and from 

experiment are matched to observe the quality and closeness of data. Table5.1 and 

Figures 5.5, 5.6, 5.7, 5.8 represent the comparison of frequencies and first, second, third 

and fourth modeshape comparison to FEM and experiment. Two specific cases healthy 

and damaged were considered from experiment. It can be noticed from all the figures that 

they are close and lie on top of each other. It should be noticed that the numerical data 

obtained through simulation and experimental data fall close. It shows the assurance that 

can be kept on the data from the experimental case.

Table 5.1. Natural frequencies of FEM vs Experiment

Mode Number Natural Frequency from FEM 

(Hz)

Natural Frequency From 

Experiment

Undamaged Damaged

Mode One 12.4 13.1 12.1

Mode Two 79.0 79.6 68.6

Mode Three 227.9 224.3 229.3

Mode Four 467.6 460.6 428.8



5.6. SBEBE MODEL UPDATING PROCEDURE APPLIED TO EXPERIMENTAL 
DATA

In this section, the procedure for damage detection is laid out using experimental 

data. There are 5 steps involved in the damage detection process:

1. Collect the modal data from the healthy structure.

2. Update the original FEM with the modal data from step 1, which yields a 

FEM of the healthy structure

3. Collect the modal data from the damaged structure.

4. Update the FEM of the healthy structure with the new modal data measured 

from the damaged structure.

5. Compare the FEM of healthy and damaged structures for damage location and 

quantification.

In step 1, the modal data from the healthy beam structure is collected using the 

laser vibrometer. The modal data consists of natural frequencies and modeshapes. Figure 

5.8 depicts the four modeshapes and the associated natural frequencies for the healthy 

structure. In step 2, the modal data obtained from the healthy beam structure is used as 

the input for updating the original FEM of the beam structure. The elemental moduli of 

elasticity (E) are considered as the parameters to be modified. The updating process is 

continued until the maximum relative change in the selected modulus of elasticity 

parameter is small, 10e-4 in this case, when the iteration process converges, a finite 

element model is yielded which closely matches or represents the healthy beam structure. 

This FEM is referred as the FEM of the healthy structure, as it represents the original 

FEM, updated with the healthy modal test data. The moduli of elasticity parameters in 

this step are stored for comparison purposes. The updated frequencies are listed in Table

5.2. The updated frequency does not match to that of the healthy beam test structure, this 

is due to the fact that, no constraints (orthogonality) were kept on the natural frequencies.

Step 3 is similar to step 1, except that modal data from the damaged structure is 

collected. Figure 5.9 depicts the modeshapes and natural frequencies from the damaged 

cantilever beam. The comparison of the damaged beam modal data to the healthy beam 

modal data is shown in Figures, 5.5, 5.6, 5.7 and 5.8.
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Figure 5.8. Fourth Mode Shape of 10 Element Cantilever Beam



Step 4 is a crucial step in the damage detection process. The modal data obtained 

from step 3 (modal data from the damaged stmcture) is used in updating the FEM 

obtained from step 2 (FEM of the healthy stmcture). The elemental moduli of elasticity 

(E) are again chosen to maintain consistency and for comparison purposes. Updating is 

performed, and the iteration process is continued again until the maximum relative 

change in each E is small. The updated model now represents FEM of the damaged 

stmcture. Table 5.3 displays the comparison o f frequencies for healthy, damaged 

stmcture and damaged stmcture after update.

In this final step 5, the presence, location and severity of the damage is predicted 

based on the modulus of elasticity parameters obtained in step 2 and 4. Table 5.4 displays 

the modulus of elasticity parameters stored at steps 2 and 4. A relative change in the 

moduli of elasticity in step 2 and step 4 predicts the presence, location and severity of 

damage. A thresholding technique was employed to threshold or predict the actual 

damage location. The thresholding technique works by considering the largest positive 

magnitude value of the elastic moduli in step 2 and everything below the threshold is 

assumed to be noise, so it is ignored by setting it to zero. Figure 5.10 shows that 

maximum reduction in modulus of elasticity occurs at element 5 and is the point where 

the damage was induced. There is approximately a 70 %( Table 5.5, E5) reduction in 

modulus of elasticity at element 5, and corresponds to the severity of damage, indicating 

that there is a 55% reduction in stiffness at that element.

Table 5.2. Natural Frequencies of FEM, Healthy Stmcture after and before Update

Mode Number Natural Frequency 

from FEM (Hz) 

Before Updating

Natural Frequency 

Experimentally 

Measured from the 

Healthy Stmcture (Hz)

Natural Frequency 

from the FEM of the 

Healthy Stmcture 

(Hz)

Mode One 12.4 13.1 12.2

Mode Two 79.0 79.6 78.5

Mode Three 227.9 224.3 223.7

Mode Four 467.6 460.6 460.2



Table 5.3. Natural Frequencies of Healthy, Damaged Structure after and before Update

Mode Number Natural Frequency Natural Frequency Natural Frequency

from the Healthy Experimentally from the FEM of the

Structure After the Measured from Damaged Structure

First Updating Damaged Structure After Updating the

Procedure (Hz) (Hz) FEM (Hz)

Mode One 12.2 12.1 11.29

Mode Two 78.5 68.6 66.34

Mode Three 223.7 229.3 218.2

Mode Four 460.2 428.8 417.8

Table 5.4. Modulus o f Elasticity before and after Update

Element

Number

Modulus of 

Elasticity from 

FEM Original 

108*

Modulus of 

Elasticity 

From Healthy 

Structure 

108*

(XI)

Modulus of 

Elasticity From 

Damaged 

Structure FEM 

10s*

(X2)

Relative 

Difference 

between Step 2 

and Step 4 

(X2-X1)/X1

El 1.0000 1.0209 1.1247 0.1016

E2 1.0000 1.0381 0.8840 -0.1484

E3 1.0000 0.4652 0.4389 -0.0565

E4 1.0000 0.3943 0.3251 -0.1755

E5 1.0000 0.3893 0.1136 -0.7083

E6 1.0000 0.4675 0.3277 -0.2989

E7 1.0000 0.4791 0.7936 0.0594

E8 1.0000 0.6544 0.6696 0.0232

E9 1.0000 0.5090 0.4735 -0.0697

E10 1.0000 4.6007 4.2361 -0.0793



Tr
an

sv
er

se
 D

is
pl

ac
em

en
t, 

Z



Tr
an

sv
er

se
 D

is
pl

ac
em

en
t, 

Z



20 

10 

0

-10

W-20 
z
uj
§-30
<  xo
^-40 

-50 

-60 

-70 

-80

Figure 5.11. Relative Change in the Elastic Modulus after Updating the FEM o f  the Healthy Beam with Modal Data from the
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6. CONCLUSIONS

The current study was undertaken to investigate the application o f the Sensitivity 

Based Element-by-Element (SBEBE) methodology to detect the presence o f damage, the 

location, if  present, and its severity in structures. The method has been tested with 

numerical experiments with and without noise added as well as with experimentally 

measured data. Numerical modal data has been generated using Finite Element Analysis, 

while the experimentally measured data was obtained using a laser vibrometer.

Numerical experiments were performed on a cantilever beam to test the algorithm 

performance using numerically generated data with and without noise added. The 

location and extent o f damage were predicted accurately for the cases without added 

noise. Increasing the number of modes used in the algorithm helped to improve the 

algorithm’s convergence rate. The addition of noise to the modal data was found to 

deteriorate the damage detection process. When noise percentages above 5% of the 

original modal data amplitudes were added, the damage detection process was completely 

inhibited. In general, increasing the number o f modes used in the SBEBE algorithm 

helped in detecting damage with the presence of noise. These results show that the 

SBEBE algorithm is sensitive to noise, so much so that significantly noisy data may 

hinder the damage detection process using the SBEBE algorithm.

Finally, the performance of the algorithm using experimentally measured data has 

been studied. A “damaged” beam was constructed by mechanically removing a small 

section o f the beam, and the model updating technique was applied to detect the damage. 

Damage was detected in the correct location, and its severity was also predicted 

accurately within 5% of the theoretical value. However, sizeable traces o f damage were 

also predicted in the neighboring material where no damage was located. This error can 

be attributed to the sensitivity of the algorithm to noise.

Overall, the SBEBE algorithm successfully detected the presence and severity of 

damage in a cantilever beam using numerically and experimentally generated data. The 

technique was found to be sensitive to noise, and using more modes in the algorithm 

tended to increase its effectiveness. Therefore, when using this algorithm, significant 

effort should be placed toward reducing noise in the data and obtaining the maximum 

number o f modes possible.
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