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Abstract 
 
In this paper we address the problem of maximizing the correlation between two 
vectors of time series data, when one of the vectors has missing data and the 
timing of the missing data is unknown.  The motivation for this work comes from 
environmental monitoring where because of monitoring malfunction, some data 
are lost.  We study the use of integer programming and a genetic algorithm (GA) 
for this problem.   
 
Keywords: Integer programming; combinatorial optimization; genetic algorithm; 
missing data 
 
 
1.  Introduction 
 
 The problem we study concerns two vectors of time series data of two 
variables known to be strongly positively correlated. Due to one or more data 
collection errors, for example the random failure of a monitoring device, one of 
the vectors used has missing data, causing it to be “shorter” than the other vector. 
Knowing that the two vectors are strongly correlated, we seek to know where to 
insert zeros in the shorter vector, so as maximize the correlation with the longer 
vector. We need to insert zeros into the shorter vector so as to preserve the order 
of the elements, but the positions of the zeros must be made such that the dot 
product of the two vectors (and hence the correlation between the two vectors) is 
maximized. 
  The motivation for this work comes from environmental monitoring where 
because of monitoring malfunction, some data are lost.  Our work is related to  
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signal matching in paleoclimate reconstructions where chronostratigraphic 
correlation among records needs to be recovered.  This is often achieved by 
matching signals between climate proxies and orbital parameters or between 
multiple climate proxies [1].  A simplified example of signal matching can be 
stated as follows: n  data points in a series A  are matched to the m  points in the 
series B  so that the square of their differences can be minimized.  Both series A  
and B  are proxy records and continuously distributed.  Provided that the 
sequence of points in both series is preserved, the points in series A  are allowed 
to fall between points in series B  and linear interpolation is applied in this case.  
Lisiecki and Lisiecki [1] applied the dynamic programming approach to solve the 
signal-matching problem.  Each series of record is divided into several hundreds 
of intervals and a score, mainly determined by the sum square of the difference 
between two series, is calculated for all feasible alignments of these intervals.  
The dynamic program is designed to search for the optimal alignment which 
results in the lowest accumulative score.  Our problem differs from the signal-
matching problem in terms of the data type.  Our problem has the discrete data 
and signal-matching problem has continuous data.  
 
 As an example of the problem we address, consider the situation where two 
signals are taken at constant time intervals. The second measuring device fails 
randomly and we retrieve from it a shorter vector of data. The long vector is of 
length 20, but the second vector, because of nine randomly missing data points, 
contains only 11 elements. The long vector and short vector are [0 1 0 3 7 4 6 5 9 
6 7 4 3 9 5 9 7 1 6 2] and [3.34 7.47 4.72 6.84 5.32 9.19 9.89 5.91 9.66 7.55 
2.41], respectively.  The timing of the short vector is unknown, only the order of 
the data is preserved. The two series are known to be highly correlated and we 
would like to use this fact to impute zeros for the missing values into the short 
vector of data so as to ascertain the timing of the data values. In order to 
maximize the correlation, we must maximize the dot product of the two vectors. 
Ignoring the problem of missing data, that is, taking the first 11 elements and 
pairing them with the first 11 elements of the larger vector results in a dot product 
of 340.2 and a matching of the data streams as shown in Figure 1. The optimal 
insertion of zeros results in a dot product of 522.7 as shown in Figure 2. Our goal 
in this paper is to develop a systematic approach to solving this problem. 
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   Figure 1: Series 1 has 20 elements, but series 2 is missing 9 elements. 
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Figure 2 The optimal insertion of zeros into the shorter vector. 
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In section 2 we provide a binary integer programming formulation of the 
missing data problem. In section 3, we develop a genetic algorithm for large 
instances.  Section 4 shows computational results comparing the integer program 
and genetic algorithm.  Section 5 is our summary and conclusion.   
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2.  Model formulation 

 
First, we model the discrete vector missing data problem previously described 

using an integer program.   
Let m be the number of elements in long vector and the set M= {1,2,….m} 

n be the number of elements in short vector (m > n) and the set 
N={1,2,..n} 

τj  be the jth element in long vector, j ∈ M  
αi  be the ith element in short vector, i ∈ N  
Wij = αi*τj    i ∈ N, j ∈ M 

We also introduce the following sets, which concern the feasible pairings of 
elements in the short vector with elements in the long vector: 
 Ri = {i, i+1,…(m + n - 1)}  i ∈ N    
 Lj =  {1,2,…..j}    for  j < n 
   {1,2,….n}    for  n  ≤  j  ≤  m - n +1 
   {(n - m + j), …n}  for  j >  m – n +1    j ∈ M 
Note that Ri contains the set of all feasible slots for which the ith element of the 
short vector can be paired in the long vector. Likewise, Lj contains the set of all 
possible assignments of short vector elements for element j in the long vector. In 
the integer program that follows, we create variables only over these feasible sets. 
 Let Xij = 1 if the ith element of the short vector is paired with the jth element of 
the long vector, 0 if not, i ∈ N, and j ∈ Ri. The objective function and constraints 
are as follows: 

i

i

j

ij ij
i N j R

ij
j R

ij
i L

m n i 1

ij i 1,k
k j

Max W X (1)

s.t.
X 1 i N (2)

X 1 j M (3)

X X 1 i 2,...n j i,...(m n i 1) (4)

∈ ∈

∈

∈

− + −
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The objective function (1) is to maximize the dot product.  Constraint set (2) 
specifies that each one of the elements in the short vector must be paired with 
exactly one of the elements in the long vector.  Constraint set (3) specifies each 
one of the elements in the long vector can be paired with at most one element in 
the short vector. Note that by construction, the missing values of data in the short 
vector are assumed to have no value. Their places in the vector are recognized by 
the fact (3) is nonbinding, that is, no element from the short vector was assigned 
to the spot in the long vector.  Constraint set (4) forces the sequence of the 
original elements of the short vector to be maintained.  In summary, the program 
(1)-(4) pairs the elements of the short vector with elements of the long vector,  
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preserving the order of elements so as to maximize the dot product of the two 
vectors. 

Attempts to solve (1) - (4) with off-the-shelf code indicated that the IP can be 
very difficult to solve for larger problems. We therefore also test a genetic 
algorithm as detailed in the next section. 

 
 

3. A Genetic Algorithm 
 
Genetic algorithm (GA) was first proposed by Holland [2].  GA is a popular 

meta-heuristic that has been successfully applied to many hard problems 
determined to be too difficult for the traditional mathematical programming 
method [3].  The fundamental steps followed in a GA are similar to the genetic 
evolution of a species [4].  A GA starts with an initial population of solutions (in 
this case a population of feasible dot product solutions) which are generated 
either randomly or by some simple heuristic.  By applying genetic operators 
(reproduction, crossover and mutation) to this population, a child generation of 
solutions is created and added to the original population.  The fitness of each 
member of the resulting population is evaluated.  Based on the fitness score, 
various selection rules can be implemented to select members for carrying over to 
the next generation.  The entire cycle is repeated until a pre-specific stopping 
criterion (e.g., a certain number of iterations) is reached.  Next, we present a 
genetic algorithm for the problem by means of pseudocode and discuss the 
appropriate coding scheme and necessary modifications to the standard operators 
for application to the problem.  
Step 0: Input a dot product problem with a long vector (β ) of length m and a 
short vector (α ) of length n  
Step 1: 0i ←  
Step 2: Generate initial population pool ( )PopPool i randomly 
Step 3: Apply guided mutation operator to each string in ( )PopPool i  
Step 4: 1i i← +  
Step 5: Select 30 fittest strings from ( 1)PopPool i − to create ( )PopPool i  
Step 6: If ( / 3)i floor m= , stop. Otherwise go to Step 3.   

We employ the standard binary string representation of the dot product 
solutions.  Suppose one is interested in a dot product problem with a long vector 
of size 5 and a short vector of size 3.   A string can be represented as [11100] , 
which means the first three elements from the long vector are selected in their 
original order to pair with the 3 elements in the short vector.  The resulting dot 
product is an evaluation of the fitness of the string.  In general, a string has m  
bits, of which m n−  are zeros and n are ones.   

Operator crossover destroys the feasibility of candidate solutions, and is left 
out of the GA.  All 30 strings in the population are subject to mutation in step 3.  
Without crossover, each individual population element explores the solution 
space without interaction.  We have created a guided mutation operator to  
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produce candidate solutions with better fitness.  A guided mutation on string C  is 
done as follows: let the set 0 { | [ ] 0,  j }J j C j M= = ∈ be the bits in a string C  that 
have a value of 0 and the set 1 { | [ ] 1,  j }J j C j M= = ∈ be the remaining bits that 
have a value of 1.  Furthermore, we define set 0A J∈  that has the 

(( ) / 3)ceiling m n−  largest elements in jβ  and set 1B J∈  that has the 
( / 3)ceiling n  smallest elements in jβ .  We flip two bits namely [ ]C a  and [ ]C b  at 

a time, where a A∈  and b B∈ .  After the guided mutation, each string C  in the 
population pool generates additional (( ) / 3)* ( / 3)ceiling m n ceiling n−  strings.  
Only the best-fitted 30 strings out of the original population and newly created 
ones are carried over the next generation in Step 5.  The stopping rule is a pre-
specified fixed number of / 3m  generations in step 6.  
 
4.  Computational results 

 
In this section, we test CPLEX applied to (1) – (4) and the GA described in the 

previous section. We consider nine different problem sizes in terms of lengths of 
the two vectors, as shown in Table 1. We make the conjecture that the variance of 
vector values might also affect the complexity of the problem.  Therefore, for 
each problem size, we consider two sets of data, drawing from uniform 
distribution [1, 9] and [1, 99] respectively.  We have a total of eighteen problem 
instances.  For each of the eighteen instances, we consider five replications.  
Therefore, we have a total of ninety test problems.    
 
Table 1. Nine sets of test problems. 

Problem Length of 
long vector

Length of 
short vector

1 50 10
2 50 25
3 50 40
4 100 20
5 100 50
6 100 80
7 200 40
8 200 100
9 200 160  

 
All computational work was carried on a Dell Dimension 8100 machine with 

memory of 512MB. The IP solver used is CPLEX 8.0.  The genetic algorithm is 
coded in C++.  A time limit of 10,080 seconds (3 hours) was imposed on both 
methods in our test.  The computational times for the IP model may be possibly 
reduced further by using preprocessing directives available in CPLEX solver.   
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We tried different preprocessing options available and found that adding the 
probe option to CPLEX is the most effective one.  There are three levels of 
probing available in CPLEX and based on pre-testing, we set the ‘Probe’ level to 
2.  The computational results from solving ninety test problems using CPLEX 
and GA are presented in Table 2.   
Table 2. Performance comparison of IP and GA. 

Problem Set Rep. IP Time
IP 

Solution
GA 

Time
GA 

Solution
GA % of 
Optimal

1 1 1 1.4 463 0.1 463 100.0%
1 1 2 1.2 432 0.1 432 100.0%
1 1 3 1.2 422 0.1 422 100.0%
1 1 4 1.2 321 0.1 321 100.0%
1 1 5 1.2 505 0.1 505 100.0%
1 2 1 1.3 46389 0.1 46389 100.0%
1 2 2 1.2 36889 0.1 36889 100.0%
1 2 3 1.2 37888 0.1 37888 100.0%
1 2 4 1.2 48736 0.1 48736 100.0%
1 2 5 1.2 41713 0.1 41713 100.0%
2 1 1 1.7 980 0.1 980 100.0%
2 1 2 1.7 984 0.1 984 100.0%
2 1 3 1.7 809 0.1 809 100.0%
2 1 4 1.7 881 0.1 881 100.0%
2 1 5 1.7 1013 0.1 1013 100.0%
2 2 1 2 103280 0.1 103280 100.0%
2 2 2 1.8 74953 0.1 74917 100.0%
2 2 3 1.8 91154 0.1 91154 100.0%
2 2 4 1.8 100037 0.1 100037 100.0%
2 2 5 1.8 101118 0.1 101118 100.0%
3 1 1 0.6 1257 0.1 1251 99.5%
3 1 2 0.6 1333 0.1 1333 100.0%
3 1 3 0.4 1211 0.1 1211 100.0%
3 1 4 0.5 1353 0.1 1346 99.5%
3 1 5 0.6 1308 0.1 1308 100.0%
3 2 1 0.5 134686 0.1 134686 100.0%
3 2 2 0.4 106767 0.1 106767 100.0%
3 2 3 0.4 124479 0.1 124479 100.0%
3 2 4 0.6 135992 0.1 134983 99.3%
3 2 5 0.4 143669 0.1 143195 99.7%
4 1 1 40.9 793 0.9 793 100.0%
4 1 2 41.1 883 0.9 883 100.0%
4 1 3 41.2 922 0.9 922 100.0%
4 1 4 41 717 0.9 717 100.0%
4 1 5 41.4 809 0.9 809 100.0%
4 2 1 41.8 100101 0.9 100101 100.0%
4 2 2 42 93166 0.9 93166 100.0%
4 2 3 41.7 86591 0.9 86591 100.0%
4 2 4 42.1 94678 1 94678 100.0%
4 2 5 42.3 112987 0.9 112987 100.0%
5 1 1 69.1 2033 1.5 2027 99.7%
5 1 2 70.5 1868 2.1 1865 99.8%
5 1 3 70.6 1919 1.7 1907 99.4%
5 1 4 69.4 1659 1.6 1656 99.8%
5 1 5 70.5 2028 1.6 2016 99.4%
5 2 1 71.1 209293 1.5 208892 99.8%
5 2 2 70.7 212459 1.5 210879 99.3%
5 2 3 70.6 215405 1.5 213373 99.1%
5 2 4 71.1 213500 1.5 212826 99.7%
5 2 5 72.6 232743 1.5 232471 99.9%  
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Table2(Continued). 

Problem Set Rep. IP Time
IP 

Solution
GA 

Time
GA 

Solution
GA % of 
Optimal

6 1 1 7.2 2696 1 2687 99.7%
6 1 2 12.7 2494 1 2482 99.5%
6 1 3 7.6 2596 1 2581 99.4%
6 1 4 8.2 2364 1 2352 99.5%
6 1 5 10.5 2750 1 2729 99.2%
6 2 1 9.6 285640 1 281889 98.7%
6 2 2 9.2 250877 1 248215 98.9%
6 2 3 8.6 279490 1 276349 98.9%
6 2 4 9.1 278705 1 277315 99.5%
6 2 5 7.1 300950 1 300108 99.7%
7 1 1 1432 1741 17.3 1738 99.8%
7 1 2 1703.5 1832 17.4 1827 99.7%
7 1 3 1793.1 1756 16.3 1754 99.9%
7 1 4 1781.1 1702 16.2 1702 100.0%
7 1 5 1808 1431 16.7 1427 99.7%
7 2 1 1860 182005 17.5 181831 99.9%
7 2 2 1837.8 196216 16.4 195918 99.8%
7 2 3 1813.4 181227 16.6 180894 99.8%
7 2 4 2106.2 193235 17.4 192926 99.8%
7 2 5 1709.5 195020 20.8 194593 99.8%
8 1 1 2820.7 3925 27.9 3909 99.6%
8 1 2 2622.2 3809 27.7 3749 98.4%
8 1 3 2181 4023 27.7 4005 99.6%
8 1 4 2352.2 3502 28.3 3493 99.7%
8 1 5 2292.3 3595 41.5 3567 99.2%
8 2 1 2310.4 389377 30.9 388043 99.7%
8 2 2 2319.8 408589 31.9 401460 98.3%
8 2 3 2259.9 380120 34.6 374702 98.6%
8 2 4 2183.2 419711 28.3 414625 98.8%
8 2 5 2221.5 405990 31.9 402594 99.2%
9 1 1 443 5190 17.4 5135 98.9%
9 1 2 461.6 5204 18.1 5166 99.3%
9 1 3 444.1 5293 18.2 5233 98.9%
9 1 4 441.1 4826 17.5 4730 98.0%
9 1 5 440.9 5244 17.8 5209 99.3%
9 2 1 463.9 533016 18.7 527409 98.9%
9 2 2 459 552942 17.4 547113 98.9%
9 2 3 458.9 505802 17.2 495152 97.9%
9 2 4 462 582159 17.7 569619 97.8%
9 2 5 454 594118 17.5 591083 99.5%  

 
While the IP model has the capability of solving all problem instances within 

the time limit, the average solution times for problems 7 and 8 are long.  GA 
performs well on all problems in terms of solution time and quality as shown in 
Table 3 (results are averaged over 10 instances for each problem set).  It is 
especially effective for solving the “hard” problems 7 and 8 by reducing the time 
down to tens of seconds and providing solution within 1% of the optima.   
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Table 3. Average Computational Time for various problem sizes. 
 
 

Problem M N IP Time GA Time GA Solution /  
Optimal IP

1 50 10 1.2 0.1 100%
2 50 25 1.8 0.1 100%
3 50 40 0.5 0.1 99.80%
4 100 20 41.5 0.9 100%
5 100 50 70.6 1.6 99.60%
6 100 80 9.0 1.0 99.30%
7 200 40 1784.5 17.3 99.80%
8 200 100 2356.3 31.1 99.10%
9 200 160 452.9 17.7 98.80%  

 
 
 
As we mentioned earlier, the ‘Probe’ option in CPLEX can lead to reductions in 
problem size, but require more computer time and therefore total solving time 
may increase or decrease.  We ran the IP model without using the “Probe” option 
to test its effectiveness on different test problems.  The resultant model decreases 
the total solution time for those “easy” problems (1, 2, 3, 4, and 6) slightly.  This 
is because the probing time spent in reducing the problem size cannot be justified 
by the time saved in solving the reduced problem.  On the other hand, probing 
contributes to a significant reduction in solution time for problems 5, 7, 8, and 9.  
The time spent on probing pays off because the reduction in problem size leads to 
a significant reduction in the search space.   

  As shown in Table 4, the variance of the vector elements (Set 1 versus Set 2) 
does not appear to significantly affect the solving time of either method or the 
solution quality.   
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Table 4. Average computational results for low variance (Set 1) and high 
variance (Set 2) for different problems sizes. 
 

Problem Set IP Time GA 
Time

GA % 
Optimal

1 1.2 0.1 100%
2 1.2 0.1 100%

1 1.7 0.1 100%
2 1.8 0.1 100.0%

1 0.6 0.1 99.8%
2 0.5 0.1 99.8%

1 41.1 0.9 100%
2 42.0 0.9 100%

1 70.0 1.7 99.6%
2 71.2 1.5 99.5%

1 9.2 1.0 99.5%
2 8.7 1.0 99.1%

1 1703.6 16.8 99.8%
2 1865.4 17.7 99.8%

1 2453.7 30.6 99.3%
2 2259.0 31.5 98.9%

1 446.1 17.8 98.9%
2 459.6 17.7 98.6%

1

2

3

4

9

5

6

7

8

 
 
 
The performance of the IP model with CPLEX varies in response to the 

problem complexity.  As seen in Table 3, for any given length of the long vector, 
the problem is hardest for CPLEX when the short vector is half the size of the 
long vector.  In our test problems, given the size of 50, 100, and 200 for the long 
vector, it took the IP model the longest to solve when the lengths of short vectors 
are 25, 50, and 100 respectively.  This makes sense in that the maximum number 

of feasible solutions of the IP model is 
m

m n
⎛ ⎞
⎜ ⎟−⎝ ⎠

 and it is the biggest when 

/ 2m m n= − , that is / 2n m= .   
An experiment is designed to analyze CPLEX solution time and the results are 

summarized in Table 5.  The dependent variable is the solution time required by 
CPLEX to solve the problem and the independent variables used are m (length of 
the long vector), ratio (the ratio of the short to the long vector, that is, n/m), the  
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variance of the data elements and cross terms. The results confirm that the vector 
size and the ratio of the number of elements in the short vector to the number of 
elements in the long vector are the important factors. Variance is not significant. 
 
 
Table 5. Results of the factor analysis on the 90 test problems. 

 
R2 =  0.99; F = 582.18; p<.0001

Parameter p - Value
Intercept 0.9879

M  <.0001
Ratio  <.0001

Variance 0.9076
M*Ratio  <.0001

M*Variance 0.9827
 Ratio*Variance 0.0213

M*Ratio*Variance 0.0049  
 
 
 
5.  Conclusion 

 
We provided two approaches to solving the problem of maximizing 

correlation between two streams of data measured over time, when one of the 
streams of data has missing values. We developed an integer programming model 
of the problem and used CPLEX with its probing option. We also developed a 
genetic algorithm and compared its performance to the integer programming 
approach on ninety test problems. The IP approach worked well, that is, provides 
the provably optimal solution in a reasonable amount of time for most problems. 
The most difficult problems to solve are those for which the percentage of 
missing data points approaches one half. The genetic algorithm is much faster 
than IP and although it cannot guarantee optimality, provided near optimal 
solutions for the test bank of ninety problems used in this study. 
 
 
 
References 
 
[1] Lisiecki, L.E., Lisiecki, P.A., Application of dynamic programming to the correlation 

of paleoclimate records, Paleoceanography 2002 17 (4).   
 
[2] Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan 

Press, Ann Arbor, 1975.  



 

2664                                                                                  Xinfang (Jocelyn) Wang 
 
 
[3] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, 

Addison-Wesley, Reading, MA, 1989.   
 
[4] Pirlot, M., General local search methods, European Journal of Operational 
Research 1996 92 (3), 493-511. 
 
Received: March 26, 2008 
 
 
 
 


	Georgia Southern University
	Digital Commons@Georgia Southern
	2008

	Maximizing Correlation in the Presence of Missing Data
	Xinfang Wang
	Recommended Citation


	Microsoft Word - wang

