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ABSTRACT

Due to the importance of costs as well as environmental effects of logistical ac-

tivities throughout supply chains, such as inventory holding, freight transportation,

and warehousing activities, this dissertation models and analyzes four integrated in-

ventory control and transportation problems that account for economic and environ-

mental aspects of a supply chain agents related decisions.

The first model presents an integrated inventory control and transportation

problem in a single item deterministic demand setting. A supply chain agents in-

ventory control and transportation mode selection problem is solved under carbon

cap, carbon cap and trade, carbon cap and offset, and carbon tax regulations. The

second model focuses on an integrated inventory control and transportation prob-

lem in a single item stochastic demand setting integrating environmental objectives

into a continuous review inventory control system with considerations of two different

transportation modes.

The third model studies an integrated inventory control and transportation

problem in a multi-item deterministic demand setting, in which, a decision making

method is developed considering the economic and environmental objectives. In the

fourth model, a multi-item stochastic demand consolidation policy is analyzed with

the consideration of heterogeneous freight trucks for transportation. It is shown

that the consolidation policy suggested can result in substantial economic as well as

environmental benefits for the supply chain agents.
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1. INTRODUCTION, MOTIVATIONS, AND LITERATURE REVIEW

In the past decade, the public’s concerns for the environment have been increas-

ing (Borgstede et al., 2013). Their concerns have been rising due to the increases in

the generation of greenhouse gases which, unless the rate of greenhouse gas genera-

tion is controlled, may become a major threat to the human race and the current way

of life (Hua et al., 2011; Benjaafar et al., 2013). Figure 1.1a documents the global

greenhouse gas emissions by economic sector in 2010 (ECOFYS, 2010). Figure 1.1b

compares the 2011 U.S. greenhouse gas emissions by economic sector (EPA, 2013a)1.

The United States (US) Environmental Protection Agency (EPA) notes that the con-

tribution of the transportation sector to national greenhouse gas emissions in 2011

was around 27% (EPA, 2013a). As seen in Figure 1.1c, when different transporta-

tion modes are compared, it is noted that trucking constitutes the second largest

greenhouse gas emission generator following passenger transportation (EPA, 2013a).

This implies that freight transportation by trucks dominates the greenhouse emissions

compared to other freight transportation modes such as rail, air, and marine trans-

portation. It is also noted that over 75% of greenhouse gas emissions from domestic

freight transportation in the U.S. are due to trucking activities (FHWA, 2011).

In terms of monetary value, the total U.S. business logistics costs in 2011 was

$1.33 trillion, 8.5% of the U.S. gross domestic product (Wilson, 2013). This was also

an increase of 6.6% from the year before. A report by the U.S. Federal Highway

Adminstration (FHWA, 2005) specifies that transportation and inventory holding

costs account for 96% of the logistics costs in the U.S. It is, therefore, important in any

logistics research question to consider both the transportation and inventory holding

components of the logistics costs. Moon et al. (2011) notes that many companies

have looked into strategies to optimize their inventory control and delivery policies

in recent years and have found significant cost savings.

These statistics are not surprising as trucks are the most common transportation

mode used for freight transportation. According to the FHWA, over 68% of freight

tonnage is shipped by trucks and the FHWA further notes that, “By 2040, long

1Due to rounding, the totals may not sum up to 100% (EPA, 2013a).
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Figure 1.1. Greenhouse gas (GHG) emissions statistics

haul freight truck traffic in the United States is expected to increase dramatically

on interstate highways and other arterials throughout the nation” and truck travel is

predicted to reach 662 million miles per day (FHWA, 2008). Similar observations are

noted for the European Union countries. Forecasted growth of freight transportation



3

from 2000 to 2020 in European countries is noted to be 50% (Toptal and Bingol,

2011). In the European Union, approximately 20% of total greenhouse gas emissions

were due to transportation in 2010 (EEA, 2013).

Due to the aforementioned global climate change awareness in recent decades,

both government officials and private corporations are looking into ways to reduce the

global carbon footprint. The Kyoto Protocol (UNFCCC, 1998) was introduced by the

United Nations and was one of the first major pushes towards reducing greenhouse

gas emissions. It was originally signed in 1997 by the European Union and 37 United

Nations states. The protocol has since been ratified by 191 United Nations states,

and continues to be in use in the European Union (UNFCCC, 2014). In 1995, the

European Commission began an emissions trading system that covers 45% of the

total greenhouse gas emissions from the 27 European Union countries (ECCA, 2013).

The European Union’s cap and trade system imposes a cap on emissions but allows

companies to sell or buy excess carbon credits, as necessary.

Another method legislatures are using is placing a tax on emissions. This

method is considered efficient for emissions reduction and it was first used by Den-

mark, Finland, Sweden, Netherlands, and Norway (Lin and Li, 2011). The New

Zealand Emissions Trading Scheme, and the Regional Greenhouse Gas Initiative are

some examples of government programs established to help companies reduce their

carbon emissions. Voluntary programs such as the Chicago Climate Exchange, the

Montreal Climate Exchange, and many carbon offset companies also serve to this end

(Toptal et al., 2014).

The aforementioned regulations directly force companies to update their oper-

ational strategies and become more sustainable. Nevertheless, these regulations are

not the only motivation for companies to become more sustainable. According to a

2011 survey of over 4,000 managers from 113 countries, the changing public opinion

on the environment has encouraged 70% of the surveyed companies to permanently

place sustainability in their management agendas (Haanaes et al., 2012). The same

survey also demonstrated an increase from 55% in 2010 to 67% in 2011 of respon-

dents saying that sustainability practices are necessary for being competitive. For

instance, Bouchery et al. (2012) note that companies choosing to become more sus-

tainable are not only improving their public image but are also getting a competitive
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advantage as a result of selling greener products. Another survey study, conducted

among 582 European companies, notes that while environmental regulations were

the top motivation for companies to implement green actions in 2008, brand image

improvement and executive board decisions became the top motivation to becoming

more sustainable in 2010 (Loebich et al., 2011).

Either due to environmental regulations or the pressure from customers, the

companies, as parts of supply chains, are replanning their operations toward becom-

ing more sustainable. Recent review papers on sustainable supply chain management

document the necessity and importance of integrating sustainability with supply chain

and operations management (see, e.g., Corbett and Kleindorfer, 2001, Linton et al.,

2007, Dekker et al., 2012). The focus in this dissertation is on a company’s inventory

control and transportation decisions with environmental considerations. In particular,

inventory holding, freight transportation, and logistics and warehousing operations

are the main emissions generators throughout supply chains along with the manu-

facturing processes. The inventory control policy of a company derives the levels of

inventory and transportation, and logistics and warehousing activities; hence, it is

the key determinant of the emissions generated. Furthermore, inventory control is

an important activity that appears in almost any type of organization (Tsou, 2008).

Because of these observations, the research in this dissertation is needed and it ap-

plies to a wide audience. Throughout the research, environmental regulations and

objectives were integrated, among other contributions, into four practical inventory

control models.

Environmental considerations have been recently integrated into mostly single

item inventory control models with both deterministic and stochastic demand scenar-

ios. In particular, environmental considerations are modeled within inventory control

models via either associating costs with the environmental hazard of the logistics

activities, reformulating the models under environmental regulations or regarding

environmental objectives along with the classical economical objectives.

The classical single item deterministic inventory control model, the economic

order quantity (EOQ) model, has been revisited with environmental considerations.

Bonney and Jaber (2011) reformulate the cost function of the EOQ model by re-

garding the costs associated with transportation emissions and waste disposal to the
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environment in addition to the classical EOQ cost components. In a similar study,

Ritha and Martin (2012) revisit the EOQ model by defining additional cost terms

for packaging, transportation and packaging emissions, and waste disposal. Digiesi

et al. (2012) extend the EOQ model with transportation emissions costs such that

the transportation emissions generation rate depends on the delivery speed, which

is defined as a decision variable. Recently, Battini et al. (2014) define a sustain-

able EOQ model through associating costs with warehousing, inventory holding, and

transportation emissions.

The EOQ model has also been analyzed with environmental regulations. Specif-

ically, carbon regulations2 such as carbon cap, carbon tax, and cap and trade are

integrated into the EOQ model. Hua et al. (2011) study the EOQ model with a

carbon cap and trade regulation, where a retailer is subject to a cap on its car-

bon emissions level and carbon emissions are tradable through a trading mechanism

such as the European Trading System or New Zealand Trading System. They derive

an expression for the optimal order quantity and investigate how costs and carbon

emissions change with carbon trading price. Chen et al. (2013), on the other hand,

examines the EOQ model with a carbon cap regulation. They discuss how sensitive

the costs and emissions are to the carbon cap and extend their model for carbon tax

regulation. Similar to Hua et al. (2011) and Chen et al. (2013), Arslan and Turkay

(2013) revisit the EOQ model with carbon cap, tax, and cap and trade regulations

as well as carbon offset regulation. In a recent study, Toptal et al. (2014) combines

the EOQ model with carbon emissions reduction investment decisions under cap,

tax, and cap and trade policies. They show how carbon emissions regulations and

emission reduction investment opportunities affect costs and carbon emissions. In

this dissertation, Section 2 studies the EOQ model with four different carbon emis-

sions regulations. Furthermore, the EOQ model has been extended to account for

two types of carriers: less-than-truckload (LTL) and truckload (TL) carriers. Sec-

tion 2, therefore, contributes to the EOQ models with environmental regulations by

integrating different transportation modes into the model, which enables comparison

of different transportation modes in terms of cost and environmental performance.

2Generally, carbon emissions are considered as the environmental performance as other green-
house gas emissions can be measured in terms of equivalent carbon emissions (see, e.g., EPA, 2013b)
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Additionally, a discussion is presented on how the carbon emissions regulations can

affect the transportation mode selected.

Finally, the environmental considerations are included into the EOQ model with

consideration of environmental objectives. In the study by Bouchery et al. (2012),

a sustainable EOQ model is formulated as a multi-objective optimization model, in

which a set of sustainability criteria is minimized along with the costs. Sections 3

and 4 also integrate environmental considerations into two different inventory control

models by modeling environmental objectives.

The studies cited so far assume single item deterministic demand in a single

echelon supply chain. It should be noted that inventory control models within two

echelon supply chains under the settings of the EOQ model have also been analyzed

with environmental considerations. Particularly, the buyer-vendor coordination prob-

lem with deterministic demand has been analyzed in recent studies. Saadany et al.

(2011) focus on the single buyer, single vendor coordination problem in the case that

the environmental performance of the single item considered affects its demand. Sim-

ilarly, the single buyer, single vendor coordination problem has been analyzed by

Swami and Shah (2013) and Zavanella et al. (2013) such that the demand of the

single item depends on its price as well as environmental quality. Wahab et al. (2011)

integrate environmental considerations into a single buyer, single vendor coordination

problem by associating costs with carbon emissions and Jaber et al. (2013) revisit the

single buyer, single vendor coordination problem under environmental regulations.

In a recent study, Chan et al. (2013) formulate a multi-objective multi-buyer, single

vendor coordination problem. Specifically, they use utility functions for different envi-

ronmental criteria and use a weighted approach to solve the resulting multi-objective

model.

The above studies look at inventory control with environmental considerations

under deterministic demand. There is a limited number of studies that consider in-

ventory control models with stochastic demand. Specially, the single period stochastic

demand inventory control model, i.e., the classical newsvendor model has been revis-

ited with environmental considerations. For instance, Song and Leng (2012) and Liu

et al. (2013) focus on the newsvendor model under carbon regulations. Zhang and

Xu (2013) formulate a multi-item newsvendor model in a production planning setting
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under a carbon cap and trade regulation. Rosic and Jammernegg (2013) revisit the

newsvendor model with dual sourcing under carbon tax and cap and trade regula-

tions and Hoen et al. (2014) study the transportation mode selection problem in the

newsvendor model with carbon emissions costs as well as carbon cap, tax, and cap

and trade regulations. Choi (2013a,b) study sourcing and supplier selection models

with stochastic demand in fashion and apparel industries under carbon taxing. In

a recent study, while they do not directly consider environmental costs, objectives,

or regulations, Arikan et al. (2013) discuss the effects of lead time variability on en-

vironmental performance in a continuous review inventory control model. Section 3

of this dissertation contributes to the state of the art and the state of the practice

on inventory control models with environmental considerations by modeling a con-

tinuous review inventory control model as a multi-objective optimization problem.

Furthermore, similar to Section 2, transportation decisions are explicitly integrated

with inventory control decisions.

Particularly, Section 2 analyzes an integrated inventory control and transporta-

tion planning problem with carbon emissions regulations. The EOQ model with LTL

and TL transportation under carbon cap, cap and trade, cap and offset, and tax-

ing policies has been investigated. Section 2 provides methods to find the retailer’s

optimal order quantity under each regulation when a LTL or a TL carrier is used

for inbound shipment. The tools provided enable analyzing the effects of the reg-

ulations on the retailer’s costs and emissions with each carrier. A numerical study

illustrates how the retailer’s preference for carriers depends on the specifications of

the regulation.

Section 3 takes sustainability into account in an integrated continuous review

inventory control and transportation model. Particularly, similar to Section 2, the

retailer can use a LTL or a TL carrier for their inbound shipment. For each case, a

bi-objective order quantity (Q) reorder point (R) model, known as a (Q,R) model

is formulated with the objectives of expected costs and expected carbon emissions

minimization. This bi-objective (Q,R) model is referred to as the sustainable (Q,R)

model. Solution methods to approximate the Pareto frontiers of the sustainable

(Q,R) model with LTL and TL transportation are proposed. Numerical studies are

presented to illustrate the effects of demand variance and lead time on expected



8

costs and carbon emissions for each case as well as the changes in expected costs

and carbon emissions due to sustainability considerations. The methods discussed in

Section 3 can be used by a retailer to compare different LTL carriers, LTL carriers to

TL carriers, and different TL carriers in terms of not only cost but also environmental

considerations. Examples are discussed to illustrate that a retailer’s preferences for

transportation choice vary depending on their cost and environmental goals.

It should be noted that most of the studies in the intersection of environmental

considerations and inventory control models focus on single item inventory systems.

Sections 2 and 3 also analyze single item inventory control models. However, in

Sections 2 and 3, inventory control models with environmental considerations are

analyzed with integrated transportation decisions under deterministic and stochas-

tic demand, respectively. In many practical cases, multiple items are present and

their inventory control and transportation decisions are jointly analyzed. There-

fore, Sections 4 and 5 focus on multi-item inventory control models integrated with

transportation decisions and environmental considerations under deterministic and

stochastic demand, respectively.

In particular, Section 4 analyzes a well known multi-item inventory control

problem, namely, the joint replenishment problem. Specifically, Section 4 proposes

a bi-objective joint replenishment problem, where the costs and carbon emissions

generated from inventory operations are minimized simultaneously. This bi-objective

model is referred to as the sustainable joint replenishment problem. The sustain-

able joint replenishment problem is formulated considering two common grouping

strategies: indirect and direct grouping. Under each grouping strategy, a method

is developed to generate a set of Pareto efficient solutions for the sustainable joint

replenishment problem. Specifically, the analytical properties of each grouping strat-

egy are utilized in developing genetic algorithms to approximate the Pareto fronts.

A set of numerical studies are conducted in Section 4 to compare different grouping

strategies that can be adopted by a retailer not only in terms of costs but also en-

vironmental aspects. It is illustrated that, depending on the cost and green goals, a

retailer can select different grouping strategies.

Section 5 studies a multi-item stochastic inventory control model. The environ-

mental considerations are not directly integrated; however, an inventory control and
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transportation policy is considered to not only reduce costs but also transportation

emissions. In particular, Section 5 analyzes a time based shipment consolidation pol-

icy in a multi-item stochastic inventory system with heterogeneous freight trucks. A

shipment consolidation policy determines which items should be shipped together. In

case of explicit truckload transportation considerations, transportation capacity can

be utilized better through shipment consolidation. Section 5 proposes a time based

order-up-to-level inventory control policy for a set of consolidated items with hetero-

geneous freight trucks. Then a set partitioning problem is formulated to find the best

shipment consolidation policy. Heuristic solution approaches are provided to solve

the resulting set partitioning problem. Results of a simulation study are presented

to illustrate the efficiency of the proposed heuristic methods as well as the cost and

environmental benefits of the proposed time based shipment consolidation policy.

Throughout the research, environmental regulations and objectives were inte-

grated, among other contributions, to four practical inventory control models. Fur-

thermore, the transportation decisions are explicitly considered in these four models:

single item deterministic (Section 2), single item stochastic (Section 3), multi-item de-

terministic (Section 4), and multi-item stochastic (Section 5). In Section 6, the overall

research is summarized and some potentials for future research are highlighted.
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2. INTEGRATED INVENTORY CONTROL AND TRUCKLOAD

TRANSPORTATION UNDER CARBON EMISSION REGULATIONS

This section focuses on four common carbon emissions regulation policies: car-

bon cap, carbon cap and trade, carbon cap and offset, and carbon taxing. Under

the carbon cap policy, a company plans its operations such that a predefined level of

carbon emissions, referred to as the carbon cap, is not exceeded. It should be noted

that the carbon cap can be determined by a company’s own green goals as well as

government agencies (Chen et al., 2013). Under the carbon cap and trade policy, on

the other hand, a company can sell its excess carbon emissions if its carbon emis-

sions level is lower than the carbon cap or buy carbon emission permits if its carbon

emissions level is higher than the carbon cap. That is, carbon emissions are tradable

through a trading system such as the European Union’s Emissions Trading System,

and it is assumed that there are sufficient demand and supply for selling and buying

carbon emissions, respectively. Under the carbon cap and offset policy, a company is

subject to a carbon cap; however, the company can invest in carbon offset projects to

increase its carbon cap. Carbon offset projects abate carbon emissions by compen-

sating a company’s emissions. Under the carbon taxing policy, a company is charged

in taxes for its carbon emissions.

As mentioned in Section 1, inventory control models have been analyzed with

environmental considerations. This section, similar to Chen et al. (2013), Hua et al.

(2011), Arslan and Turkay (2013), and Toptal et al. (2014), considers the classi-

cal EOQ model; however, different than these studies, the classical EOQ model is

extended to consider two common practices of trucking: LTL and TL carriers. In

particular, in the previous studies discussed, it is assumed that a single truck has suf-

ficient capacity to transport any amount of shipment, i.e., it is assumed that a LTL

carrier is used for inbound shipment. As noted by Hua et al. (2011) and Benjaafar

et al. (2013), warehousing and transportation are considered to be the major drivers

of carbon emissions in supply chains; and companies do not only use LTL carriers for

their deliveries. It is, therefore, crucial to integrate inventory control with explicit

transportation mode selection when carbon emissions regulation policies are in place.
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In particular, it is assumed that the supply chain agent (a retailer) can select

a LTL or TL carrier for their inbound shipment. In the case where a LTL carrier is

used, the retailer is subject to per unit transportation costs and a specific amount of

carbon emissions are generated for each unit shipped. In the case where a TL carrier

is used, it is assumed that a single truck type is available for deliveries. Further-

more, each truck has a fixed capacity and a per truck cost. The number of trucks

used by the retailer determines their transportation costs in addition to procurement,

inventory holding, and inventory replenishment costs. One may also note that TL

transportation costs are similarly modeled in supply chain and logistics literature

(see, e.g., Aucamp, 1982, Lee, 1986, Toptal et al., 2003, Toptal and Çetinkaya, 2006,

Toptal, 2009, Toptal and Bingol, 2011, Konur and Toptal, 2012). In addition, TL

transportation modeling also applies to the calculation of carbon emissions due to

transportation. For instance, Rizet et al. (2012) note that carbon emissions can be

effectively reduced by changing vehicle efficiency or vehicle design. In the case where

a TL carrier is used, each empty truck generates a fixed amount of carbon emissions

and total emissions generated by a truck increase with its load. Thus, the number

of trucks used along with their loads determine the retailer’s carbon emissions due

to transportation. Hoen et al. (2014) and Pan et al. (2013) define similar carbon

emissions functions. In order to minimize carbon emissions within a supply chain

network, Pan et al. (2013) formulate a transportation problem with two modes of

transportation (rail and trucks). Specifically, Pan et al. (2013) note that the same

structure for the carbon emissions function is also observed in rail transportation.

This section formulates a retailer’s integrated inventory control and transporta-

tion problem under the aforementioned four carbon emissions regulation policies with

LTL and TL carriers. The difference between a LTL carrier and a TL carrier is ex-

plicitly accounted for in transportation costs as well as transportation emissions. An

exact method to find the retailer’s optimal order quantity with any of the carriers

is proposed for each regulation policy. The differences are also analyzed in the re-

tailer’s costs and carbon emissions due to preferring a LTL over a TL carrier, or vice

versa, under each carbon emissions regulation policy. Furthermore, through numeri-

cal examples, it is demonstrated that under any carbon emissions regulation policy,

the retailer’s preference for a carrier varies depending on the settings of the carbon
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emissions regulation policy in place. The tools provided in this section can therefore

be utilized by a retailer in comparing LTL carriers to one another, LTL carriers to TL

carriers, and TL carriers to one another under carbon emissions regulation policies.

A set of numerical studies is conducted to analyze the effects of the settings of the

carbon emissions regulation policies on the retailer’s costs and carbon emissions with

a LTL and TL carrier. Another set of numerical studies is conducted to analyze the

effects of the transportation costs and transportation emissions parameters of the LTL

and TL carriers on the retailer’s costs and carbon emissions. Counterintuitive exam-

ples are also presented on how a TL carrier’s transportation cost and transportation

emissions influence the retailer’s costs and carbon emissions.

2.1. PROBLEM FORMULATION AND PRELIMINARIES

Consider a retailer who controls the inventory and inbound transportation for

an item. The retailer assumes the basic EOQ settings, that is, the demand rate (λ,

items per unit time) for the item is deterministic and constant over time, the lead

time is fixed, and a long planning horizon is considered. Under the basic EOQ model,

the retailer is subject to procurement costs p (cost per unit), inventory holding costs

h (cost per unit per unit time), and order setup costs K (cost for each order placed).

In this section, the retailer is also subject to additional inbound transportation costs.

It is assumed that the retailer will only use one of the two road transportation carriers

available: a LTL carrier or a TL carrier. It should be noted that the retailer might

simultaneously use LTL and TL carriers for the inbound shipment of an order, i.e.,

order splitting between two carriers is possible. This case is posted as a future research

direction at the end of this section. The analysis provided in this section can be used

to study the setting with order splitting.

In the case where a LTL carrier is used for inbound transportation, the retailer

is charged based on the number of items transported. Particularly, it is assumed

that the retailer is subject to transportation cost of t (cost per unit transported with

the LTL carrier). The retailer’s objective is to minimize the total inventory and

transportation related costs per unit time by determining the optimal order quantity.

Under the basic EOQ model with the LTL carrier, the total cost per unit time as a

function of the order quantity, Q, reads
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HLTL(Q) = (p+ t)λ+
Kλ

Q
+
hQ

2
, (1)

where the first component is the total procurement and transportation cost per unit

time, the second component is the order setup cost per unit time, and the last com-

ponent is the inventory holding cost per unit time. It is easy to show that HLTL(Q) is

strictly convex in Q; thus, the unique order quantity that minimizes HLTL(Q), which

is also referred to as the economic order quantity, is

QLTL =

√
2Kλ

h
. (2)

It should be noted that a LTL carrier is assumed to provide sufficient capacity to carry

any order size of the retailer. In practice, it might be the case that a retailer can prefer

full truck shipments for larger orders. In such a case, the retailer will use a TL carrier.

Specifically, as noted by Toptal and Bingol (2011), depending on the per truck cost

of the TL carrier and the per unit transportation cost of the LTL carrier, a retailer

may select a carrier based on the order size. Therefore, the following discussion is

focused on formulating the retailer’s cost function with a TL carrier. That is, instead

of modeling the order quantity and carrier selection decisions simultaneously, order

quantity decisions are modeled for each carrier separately; and, the carrier with the

lower minimum costs is assumed to be selected by the retailer.

In the case where a TL carrier is used for inbound transportation, the retailer

is charged based on the number of trucks used for transportation. Particularly, it is

assumed that a TL carrier offers a single truck type with a capacity of P units and

per truck cost of R money units per shipment. The total transportation cost paid

for shipping an order of Q units then amounts to
⌈
Q
P

⌉
R. It then follows that the

retailer’s total cost per unit time with a TL carrier equals to

HTL(Q) = pλ+
Kλ

Q
+
hQ

2
+

⌈
Q

P

⌉
Rλ

Q
, (3)

where the first component is the procurement cost per unit time, the second com-

ponent is the order setup cost per unit time, the third component is the inventory

holding cost per unit time, and the last component is the transportation cost per unit
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time. Note that, unlike HLTL(Q), HTL(Q) is a discontinuous function; hence, one

cannot use the first order derivative to determine the order quantity that minimizes

HTL(Q). Nevertheless, through careful investigation of the properties of HTL(Q),

an expression for the minimizer(s) of HTL(Q) is stated in the literature (see, e.g.,

Aucamp, 1982, Toptal et al., 2003). Specifically, HTL(Q) is a piecewise continuous

function such that each piece is in the form of Equation (1) over a given quantity

range of length P . The following property, stated without proof (one may refer to

Toptal et al., 2003 for the proof), leads to the expression for the minimizer(s) of

HTL(Q), denoted by QTL.

Property 1. Let Q∗i =
√

2(K + iR)λ/h, for some nonnegative integer i and define

k to be the unique integer such that kP <
√

2Kλ
h
≤ (k + 1)P . Then

• HTL(Q) is decreasing over (i− 1)P < Q ≤ iP , ∀i ≤ k,

• If i ≥ k + 1, then HTL(iP ) ≤ HTL(Q) for Q ≥ iP ,

• If Q∗k+1 ≥ (k + 1)P , then HTL(Q) is decreasing over kP < Q ≤ (k + 1)P ;

if Q∗k+1 < (k + 1)P , then HTL(Q) is decreasing over kP < Q ≤ Q∗k+1 and

increasing over Q∗k+1 ≤ Q ≤ (k + 1)P .

It then follows from Property 1 that

QTL = arg min{HTL(min{Q∗k+1, (k + 1)P}), HTL(kP )}. (4)

Inventory operations generate a significant amount of carbon emissions. Specif-

ically, the carbon emissions are generated by the inventory holding, inventory replen-

ishment, and transportation. Similar to Hua et al. (2011) and Chen et al. (2013),

this model defines a linear relation between carbon emissions and holding Q units of

inventory. In particular, K̂λ
Q

+ ĥQ
2

is the level of carbon emissions per unit time when

inventory is replenished in orders of Q units, where K̂ is the fixed carbon emissions

amount generated by replenishing the inventory and ĥ denotes the carbon emissions

generated for holding one item in inventory per unit time. The carbon emissions due

to transportation of an order is defined to be fixed by Chen et al. (2013) whereas Hua

et al. (2011) define carbon emissions generated by transportation as the sum of a
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fixed value and a component linearly increasing with the order quantity. Particularly,

Hua et al. (2011) consider the carbon emissions generated by an empty truck and

the variable carbon emissions factor per item loaded. The underlying assumption

of Hua et al. (2011) is that a single truck has sufficient capacity to carry any order

size, i.e., LTL transportation is assumed. This sections considers both LTL and TL

transportation.

In the case where a LTL carrier is used for inbound transportation, similar to

Hua et al. (2011) and Chen et al. (2013), it is assumed that each unit transported

generates t̂ units of carbon emissions. Under the basic EOQ model with a LTL carrier,

the total carbon emissions per unit time as a function of the order quantity, Q, reads

ELTL(Q) = t̂λ+
K̂λ

Q
+
ĥQ

2
, (5)

where the first component is the transportation emissions per unit time, the sec-

ond component is the inventory replenishment emissions per unit time, and the last

component is the inventory holding emissions per unit time.

In the case a TL carrier is used for inbound transportation, it is assumed that

the retailer is subject to the emissions from empty truck weights and the loads of

the trucks used for deliveries. In particular, let ŵ and ê denote the carbon emissions

generated by an empty truck and the carbon emissions generated due to unit load of

a truck, respectively. When Q units are shipped using trucks, the carbon emissions

generated amount to
⌊
Q
P

⌋
(ŵ+êP ) (the carbon emissions from full truckloads) plus ŵ+

e
(
Q−

⌊
Q
P

⌋
P
)

(the carbon emissions from the LTL). Therefore, the carbon emissions

generated per unit time by shipping an order of Q units are defined as follows:

λ

Q

{⌊
Q

P

⌋
(ŵ + êP ) + ŵ + ê

(
Q−

⌊
Q

P

⌋
P

)}
= êλ+

⌈
Q

P

⌉
ŵλ

Q
.

Similar transportation emission functions are defined in the literature (see, e.g., Hoen

et al., 2014, Pan et al., 2013). Under the basic EOQ model with a TL carrier, the total

carbon emissions per unit time as a function of the order quantity Q then amounts

to

ETL(Q) =

(
êλ+

⌈
Q

P

⌉
ŵλ

Q

)
+
K̂λ

Q
+
ĥQ

2
, (6)
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where the first component is the transportation emissions (including empty truck and

truck load emissions) per unit time, the second component is the inventory replen-

ishment emissions per unit time, and the last component is the inventory holding

emissions per unit time.

Next, the retailer’s integrated inventory control and transportation problem are

analysed with LTL and TL carriers under four different carbon emissions regulation

policies: carbon cap, carbon cap and trade, carbon cap and offset, and carbon taxing

policies. For reference, notation is summarized in Appendix A.1 with possible metric

values. Additional notation will be defined as needed. Furthermore, Appendix A

includes the proofs of the properties discussed in Sections 2.2 and 2.3.

2.2. ANALYSIS WITH CARBON EMISSIONS REGULATIONS

When there is no carbon emissions regulation policy, the solution to the retailer’s

cost minimization problems are given by QLTL defined in Equation (2) and QTL

defined in Equation (4) when a LTL or a TL carrier is used for inbound shipment,

respectively. In what follows, the retailer’s problem is formulated and solved under

the aforementioned carbon emissions regulation policies. A general model for the

retailer’s optimization problem with a carbon emissions regulation can be formulated

as follows:

(M0) : min H(Q) = f1(Q) + f2(Q) + f3(Q)

s.t. E(Q) = z1(Q) + z2(Q) ≤ C

Q ≥ 0.

where f1(Q), f2(Q), and f3(Q) are the functions of Q in general forms defining the

inventory related costs per unit time, transportation costs per unit time, and emissions

penalty costs per unit time, respectively. Similarly, z1(Q) and z2(Q) are generalized

forms of the inventory related carbon emissions per unit time and transportation

related carbon emissions per unit time, respectively. Finally, C defines an upper

bound on the carbon emissions per unit time. In all of the following models, f1(Q) =

pλ + Kλ/Q + hQ/2 and z1(Q) = K̂λ/Q + ĥQ/2; however, this section investigates

different forms of f2(Q) and z2(Q) considering LTL and TL carriers; and, assumes

different forms for f3(Q) and C considering different carbon emissions regulations.

Particularly, index j is used to define each carbon emissions regulation policy such
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that j = 1, j = 2, j = 3, and j = 4 identify carbon cap, carbon cap and trade, carbon

cap and offset, and carbon taxing policies, respectively.

2.2.1. Analysis under Carbon Cap. Under the carbon cap model (M1),

the retailer’s objective is to minimize the total inventory and transportation costs per

unit time while the carbon emissions rate does not exceed a targeted level, i.e., the

carbon cap. Let C > 0 denote the carbon cap per unit time.

2.2.1.1. Carbon cap model with a LTL carrier. Considering Equations

(1) and (5), M1 with a LTL carrier reads

(M1-LTL) : min HLTL
1 (Q) = (p+ t)λ+ Kλ

Q
+ hQ

2

s.t. ELTL(Q) = t̂λ+ K̂λ
Q

+ ĥQ
2
≤ C

Q ≥ 0.

Note that M1-LTL has been solved by Chen et al. (2013). Specifically, due to con-

vexity of functions HLTL
1 (Q) and ELTL(Q), and ELTL(Q) being a quadratic function,

the optimum solution to M1-LTL, denoted by QLTL
1 , can be explicitly characterized.

Particularly, let qLTLl =
C−t̂λ−

√
(C−t̂λ)2−2K̂ĥλ

ĥ
and qLTLu =

C−t̂λ+
√

(C−t̂λ)2−2K̂ĥλ

ĥ
. Note

that ELTL(Q) ≤ C for qLTLl ≤ Q ≤ qLTLu . It is assumed that both qLTLl and qLTLu

are real numbers, that is, the carbon cap is sufficiently large such that there exist a

feasible order quantity for M1-LTL. The following corollary then defines QLTL
1 .

Corollary 1. Suppose that M1-LTL is feasible. Then, if QLTL < qLTLl , QLTL
1 = qLTLl ;

if qLTLl ≤ QLTL ≤ qLTLu , QLTL
1 = QLTL; and if qLTLu < QLTL, QLTL

1 = qLTLu .

2.2.1.2. Carbon cap model with a TL carrier. Considering Equations

(3) and (6), M1 with a TL carrier reads

(M1-TL) : min HTL
1 (Q) = pλ+ Kλ

Q
+ hQ

2
+
⌈
Q
P

⌉
Rλ
Q

s.t. ETL(Q) =
(
êλ+

⌈
Q
P

⌉
ŵλ
Q

)
+ K̂λ

Q
+ ĥQ

2
≤ C

Q ≥ 0.

It is assumed that the carbon cap is sufficiently large that there exist feasible order

quantities for M1-TL. It should be noted that finding the optimum solution to M1-TL,

denoted by QTL
1 , requires detailed analysis of HTL

1 (Q) and ETL(Q) simultaneously. In

what follows, the piecewise structures of these functions are utilized to solve M1-TL.

In particular, recall that each piece of HTL
1 (Q) is an EOQ type of function.

Similarly, each piece of the ETL(Q) function is an EOQ type of function. Now,
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consider the range ((i − 1)P, iP ]. In this range, ETL(Q) is defined by ETL
i (Q) =

êλ+ (K̂+iŵ)λ
Q

+ ĥQ
2
. It is easy to verify that ETL

i (Q) ≤ C for Q ∈ [q
TL(i)
l , q

TL(i)
u ] where

q
TL(i)
l =

C − êλ−
√

(C − êλ)2 − 2ĥλ(K̂ + iŵ)

ĥ
, (7)

qTL(i)
u =

C − êλ+

√
(C − êλ)2 − 2ĥλ(K̂ + iŵ)

ĥ
. (8)

Note that Equations (7) and (8) imply that q
TL(i)
l < q

TL(i+1)
l ≤ q

TL(i+1)
u < q

TL(i)
u . It

then follows that QTL
1 ≤ q

TL(1)
u . The following property derives the range of Q, where

(i− 1)P < Q ≤ iP , such that ETL(Q) ≤ C.

Property 2. Suppose that ((i−1)P, iP ]∩[q
TL(i)
l , q

TL(i)
u ] 6= ∅. Let Q

TL(i)
l = max{qTL(i)

l ,

(i− 1)P} and Q
TL(i)
u = min{qTL(i)

u , iP}. Then ETL(Q) ≤ C for Q ∈ [Q
TL(i)
l , Q

TL(i)
u ].

Now, let t1 be defined as the minimum integer such that ((t1 − 1)P, t1P ] ∩
[q
TL(t1)
l , q

TL(t1)
u ] 6= ∅ and let t2 be defined as the maximum integer such that ((t2 −

1)P, t2P ] ∩ [q
TL(t2)
l , q

TL(t2)
u ] 6= ∅. Note that both t1 and t2 are defined as M1-TL is

assumed to be feasible. By definitions of t1 and t2, it follows that Q
TL(t1)
l ≤ QTL

1 ≤
Q
TL(t2)
u .

Property 3. If t1 6= t2, then Q
TL(i)
u = iP for t1 ≤ i ≤ t2 − 1.

Property 3 implies that, when t1 6= t2, i.e., there exist more than one non-

overlapping regions of feasible order quantities and the upper limits of these regions

correspond to full truckload quantities except the last region. Property 3 is utilized

in the next properties, where the optimal solution for M1-TL is characterized for

different values of t1 and t2.

Recall from Equation (2) that QLTL =
√

2Kλ
h

and from Property 1 that Q∗i =√
2(K+iR)λ

h
and k is the unique integer such that kP < QLTL ≤ (k + 1)P . In the

following property, QTL
1 is characterized when the retailer will not decrease their

order quantity due to the carbon cap constraint.
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Property 4. If t1 ≥ k + 1, then

QTL
1 =


Q
TL(t1)
l if Q∗t1 < Q

TL(t1)
l ,

Q∗t1 if Q
TL(t1)
l ≤ Q∗t1 ≤ Q

TL(t1)
u ,

Q
TL(t1)
u if Q

TL(t1)
u < Q∗t1.

Observe from Equation (4) that kP is the lower limit on QTL. Property 4 then

captures the case where the feasible order quantity ranges are larger than kP .

Property 5. If t2 ≤ k, then

QTL
1 =

 Q
TL(t1)
u if t1 = t2,

arg min{HTL
1 (Q

TL(t2−1)
u ), HTL

1 (Q
TL(t2)
u )} if t1 6= t2.

Unlike Property 4, Property 5 implies that the retailer will decrease their order

quantity due to the carbon cap constraint. Finally, in the next property, the case

when t1 ≤ k < k + 1 ≤ t2 is captured.

Property 6. If t1 ≤ k < k + 1 ≤ t2,

then QTL
1 = arg min{HTL

1 (kP ), HTL
1 (min{Q∗k+1, Q

TL(k+1)
u })}.

Based on Properties 4-6, the following corollary summarizes the optimal solution

for M1-TL.

Corollary 2. Suppose that M1-TL is feasible. Then,

• If t1 ≥ k + 1, then QTL
1 = Q

TL(t1)
l if Q∗t1 < Q

TL(t1)
l ; QTL

1 = Q∗t1 if Q
TL(t1)
l ≤

Q∗t1 ≤ Q
TL(t1)
u ; and QTL

1 = Q
TL(t1)
u if Q

TL(t1)
u < Q∗t1.

• If t2 ≤ k, then QTL
1 = Q

TL(t1)
u if t1 = t2; and

QTL
1 = arg min{HTL

1 (Q
TL(t2−1)
u ), HTL

1 (Q
TL(t2)
u )} if t1 6= t2.

• If t1 ≤ k < k + 1 ≤ t2,

then QTL
1 = arg min{HTL

1 (kP ), HTL
1 (min{Q∗k+1, Q

TL(k+1)
u })}.

It should be noted that t1 and t2 can be easily determined using the relation

q
TL(i)
l < q

TL(i+1)
l ≤ q

TL(i+1)
u < q

TL(i)
u implied by Equations (7) and (8).
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2.2.2. Analysis under Carbon Cap and Trade. Under the carbon

cap and trade model (M2), the retailer is subject to a carbon emissions cap C per

unit time; however, a carbon emissions trading system is available for buying carbon

emission permits or selling extra carbon emissions. The retailer’s objective is to

minimize the total inventory and transportation costs along with the additional costs

or revenues gained through carbon emissions trading. In particular, let X denote the

traded carbon emissions amount per unit time; if X > 0, additional carbon emissions

capacity is purchased and if X < 0, excess carbon emissions capacity is sold. Similar

to Hua et al. (2011), it is assumed that the market price (selling or buying) for per

unit carbon emissions is fixed at α (cost per unit) and there is sufficient supply and

sufficient demand for buying and selling carbon emissions capacity, respectively.

2.2.2.1. Carbon cap and trade model with a LTL carrier. When a

LTL carrier is used for inbound transportation, the retailer’s total cost per unit time

is HLTL(Q) + αX. Furthermore, the retailer’s traded carbon emissions amount to

X = ELTL(Q)−C. Considering Equations (1) and (5), M2 with a LTL carrier reads

(M2-LTL) : min HLTL
2 (Q) = (p+ t+ αt̂)λ+ (K+αK̂)λ

Q
+ (h+αĥ)Q

2
− αC

s.t. Q ≥ 0.

It is straightforward to show thatHLTL
2 (Q) is strictly convex inQ; hence, the following

corollary states the optimum solution of M2-LTL, denoted by QLTL
2 and XLTL, using

the first order optimality conditions (see, also, Hua et al. (2011)).

Corollary 3. QLTL
2 =

√
2(K+αK̂)λ

h+αĥ
and XLTL = ELTL(QLTL

2 )− C.

2.2.2.2. Carbon cap and trade model with a TL carrier. When a

TL carrier is used for inbound transportation, the retailer’s total cost per unit time

is HTL(Q) + αX. Furthermore, the retailer’s traded carbon emissions amount to

X = ETL(Q)− C. Considering Equations (3) and (6), M2 with a TL carrier reads

(M2-TL) : min HTL
2 (Q) = (p+ αê)λ+ (K+αK̂)λ

Q
+ (h+αĥ)Q

2
+
⌈
Q
P

⌉ (R+αŵ)λ
Q

− αC
s.t. Q ≥ 0.

Let QTL
2 and XTL denote the optimum solution of M2-TL. Note that HTL

2 (Q) follows a

similar functional form with HTL(Q); hence, Property 1 can be utilized in determining

QTL
2 as noted in the following corollary.
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Corollary 4. Let Q
TL(i)
2 =

√
2λ(K+αK̂+i(R+αŵ))

h+αĥ
and m be the unique integer such that

mP <
√

2λ(K+αK̂)

h+αĥ
≤ (m + 1)P . Then, QTL

2 = arg min{HTL
2 (min{QTL(m+1)

2 , (m +

1)P}), HTL
2 (mP )} and XTL = ETL(QTL

2 )− C.

2.2.3. Analysis under Carbon Cap and Offset. Under the cap and offset

model (M3), similar to the cap and trade model, the retailer is subject to carbon

emissions cap C per unit time; however, a carbon trading system is not available. On

the other hand, carbon offset projects can be used for carbon emissions abatement

when the retailer’s carbon emissions level from inventory holding and transportation

exceeds the carbon cap. It is assumed that carbon emissions can be offset per unit

at a cost of r. Let S denote the amount of carbon emissions per unit time that

the retailer decides to compensate by investing in carbon offset projects. Then the

retailer needs to invest rS money units per unit time for offsetting S level of carbon

emissions per unit time. The retailer’s objective is to minimize total inventory and

transportation costs plus the carbon emissions abatement investment costs such that

the carbon emissions level from inventory holding and transportation does not exceed

the carbon cap plus the carbon allowances achieved through investing in carbon offset

projects.

2.2.3.1. Carbon cap and offset model with a LTL carrier. Considering

Equations (1) and (5) and the above discussion, M3 with a LTL carrier reads

(M3-LTL) : min HLTL
3 (Q,S) = (p+ t)λ+ Kλ

Q
+ hQ

2
+ rS

s.t. ELTL(Q) = t̂λ+ K̂λ
Q

+ ĥQ
2
≤ C + S

Q ≥ 0

S ≥ 0.

Observe that both Q and S are the retailer’s decision variables. One should note that

a model similar to M3-LTL is formulated by Arslan and Turkay (2013); however, they

do not provide a solution method for the model. The explicit characterization of the

optimal solution of M3-LTL follows, denoted by QLTL
3 and SLTL.

In particular, for any given Q, the optimum S value, SLTL(Q) is given by the

following equation:

SLTL(Q) =

 0 if ELTL(Q) ≤ C,

ELTL(Q)− C if ELTL(Q) ≥ C.
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This follows from the fact that the retailer will not invest in extra carbon emissions

abatement. Then, by definition, SLTL = SLTL(QLTL
3 ) and M3-LTL can be investi-

gated by separating it into the following two optimization problems:

(M3-LTL-a) : min HLTL
3a (Q) = (p+ t)λ+ Kλ

Q
+ hQ

2

s.t. ELTL(Q) = t̂λ+ K̂λ
Q

+ ĥQ
2
≤ C

Q ≥ 0.

(M3-LTL-b) : min HLTL
3b (Q) = (p+ t+ rt̂)λ+ (K+rK̂)λ

Q
+ (h+rĥ)Q

2
− rC

s.t. ELTL(Q) = t̂λ+ K̂λ
Q

+ ĥQ
2
≥ C

Q ≥ 0.

Let QLTL
3a and QLTL

3b denote the optimum solutions of M3-LTL-a and M3-LTL-b,

respectively. Observe that M3-LTL-a is identical to M1-LTL; hence, QLTL
3a = QLTL

1

where QLTL
1 is defined in Corollary 1. The next property identifies QLTL

3b . Recall

that ELTL(Q) ≤ C for qLTLl ≤ Q ≤ qLTLu where qLTLl =
C−t̂λ−

√
(C−t̂λ)2−2K̂ĥλ

ĥ
and

qLTLu =
C−t̂λ+

√
(C−t̂λ)2−2K̂ĥλ

ĥ
.

Property 7. Let qLTL3b =
√

2λ(K+rK̂)

h+rĥ
. Then, if qLTL3b ≤ qLTLl , QLTL

3b = qLTL3b ; if

qLTLl < qLTL3b < qLTLu , QLTL
3b = arg min{HLTL

3b (qLTLl ), HLTL
3b (qLTLu )}; and if qLTLu ≤

qLTL3b , QLTL
3b = qLTL3b .

The next corollary, which follows from the definitions of M3-LTL-a and M3-

LTL-b, defines QLTL
3 and SLTL.

Corollary 5. If HLTL
3a (QLTL

3a ) ≤ HLTL
3b (QLTL

3b ), then QLTL
3 = QLTL

3a and SLTL = 0; if

HLTL
3a (QLTL

3a ) ≥ HLTL
3b (QLTL

3b ), then QLTL
3 = QLTL

3b and SLTL = ELTL(QLTL
3b )− C.

2.2.3.2. Carbon cap and offset model with a TL carrier. Considering

Equations (3) and (6), M3 with a TL carrier reads

(M3-TL) : min HTL
3 (Q,S) = pλ+ Kλ

Q
+ hQ

2
+
⌈
Q
P

⌉
Rλ
Q

+ rS

s.t. ETL(Q) =
(
êλ+

⌈
Q
P

⌉
ŵλ
Q

)
+ K̂λ

Q
+ ĥQ

2
≤ C + S

Q ≥ 0

S ≥ 0.
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Let QTL
3 and STL denote the optimum solution of M3-TL. Similar to the analysis

of M3-LTL, this section characterizes QTL
3 and STL by separating M3-TL into two

subproblems. Specifically, remark that for any given Q, the optimum S value, STL(Q)

will be

STL(Q) =

 0 if ETL(Q) ≤ C,

ETL(Q)− C if ETL(Q) ≥ C.

Then, the solution of M3-TL will be defined by one of the solutions of the following

two optimization problems:

(M3-TL-a) : min HTL
3a (Q) = pλ+ Kλ

Q
+ hQ

2
+
⌈
Q
P

⌉
Rλ
Q

s.t. ETL(Q) =
(
êλ+

⌈
Q
P

⌉
ŵλ
Q

)
+ K̂λ

Q
+ ĥQ

2
≤ C

Q ≥ 0.

(M3-TL-b) : min HTL
3b (Q) = (p+ rê)λ+ (K+rK̂)λ

Q
+ (h+rĥ)Q

2
+
⌈
Q
P

⌉ (R+rŵ)λ
Q

− rC
s.t. ETL(Q) =

(
êλ+

⌈
Q
P

⌉
ŵλ
Q

)
+ K̂λ

Q
+ ĥQ

2
≥ C

Q ≥ 0.

Let QTL
3a and QTL

3b denote the optimum solutions of M3-TL-a and M3-TL-b, respec-

tively. Notice that M3-TL-a is identical to M1-TL; hence, QTL
3a = QTL

1 where QTL
1 is

defined in Corollary 2. In what follows, the focus is on solving M3-TL-b.

Recall from Property 2 that ETL(Q) ≤ C when Q ∈ [Q
TL(i)
l , Q

TL(i)
u ], where

Q
TL(i)
l = max{qTL(i)

l , (i − 1)P} and Q
TL(i)
u = min{qTL(i)

u , iP} such that q
TL(i)
l and

q
TL(i)
u are defined in Equations (7) and (8). It then follows that ETL(Q) ≥ C for

Q ∈ (((i−1)P, iP ]\(QTL(i)
l , Q

TL(i)
u )). Observe that (((i−1)P, iP ]\(QTL(i)

l , Q
TL(i)
u )) can

correspond to at most two separate ranges of feasible order quantities. Suppose that

one of these ranges is given and let it be denoted by (Q̂
TL(i)
l , Q̂

TL(i)
u ) (one can utilize

Property 2 to determine the ranges of feasible order quantities). In the following

property, the minimizer of HTL
3b (Q) over Q ∈ (Q̂

TL(i)
l , Q̂

TL(i)
u ), denoted by Q

TL(i)
3b , is

characterized.

Property 8. Suppose that ETL(Q) ≥ C for Q ∈ (Q̂
TL(i)
l , Q̂

TL(i)
u ), where

(Q̂
TL(i)
l , Q̂

TL(i)
u ) ⊆ ((i − 1)P, iP ]. Let q

TL(i)
3b =

√
2(K + rK̂ + i(R + rŵ))λ/(h+ rĥ).
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Then

Q
TL(i)
3b =


lim
Q→+

Q̂
TL(i)
l if q

TL(i)
3b ≤ Q̂

TL(i)
l ,

q
TL(i)
3b if Q̂

TL(i)
l < q

TL(i)
3b < Q̂

TL(i)
u ,

lim
Q→−

Q̂TL(i)
u if Q̂

TL(i)
u ≤ q

TL(i)
3b .

Recall that ((i − 1)P, iP ] \ (Q
TL(i)
l , Q

TL(i)
u ) can define two separate ranges of

feasible order quantities. In such a case, one can follow Property 8 for both of these

regions. Finally, it should be noted that ((i−1)P, iP ]\(QTL(i)
l , Q

TL(i)
u ) can correspond

to (Q̂
TL(i)
l , Q̂

TL(i)
u ) or (Q̂

TL(i)
l , Q̂

TL(i)
u ] and in the latter case, limQ→− Q̂

TL(i)
u = Q̂

TL(i)
u .

Property 8 finds the minimizer of M3-TL-b over Q ∈ ((i − 1)P, iP ] for any given

number of trucks i. Nevertheless, the retailer can use as many trucks as possible. In

the following property, an upper bound on i is proposed for M3-TL-b.

Property 9. Let z be the unique integer such that zP <

√
2(K + rK̂)λ/(h+ rĥ) ≤

(z + 1)P . Furthermore, let x be the first integer such that q
TL(x)
u ≤ (x − 1)P . Then

QTL
3b ≤ (max{z, x}+ 1)P .

Property 9 indicates that the retailer will use at most max{z, x} + 1 trucks in

the optimal solution of M3-TL-b. Let y = max{z, x} + 1. Properties 8 and 9, then,

readily imply that

QTL
3b = arg min{HTL

3b (Q
TL(1)
3b ), HTL

3b (Q
TL(2)
3b ), . . . , HTL

3b (Q
TL(y)
3b )}. (9)

The next corollary defines QTL
3 and STL based on the definitions of QTL

3a and QTL
3b .

Corollary 6. If HTL
3a (QTL

3a ) ≤ HTL
3b (QTL

3b ), then QTL
3 = QTL

3a and STL = 0; if

HTL
3a (QTL

3a ) ≥ HTL
3b (QTL

3b ), then QTL
3 = QTL

3b and STL = ETL(QTL
3b )− C.

2.2.4. Analysis under Carbon Taxing. Under the carbon taxing model

(M4), the retailer’s objective is to minimize total inventory and transportation costs

along with the additional costs paid in taxes for carbon emissions. In particular, let

γ money units be charged as tax, per unit carbon emission per unit time.

2.2.4.1. Carbon taxing model with a LTL carrier. Under M4 with a

LTL carrier, the retailer is charged γELTL(Q) in taxes per unit time for their carbon
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emissions as a result of ordering decisions. Considering Equations (1) and (5), M4

with a LTL carrier then reads

(M4-LTL) : min HLTL
4 (Q) = (p+ t+ γt̂)λ+ (K+γK̂)λ

Q
+ (h+γĥ)Q

2

s.t. Q ≥ 0.

Similar to M2-LTL, it can be easily seen that HLTL
4 (Q) is strictly convex in Q; there-

fore, the optimum solution of M4-LTL, denoted by QLTL
4 can be determined by the

first order conditions as stated in the following corollary.

Corollary 7. QLTL
4 =

√
2(K+γK̂)λ

h+γĥ
.

2.2.4.2. Carbon taxing model with a TL carrier. In the case where

a TL carrier is used for inbound transportation, the retailer’s total cost per unit

time including carbon emissions taxes amounts to HTL(Q) + γETL(Q). Considering

Equations (3) and (6), M4 with a TL carrier reads

(M4-TL) : min HTL
4 (Q) = (p+ γê)λ+ (K+γK̂)λ

Q
+ (h+γĥ)Q

2
+
⌈
Q
P

⌉ (R+γŵ)λ
Q

s.t. Q ≥ 0.

LetQTL
4 denote the optimum solution of M4-TL.HTL

4 (Q) is defined similar toHTL(Q);

hence, Property 1 can be be used to find QTL
4 as noted in the following corollary.

Corollary 8. Let Q
TL(i)
4 =

√
2λ(K+γK̂+i(R+γŵ))

h+γĥ
and n be the unique integer such

that nP <

√
2λ(K+γK̂)

h+γĥ
≤ (n + 1)P . Then, QTL

4 = arg min{HTL
4 (min{QTL(n+1)

4 , (n +

1)P}), HTL
4 (nP )}.

2.3. LTL VS. TL CARRIER UNDER EMISSIONS REGULATIONS

Note that it is possible that both the costs per unit time and the carbon emis-

sions per unit time of a retailer are lower with a specific transportation mode under

any carbon emissions regulation. It might be the case that a LTL carrier has sig-

nificant cost and environmental advantages over a TL carrier or vice versa. In this

section, the focus is to illustrate how the retailer’s choice of transportation mode,

i.e., LTL carrier vs. TL carrier, depends on the carbon emissions regulation policy

in place. Particularly, the tools presented in Section 2.2 can be used by a retailer

to compare LTL carriers or a LTL carrier to a TL carrier or TL carriers under any

of the carbon emissions regulation policies considered. In what follows, analytical
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results are presented on comparing a LTL carrier to a TL carrier and four examples

are discussed, each of which corresponds to a carbon emissions regulation policy.

2.3.1. LTL vs. TL Carrier under Carbon Cap. Consider that a

retailer is subject to a carbon cap regulation with carbon cap value C. In the next

property, the cases when a TL carrier results in better environmental performance is

characterized.

Property 10. If ELTL(QLTL) ≥ C then ETL(QTL
1 ) ≤ ELTL(QLTL

1 ).

It is known that if the carbon cap C is restrictive when a LTL carrier is preferred,

the retailer will increase their total costs per unit time to decrease their emissions

to the level imposed by the carbon cap (see, e.g., Chen et al., 2013). Property 10

states that in such a case, the retailer can decrease carbon emissions further with a

TL carrier. Moreover, this suggests that under a restricting carbon cap regulation, it

is possible that the retailer can have lower costs as well as lower carbon emissions per

unit time with a TL carrier. This case is illustrated in the following example (please

refer to Section 2.4 for a discussion on the selection of the values for the parameters).

Example 1. Suppose that a retailer is subject to a carbon cap regulation and they can

use a LTL or a TL carrier for their inbound shipment. The retailer has the following

specifications: λ = 2000, p = 0, h = 0.3, K = 50, ĥ = 10, and K̂ = 250. The LTL

carrier has the following specifications: t = 0.35 and t̂ = 0.5. The TL carrier has the

following specifications: R = 10, P = 30, ŵ = 10, and ê = 0.5.

Example 1 considers the carbon cap values varying between the maximum of

the minimum carbon emissions possible with LTL and TL carriers and the minimum

of the maximum carbon emissions possible with LTL and TL carriers (i.e., the C

values considered are feasible and binding for both cases when the LTL or the TL

carrier is used for inbound transportation). The costs and carbon emissions per unit

time with each carrier as C changes are illustrated in Figure 2.1.

As it can be seen from Figure 2.1a, depending on the carbon cap value, the

retailer can prefer a LTL over a TL carrier or vice versa. Corollaries 1 and 2 can

be used for such comparison. Particularly, in Example 1, for smaller values of C,

the retailer would prefer the LTL carrier as it results in lower costs per unit time;

however, for larger values of C, the retailer would prefer the TL carrier. Figure 2.1b
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(b) Carbon cap vs. carbon emissions

Figure 2.1. LTL vs. TL carrier under carbon cap regulation

illustrates the carbon emissions as C increases. As noted above, all of the C values

are restrictive for both models M1-LTL and M1-TL. As suggested by Property 10, the

TL carrier results in less carbon emissions per unit time. This then implies that for

larger values of restricting C, the TL carrier not only reduces costs but also carbon

emissions per unit time.

2.3.2. LTL vs. TL Carrier under Carbon Cap and Trade. Consider

that a retailer is subject to carbon cap and trade regulation with a carbon cap value

C and carbon trading price α. The next property characterizes a case when a LTL

(TL) carrier will be preferred over a TL (LTL) carrier under a carbon cap and trade

regulation. Prior to stating the property, the retailer’s marginal shipment opportu-

nity cost first needs to be defined for LTL and TL carriers under a carbon cap and

trade regulation. Marginal shipment opportunity cost refers to the marginal ship-

ment cost plus the retailer’s sunk opportunity cost that would be achieved by selling

the emissions generated due the shipment. With a LTL carrier, the retailer’s total

shipment opportunity cost for an order of Q units amounts to (t+αt̂)Q; therefore, the

retailer’s marginal shipment opportunity cost with a LTL carrier, denoted by θLTL,

is defined as θLTL = t + αt̂. With a TL carrier, the retailer’s shipment opportunity

cost for an order of Q units amounts to αêQ+
⌈
Q
P

⌉
(R+αŵ); therefore, the retailer’s

marginal shipment opportunity cost with a TL carrier, denoted by θTL, is defined as

θTL = αê+
⌈
Q
P

⌉ (R+αŵ)
Q

.
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Property 11. (i) If t + αt̂ < αê then HLTL
2 (QLTL

2 ) < HTL
2 (QTL

2 ). (ii) If
⌈
Q
P

⌉
≤ Q

for any Q and t+ αt̂ > R + αŵ + αê then HLTL
2 (QLTL

2 ) > HTL
2 (QTL

2 ).

Note that for any order size Q, αê < θTL. Part (i) of Property 11 indicates

that if the LTL carrier’s marginal shipment opportunity cost is less than the TL

carrier’s minimum marginal shipment opportunity cost, the retailer will prefer the

LTL carrier over the TL carrier. The first condition in part (ii) of Property 11 states

that the TL carrier will charge for at most Q trucks to ship an order of Q units,

which is practical assuming that both Q and P are or can be defined discretely.

This suggests that R + αŵ + αê > θTL. Property 11 (ii) then implies that if the

LTL carrier’s marginal shipment opportunity cost is greater than the TL carrier’s

maximum marginal shipment opportunity cost, the retailer will prefer the TL carrier

over the LTL carrier.

Property 11 (i) further implies that when ê > t̂, HLTL
2 (QLTL

2 ) < HTL
2 (QTL

2 )

for α > t
ê−t̂ That is, the retailer will prefer the LTL carrier over the TL carrier for

carbon trading prices higher than a specific level when the TL carrier’s unit carbon

emissions for each item loaded to a truck, ê, is greater than the LTL carrier’s unit

carbon emissions for each item transported, t̂. Property 11 (ii) further implies that

when t̂ > ê + ŵ, HLTL
2 (QLTL

2 ) > HTL
2 (QTL

2 ) for α > R−t
t̂−ê−ŵ . That is, the retailer will

prefer the TL carrier over the LTL carrier for carbon trading prices higher than a

specific level when the LTL carrier’s unit carbon emissions for each item transported

is greater than the TL carrier’s carbon emissions generated by shipping one item with

one truck. These observations suggest that a LTL or a TL carrier can impact the

retailer’s preference not only by the costs they charge but also by the environmental

benefits they offer. For instance, for a given carbon trading price λ, a LTL carrier

can become the retailer’s preference by decreasing the unit transportation cost or

the unit transportation emissions. Similarly, a TL carrier can become the retailer’s

preference by decreasing the emissions generated per unit load in their truck (for

instance, by changing the fuel type) or the emissions generated by empty truck weight

(for instance, by having greener trucks).

One should note that Property 11 gives sufficient conditions for preferring a

LTL (TL) over a TL (LTL) carrier. For other cases, the retailer’s preference can be

determined using Corollaries 3 and 4. The next example illustrates how the retailer’s
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choice of transportation mode changes with carbon trading price under a carbon cap

and trade regulation.

Example 2. Suppose that the retailer of Example 1 is subject to a carbon cap and

trade regulation and they can use a LTL or a TL carrier for their inbound shipment.

The LTL carrier has the following specifications: t = 0.3 and t̂ = 0.3. The TL carrier

has the following specifications: R = 10, P = 50, ŵ = 10, and ê = 0.3.

Example 2 considers carbon trading prices varying between 0 and 1. The carbon

cap value is considered to be fixed as the mid-point of the carbon cap range defined

similar to Example 1. The costs and carbon emissions per unit time with each carrier

as α changes are illustrated in Figure 2.2.
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(b) Carbon trading price vs. carbon emissions

Figure 2.2. LTL vs. TL carrier under carbon cap and trade regulation

As it can be seen from Figure 2.2a, depending on the carbon trading price, the

retailer can prefer a LTL over a TL carrier or vice versa. Corollaries 3 and 4 can be

used for such comparison. Particularly, for Example 2, for smaller values of α, the

retailer would prefer the TL carrier as it results in lower costs per unit time; however,

for larger values of α, the retailer would prefer the LTL carrier. Figure 2.2b illustrates

the carbon emissions as α increases. It can be observed that carbon emissions per

unit time decrease with α. Moreover, in Example 2, for larger values of α, the LTL

carrier not only reduces costs but also carbon emissions.
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2.3.3. LTL vs. TL Carrier under Carbon Cap and Offset. Consider

that a retailer is subject to carbon cap and offset regulations with a carbon cap value C

and a unit offset cost r. Similar to Property 10, one can show that ETL(QTL
1 )−STL ≤

ELTL(QLTL
1 ) − SLTL when ELTL(QLTL) ≥ C. Furthermore, when ELTL(QLTL) ≥ C

and STL > 0, it can be shown that ETL(QTL
1 ) − STL = ELTL(QLTL

1 ) − SLTL = C.

That is, if using a TL carrier requires carbon offsetting, the carbon emissions after

offsetting, i.e., carbon emissions minus the carbon offset, are the same with a LTL

and a TL carrier under a carbon cap and offset regulation with restricting carbon cap

value. This is also observed in the following example, where the unit carbon offset

cost affects the retailer’s choice of transportation mode.

Example 3. Suppose that the retailer of Examples 1-2 is subject to a carbon cap and

offset regulation and they can use a LTL or a TL carrier for their inbound shipment.

The LTL carrier has the following specifications: t = 0.25 and t̂ = 0.6. The TL

carrier has the following specifications: R = 20, P = 80, ŵ = 15, and ê = 0.35.

Example 3 considers carbon offset investment costs varying between 0 and 0.3.

The carbon cap value is considered to be fixed as the mid-point of the carbon cap

range defined similar to Example 1. The costs and carbon emissions per unit time

with each carrier as r changes are illustrated in Figure 2.3.

As it can be seen from Figure 2.3a, depending on the carbon offset investment

cost, the retailer can prefer a LTL over a TL carrier or vice versa. Corollaries 5 and

6 can be used for such comparison. Particularly, for Example 3, for smaller values of
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Figure 2.3. LTL vs. TL carrier under carbon cap and offset regulation
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r, the retailer would prefer the TL carrier as it results in lower costs per unit time;

however, for larger values of r, the retailer would prefer the LTL carrier. Figure 2.3b

illustrates the carbon emissions as r increases. It can be observed from Figure 2.3b

that, for small r values, for instance r ≤ 0.05, the TL carrier results in lower costs as

well as lower carbon emissions per unit time. On the other hand, for r ∈ (0.2, 0.25),

the LTL carrier results in lower costs as well as lower carbon emissions per unit time.

Finally, one can observe that ETL(QTL
1 ) − STL = ELTL(QLTL

1 ) − SLTL for r . 0.25

(where STL > 0 actually) and ETL(QTL
1 )− STL < ELTL(QLTL

1 )− SLTL for r & 0.25.

2.3.4. LTL vs. TL Carrier under Carbon Taxing. Consider that a

retailer is subject to carbon taxing regulation with carbon cap tax γ. Similar to

Property 11, one can show that if t + γt̂ < γê then HLTL
4 (QLTL

4 ) < HTL
4 (QTL

4 ); and,

if
⌈
Q
P

⌉
≤ Q for any Q and t + γt̂ > R + γŵ + γê then HLTL

4 (QLTL
4 ) > HTL

4 (QTL
4 ).

That is, the carbon tax in place affects the retailer’s choice of transportation mode

as illustrated in the following example.

Example 4. Suppose that the retailer of Examples 1-3 is subject to a carbon taxing

regulation and they can use a LTL or a TL carrier for their inbound shipment. The

LTL carrier has the following specifications: t = 0.31 and t̂ = 0.34. The TL carrier

has the following specifications: R = 15, P = 50, ŵ = 10, and ê = 0.3.

Example 4 considers carbon emissions taxes varying between 0.04 and 0.08. The

costs and carbon emissions per unit time with each carrier as γ changes are illustrated

in Figure 2.4.

As it can be seen from Figure 2.4a, depending on the carbon emissions tax, the

retailer can prefer a LTL over a TL carrier or vice versa. Corollaries 7 and 8 can be

used for such comparison. Particularly, for Example 4, for smaller values of γ, the

retailer would prefer the TL carrier as it results in lower costs per unit time; however,

for larger values of γ, the retailer would prefer the LTL carrier. Figure 2.4b illustrates

the carbon emissions as γ increases. It can be observed that carbon emissions per

unit time increases with γ for both LTL and TL carriers. Also, in Example 4, for

larger values of γ, the LTL carrier not only reduces costs but also carbon emissions.
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Figure 2.4. LTL vs. TL carrier under carbon taxing regulation

2.4. NUMERICAL ANALYSES

In this section, the focus is on two sets of numerical analyses. The first set of

numerical analyses demonstrates the effects of the carbon emissions regulation policy

parameters on the retailer’s costs and carbon emissions with LTL and TL carriers. In

the second set of numerical analyses, the effects of transportation costs and emissions

parameters of LTL and TL carriers are illustrated on the retailer’s costs and carbon

emissions under each carbon emissions regulation policy.

For the numerical analyses discussed in this section, the problem instances are

generated as follows. In all of the problem instances solved, assume that p = 0 and

λ = 2, 000 units (note that total purchase cost per unit time is a constant; hence, it is

not effective in the optimum order quantity decisions). The retailer’s cost parameters

are randomly generated assuming that h ∼ U [1, 5] and K ∼ U [50, 250], where U [a, b]

denotes a uniform distribution with bounds a and b (studies focusing on inventory

control and inventory control with carbon emissions assume similar values, see, e.g.,

Benjaafar et al., 2013, Hua et al., 2011, Chen et al., 2013, Toptal et al., 2014). The

retailer’s emissions parameters are randomly generated assuming that ĥ ∼ U [2, 8] and

K̂ ∼ U [50, 300] (again, similar values are used in the literature, see, e.g., Benjaafar

et al., 2013, Hua et al., 2011, Chen et al., 2013, and some of these studies are real life

applications, see, e.g., Arikan et al., 2013). The details of the transportation related

cost and carbon emissions parameters are as follows.
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TL Transportation: In defining per truck costs and per truck capacities,

assume that R ∼ U [150, 450] and P ∼ U [100, 300] (integrated inventory control

and truckload transportation studies assume similar values, see, e.g., Toptal

et al., 2003, Toptal and Çetinkaya, 2006, Toptal, 2009, Konur and Toptal, 2012).

For practical purposes, P is rounded up to the nearest multiplier of 10. Since

emissions generated from freight trucks are calculated using empty truck and

full truck emissions per unit distance (see, e.g., Pan et al., 2013, Reed et al.,

2010, Hoen et al., 2014), empty truck and full truck emissions per unit distance

are defined first. Particularly, define ŵe and ŵf as the empty truck and full

truck carbon emissions per unit distance. In applied studies from literature

(see, e.g., Pan et al., 2013 and Reed et al., 2010), it is observed that ŵf is

approximately 1.5ŵe even for different truck types. Furthermore, it can be

observed from the values given in those studies that ŵe is generally between 1

and 1.5 kg CO2/km (a simulation study provided by Daccarett-Garcia, 2009

also assumes similar values). Therefore, in generating ŵe and ŵf , this section

assumes that ŵe ∼ U [1, 1.5] and ŵf = βŵe, where β is the ratio of ŵf/ŵe and

it is assumed that β ∼ U [1.2, 1.8]. Using ŵe, ŵf and P , one can define carbon

emissions generated per unit load of a truck as ê = d
ŵf−ŵe

P
and carbon emissions

generated by an empty truck as ŵ = dŵe, where d is the distance from point

of supply to the retailer. Assume that d ∼ U [100, 500]. That is, ê and ŵ are

randomly generated by randomly generating ŵf , β, and d for a given P .

LTL Transportation: Toptal and Bingol (2011) note that R
P
< t < P ; hence,

this section assumes that t ∼ U [R
P
, 2R

P
] (the cases where t→ R

P
are not practical

as per unit transportation cost of a LTL carrier would be very close to per

truck cost charged by a TL carrier). In defining t̂, in order to account for cases

where a LTL carrier’s per unit carbon emissions can be both lower and higher

compared to the TL carrier’s carbon emissions from per unit load in a truck,

this section assumes that t̂ = φê such that φ ∼ U [0.5, 2].

2.4.1. Effects of Carbon Emissions Regulations. In order to analyze the

effects of the parameters of the carbon emissions regulations on the retailer’s costs

and carbon emissions per unit time, numerical studies were conducted for both LTL
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and TL carriers. Particularly, for a given policy parameter under each carrier option,

100 problem instances were randomly generated. Figure 2.5 illustrates the changes

in the average costs and carbon emissions over 100 problem instances for 50 different

policy parameters considered.

2.4.1.1. Effects of carbon cap under carbon cap. To analyze the carbon

cap, for any problem instance, this section considers 50 different C values increasing

from the minimum carbon emissions possible (i.e., carbon emissions of the order

quantity minimizing carbon emissions function) to the maximum carbon emissions

possible (i.e., carbon emissions of the order quantity minimizing cost function) in

equal increments. It can be observed from Figures 2.5a and 2.5b that as C increases,

carbon emissions per unit time increase while costs per unit time decrease with both

LTL and TL carriers. These observations are expected as the retailer’s set of feasible

order quantities enlarges as C increases in the cases where a LTL or a TL carrier is

used. Note that in the case of TL carriers, the piecewise structures of the cost and

emissions functions lead to piecewise increasing and decreasing cost and emissions,

respectively. It should be noted that while the carbon cap constraint is going to be

tight for the case with a LTL carrier, this is not necessarily true for the case with a

TL carrier due to the integer definition of the number of trucks used for shipment.

2.4.1.2. Effects of trading price under carbon cap and trade. Under

a cap and trade policy, the focus is to analyze the effects of the carbon trading price,

α. To do so, this section assumes that the carbon cap is the mid-point between the

maximum and minimum carbon emissions possible defined above. For any problem

instance, this section considers 50 different α values increasing from 0 to 1 in equal

increments. It can be observed from Figures 2.5c and 2.5d that as α increases, carbon

emissions per unit time decrease since it is either more expensive to buy additional

carbon permits or more profitable to sell extra carbon allowances. On the other hand,

as α increases, costs per unit time first increase then decrease. This is due to the

fact that up to a point of carbon trading price, the retailer continues to purchase

carbon permits but after a point they prefer to sell carbon allowances. Similar results

are observed in Hua et al. (2011). The results generalize these observations for TL

transportation as well.
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(e) Carbon cap and offset with LTL carrier
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Figure 2.5. Costs and carbon emissions vs. carbon regulation parameters
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2.4.1.3. Effects of offset cost under carbon cap and offset. Under a

cap and offset policy, the focus is to analyze the effects of carbon offset investment

cost, r. To do so, this section defines the carbon cap similar to the analysis of cap

and trade. For any problem instance, this section considers 50 different r values

increasing from 0 to 1 in equal increments. It can be observed from Figures 2.5e

and 2.5f that as r increases, carbon emissions per unit time decrease while costs per

unit time increase with both LTL and TL carriers. This is expected since higher r

values encourage the retailer to decrease their emissions so that high carbon emissions

abatement investment costs are avoided. Nevertheless, when r is higher, the costs will

increase due to higher emissions abatement investment costs and/or preferring order

quantities to reduce carbon emissions instead of cost decreasing order quantities.

2.4.1.4. Effects of carbon tax under carbon taxing. For a carbon

taxing policy, the focus is to analyze the effects of carbon emissions tax, γ. For any

problem instance, 50 different γ values increasing from 0 to 1 in equal increments

were considered. As expected and can be observed from Figures 2.5g and 2.5h, as

γ increases, the carbon emissions per unit time decrease and the costs per unit time

increase for both LTL and TL carriers.

2.4.2. Effects of Transportation Parameters. In order to analyze the

effects of the parameters of the LTL and TL carriers on the costs and carbon emissions

under each carbon emissions regulation policy, numerical studies for both LTL and

TL carriers’ transportation costs and emissions were conducted. Particularly, the

effects of unit transportation cost t and unit transportation emissions t̂ of a LTL

carrier were analyzed; and, the effects of the per truck cost R and the empty truck

emissions ŵ of a TL carrier were also analyzed. Under each regulation policy, 100

problem instances were randomly generated and each problem instance was solved

with 50 different values of the parameters under consideration. Figure 2.6 illustrates

the changes in the average costs and carbon emissions per unit time over 100 problem

instances solved for 50 different values of t and t̂. Similarly, Figure 2.7 illustrates the

changes in the average costs and carbon emissions per unit time over 100 problem

instances for 50 different values of R and ŵ.

2.4.2.1. Effects of LTL transportation. It is easy to analytically show that

as t increases, the retailer’s total costs per unit time increase and carbon emissions per
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unit time remain the same under each of the carbon emissions regulations considered

when a LTL carrier is used for inbound transportation. That is, it can be shown

that
dHLTL

1 (QLTL
1 )

dt
= λ > 0,

dHLTL
2 (QLTL

2 )

dt
= λ > 0,

dHLTL
3 (QLTL

3 ,SLTL)

dt
= λ > 0, and

dHLTL
4 (QLTL

4 )

dt
= λ > 0; and,

dELTL(QLTL
1 )

dt
= 0,

dELTL(QLTL
2 )

dt
= 0,

dELTL(QLTL
3 )

dt
= 0, and

dHELTL(QLTL
4 )

dt
= 0. These observations can be noted in Figures 2.6a, 2.6c, 2.6e, and

2.6g. Particularly, it can be seen that as unit transportation cost t of a LTL carrier

increases, the retailer’s costs per unit time increases while carbon emissions per unit

time do not change under any carbon emissions regulation policy. This is due to the

fact that t is not effective in the solution of models M1-LTL, M2-LTL, M3-LTL, and

M4-LTL. That is, the optimal order quantity does not depend on t in any of the LTL

models.

Moreover, one can prove that, as unit transportation emissions t̂ of a LTL car-

rier increases, the retailer’s costs and carbon emissions per unit time linearly in-

crease under carbon cap and trade and carbon taxing regulations as observed in

Figures 2.6d and 2.6h. That is, one can show that
dHLTL

2 (QLTL
2 )

dt̂
= αλ > 0 and

dHLTL
4 (QLTL

4 )

dt̂
= γλ > 0; and,

dELTL(QLTL
2 )

dt̂
= λ > 0 and

dELTL(QLTL
4 )

dt̂
= λ > 0. These

simply follow from the fact that, in M2-LTL and M4-LTL, unit transportation emis-

sions have direct costs and total costs of transportation emissions is a constant; there-

fore, the optimal order quantities of models M2-LTL and M4-LTL are not affected by

t̂. On the other hand, the retailer’s costs per unit time remain fixed then start to in-

crease while the retailer’s carbon emissions per unit time increase then remain fixed as

unit transportation emissions t̂ of a LTL carrier increases under carbon cap and carbon

cap and offset regulations. That is,
dHLTL

1 (QLTL
1 )

dt̂
= 0 and

dELTL
1 (QLTL

1 )

dt̂
> 0 for t̂ < τ ;

and,
dHLTL

1 (QLTL
1 )

dt̂
> 0 and

dELTL
1 (QLTL

1 )

dt̂
= 0 for t̂ > τ . Similarly,

dHLTL
3 (QLTL

3 ,SLTL)

dt̂
= 0

and
dELTL

3 (QLTL
3 )

dt̂
> 0 for t̂ < ψ; and,

dHLTL
3 (QLTL

3 ,STL)

dt̂
> 0 and

dELTL
3 (QLTL

3 )

dt̂
= 0 for

t̂ > ψ. These follow from the fact that, for smaller values of t̂, the retailer will order

QLTL if the carbon cap is not restrictive. Therefore, increases in t̂ up to a point will

not change the optimal order quantity as long as the carbon cap is not restrictive.

This, in return, implies no increase in costs but a linear increase in carbon emissions.

After a value of t̂, on the other hand, the carbon cap will become restrictive; hence,

the retailer’s carbon emissions will not change. However, the retailer’s set of feasible

order quantities will get smaller at higher values of t̂, which then increases costs per
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Figure 2.6. Costs and carbon emissions vs. LTL transportation
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unit time, which can be observed in Figures 2.6b and 2.6f.

2.4.2.2. Effects of TL transportation. The retailer’s costs per unit time

can be analytically shown to increase with the per truck cost R charged by a TL carrier

under any carbon emissions regulation policy. That is,
dHTL

1 (QTL
1 )

dR
> 0,

dHTL
2 (QTL

2 )

dR
> 0,

dHTL
3 (QLTL

3 ,SLTL)

dR
> 0, and

dHLTL
4 (QLTL

4 )

dR
> 0. On the other hand, while one can expect

the retailer’s carbon emissions per unit time to decrease with an increase in R since

the retailer is expected to use fewer trucks for inbound shipment, the carbon emissions

per unit time can both increase or decrease with an increase in R. This is specifically

due to the fact that the retailer’s order quantity can increase or decrease with a change

in R. These are observed in Figures 2.7a, 2.7c, 2.7e, and 2.7g. For instance, when the

order quantity decreases with an increase in R, which implies that the retailer prefers

to use fewer trucks for each order, this increases the shipment frequency, which can

increase carbon emissions as increased carbon emissions from order setups can be

significantly higher than the reduced carbon emissions from inbound shipment with

fewer trucks. Similarly, when the order quantity increases with an increase in R so

that the retailer avoids paying high setup costs by replenishing their inventory less

frequently, this might increase carbon emissions per unit time as increased emissions

from inbound shipment with one more truck can be significantly higher than the

reduced carbon emissions from order setups. The tools provided in Section 2.2 can

be used to evaluate the effects of the changes in R for specific cases.

As empty truck emissions ŵ increase, similar to the increases in R, it can be

analytically shown that the retailer’s costs per unit time are non-decreasing for carbon

cap and carbon cap and offset regulations and increasing for carbon cap and trade and

carbon taxing regulations. That is,
dHTL

1 (QTL
1 )

dŵ
≥ 0,

dHTL
2 (QTL

2 )

dŵ
> 0,

dHTL
3 (QLTL

3 ,SLTL)

dŵ
≥

0, and
dHLTL

4 (QLTL
4 )

dŵ
> 0. Furthermore, one can analytically show that, when the

retailer’s optimal order quantity is unique,
dHTL

2 (QTL
2 )

dŵ
≥ 0 and

dHTL
4 (QTL

4 )

dŵ
≥ 0, i.e.,

the carbon emissions per unit time increase with ŵ under carbon cap and trade and

carbon taxing regulations (different than the effects of R on models M2-TL and M4-

TL, ŵ not only affects costs but also emissions). These are observed in Figures 2.7b,

2.7d, 2.7f, and 2.7h. On the other hand, while average carbon emissions per unit time

over the problem instances solved for models M1-TL and M3-TL tend to increase with

ŵ as observed in Figures 2.7b and 2.7f, it is possible that carbon emissions per unit
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(h) ŵ vs. HTL
4 (QTL

4 ) and ETL(QTL
4 )

Figure 2.7. Costs and carbon emissions vs. TL transportation
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time can decrease with ŵ under carbon cap and carbon cap and offset regulations.

Again, this can be due to the fact that the change in the order quantity as a result

of a change in ŵ can lower emissions similar to the aforementioned discussion for R.

Therefore, it is important to analyze the tradeoff between transportation emissions

and other emissions; otherwise, as noted by Browne et al. (2005) and Rizet et al.

(2012), the emissions reduced from transportation activities can be lower compared

to the increased carbon emissions due to preferring a greener transportation option.

Specifically, Figures 2.8a and 2.8b illustrate two examples of M1-TL and M3-TL

where carbon emissions per unit time both increase and decrease with increasing ŵ.

That is, a decrease in ŵ, using a TL carrier with a greener truck for instance, can

increase the retailer’s carbon emissions per unit time.
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Figure 2.8. Costs and carbon emissions vs. empty truck emissions

2.5. CONCLUSIONS AND FUTURE RESEARCH

Considering the fact that emissions generated by trucking constitute the major-

ity of the emissions of the transportation industry, a substantial amount of carbon

emissions can be reduced through explicitly accounting for transportation emissions

in cases of LTL and TL carriers. The sustainability of supply chains are getting more

important everyday and comparing LTL to TL carriers is crucial for cost efficient as

well as sustainable supply chains. Nevertheless, the current studies in the literature

have not explicitly considered these two common practices of road transportation.
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The models presented in this section pioneer sustainability analyses of integrated

inventory control and explicit transportation modeling in supply chains. Different

carbon emissions regulation policies are modeled with LTL and TL transportation.

The properties of these models are analyzed to determine the retailer’s inventory

control and transportation decisions.

Particularly, the integrated inventory control and transportation decisions of a

retailer under four different carbon emissions regulation policies were analyzed. In this

setting, the retailer assumes the basic EOQ model in controlling their inventory and

two carrier options available for inbound shipment are LTL and TL carriers. In the

case where a TL carrier is preferred by the retailer, to accurately account for truck

costs and emissions, truckload transportation and truckload carbon emissions are

explicitly modeled regarding per truck costs, per truck capacities, and the emissions

generated from the truck itself in addition to the load it carries. The retailer’s problem

is formulated and optimally solved under carbon cap, carbon cap and trade, carbon

cap and offset, and carbon taxing policies for both carrier options.

Analytical results were discussed when a LTL carrier is preferable over a TL

carrier under each carbon emissions regulation. Specifically, it is observed that trans-

portation costs are not the only factor affecting a retailer’s preference. Transportation

emissions of the carriers are important for the retailer’s transportation mode selec-

tion. Furthermore, a set of sample scenarios are studied to support these results

and illustrate the practical use of the tools discussed. Specifically, these tools can be

used by a retailer to compare LTL carriers, a LTL carrier to a TL carrier, and TL

carriers under carbon emissions regulation policies. The examples studied show that

a retailer’s preference for a LTL over a TL carrier or vice versa also depends on the

specifications of the carbon emissions regulation policy in place.

A set of numerical studies documents the effects of carbon emissions regulation

policies on a retailer’s costs and carbon emissions with LTL and TL transportation.

Furthermore, in another set of numerical studies, the effects of transportation costs

and transportation emissions on a retailer’s costs and carbon emissions are investi-

gated. Specifically, for a TL carrier’s transportation emissions, counterintuitive cases

are observed. It is possible that an increase in truck emissions can decrease a retailer’s

overall carbon emissions under carbon cap and carbon cap and offset regulations.
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This research contributes to the literature on environmentally sensitive supply

chain and logistics models by integrating inventory control and transportation de-

cisions. The tools provided here give cost efficient decision making under carbon

regulations by modeling carbon emissions, specifically, transportation emissions ex-

plicitly. Furthermore, the effects of transportation emissions on costs and carbon

emissions are analyzed. The formulations provided herein can be applied to many

other inventory control models with deterministic or stochastic demand. For instance,

as mentioned previously, the settings of this section can be easily extended to analyze

the case where an order splitting between LTL and TL carriers is possible.

Specifically, as noted in Section 1, there are a limited number of studies on

stochastic inventory control problems with environmental considerations. Further-

more, explicit transportation modeling is not considered in most of these studies.

Stochastic inventory control models such as the newsvendor model, continuous re-

view inventory systems, and periodic review inventory systems can be analyzed with

integrated transportation decisions under environmental considerations. In Section

3, a continuous review inventory control model is investigated with environmental

objectives through explicitly integrating transportation decisions. Particularly, sim-

ilar to this section, LTL and TL carriers are simultaneously modeled and trucking

activities and their effects on costs and carbon emissions are explicitly formulated.

Moreover, analyses of multi-item inventory systems with environmental consid-

erations are limited. The settings of this section can be extended for joint control

of multiple items’ inventory and transportation processes. For instance, in Section

4, a sustainable joint replenishment problem is formulated and analyzed with an en-

vironmental objective. As noted by Ülkü (2012), shipment consolidation not only

reduces costs but also environmental damage. In Section 5, considering explicit truck

modeling, a multi-item stochastic inventory system is analyzed with shipment consol-

idation. It is discussed how shipment consolidation can improve economical as well

as environmental performance.



44

3. A SUSTAINABLE CONTINUOUS REVIEW INVENTORY MODEL

WITH INTEGRATED TRANSPORTATION DECISIONS

This section analyzes sustainability in a continuous review inventory control

system with integrated transportation decisions. Under the typical EOQ model, and

as done in Section 2, the demand for the product of interest was assumed to be

deterministic. Nevertheless, a deterministic demand assumption can be restrictive.

Inventory control with environmental considerations in stochastic demand scenarios

has been investigated for single period decisions (see, e.g. Song and Leng, 2012, Liu

et al., 2013, Hoen et al., 2014 and Zhang and Xu, 2013). This section integrated the

continuous review inventory control model with integrated transportation decisions

and environmental objectives over a long planning horizon under stochastic demand.

Specifically, this section analyzes the (Q,R) policy, in which a retailer orders Q units

whenever their inventory level is R. In the classic (Q,R) model, the retailer’s ob-

jective is to minimize expected costs due to inventory holding, order setups, and

shortages. However, as noted by Dekker et al. (2012), profit maximization (or cost

minimization) is not the only objective for companies. Many studies on sustainable

supply chains, therefore, consider not only economic objectives such as cost mini-

mization or profit maximization but also consider environmental objectives such as

emission minimization (see, e.g., Li et al., 2008, Kim et al., 2009, Ramudhin et al.,

2010, Wang et al., 2011, Bouchery et al., 2012, Chaabane et al., 2012).

In particular, Bouchery et al. (2012) integrate sustainability into the classical

EOQ model by formulating a multi-objective EOQ model, in which costs as well

as a set of social and environmental criteria are minimized. Similar to Bouchery

et al. (2012), this section formulates a sustainable continuous review inventory con-

trol model by considering two objectives: cost minimization and emission minimiza-

tion. Multi-objective continuous review inventory control models have been analyzed

in the literature for the classical (Q,R) settings (see, e.g., Agrell, 1995, Puerto and

Fernandez, 1998, Tsou, 2008, Tsou, 2009). Nevertheless, this section is the first that

introduces an environmental objective into a continuous review inventory control

model. Furthermore, this research contributes to the sustainable inventory control
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models by analyses of multi-period stochastic demand inventory systems with inte-

grated transportation decisions.

The aforementioned sustainable inventory control studies generally model emis-

sions generated due to inventory control decisions by considering inventory holding

emissions linearly proportional to the inventory level and replenishment emissions

as being a fixed amount per replenishment. The studies, nevertheless, fail to model

transportation decisions explicitly. To this end, this section considers the classical

(Q,R) model with two different types of road transportation: LTL transportation

and TL transportation. In LTL transportation, the retailer is charged on the number

of units (or volume or weight units) shipped. This assumption is considered realistic

as containers are usually standardized for a truck, or the effective capacity can usually

be estimated accurately (Ben-Khedher and Yano, 1994). The settings of the (Q,R)

model with LTL transportation are therefore parallel to the classical (Q,R) model.

On the other hand, in TL transportation the retailer is charged on the number of

trucks used for transportation, which requires explicit transportation modeling. As

is done in the previous section, TL transportation costs and emissions are explicitly

modeled by taking per truck costs and per truck capacities into account.

This section presents two bi-objective (Q,R) models: one for LTL transporta-

tion and one for TL transportation. For each of these models, the solution analyses

are towards approximating a set of Pareto efficient (Q,R) policies, i.e., a Pareto

front, among which the retailer can select a policy regarding their sensitivity to the

environment and/or how much they are willing to pay to be more sustainable. In ap-

proximating the Pareto front for the sustainable (Q,R) model with LTL transporta-

tion, this section proposes a method that adopts a normalized weighted approach,

a common approach used for multi-objective optimization problems. This method

is then utilized in approximating the Pareto front for the sustainable (Q,R) model

with TL transportation. Particularly, given the number of trucks to be used, the

normalized weighted approach can be used to generate a set of Pareto efficient (Q,R)

policies considering the given transportation capacity. Then, a dominance relation

between two sets of Pareto efficient solutions is used, each for different transportation

capacities, to approximate the Pareto front of the sustainable (Q,R) model with TL

transportation.
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The contribution in this section lies in including sustainability in multi-period

stochastic inventory control models with explicit transportation decisions. The effects

of freight trucks are explicitly modeled in cost as well as emission calculations. The

methods presented in this section can be used by a retailer to compare different LTL

carriers, LTL carriers to TL carriers, and different TL carriers in terms of not only

cost but also environmental aspects.

Numerical studies are presented to analyze the effects of demand variance and

lead time on the retailer’s costs and emissions. It has been demonstrated for deter-

ministic demand inventory control models that carbon emissions can be significantly

reduced with low cost increases (see, e.g., Chen et al., 2013). This research fur-

ther generalizes these results for a continuous review inventory control model under

stochastic demand with LTL and TL transportation. Finally, this section demon-

strates how the retailer can utilize the tools presented in this section to adopt a

policy and select a carrier considering their cost and environmental goals.

3.1. SUSTAINABLE (Q,R) MODEL

This model considers a retailer’s continuous review inventory control policy for

a single product. In particular, the demand per unit time for the product is a random

variable with mean λ and standard deviation ϑ. This section assumes that the demand

per unit time is normally distributed (the methods discussed in the rest of the section

are also valid for uniform and exponential demand distributions). The retailer adopts

a (Q,R) policy such that an order of Q units is placed whenever R units are left in

the inventory. That is, Q and R denote the order quantity and the re-order point,

respectively. This section assumes that there is a fixed lead time, τ time units, for

order delivery. Let f(D) an F (D) denote the probability density and cumulative

distribution functions of the lead time demand, D, respectively. Furthermore, let µ

and σ denote the expected lead time demand and the standard deviation of the lead

time demand. As the retailers prefer to hold positive safety stock in most practical

cases, it is assumed that R ≥ µ+ kσ, where k ≥ 0 denotes a preferred safety factor.

In this setting, the retailer is subject to procurement costs, inventory holding

costs, order setup costs, penalty costs associated with shortages, and transportation

costs. It is assumed that shortages are backordered. Particularly, let c denote the

unit procurement cost, h denote the inventory holding cost per unit per unit time, K
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denote the set-up cost per order, and p denote the penalty cost per unit shortage. It is

well known that under a classical (Q,R) model, the retailer’s expected purchase cost,

inventory holding cost, order set-up cost, and penalty cost per unit time amount to

cλ, h
(
R− µ+ Q

2

)
, Kλ

Q
, and pλn(R)

Q
, respectively, where n(R) is the expected number

of shortages backordered between two consecutive deliveries (Nahmias, 2009).

In cases when the retailer uses a LTL carrier, there is a unit transportation cost.

Let t denote the per unit transportation cost under LTL transportation. Then, unit

transportation cost can be included within the unit purchase cost and the retailer’s

expected cost per unit time under LTL transportation reads as

C1(Q,R) = (c+ t)λ+ h

(
R− µ+

Q

2

)
+
Kλ

Q
+
pλn(R)

Q
. (10)

On the other hand, if the retailer uses a TL carrier, they are charged based on the

number of trucks used for inbound shipment. Particularly, let v denote the capacity

of one truck and w the cost charged by a TL carrier for one truck. Then, if the

retailer decides to use m trucks, they can ship at most mv units and will pay mw

transportation cost at each shipment. Then, the retailer’s expected cost per unit time

under TL transportation reads as

C2(Q,R,m) = cλ+ h

(
R− µ+

Q

2

)
+

(K +mw)λ

Q
+
pλn(R)

Q
. (11)

As discussed previously, companies adjust their operations to curb carbon emis-

sions. Particularly, similar to Li et al. (2008), Kim et al. (2009), Ramudhin et al.

(2010), Wang et al. (2011), Chaabane et al. (2012), and Bouchery et al. (2012), it is

considered that the retailer wishes to minimize not only costs but also carbon emis-

sions. It is noted that emissions are generated due to procurement from the energy

used in purchasing or processing a product or material handling required, inventory

holding from the energy used for heating and refrigeration or warehousing activities,

and order placement from the energy used in transportation or order initiation (see,

e.g., Benjaafar et al., 2013, Chen et al., 2013). Following the same line with the

literature, this research lets ĉ, ĥ, and K̂ denote the emissions generated from unit

procurement, inventory holding per unit per unit time, and order set-up per order, re-

spectively. Furthermore, it is assumed that additional carbon emissions are generated



48

due to backordered shortages. The carbon emissions generated from backorders can

be due to the fact that the retailer ships the items to the backordered customers (see,

e.g., Anderson et al., 2012) or the customer may need to return to the retailer’s store

to pickup their backordered item. Let p̂ denote the carbon emissions generated due

to unit backorder. Similar to the cost components, one can observe that the retailer’s

expected carbon emissions per unit time from procurement, inventory holding, order

set-up, and shortages amount to ĉλ, ĥ
(
R− µ+ Q

2

)
, K̂λ

Q
, and p̂λn(R)

Q
, respectively.

In cases where the retailer uses a LTL carrier, it is assumed that transportation

emissions are proportional to the quantity shipped. Let t̂ denote the per unit trans-

portation emission under LTL transportation. Then, similar to the cost function,

unit transportation emissions can be included within the unit procurement emissions

and the retailer’s expected carbon emissions per unit time under LTL transportation

reads as

E1(Q,R) = (ĉ+ t̂)λ+ ĥ

(
R− µ+

Q

2

)
+
K̂λ

Q
+
p̂λn(R)

Q
. (12)

On the other hand, if the retailer uses a TL carrier, they are responsible for the emis-

sions generated from the trucks used. Recall that K̂ is used to denote the amount

of emissions generated with each inventory replenishment. Particularly, Hua et al.

(2011) attribute K̂ to the transportation emissions generated for shipping an order.

The underlying assumption in their modeling approach is that a single truck has

the sufficient capacity to deliver any order amount. Nevertheless, in practice, the

retailer may have to use multiple trucks for shipping their order. Therefore, in what

follows, TL transportation emissions are explicitly modeled. Ligterink et al. (2012)

note that truck characteristics such as fuel type, engine type, build year, and vehicle

mass influence emission generation of a truck. Particularly, sustainable supply chain

and logistics studies that explicitly account for such truck characteristics mostly fo-

cus on vehicle routing models (see, e.g., Bektas and Laporte, 2011, Suzuki, 2011,

Jabali et al., 2012, Erdogan and Miller-Hooks, 2012, and Demir et al., 2012). As

noted by Ligterink et al. (2012), a truck’s empty weight is effective in the amount of

carbon emissions generated by that truck, thus, ŵ is defined as the carbon emissions

generated by an empty truck, i.e., the truck’s weight. Furthermore, depending on

the aforementioned characteristics of the truck, each unit loaded into the truck will

result in additional emission generation. Let ê denote the emissions generated per
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unit loaded onto the truck. Then, the retailer’s expected carbon emissions per unit

time under TL transportation reads as

E2(Q,R,m) = (ĉ+ ê)λ+ ĥ

(
R− µ+

Q

2

)
+

(K̂ +mŵ)λ

Q
+
p̂λn(R)

Q
. (13)

As noted previously, minimization of inventory related costs is not necessarily

the only objective of a company (Bouchery et al., 2012) and an assumption that the

company will only focus on emissions minimization is not realistic. Therefore, a bi-

objective optimization model is presented in which the retailer aims to minimize both

expected costs and expected carbon emissions per unit time.

The sustainable (Q,R) model with less-than-truckload transportation (S-(Q,R)-

LTL) is stated as follows:

S-(Q,R)-LTL : min C1(Q,R) = (c+ t)λ+ h
(
R− µ+ Q

2

)
+ Kλ

Q
+ pλn(R)

Q

min E1(Q,R) = (ĉ+ t̂)λ+ ĥ
(
R− µ+ Q

2

)
+ K̂λ

Q
+ p̂λn(R)

Q

s.t. R ≥ µ+ kσ

Q ≥ 0,

where the first constraint ensures that the safety stock is greater than or equal to the

desired level and the second constraint is the non-negativity of the order quantity.

The sustainable (Q,R) model with truckload transportation (S-(Q,R)-TL) is

stated as follows:

S-(Q,R)-TL : min C2(Q,R,m) = cλ+ h
(
R− µ+ Q

2

)
+ (K+mw)λ

Q
+ pλn(R)

Q

min E2(Q,R,m) = (ĉ+ ê)λ+ ĥ
(
R− µ+ Q

2

)
+ (K̂+mŵ)λ

Q
+ p̂λn(R)

Q

s.t. Q ≤ mv

R ≥ µ+ kσ

Q ≥ 0

m ∈ {0, 1, 2, . . .},

where the first constraint ensures that the order quantity is less than or equal to the

total transportation capacity, the second and the third constraints are defined as in

the first and the second constraints of S-(Q,R)-LTL, respectively. The last constraint

defines the number of trucks used for shipment to be integer.

Two common methods used for multi-objective optimization problems are Pareto

front generation/approximation and reduction to a single objective formulation. A
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Pareto front consists of non-dominated solutions, also known as Pareto efficient solu-

tions, and it provides a set of alternative solutions to the decision maker. The decision

maker then can select a solution from the Pareto front to adopt. On the other hand,

reduction to a single objective formulation (for instance, by assigning weights to the

objective functions or focusing on finding a solution to minimize the deviations from

the optimum solutions of each individual objective function) results in a single solu-

tion and pre-models the decision maker’s preferences. In solving S-(Q,R)-LTL and

S-(Q,R)-TL, the focus is on generating a set of Pareto efficient solutions for each

model. This enables the decision maker to compare different (Q,R) policies and

adopt one regarding costs and carbon emissions.

The next section discusses the methods to approximate the Pareto fronts of S-

(Q,R)-LTL and S-(Q,R)-TL. The notation used throughout the models and possible

metrics for each notation are summarized in Appendix B.1. Additional notation will

be defined as needed. The super-/sub-scripts 1 and 2 are associated with LTL and

TL transportation respectively.

3.2. SOLUTION ANALYSIS

Weighted approaches are one of the most common methods used to solve multi-

objective optimization problems by reducing the problems of interest to single objec-

tive models (Marler and Arora, 2004). Moreover, these approaches can also be used to

approximate the Pareto front under certain convexity assumptions. In this section, a

normalized weighted approach is first proposed for approximating the Pareto front of

S-(Q,R)-LTL. Then, utilizing the analysis of S-(Q,R)-LTL, a method to approximate

the Pareto front of S-(Q,R)-TL is proposed.

3.2.1. Pareto Front Approximation for S-(Q,R)-LTL. Let the Pareto

front of S-(Q,R)-LTL be denoted by PF 1. To approximate PF 1, one should first fo-

cus on generating a set of Pareto efficient (Q,R) solutions. For normally distributed

demand, PF 1 is convex as both of the objective functions are convex for R ≥ µ (see,

e.g., Brooks and Lu, 1969, Hariga, 2010) and the feasible region is convex (Ehrgott,

2005). In the case of convex Pareto fronts, weighted sum approaches can be used

to generate the full Pareto front (see, e.g., Das and Dennis, 1997, Marler and Arora,

2010). Specifically, the normalized weighted approach is used to approximate PF 1.

The normalized weighted approach for multi-objective optimization models associates
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weights to the normalized objective functions3. The cost of the cost minimizing solu-

tion under LTL transportation and carbon emissions of the carbon emission minimiz-

ing solution under LTL transportation are used to normalize C1(Q,R) and E1(Q,R),

respectively. Particularly, let (QC
1 , R

C
1 ) and (QE

1 , R
E
1 ) denote the cost minimizing and

emission minimizing (Q,R) policies under LTL transportation. Then, for a given

weight ω such that ω ∈ [0, 1], the solution of the following optimization model will

be in PF 1:

S-(Q,R)-LTL(ω) : min M1(Q,R|ω) = ω
C1(Q,R)

C1(QC
1 , R

C
1 )

+ (1− ω)
E1(Q,R)

E(QE
1 , R

E
1 )

s.t. R ≥ µ+ kσ

Q ≥ 0.

Let (Qω
1 , R

ω
1 ) be the solution of S-(Q,R)-LTL(ω). Given (QC

1 , R
C
1 ) and (QE

1 , R
E
1 ), one

can derive that

M1(Q,R|ω) = c̃(ω)λ+ h̃(ω)

(
R− µ+

Q

2

)
+
K̃(ω)λ

Q
+
p̃(ω)λn(R)

Q
, (14)

where c̃(ω) = ω(c+t)/C1(QC
1 , R

C
1 )+(1−ω)(ĉ+t̂)/E1(QC

1 , R
C
1 ), h̃(ω) = ωh/C1(QC

1 , R
C
1 )

+(1 − ω)ĥ/E1(QC
1 , R

C
1 ), K̃(ω) = ωK/C1(QC

1 , R
C
1 ) + (1 − ω)K̂/E1(QC

1 , R
C
1 ), and

p̃(ω) = ωp/C1(QC
1 , R

C
1 )+(1−ω)p̂/E1(QC

1 , R
C
1 ). Note that M1(Q,R|ω) has a very sim-

ilar functional form with Equations (10) and (12). An efficient method to heuristically

find the minimizer of the expected cost per unit time of the classical (Q,R) model,

i.e., C1(Q,R), is stated by Hadley and Whitin (1963). This method is used in solving

S-(Q,R)-LTL(ω) as follows. Particularly, a minimizer is first found for M1(Q,R|ω)

using the method of Hadley and Whitin (1963). This method iteratively solves the

following two equations, implied by the first order conditions, until a pre-determined

3The constrained approach, introduced by Lin (1976), is another method that can be used to
approximate the Pareto front of multi-objective optimization problems. Particularly, this approach
reformulates the multi-objective optimization problem to a single objective problem such that one
of the objective functions is used as the single objective function and the other objective functions
are included in the constraints with bounds on their values. Compared to the normalized weighted
approach, this approach does not require convexity assumptions; however, solving the constrained
subproblems can be challenging. In a set of preliminary numerical studies conducted, it was observed
that the weighted approach is computationally more efficient for the problem of interest in this
section.
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precision is reached between two consecutive iterations:

Q =

√
2λ(K̃(ω) + p̃(ω)n(R))

h̃(ω)
(15)

1− F (R) =
Qh̃(ω)

p̃(ω)λ
. (16)

Then, if the resulting solution is feasible for S-(Q,R)-LTL(ω), it is accepted as the

solution of S-(Q,R)-LTL(ω). On the other hand, the resulting solution can be in-

feasible if R < µ + kσ (note that Equation (15) implies Q ≥ 0). In this case, set

R = µ+kσ and solve for Q using Equation (15). Notice that given R, the Q minimiz-

ing M1(Q,R|ω) will be given by Equation (15) due to the convexity of M1(Q,R|ω)

with respect to Q. This routine to solve S-(Q,R)-LTL(ω) is summarized as follows:

Routine 1: Solving S-(Q,R)-LTL(ω)

0: Let ω, C1(QC
1 , R

C
1 ) and E1(QE

1 , R
E
1 ) be given:

1: Determine (Qω
1 , R

ω
1 ) using the iterative method of

Hadley and Whitin (1963)

2: If Rω
1 < µ+ kσ

3: Set Rω
1 = µ+ kσ and determine Qω

1 using Equation (15)

4: Return (Qω
1 , R

ω
1 ).

Routine 1 takes C1(QC
1 , R

C
1 ) and E1(QE

1 , R
E
1 ) values as input data. To determine

(QC
1 , R

C
1 ), Routine 1 is executed with ω = 1, C1(QC

1 , R
C
1 ) = 1, and E1(QE

1 , R
E
1 ) > 0.

The resulting (Qω
1 , R

ω
1 ) is taken as (QC

1 , R
C
1 ). Similarly, (QE

1 , R
E
1 ) can be estimated

by executing Routine 1 with ω = 0, E1(QE
1 , R

E
1 ) = 1, and C1(QC

1 , R
C
1 ) > 0.

Notice that when ω = 1, (Qω
1 , R

ω
1 ) = (QC

1 , R
C
1 ) and when ω = 0, (Qω

1 , R
ω
1 ) =

(QE
1 , R

E
1 ). This implies that both of the cost minimizing and carbon emission min-

imizing (Q,R) policies under LTL transportation are in PF 1. Through solving S-

(Q,R)-LTL(ω) with different ω values, an approximation for the PF 1 can be achieved.

The following procedure determines `+ 1 number of solutions within PF 1 including

(QC
1 , R

C
1 ) and (QE

1 , R
E
1 ).
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Algorithm 1: Approximating PF 1

0: Given problem parameters and `, set PF 1 = ∅:

1: Execute Routine 1 with ω = 1, C1(QC
1 , R

C
1 ) = 1, and E1(QE

1 , R
E
1 ) > 0

2: Set (Qω
1 , R

ω
1 ) = (QC

1 , R
C
1 )

3: Execute Routine 1 with ω = 0, E1(QC
1 , R

C
1 ) = 1, and C1(QE

1 , R
E
1 ) > 0

4: Set (Qω
1 , R

ω
1 ) = (QE

1 , R
E
1 )

5: For j = 1 : `+ 1

6: Execute Routine 1 with ω = j−1
`

7: Set PF 1 := PF 1 ∪ {(Qω
1 , R

ω
1 )}

8: End

9: Return PF 1.

3.2.2. Pareto Front Approximation for S-(Q,R)-TL. Let the Pareto

front of S-(Q,R)-TL be denoted by PF 2. To approximate PF 2, the focus is on

generating a set of Pareto efficient (Q,R,m) solutions. To do so, the Pareto front of

S-(Q,R)-TL is first analyzed given that m = m0, that is, the number of trucks used

for inbound transportation is fixed. Given m = m0, S-(Q,R)-TL reduces to

S-(Q,R)-TL(m0) : min C2(Q,R|m0) = cλ+ h
(
R− µ+ Q

2

)
+ (K+m0w)λ

Q
+ pλn(R)

Q

min E2(Q,R|m0) = (ĉ+ ê)λ+ ĥ
(
R− µ+ Q

2

)
+ (K̂+m0ŵ)λ

Q
+

p̂λn(R)
Q

s.t. Q ≤ m0v

R ≥ µ+ kσ

Q ≥ 0,

Let PF 2(m0) denote the Pareto front of S-(Q,R)-TL(m0). It should be remarked

that PF 2 ⊆
∞⋃
m=1

PF 2(m). Note that S-(Q,R)-TL(m0) is very similar to S-(Q,R)-LTL:

the only difference is the additional upper bound constraint on the order quantity

due to the fixed transportation capacity. Therefore, in approximating PF 2(m0), an

approach similar to the one used to approximate PF 1 is used.



54

In particular, similar to PF 1, one can observe that PF 2(m0) is convex as both

C2(Q,R|m0) and E2(Q,R|m0) are convex for R ≥ µ and the feasible region is convex.

Therefore, the normalized weighted approach can be used to approximate PF 2(m0).

Now, let (QC
2 (m0), RC

2 (m0)) and (QE
2 (m0), RE

2 (m0)) be the cost and emission mini-

mizing solutions of S-(Q,R)-TL(m0). Then, for a given weight θ such that θ ∈ [0, 1],

the solution of the following optimization model will be in PF 2(m0):

S-(Q,R)-TL(m0, θ) : min M2(Q,R|m0, θ) = θ
C2(Q,R|m0)

C2(QC
2 (m0), RC

2 (m0),m0)
+

(1− θ) E2(Q,R|m0)

E2(QE
2 (m0), RE

2 (m0),m0)

s.t. Q ≤ m0v

R ≥ µ+ kσ

Q ≥ 0.

Let (Qθ
2(m0), Rθ

2(m0)) be the solution of S-(Q,R)-TL(m0, θ). Notice that, given

(QC
2 (m0), RC

2 (m0)) and (QE
2 (m0), RE

2 (m0)), M2(Q,R|m0, θ) has a very similar func-

tional form with M1(Q,R|ω). Therefore, in solving S-(Q,R)-TL(m0, θ), the iterative

method of Hadley and Whitin (1963) is applied to find the minimizer ofM2(Q,R|m0, θ).

Equivalent versions of Equations 15 and 16 for M2(Q,R|m0, θ) can be derived to be:

Q =

√
2λ(K̃(m0, θ) + p̃(m0, θ)n(R))

h̃(m0, θ)
(17)

1− F (R) =
Qh̃(m0, θ)

p̃(m0, θ)λ
, (18)

where h̃(m0, θ) = hθ/C2(QC
2 (m0), RC

2 (m0),m0)+ ĥ(1− θ)/E2(QE
2 (m0), RE

2 (m0),m0),

K̃(m0, θ) = (K +m0w)θ/C2(QC
2 (m0), RC

2 (m0),m0) + (K̂ +m0ŵ)(1− θ)/E2(QE
2 (m0),

RE
2 (m0),m0), and p̃(θ) = pθ/C2(QC

2 (m0), RC
2 (m0),m0) + p̂(1 − θ)/E2(QE

2 (m0),

RE
2 (m0),m0).

Then, if the resulting solution is feasible for S-(Q,R)-TL(m0, θ), it is accepted

as the solution of S-(Q,R)-TL(m0, θ). On the other hand, the resulting solution can

be infeasible in three cases: (i) the order quantity is greater than the truck capacity

available, i.e., Q > m0v, (ii) the safety stock constraint is not satisfied, i.e., R < µ+kσ,

and (iii) both Q > m0v and R < µ + kσ. In cases (i) and (iii), the order quantity

is set to be equal to the full capacity available, i.e., Q = m0v, and solve for R using
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Equation (18). Note that given Q, the R minimizing M2(Q,R|m0, θ) will be given by

Equation (18) due to convexity of M2(Q,R|m0, θ) with respect to R. Finally, if the

updated R value through Equation (18) does not satisfy the safety stock constraint,

let R = µ+ kσ. In case (ii), set R = µ+ kσ and solve for Q using Equation (17) for

M2(Q,R|m0, θ). Note that given R, the Q minimizing M2(Q,R|m0, θ) will be given

by Equation (17) due to the convexity of M2(Q,R|m0, θ) with respect to Q. Finally,

if the updated Q value through Equation (17) is over the truck capacity available, let

Q = m0v. This routine to solve S-(Q,R)-TL(m0, θ) is summarized as follows:

Routine 2: Solving S-(Q,R)-TL(m0, θ)

0: Let θ, C2(QC
2 (m0), RC

2 (m0),m0), and E2(QE
2 (m0), RE

2 (m0),m0)

be given:

1: Determine (Qθ
2(m0), Rθ

2(m0)) using the iterative method of

Hadley and Whitin (1963)

2: If Qθ
2(m0) > m0v

3: Set Qθ
2(m0) = m0v and determine Rθ

2(m0) using Equation (18)

4: If Rθ
2(m0) < µ+ kσ

5: Set Rθ
2(m0) = µ+ kσ

6: If Rθ
2(m0) < µ+ kσ

7: Set Rθ
2(m0) = µ+ kσ and determine Qθ

2(m0) using Equation (17)

8: If Qθ
2(m0) > m0v

9: Set Qθ
2(m0) = m0v

10: Return (Qθ
2(m0), Rθ

2(m0)).

Note that, similar to Routine 1, C2(QC
2 (m0), RC

2 (m0),m0) and E2(QE
2 (m0),

RE
2 (m0),m0) are input for Routine 2. To determine (QC

2 (m0), RC
2 (m0)), execute

Routine 2 with θ = 1, C2(QC
2 (m0), RC

2 (m0),m0) = 1, and E2(QE
2 (m0), RE

2 (m0),

m0) > 0. The resulting (Qθ
2(m0), Rθ

2(m0)) is taken as (QC
2 (m0), RC

2 (m0)). Sim-

ilarly, (QE
2 (m0), RE

2 (m0)) can be estimated by executing Routine 2 with θ = 0,

E2(QE
2 (m0), RE

2 (m0),m0) = 1, and C2(QC
2 (m0), RC

2 (m0),m0) > 0.
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PF 2(m0) can be approximated via executing Routine 2 with different weight

values such that θ ∈ [0, 1]. Specifically, to generate ` + 1 solutions in PF 2(m0),

similar to Algorithm 1, Routine 2 can be run with θ values increasing from 0 to 1 in

increments of 1/`. Note that both (QC
2 (m0), RC

2 (m0)) and (QE
2 (m0), RE

2 (m0)) will be

in PF 2(m0).

Ideally, the purpose is to approximate the Pareto front of S-(Q,R)-TL, PF 2.

Prior to analysis of PF 2, note that Routine 2 is a heuristic approach for solving

S-(Q,R)-TL(m0, θ). S-(Q,R)-TL(m0, θ) is a nonlinear optimization problem with in-

equality constraints. Interior point methods are commonly used to solve nonlinear

optimization problems (see, e.g., Forsgren et al., 2002). However, in a set of numeri-

cal studies conducted to analyze the efficiency of Routine 2 compared to the interior

point method, it was observed that Routine 2 finds the same solutions or very close

solutions (sometimes better) with the interior point method solutions in less com-

putational time. Appendix B.2 gives the details of the numerical studies comparing

Routine 2 to the interior point method. Therefore, Routine 2 is used in approximating

PF 2.

In generating PF 2, PF 2(m) is compared for different m values. First, the

definition of the dominance between two PF 2(m) sets is needed:

Definition 1. PF 2(ma) dominates PF 2(mb) if any (Q,R) ∈ PF 2(ma) is Pareto

efficient compared to every (Q,R) ∈ PF 2(mb).

The dominance relation between two Pareto fronts is represented as PF 2(ma) ≺
PF 2(mb) as the minimization of both objective functions is considered. In the follow-

ing algorithm, PF 2(m) sets are generated until the next Pareto front, PF 2(m + 1)

is dominated by PF 2(m). Then, the final set of Pareto efficient solutions is selected

from the
m⋃
j=1

PF 2(j).

Algorithm 2, simply starting with one truck, generates a set of Pareto efficient

solutions using Routine 2, then checks whether making one more truck available for

inbound transportation can result in new Pareto efficient solutions. If not, adding

one more truck is not considered and Algorithm 2 terminates. Step 13 of Algorithm 2

finally compares all of the Pareto efficient solutions with the given number of trucks

to generate a set of Pareto efficient (Q,R,m) solutions.
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Algorithm 2: Approximating PF 2

0: Given problem parameters and `, set PF 2(0) = ∅, P̂F
2

= ∅,
and m = 1:

1: Let P̂F
2

:= P̂F
2
∪ PF 2(m− 1)

2: Execute Routine 2 with θ = 1, C2(QC
2 (m), RC

2 (m),m) = 1,

and E2(QE
2 (m), RE

2 (m),m) > 0

3: Set (Qθ
2(m), Rθ

2(m)) = (QC
2 (m), RC

2 (m))

4: Execute Routine 2 with θ = 0, C2(QC
2 (m), RC

2 (m),m) > 0,

and E2(QE
2 (m), RE

2 (m),m) = 1

5: Set (Qθ
2(m), Rθ

2(m)) = (QE
2 (m), RE

2 (m))

6: For j = 1 : `+ 1

7: Execute Routine 2 with θ = j−1
`

8: Set PF 2(m) := PF 2(m) ∪ {(Qθ
2(m), Rθ

2(m))}

9: End

10: Return PF 2(m)

11: If PF 2(m− 1) ≺ PF 2(m), go to step 13

12: Else, set m = m+ 1, go to step 1

13: Set PF 2 as the Pareto efficient solutions in P̂F
2
.

In comparing two sets of Pareto fronts with specific number of trucks in Step 11

of Algorithm 2, i.e., comparing PF 2(m−1) to PF 2(m), the Pareto efficient solutions

in PF 2(m−1)∪PF 2(m) are found using Routine 3 detailed below. If the resulting set

of Pareto efficient solutions is equal to PF 2(m− 1), this implies that PF 2(m− 1) ≺
PF 2(m). Furthermore, Routine 3 is also used in Step 13 to find the Pareto efficient

solutions in P̂F
2
. The details of Routine 3 are as follows:
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Routine 3: Finding the Pareto efficient solutions in a set S

0: Let Ci and Ei denote the cost and emissions of the ith member of S:

1: For i = 1 : |S|

2: For j = i+ 1 : |S|

3: If Ci < Cj and Ei < Ej

4: Set S := S − {(Cj, Ej)}

5: Else, if Ci > Cj and Ei > Ej

6: Set S := S − {(Ci, Ei)}

7: End

8: End

9: Return PF = S.

3.3. NUMERICAL STUDIES

In this section, a set of numerical studies is conducted to provide insights on the

two models discussed. Particularly, the focus is on three sets of numerical analyses:

(i) effects of demand variability and lead time duration, (ii) sustainability analysis of

different policies, and (iii) comparison of different carriers.

The routines and the algorithms discussed in Section 3.2 are coded in Matlab

2013 and all problem instances are solved using a personal computer with a 2.80 GHz

processer and 10 GB RAM. Throughout the numerical analyses, it is assumed that

the demand per unit time is normally distributed with mean λ and standard deviation

ϑ. This then suggests that the lead time demand is also normally distributed with

mean µ = τλ and standard deviation σ =
√
τϑ. For analyses (i)-(ii), the details

of the design of the problem instance generation and definitions of parameter values

are explained in Appendix B.3. The tables discussed in Sections 3.3.1 and 3.3.2 are

described and presented in Appendix B.4.

3.3.1. Effects of Demand Variability and Lead Time. This set of

numerical studies focuses on demonstrating the changes in the retailer’s expected

costs and carbon emissions per unit time with both LTL and TL transportation

as lead time demand variability and lead time duration change. In particular, for
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each transportation mode, the observed changes are compared in the cost minimizing

(Q,R) policy, emission minimizing (Q,R) policy, and average of the (Q,R) policies

in the Pareto front. The average of the (Q,R) policies in a Pareto front is calculated

by taking the average of the expected costs and carbon emission per unit over all the

Pareto-efficient (Q,R) policies that lay on the approximated Pareto front.

For investigating the effects of demand variability, 250 problem instances are

randomly generated for each of the 10 different values of lead time demand standard

deviation, σ, starting from 10 increasing up to 100 in increments of 10. Similarly, for

investigating the effects of lead time duration, 250 problem instances are randomly

generated for each of the 10 different values of lead time duration, τ , starting from 0.1

increasing up to 1 in increments of 0.1. Tables B.5 and B.6 summarize the average

changes for each σ value in expected costs and emissions for the cost minimizing

(Q,R) policy, the emission minimizing (Q,R) policy, and the average of the (Q,R)

policies in the Pareto front, for both LTL and TL transportation, respectively. Tables

B.7 and B.8 are constructed in the same manner, but showing the effects of each τ

value.

Figures 3.1 and 3.2, constructed from Tables B.5 and B.6 respectively, illustrate

the changes in expected costs and carbon emissions per unit time as σ increases under

LTL and TL transportation, respectively. It can be observed from Figures 3.1 and 3.2

that, as the standard deviation of the lead time demand increases, expected costs and

carbon emissions per unit time both increase. Similar results are observed through

simulation of real life cases by Daccarett-Garcia (2009) and Arikan et al. (2013). Note

that these results are not surprising as cost and emission functions have similar forms

and it has been discussed in the literature that expected costs increase with increasing

demand variability. Nevertheless, these observations have important implications

about green technology investment. Particularly, in recent studies, inventory control

and transportation models have been analyzed with green technology investment

decisions (see, e.g., Bae et al., 2011, Swami and Shah, 2013, Toptal et al., 2014). The

observations in Figures 3.1 and 3.2 suggest that an investment in demand variance

reduction is actually a green investment. Furthermore, if demand variance can be

reduced by investment such that the cost of investment is compensated by the decrease

in expected costs, it is possible to reduce carbon emissions without additional costs.
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(a) σ vs. expected costs
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(b) σ vs. expected emissions

Figure 3.1. σ vs. costs and emissions under different policies with LTL transportation
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(a) σ vs. expected costs
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(b) σ vs. expected emissions

Figure 3.2. σ vs. costs and emissions under different policies with TL transportation

Figures 3.3 and 3.4, constructed from Tables B.7 and B.8 respectively, illustrate

the changes in expected costs and carbon emissions per unit time as τ increases under

LTL and TL transportation, respectively. It can be observed from Figures 3.3 and

3.4 that, as the lead time increases, expected costs and carbon emissions per unit

time both increase under any policy. As expected, similar observations have been

made with the increase of the standard deviation of the lead time demand; hence, the

observations in Figures 3.3 and 3.4 suggest that if an investment for reducing lead time

is compensated by the decrease in costs, it will provide additional benefits by reducing
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expected carbon emissions. Note that, specially for TL transportation, the lead time

can be changed by controlling the speed of trucks; however, the speed of the truck

affects the emission generation rate (ê in this setting). The study by Jabali et al.

(2012), for instance, analyzes a green vehicle routing problem, where truck speed

is a decision variable and emission generation rate of a truck is a function of the

speed (furthermore, this function is a convex function with decreasing and increasing

sections). Depending on the range of the speed, an increase in speed (or decrease in

lead time) can increase or decrease the emission generation rate. The authors believe

that the current observations and the models presented in this section will be helpful

in analyzing sustainable stochastic demand inventory systems with controllable lead

time (where delivery speed is a decision variable). This problem is posed as a future

research direction in Section 3.4.
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(b) τ vs. expected emissions

Figure 3.3. τ vs. costs and emissions under different policies with LTL transportation
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(b) τ vs. expected emissions

Figure 3.4. τ vs. costs and emissions under different policies with TL transportation

3.3.2. Sustainability Analysis. This set of numerical studies focuses

on demonstrating the changes in the retailer’s expected costs and carbon emissions

when the retailer adopts a (Q,R) policy from the set of policies in the Pareto front.

Recall that cost minimizing and emission minimizing policies are in the Pareto front

both with LTL and TL transportation. Denote any (Q,R), (Q,R,m), and (Q,R,x)

policy in PF 1, PF 2, and PF 3 respectively, other than the cost minimizing policy, as

sustainable (Q,R) and sustainable (Q,R,m) policies. In the following analysis, the

focus is specifically on the percent changes in expected costs and carbon emissions

due to preferring a sustainable policy instead of the cost minimizing policy.

For LTL transportation, the following two measures are defined:

∆C1 =
C1(QS, RS)− C1(QC , RC)

C1(QC , RC)
× 100%, (19)

∆E1 =
E1(QS, RS)− E1(QC , RC)

E1(QC , RC)
× 100%, (20)

where (QC , RC) and (QS, RS) denote the cost minimizing and a sustainable (Q,R)

policy, respectively. That is, ∆C1 and ∆E1 define the percent changes in expected

costs and expected emissions due to preferring a sustainable (Q,R) policy from PF 1

over the cost minimizing (Q,R) policy under LTL transportation. Similarly, for TL
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transportation, the following two measures are defined:

∆C2 =
C2(QS, RS,mS)− C2(QC , RC ,mC)

C2(QC , RC ,mC)
× 100%, (21)

∆E2 =
E2(QS, RS,mS)− E2(QC , RC ,mC)

E2(QC , RC ,mC)
× 100%, (22)

where (QC , RC ,mC) and (QS, RS,mS) denote the cost minimizing and a sustainable

(Q,R,m) policy, respectively. That is, ∆C2 and ∆E2 define the percent changes

in expected costs and expected emissions due to preferring a sustainable (Q,R,m)

policy from PF 2 over the cost minimizing (Q,R,m) policy under TL transportation.

In Tables 3.1 and 3.2, for each problem instance solved, the percent changes

due to switching from the cost minimizing policy to any sustainable policy in the

Pareto front are calculated, i.e., ∆C1, ∆E1, ∆C2, and ∆E2 values for each policy

in the Pareto front other than the cost minimizing policy, and then determine the

average percent changes for that problem instance by taking the average of ∆C1,

∆E1, ∆C2, ∆E2, ∆C3, and ∆E3 values over the sustainable policies in the Pareto

front. Then, the averages are calculated of the average percent changes over 250

problem instances solved for LTL and TL carriers for each σ value, respectively.

Tables 3.3 and 3.4 are constructed in the same manner for the LTL and TL carriers,

respectively, but for each τ value. Note that a positive (negative) value for percent

changes in Tables 3.1–3.4 indicate an increase (decrease). It can be observed from

Tables 3.1–3.4 that when the retailer prefers a (QS, RS) policy over (QC , RC) and a

(QS, RS,mS) policy over (QC , RC ,mC), the percent increase in expected costs is less

than the percent decrease in expected carbon emissions. These observations suggest

that the retailer can significantly reduce carbon emissions with relatively less increase

in costs by adopting a sustainable policy over the cost minimizing policy. Note that

similar results are given by Chen et al. (2013). Furthermore, one can observe that

as the standard deviation of lead time demand and the lead time duration increase,

the percent changes in both costs and emissions tend to increase; thus a conclusion

cannot be made that as the standard deviation of lead time demand or the lead time

duration increase, the retailer will observe less or more increase in costs per unit

decrease in emissions.

Nevertheless, in addition to defining the percent changes in expected costs and
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carbon emissions due to switching from the cost minimizing policy, the cost of emission

reduction is defined similar to Chen et al. (2013) and Toptal et al. (2014) that as the

increase in expected costs per unit decrease in expected carbon emissions, denoted

by CoR1 and CoR2 for LTL and TL transportation, respectively, as follows:

CoR1 =
C1(QS, RS)− C1(QC , RC)

E1(QC , RC)− E1(QS, RS)
, (23)

CoR2 =
C2(QS, RS,mS)− C2(QC , RC ,mC)

E2(QC , RC ,mC)− E2(QS, RS,mS)
, (24)

Tables 3.1–3.4 document the averages of minimum, maximum, and average cost

of reduction observed in the Pareto fronts under LTL and TL transportation. It can

be observed that from Tables 3.1 and 3.3 that, under LTL transportation, minimum,

maximum, and average cost of reduction is increasing with increasing demand vari-

ability and lead time duration. These suggest that, when demand variance is higher

or the lead time is longer, it would cost more to reduce emissions for the retailer if

they use LTL transportation for inbound shipment. On the other hand, for TL trans-

portation, a strictly increasing or decreasing pattern is not observed for minimum,

maximum, and average of the cost of reduction; as shown in Tables 3.2 and 3.4.

In Table 3.1, for a single problem instance solved, ∆C1 and ∆E1 are calculated

for any sustainable policy in PF 1, for each σ value. The average values of ∆C1 and

∆E1 for the problem instance are denoted by ∆C
1

and ∆E
1
, respectively. Similarly,

CoR1 for any sustainable policy in the Pareto front of the single problem instance

is calculated. Then, the minimum, maximum, and the average of these values is

determined, denoted by CoRmin, CoRmax, and CoRavg, respectively. Table 3.2 is

constructed similarly to Table 3.1 for a TL carrier. Tables 3.3 and 3.4 are constructed

similarly to Tables 3.1 and 3.2, but for each τ value.
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Table 3.1. Percent changes and cost of reduction with LTL transportation as σ
changes

Percent Changes CoR1

σ ∆C
1

∆E
1

CoR1
min CoR1

avg CoR1
max

10 1.89% -5.40% 0.02223 0.30102 0.65106
20 1.90% -5.41% 0.02224 0.30248 0.65473
30 1.91% -5.42% 0.02225 0.30409 0.65904
40 1.92% -5.44% 0.02227 0.30574 0.66356
50 1.94% -5.46% 0.02229 0.30742 0.66825
60 1.95% -5.48% 0.02232 0.30912 0.67298
70 1.97% -5.50% 0.02235 0.31081 0.67773
80 1.99% -5.52% 0.02238 0.31248 0.68247
90 2.01% -5.54% 0.02242 0.31415 0.68720
100 2.03% -5.57% 0.02245 0.31580 0.69193
avg. 1.95% -5.47% 0.02232 0.30831 0.67090

Table 3.2. Percent changes and cost of reduction with TL transportation as σ changes

Percent Changes CoR2

σ ∆C
2

∆E
2

CoR2
min CoR2

avg CoR2
max

10 1.59% -2.65% 0.28478 1.01158 4.61865
20 1.67% -2.78% 0.26732 0.86926 2.45863
30 1.73% -2.85% 0.30418 0.81770 1.88143
40 1.76% -2.90% 0.29625 0.76999 1.63953
50 1.81% -3.00% 0.29815 0.75223 1.69695
60 1.84% -3.00% 0.30667 0.75546 1.63063
70 1.88% -2.99% 0.31121 0.75325 1.52936
80 1.89% -3.09% 0.29755 0.73754 1.41684
90 1.89% -3.12% 0.30640 0.75331 1.56077
100 1.92% -3.17% 0.36255 0.81322 1.59399
avg. 1.80% -2.95% 0.30351 0.80335 2.00268
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Table 3.3. Percent changes and cost of reduction with LTL transportation as τ
changes

Percent Changes CoR1

τ ∆C
1

∆E
1

CoR1
min CoR1

avg CoR1
max

0.1 1.91% -5.43% 0.02225 0.30435 0.65976
0.2 1.93% -5.45% 0.02228 0.30653 0.66576
0.3 1.94% -5.47% 0.02230 0.30823 0.67050
0.4 1.96% -5.48% 0.02233 0.30967 0.67452
0.5 1.97% -5.50% 0.02235 0.31093 0.67807
0.6 1.98% -5.51% 0.02237 0.31206 0.68127
0.7 1.99% -5.53% 0.02239 0.31310 0.68420
0.8 2.00% -5.54% 0.02241 0.31406 0.68694
0.9 2.02% -5.55% 0.02243 0.31495 0.68950
1.0 2.03% -5.57% 0.02245 0.31580 0.69193
avg. 1.97% -5.50% 0.02236 0.31097 0.67824

Table 3.4. Percent changes and cost of reduction with TL transportation as τ changes

Percent Changes CoR2

τ ∆C
2

∆E
2

CoR2
min CoR2

avg CoR2
max

0.1 1.74% -2.86% 0.30274 0.81512 1.83553
0.2 1.79% -2.96% 0.29797 0.75004 1.48228
0.3 1.82% -3.01% 0.30051 0.78220 2.85438
0.4 1.85% -2.97% 0.32612 0.77277 1.56077
0.5 1.88% -3.03% 0.30643 0.74799 1.53125
0.6 1.88% -3.09% 0.30099 0.73926 1.45681
0.7 1.90% -3.11% 0.30268 0.74558 1.46904
0.8 1.89% -3.12% 0.30465 0.75027 1.53601
0.9 1.91% -3.07% 0.39815 0.85775 1.59170
1.0 1.92% -3.17% 0.36255 0.81322 1.59399
avg. 1.86% -3.04% 0.32028 0.77742 1.69118
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3.3.3. Transportation Mode Comparison. In this set of numerical

studies, examples are presented on how the models and solution methods proposed in

this paper can be used by a retailer for comparing two LTL carriers, a LTL carrier and

a TL carrier, and two TL carriers. The comparison may be made not only in terms

of costs but also from an environmental point of view. Prior to discussing examples,

in the case of a single carrier option, the retailer can adopt a (Q,R) policy from the

Pareto front depending on their sustainability and cost goals. Furthermore, in the

case of two carriers of any type, i.e., LTL or TL, the retailer can approximate the

Pareto front with each carrier and compare the Pareto fronts. If one of the Pareto

fronts dominates the other Pareto front, the carrier with the dominating Pareto front

would be preferred as it enables (Q,R) or (Q,R,m) policies with lower expected costs

and as well as lower carbon emissions per unit time. In the case there is no dominance

relation between the two Pareto fronts, as is the case in the following examples, the

preference will depend on the retailer’s sustainability and cost goals.

The settings of the following examples are given in Appendix B.54.

Example 5. Consider that a retailer is planning to adopt a (Q,R) policy for a single

product. Suppose that there are two LTL carriers available for the retailer’s inbound

shipment: LTL carrier A and LTL carrier B. LTL carriers have different per unit

transportation costs and per unit emission generation rates (see Table B.10). Figure

3.5a shows the retailer’s set of Pareto efficient (Q,R) policies when the retailer con-

tracts with LTL carrier A and LTL carrier B for their inbound transportation. The

intersection point of the two Pareto fronts is when expected costs amount to 20,374

and expected emissions amount to 123,174 per unit time.

• If the retailer does not have environmental considerations (i.e., they only want

to minimize expected costs per unit time), the retailer would prefer to contract

with LTL carrier A as LTL carrier A would result in lower expected costs per

unit time. That is, the cost minimizing policy with LTL carrier A has lower

expected costs per unit time compared to the cost minimizing policy with LTL

carrier B.

4For Examples 5-7, the point where two different Pareto fronts intersect (see, e.g., Figure 3.5) is
estimated by assuming a straight line between the two points of each Pareto front, where these two
points are the first points to dominate the points of the other Pareto front.
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• If the retailer does not have cost considerations (i.e., they only want to minimize

expected carbon emissions per unit time), the retailer would prefer to contract

with LTL carrier B as LTL carrier B would result in lower expected carbon

emissions per unit time. That is, the emission minimizing policy with LTL

carrier B has lower expected carbon emissions per unit time compared to the

emission minimizing policy with LTL carrier A.

• If the retailer does have both cost and environmental considerations, depending

on the level of their sustainability or cost goals, the retailer can prefer LTL

carrier A or LTL carrier B:

– If the retailer targets their expected carbon emissions per unit time to

be less than E such that E < 123, 174, they would prefer LTL carrier B

because LTL carrier B results in lower expected costs per unit time at any

expected carbon emissions target E per unit time if E < 123, 174. For

expected carbon emissions target E per unit time such that E > 123, 174,

the retailer would prefer LTL carrier A because LTL carrier A results in

lower expected costs per unit time at any expected carbon emissions target

E per unit time if E > 123, 174.

– If the retailer, on the other hand, targets their expected costs to be less

than C such that C < 20, 374, they would prefer LTL carrier A because

LTL carrier A results in lower expected emissions at any expected cost

target C per unit time if C < 20, 374. For expected costs target C per

unit time such that C > 20, 374, the retailer would prefer Carrier B because

LTL carrier B results in lower expected carbon emissions per unit time at

any expected cost target C per unit time if C > 20, 374.

Example 6. Consider the same retailer of Example 5 and suppose that there are

two carriers available for the retailer’s inbound shipment: a LTL carrier and a TL

carrier. Figure 3.5b shows the retailer’s set of Pareto efficient (Q,R) and (Q,R,m)

policies when the retailer contracts with the LTL carrier and TL carrier, respectively,

for their inbound transportation. The intersection point of the two Pareto fronts is

when expected costs amount to 20,377 and expected emissions amount to 123,346 per

unit time.
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Similar to Example 5, the retailer’s preference of carrier will depend on their

sustainability or cost considerations. It can be observed that when the retailer’s

objective is only to minimize expected costs (expected carbon emissions) per unit

time, they would prefer to contract with the LTL carrier (TL carrier). If the retailer

targets their expected carbon emissions at a level less than (greater than) 123,346

per unit time, they would prefer to contract with the TL carrier (LTL carrier). On

the other hand, if the retailer targets their expected costs at a level less than (greater

than) 20,377 per unit time, they would prefer to contract with the LTL carrier (TL

carrier).

Example 7. Consider the same retailer of Examples 5 and 6, and suppose that there

are two TL carriers available for the retailer’s inbound shipment: TL carrier A and

TL carrier B. Figure 3.5c shows the retailer’s set of Pareto efficient (Q,R,m) policies

when the retailer contracts with the TL carrier A and TL carrier B for their inbound

transportation. The intersection point of the two Pareto fronts is when expected costs

amount to 20,328 and expected emissions amount to 123,805 per unit time.

Similar to Examples 5 and 6, when the retailer’s objective is only to minimize

expected costs (expected carbon emissions) per unit time, they would prefer to con-

tract with TL carrier A (TL carrier B). If the retailer targets their expected carbon

emissions at a level less than (greater than) 123,805 per unit time, they would pre-

fer to contract with TL carrier B (TL carrier A). On the other hand, if the retailer

targets their expected costs at a level less than (greater than) 20,328 per unit time,

they would prefer to contract with TL carrier A (TL carrier B).

Note that while Examples 5–7 compare two carriers, similar analyses can be

done when the retailer has more than two carrier options. Furthermore, note that

similar analyses can be used when the retailer is subject to carbon cap constraints.

The targeted carbon emissions level per unit time can be considered as the carbon cap

regulated by governmental agencies. Nevertheless, as noted by Benjaafar et al. (2013)

and Chen et al. (2013), companies not only have carbon caps because of governmental

regulations but also because of the green goals they set as mentioned in Examples

5–7.
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Figure 3.5. Comparison of different carriers

3.4. CONCLUSIONS AND FUTURE RESEARCH

In this section, sustainability was integrated into continuous review inventory

control systems by formulating a bi-objective (Q,R) model with expected costs and

expected carbon emissions minimization. This is the first study that introduces
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sustainability in continuous review inventory systems. The sustainable (Q,R) model

was analysed with two different transportation modes: LTL and TL transportation.

For each case, a method was proposed to approximate the Pareto front by determin-

ing a set of Pareto efficient (Q,R) policies. Particularly, for the sustainable (Q,R)

model with LTL transportation, a normalized weighted approach based method has

been proposed for approximating the Pareto front. For the sustainable (Q,R) model

with TL transportation, utilizing the method of LTL transportation, a method is

proposed that compares Pareto fronts with given transportation capacities and then

generates a set of Pareto efficient policies with different numbers of trucks used.

Defining a sustainable (Q,R) model also enabled analyzing the effects of de-

mand variance and lead time duration on expected costs as well as expected carbon

emissions. As expected, it is observed that both expected costs and carbon emissions

increase as demand variance and lead time duration increase with both LTL and TL

transportation. The managerial insight of these observations is that an investment

opportunity to reduce demand variance or lead time duration can be a free or low

cost green action if the investment spending is fully or partially compensated by the

reduction in expected costs because expected carbon emissions will also be reduced.

Through a set of numerical analyses, it is further shown that adopting a sustainable

(Q,R) policy instead of a cost minimizing (Q,R) policy for a continuous review in-

ventory control system with LTL or TL transportation can reduce carbon emissions

without significant cost increases. These observations generalize the results of Chen

et al. (2013) for deterministic inventory control to stochastic continuous review in-

ventory control with both LTL and TL transportation. Finally, how the methods

proposed in this section can be used by a retailer to select a carrier from a set of

available carriers is discussed, considering not only the retailer’s cost but also their

environmental goals.

An immediate future research direction would be to analyze continuous review

inventory control systems under carbon emission regulation policies. A (Q,R) model

with carbon taxing, carbon trading, carbon cap, and carbon offset policies can be

studied. The authors believe that the emissions function defined in this section will

be utilized in such future research studies. Furthermore, analyses of integrated in-

vestment decisions on lead time and demand variance reduction and inventory control
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decisions is a promising research area. Especially, as mentioned in Section 3.3, the

sustainable (Q,R) model under TL transportation with lead time flexibility due to

controllable truck speed is an important and practical future research direction. The

sustainable (Q,R) model with TL transportation can also be studied by considering

availability of different truck types for the inbound shipments. For instance, Section

5 considers heterogeneous freight trucks in a multi-item inventory control and trans-

portation model under stochastic demand. Finally, the sustainable continuous review

inventory control model can be extended to multi-item inventory systems, similar

to the settings considered in Sections 4 and 5, and/or multi-echelon supply chains,

similar to the settings analyzed by Saadany et al. (2011); Swami and Shah (2013);

Zavanella et al. (2013); Wahab et al. (2011); Jaber et al. (2013).
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4. COORDINATED MULTI-ITEM INVENTORY SYSTEMS:

ECONOMICAL AND ENVIRONMENTAL IMPLICATIONS OF

GROUPING STRATEGIES

In this section, a multi-item inventory control system is investigated with envi-

ronmental considerations. In many practical scenarios, the companies need to jointly

control inventories of different items to reduce costs by utilizing the shared resources

better. A joint replenishment problem analyzes how to group replenishment of differ-

ent items together to minimize total costs. Grouping items together enables efficient

use of the transportation capacity; and, hence, can decrease transportation costs.

Other inventory related costs such as inventory holding costs or items’ individual or-

der setup costs, on the other hand, may increase due to enforcing group replenishment.

The main motivation of the joint replenishment problem is to find the best grouping

policy to balance this trade-off in order to minimize costs. In this section, the joint

replenishment problem is extended by considering not only an economical objective

but also an environmental objective. Dekker et al. (2012) note that economical ob-

jectives are not the only objectives for companies any longer and it should be noted

that economical as well as environmental objectives are simultaneously considered in

supply chain design models (see, e.g., Li et al., 2008, Kim et al., 2009, Ramudhin

et al., 2010, Wang et al., 2011, Chaabane et al., 2012) as well as in inventory control

models (see, e.g., Bouchery et al., 2012, Chan et al., 2013). This is the first study to

integrate environmental considerations in coordinated multi-item inventory systems

and one of the limited studies that analyzes a multi-objective joint replenishment

problem.

While the single objective JRPs, in both deterministic and stochastic demand

settings, have been well studied in the literature (see, e.g. the review by Khouja

and Goyal, 2008), there are limited studies on multi-objective JRPs. Particularly,

Wee et al. (2009) model a fuzzy bi-objective joint replenishment problem for deteri-

orating items such that total average profit and the return on inventory investment

are maximized. They consider the indirect grouping strategy in the two models pre-

sented, where the first model has fuzzy shortage costs and the second model has
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fuzzy demand values. Fuzzy programming approaches are used to solve the resulting

models. In another study, Yousefi et al. (2012) formulate a bi-objective joint replen-

ishment problem problem where total costs (including inventory holding and order

setup costs) as well as transportation costs are simultaneously minimized. They also

consider the indirect grouping strategy and develop three different genetic algorithms

to solve the resulting model. However, the model presented by Yousefi et al. (2012)

is problematic as a retailer is unlikely to minimize different cost terms separately,

i.e., formulating a multi-objective model where different cost terms are minimized is

not realistic as a retailer is likely to minimize the total costs in practice. In a recent

study, Wang et al. (2013) analyze a multi-objective stochastic joint replenishment

problem with indirect grouping strategy. Particularly, due to difficulty of shortage

cost estimations, they formulate the problem of interest as a multi-objective model

where the costs (inventory holding plus setup costs) and total shortage quantity of

the items are simultaneously minimized. A set of heuristic methods are proposed for

the resulting bi-objective model.

Particularly, a sustainable joint replenishment problem is modeled as a bi-

objective joint replenishment problem, where one of the objectives is cost minimiza-

tion and the other is carbon emissions minimization. Two common grouping strate-

gies in coordinated multi-item inventory systems are the indirect grouping strategy

and the direct grouping strategy (Khouja and Goyal, 2008). In the indirect grouping

strategy, a base replenishment cycle length is specified to place an order and it is

determined how often each item is going to be included in an order. Therefore, the

groups of items replenished in the same order vary over time. On the other hand, in

the direct grouping strategy, the groups of items to be always replenished together

are determined and for each such group, a replenishment cycle length is specified.

The sustainable joint replenishment problem is formulated with both of these group-

ing strategies. Furthermore, using the properties of the costs and carbon emissions

functions within the formulations of each grouping strategy, an evolutionary heuris-

tic method is developed for the sustainable joint replenishment problem under each

grouping strategy. For each sustainable joint replenishment problem, these heuristic

methods give the decision maker a set of alternative solutions. A numerical study is

conducted to demonstrate the convergence of these evolutionary heuristic methods.



75

Note that genetic algorithms are successfully used to solve single objective JRPs.

In particular, Khouja et al. (2000) compare genetic algorithms to RAND (proposed

by Kaspi and Rosenblatt, 1991), a commonly used heuristic method for solving deter-

ministic JRPs with indirect grouping. Through an extensive numerical experiment,

they note that genetic algorithms can find better solutions than RAND and did not

find solutions with more than 1% increased cost. Furthermore, it is noted that genetic

algorithms can easily be modified to account for different constraints and practical

settings; thus, different variations of JRPs have been solved with genetic algorithms

in the literature.

Chan et al. (2003), for instance, propose a genetic algorithm to solve a multi-

buyer joint replenishment problem with indirect grouping and discuss its efficiency.

Olsen (2005) develop a genetic algorithm for the joint replenishment problem with

direct grouping and compare its solution to the joint replenishment problem with

indirect grouping solved by RAND. In a similar study, Olsen (2008) use genetic al-

gorithms to solve a joint replenishment problem with indirect grouping, where the

minor setup costs depend on the items included within an order. A genetic algorithm

for the joint replenishment problem with indirect grouping under a resource restric-

tion is studied by Moon and Cha (2006). Hong and Kim (2009) construct a genetic

algorithm for the joint replenishment problem with indirect grouping, where a base

replenishment cycle assumption is relaxed. JRPs with other modifications are also

solved with genetic algorithms (see, e.g., Yao, 2007, Wang et al., 2012b, Wang et al.,

2012a) and genetic algorithms are used for bi-objective JRPs (Yousefi et al., 2012,

Wang et al., 2013).

In this section, the two genetic algorithms developed have similarities in their

chromosome representations and mutation operations; however, they have differences

in the fitness evaluations. Specifically, for the indirect grouping strategy, the inte-

ger decision variables (the multiplier of an item determining the replenishment cycle

length for the item) are used to represent the chromosomes and exact lower and

heuristic upper bounds are developed on the genes of the chromosomes, i.e., the inte-

ger decision variables, for a Pareto efficient solution. These bounds are utilized within

the mutation operations of the genetic algorithm proposed for the indirect grouping

strategy. For the direct grouping strategy, the binary decision variables (defining
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which item should be included in which group) are represented by an integer chromo-

some such that each gene defines the group an item belongs to. Since the minimum

and maximum number of groups are defined, the genes of a chromosome have exact

lower and upper bounds. Note that along with integer and binary decision variables,

JRPs have continuous decision variables for each grouping strategy. In fitness evalu-

ation of each genetic algorithm, a Pareto front of these continuous decision variables

is therefore first generated for a given chromosome. While the joint replenishment

problem with the indirect grouping strategy has a single continuous decision variable,

the joint replenishment problem with the direct grouping strategy has multiple con-

tinuous decision variables. Taking this into account, different routines are discussed

to approximate the Pareto front of the continuous decision variables for a given chro-

mosome. However, a common dominance relation is used between two Pareto fronts

for determining the parent chromosomes in each genetic algorithm.

Specifically, JRPs consider a major order setup cost with each replenishment and

including an item’s order within a replenishment has a minor setup cost. The major

order setup cost generally accounts for the cost of the transportation capacity such as

the freight truck used for inbound shipment. It is discussed in the joint replenishment

problem literature that the ratio of the major setup cost to minor setup costs is an

important factor for comparing indirect and direct grouping strategies in terms of cost

performance (van Eijs et al., 1992). It is demonstrated that this ratio is also important

for comparing the grouping strategies in terms of their environmental performance.

Furthermore, the ratio of carbon emissions from each replenishment to the carbon

emissions due to individual items’ orders is crucial for the cost and environmental

performances of grouping strategies.

In this section, the contributions are as follows. First, sustainability is integrated

into a coordinated multi-item inventory control model by formulating a bi-objective

joint replenishment problem, referred to as the sustainable joint replenishment prob-

lem, which is analyzed under two common practical grouping strategies. An efficient

evolutionary heuristic method is developed for each grouping strategy. Then, it is

demonstrated that the grouping strategy adopted is important for not only cost per-

formance but also environmental performance. This suggests that, depending on a

company’s cost and environmental targets, a grouping strategy may be preferred over
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the other. Furthermore, a set of sensitivity analyses is noted to illustrate in which

scenarios a grouping strategy can be preferred over the other.

4.1. SUSTAINABLE JOINT REPLENISHMENT PROBLEM

Consider a retailer who needs to control the inventory of a set of n products.

Let the products be indexed by i such that i = {1, 2, . . . , n}. It is assumed that each

product operates under the assumptions of the EOQ model. That is, any product i

has a constant demand rate denoted by λi (units/unit time). Let pi be the per unit

purchase cost for product i. Inventory holding cost of hi is charged for carrying one

unit of product i in inventory per unit time. The retailer is subject to a major setup

cost of A money units for placing an order. If product i is included within an order,

a minor setup cost of ai money units is charged additional to the major setup cost.

Under the current operations, a significant level of carbon emissions are gen-

erated. The carbon emissions are generated from inventory holding, warehousing,

packaging, logistics, and transportation operations (Hua et al., 2011, Benjaafar et al.,

2013). Particularly, let ĥi denote the carbon emissions generated due to keeping one

unit of product i in inventory per unit time (this can be considered as the carbon

emissions generated by electricity and warehousing activities, see, e.g., Chen et al.,

2013) and let Â be the carbon emissions amount generated by placing an order (this

can be considered as the carbon emissions generated by the weight of the empty truck,

see, e.g., Hua et al., 2011). Furthermore, assume that replenishment of any product

i generates a fixed amount of carbon emissions denoted by âi (this can be considered

as the carbon emissions generated by packaging and warehouse activities required for

product i, see, e.g., Ülkü, 2012, Toptal et al., 2014).

The main idea of the joint replenishment problem is to order products in groups

to avoid paying high major setup costs. This can be done with two strategies (Khouja

and Goyal, 2008): indirect grouping and direct grouping. The retailer’s total costs

and total emissions per unit time will depend on the grouping strategy adopted.

Similar to Bouchery et al. (2012), this section assumes that the retailer not only

minimizes costs but also emissions. This bi-objective optimization problem will be

referred to as the sustainable joint replenishment problem (SJRP). In what follows,

the retailer’s sustainable joint replenishment problem is formulated under indirect

and direct grouping strategies.
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4.1.1. Indirect Grouping Strategy: Formulation and Preliminaries.

When the indirect grouping strategy is adopted, the retailer determines a base re-

plenishment cycle length t, and an integer number mi for each product i such that

product i’s replenishment cycle length is mit (i.e., product i is included in every mth
i

order). Under indirect grouping, the groups of products ordered vary depending on

the order timing, that is, there is no fixed group of products that are always being

ordered together. The retailer is subject to purchase, inventory holding, and order

setup costs. In particular, under the indirect grouping strategy, the retailer’s total

costs per unit time read as

C1(t,m) =
n∑
i=1

piλi +
1

t

(
A+

n∑
i=1

ai/mi

)
+
t

2

n∑
i=1

hiλimi, (25)

where m = [m1,m2, . . . ,mn]t, i.e., m is the n-vector of mi values. The first term of

Equation (25) is the total procurement cost, the second term determines the total

order setup cost, and the last term is the total inventory holding cost per unit time.

One can similarly derive the carbon emissions function per unit time. Recall that

the carbon emissions are generated from procurement, inventory holding, and order

setups. Then the retailer’s carbon emissions per unit time under indirect grouping

strategy amount to

E1(t,m) =
n∑
i=1

p̂iλi +
1

t

(
Â+

n∑
i=1

âi/mi

)
+
t

2

n∑
i=1

ĥiλimi, (26)

where the first, second, and third terms of Equation (26) define the carbon emissions

due to procurement, order setups, and inventory holding per unit time, respectively.

The sustainable joint replenishment problem with indirect group strategy (SJRP-

IGS) then reads as

(SJRP-IGS) : min C1(t,m) =
∑n

i=1 piλi + 1
t

(A+
∑n

i=1 ai/mi) + t
2

∑n
i=1 hiλimi

min E1(t,m) =
∑n

i=1 p̂iλi + 1
t

(
Â+

∑n
i=1 âi/mi

)
+ t

2

∑n
i=1 ĥiλimi

s.t. t ≥ 0

mi ∈ {1, 2, . . .}.
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It should be noted that even the single objective joint replenishment problem with

indirect grouping is a NP-hard problem (Arkin et al. (1989)); therefore, the focus

is on developing a heuristic solution method for the bi-objective joint replenishment

problem defined in SJRP-IGS. The following properties will be utilized in Section 4.2

for constructing the heuristic solution method.

Let (tC ,mC) be the solution minimizing C1(t,m) and (tE,mE) be the solution

minimizing E1(t,m). Note that, for a given m, both C1(t,m|m) and E1(t,m|m)

are strictly convex with respect to t; hence, for the given m, the t value minimizing

C1(t,m|m), denoted by tC(m), and the t value minimizing E1(t,m|m), denoted by

tE(m), can be determined via the first order conditions. In particular, one can show

that

tC(m) =

√
2(A+

∑n
i=1 ai/mi)∑n

i=1 hiλimi

, (27)

tE(m) =

√√√√2(Â+
∑n

i=1 âi/mi)∑n
i=1 ĥiλimi

. (28)

It then follows that tC = tC(mC) and tE = tE(mE).

Similarly, it can be observed that for a given t, both C1(t,m|t) and E1(t,m|t) are

the summations of n strictly convex functions of mi values. Particularly, C1(t,m|t) =∑n
i=1 piλi+A/t+

∑n
i=1C

1
i (mi|t) where C1

i (mi) = (1/t)
∑n

i=1 ai/mi+(t/2)
∑n

i=1 hiλimi.

Thus, for the given t, the m value minimizing C1(t,m|t) will be mC(t) = [mC
1 (t),

mC
2 (t), . . . ,mC

n (t)]t such that

mC
i (t) = arg min{C1

i (bm̃C
i (t)c|t), C1

i (dm̃C
i (t)e|t)} (29)

where

m̃C
i (t) =

1

t

√
2ai
hiλi

. (30)

Moreover, E1(t,m|t) =
∑n

i=1 p̂iλi+Â/t+
∑n

i=1 E
1
i (mi|t) where E1

i (mi) = 1/t
∑n

i=1 âi/

mi+(t/2)
∑n

i=1 ĥiλimi. Therefore, for the given t, the m value minimizing E1(t,m|t)
will be mE(t) = [mE

1 (t),mE
2 (t), . . . ,mE

n (t)]t such that

mE
i (t) = arg min{E1

i (bm̃E
i (t)c|t), E1

i (dm̃E
i (t)e|t)}, (31)
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where

m̃E
i (t) =

1

t

√
2âi

ĥiλi
. (32)

It then follows that mC = mC(tC) and mE = mE(tE).

4.1.2. Direct Grouping Strategy: Formulation and Preliminaries.

When direct grouping strategy is adopted, the retailer determines the products that

are grouped together and the replenishment cycle lengths for the individual groups of

products. Under direct grouping, each product is included within a single group and

the products in the same group are ordered simultaneously. Note that the retailer can

have at most n of such groups. Therefore, let Gj for j = 1, 2, . . . , n define a possible

group and let

xij =

 1 if product i is in Gj,

0 otherwise.

Once xij values are known, the groups will be defined. The retailer further needs to

determine the replenishment cycle length for each group formed. Let tj define the

replenishment cycle length for the jth group. Similar to indirect grouping, the retailer

is subject to purchase, inventory holding, and order setup costs. In particular, under

the direct grouping strategy, the retailer’s total costs per unit time read as

C2(T,X) =
n∑
i=1

piλi +
n∑
j=1

[A+
∑n

i=1 aixij]

tj
+

1

2

n∑
j=1

n∑
i=1

tjhiλixij, (33)

where T = [t1, t2, . . . , tn]t, i.e., T is the n-vector of tj values and X is the n × n

matrix of xij values. The first, second, and third terms of Equation (33) define the

total procurement cost, total order setup cost, and total inventory cost per unit time,

respectively.

Carbon emissions function per unit time has a similar form. Particularly, the

retailer’s carbon emissions per unit time under the direct grouping strategy amount

to

E2(T,X) =
n∑
i=1

p̂iλi +
n∑
j=1

[
Â+

∑n
i=1 âixij

]
tj

+
1

2

n∑
j=1

n∑
i=1

tjĥiλixij, (34)

where the first, second, and third terms of Equation (34) define the carbon emissions

due to procurement, order setups, and inventory holding per unit time, respectively.
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The sustainable joint replenishment problem with direct group strategy (SJRP-

DGS) then reads as

(SJRP-DGS) : min C2(T,X) =
∑n

i=1 piλi +
∑n

j=1

[A+
∑n

i=1 aixij]
tj

+

1
2

∑n
j=1

∑n
i=1 tjhiλixij

min E2(T,X) =
∑n

i=1 p̂iλi +
∑n

j=1

[Â+
∑n

i=1 âixij]
tj

+

1
2

∑n
j=1

∑n
i=1 tjĥiλixij

s.t.
∑n

j=1 xij = 1 ∀i = 1, 2, . . . , n

tj ≥ 0 ∀j = 1, 2, . . . , n

xij ∈ {0, 1} ∀i = 1, 2, . . . , n, ∀j = 1, 2, . . . , n.

Note that the single objective joint replenishment problem with direct grouping is a

set partitioning problem, which is a NP-hard problem (Garey and Johnson, 1979);

hence, focus is needed on developing a heuristic solution method for the bi-objective

joint replenishment problem defined in SJRP-DGS as well. The following properties

will be utilized in Section 4.2 for constructing the heuristic solution method.

Let (TC ,XC) be the solution minimizing C2(T,X) and (TE,XE) be the solution

minimizing E2(T,X). It can be easily shown that, for a given feasible X, both

C2(T,X|X) and E2(T,X|X) are the summations of n independent convex functions

of tj for j = 1, 2, . . . , n. Therefore, the T minimizing C2(T,X|X) for any given

feasible X, denoted by TC(X), and the T minimizing E2(T,X|X) for any given

feasible X, denoted by TE(X), can be determined by finding tCj (X) and tEj (X) values

for j = 1, 2, . . . , n using the first order conditions. Particularly, one can derive that

tCj (X) =

√
2(A+

∑n
i=1 aixij)∑n

i=1 hiλixij
, (35)

tEj (X) =

√√√√2(Â+
∑n

i=1 âixij)∑n
i=1 ĥiλixij

. (36)

Note that when
∑n

i=1 xij = 0 for some j, it means that the jth column of X consists

of zeros, i.e., Gj = ∅. In this case, Equations (35) and (36) imply that tCj (X) =

tEj (X) → ∞, which makes the total costs and carbon emissions associated with

Gj equal to zero. It then follows that TC = [tC1 (XC), tC2 (XC), . . . , tCn (XC)]t and

TE = [tE1 (XE), tE2 (XE), . . . , tEn (XE)]t.
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Furthermore, given T, one can show that the feasible X minimizing C2(T,X|T),

denoted by XC(T), is defined by xCij(T) values such that

xCij(T) =

 1 if j = jC(i),

0 otherwise,
(37)

where

jC(i) = arg min
j
{tjhiλi}. (38)

Similarly, it can be shown that, given T, the feasible X minimizing E2(T,X|T),

denoted by XE(T), is defined by xEij(T) values such that

xEij(T) =

 1 if j = jE(i),

0 otherwise,
(39)

where

jE(i) = arg min
j
{tjĥiλi}. (40)

It then follows that XC and XE are defined by xCij(T
C) and xEij(T

E) values.

4.2. SOLUTION ANALYSIS

Reducing the multi-objective model into a single objective model via weighted

approaches or a min-max deviation and generating a set of Pareto efficient solutions

are the two commonly used solution approaches for multi-objective optimization prob-

lems. Reduction to single objective, nevertheless, can be problematic as it pre-models

the decision maker’s preferences. Furthermore, it generates a single solution. On the

other hand, when a set of Pareto efficient solutions are generated, the decision maker

can then make a selection among the alternative solutions. In this section, consider-

ing that a retailer can have different environmental and economical targets, the focus

is on approximating the Pareto front of the problems SJRP-IGS and SJRP-DGS.

Approximating the Pareto front further enables a retailer to see how costly would it

be to improve environmental performance at different operational levels.

As is discussed in the previous section, SJRP-IGS and SJRP-DGS are both com-

plex problems even with the consideration of the single objective. Therefore, focus

is needed on developing heuristic solution methods for these problems. Specifically,
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a genetic algorithm (GA) is structured for each problem. As previously noted, ge-

netic algorithms are successfully used for JRPs. In this section, the details of the

genetic algorithms proposed are explained for SJRP-IGS and SJRP-DGS. Each of

the genetic algorithms have the following main steps: (i) chromosome representation

and initialization, (ii) fitness evaluation, (iii) genetic operations, and (iv) termination.

The genetic algorithms proposed differ in steps (i) and (iii) due to the different for-

mulations of the different grouping strategies but share a common dominance relation

between two distinct sets of solutions in step (ii) and a common stopping criteria in

step (iv). Prior to describing the details of each GA, the definitions and procedures

used in both of the genetic algorithms are first discussed.

Let Φ denote a feasible solution to either SJRP-IGS or SJRP-DGS and C(Φ) and

E(Φ) be the values of the first and second objective functions, respectively (note that

when Φ = (t,m), C(Φ) = C1(t,m) and E(Φ) = E1(t,m); and, when Φ = (T,X),

C(Φ) = C2(T,X) and E(Φ) = E2(T,X)).

Definition 2. A solution Φ ∈ S is Pareto efficient in S if and only if @Φ′ ∈ S such

that C(Φ′) < C(Φ) and E(Φ′) < E(Φ) (Berube et al., 2009).

Note that by definition, (tC ,mC) and (tE,mE) are Pareto efficient for SJRP-

IGS and, (TC ,XC) and (TE,XE) are Pareto efficient for SJRP-DGS. Ideally, the

retailer will want to generate the set of all Pareto efficient solutions in F IGS and

FDGS, where F IGS and FDGS denote the set of all feasible solutions for SJRP-IGS

and SJRP-DGS, respectively. However, due to the complexity of the problems, the

focus was placed on approximating the Pareto fronts, i.e., the set of Pareto efficient

solutions, for SJRP-IGS and SJRP-DGS. The following procedure determines the set

of Pareto efficient solutions within any given set of solutions S, denoted by PE(S).
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Routine 4: Determining PE(S) for set S

0: Let Φ` denote the `th solution of S. Set PE(S) = S.

1: For ` = 1 : |S|

2: For r = `+ 1 : |S|

3: If C(Φ`) < C(Φr) and E(Φ`) < E(Φr)

4: Set PE(S) := PE(S)\{Φr}

5: Else, if C(Φ`) > C(Φr) and E(Φ`) > E(Φr)

6: Set PE(S) := PE(S)\{Φ`}

7: End

8: End

9: Return PE(S).

Next, the Pareto dominance relation is defined between two sets of solutions,

namely S1 and S2.

Definition 3. S1 Pareto dominates S2 if and only if any solution Φ1 ∈ S1 is Pareto

superior compared to any solution Φ2 ∈ S1, i.e., C(Φ1) < C(Φ2) and E(Φ1) < E(Φ2).

Pareto dominance between two sets of solutions will be used in the fitness eval-

uation step of the genetic algorithms developed. The notation used is S1 ≺ S2 when

S1 Pareto dominates S2. Particularly, one can determine Pareto dominance between

S1 and S2 as follows. Let S = S1
⋃
S2. If PE(S)

⋂
S2 = ∅, S1 ≺ S2; and if

PE(S)
⋂
S1 = ∅, S2 ≺ S1.

4.2.1. Pareto Front Approximation for SJRP-IGS. Here, the details

of the genetic algorithm that approximates the Pareto front for the sustainable joint

replenishment problem under indirect grouping strategy (GA-I) are explained step by

step. Prior to describing the details of each step of the GA-I, some properties of the

SJRP-IGS need to be discussed that are utilized in GA-I.

4.2.1.1. Properties of SJRP-IGS. Let the Pareto front of SJRP-IGS be

denoted by PF I , that is, PF I consists of Pareto efficient (t,m) pairs. Furthermore, let

PF I(m) denote the Pareto front of SJRP-IGS for a given m, that is, PF I(m) consists

of Pareto efficient (t(m),m) solutions, where t(m) denotes a t value for any given m.
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Similarly, let PF I(t) denote the Pareto front of SJRP-IGS for a given t, that is, PF I(t)

consists of Pareto efficient (t,m(t)) solutions, where m(t) = [m1(t),m2(t), . . . ,mn(t)]t

denotes an m vector for any given t. Note that PF I ⊆
⋃

m∈Zn
+

PF I(m) and PF I ⊆⋃
t:t>0

PF I(t). In the following property, the range of Pareto efficient t values is defined

for a given m and the range for mi(t) values in Pareto efficient m vectors for a given

t.

Property 12. Given m, (t(m),m) ∈ PF I(m) if t(m) ∈ [min{tC(m), tE(m)},
max{tC(m), tE(m)}]. Given t, if (t,m(t)) ∈ PF I(t) then mi(t) ∈ [min{mC

i (t),

mE
i (t)},max{mC

i (t),mE
i (t)}] ∀i = 1, 2, . . . , n.

An approximation of PF I(m) can be generated by several approaches such

as the normalized weighted sum method and the constrained method (see, e.g.,

Marler and Arora, 2010 and Lin, 1976). In the normalized weighted sum method,

weights of ω and (1 − ω) are assigned to the normalized objective functions and

a single objective optimization problem is solved for different ω values such that

ω ∈ [0, 1]. The t value minimizing f(t|ω) = ωC1(t,m|m)/C1(tC(m),m|m) + (1 −
ω)E1(t,m|m)/E1(tE(m),m|m) yields a solution, i.e., (t,m) such that (t,m) ∈
PF I(m) (Marler and Arora, 2010). It can be easily shown that f(t|ω) is strictly

convex in t and the minimizer of f(t|ω) can be explicitly determined by the first order

conditions (similar to Equations (27) and (28)). In the constrained method, a single

objective optimization problem is formulated by including an upper bound constraint

on one of the objective functions (Lin, 1976). Suppose that E1(t,m|m) is taken as

the constraint. Then, the t value solving mint{C1(t,m|m) : E1(t,m|m) ≤ U, t > 0}
for any upper bound value U such that U ≥ E1(tE(m),m|m) yields a solution (t,m)

such that (t,m) ∈ PF I(m). Further note that an explicit expression for the solution

of mint{C1(t,m|m) : E1(t,m|m) ≤ U} can be derived as C1(t,m|m) is a convex

function and E1(t,m|m) is a quadratic convex function of t.

Property 12 notes that any (t(m),m) such that t(m) ∈ [min{tC(m), tE(m)},
max{tC(m), tE(m)}] is in PF I(m). On the other hand, while Property 12 implies

that an m(t) such that (t,m(t)) ∈ PF I(t) will be a combination of mi(t) values such

that mi(t) ∈
[
min{mC

i (t),mE
i (t)},max{mC

i (t),mE
i (t)}

]
∀i = 1, 2, . . . , n, any (t,m(t))

where m(t) is such a combination, is not necessarily in PF I(t). This suggests that
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one needs to generate all m(t) vectors corresponding to combinations of mi(t) values

and evaluate the resulting set using Routine 4 to generate PF I(t). Since the number

of such combinations would be exponential, it is more tractable to evolve m vectors

and generate PF I(m) for given m vectors in the fitness evaluation of GA-I.

As mentioned above, both the normalized weighted approach and the con-

strained approach can be used to approximate PF I(m). Instead of these methods,

PF I(m) is approximated for a given m using Routine 5, as described below.

Routine 5: Approximating PF I(m) for a given m

0: Let m and ` be given. Set t̂ = (max{tC(m), tE(m)}−
min{tC(m), tE(m)})/` and PF I(m) = ∅.

1: For y = 1 : `+ 1

2: t = min{tC(m), tE(m)}+ (y − 1)t̂ and set PF I(m) :=

PF I(m)
⋃
{t,m}

3: End

4: Return PF I(m).

Routine 5 generates ` + 1 (t(m),m) solutions in PF I(m) by starting with

t(m) = min{tC(m), tE(m)} and increasing for ` equal increments up to t(m) =

max{tC(m), tE(m)}. Note that, considering that t can take discrete values in prac-

tice (such as days or weeks), the approach this section adopts can be used to gen-

erate all discrete Pareto efficient (t(m),m) solutions such that t(m) is between

min{tC(m), tE(m)} and max{tC(m), tE(m)}, while this would not be guaranteed

by the normalized weighted approach or the constrained approach.

Property 12 provides the range of t values in PF I(m) for a given m. Neverthe-

less, (t,m) does not necessarily belong to PF I given that t ∈ [min{tC(m), tE(m)},
max{tC(m), tE(m)}]. In the following property, the focus is on providing bounds on

t and m for any (t,m) ∈ PF I . To do so, the following equations are first defined:

tUB = max


√

2 (A+
∑n

i=1 ai)∑n
i=1 λihi

,

√√√√2
(
Â+

∑n
i=1 âi

)
∑n

i=1 λiĥi

 , (41)
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m̃LB
i = min

{
1

tUB

√
2ai
hiλi

,
1

tUB

√
2âi

ĥiλi

}
. (42)

Property 13. If (t,m) ∈ PF I , then t ≤ tUB and mi ≥ bm̃LB
i c ∀i, i = 1, 2, . . . , n.

Property 13 provides an upper bound for t and a lower bound for mi ∀i, i =

1, 2, . . . , n. Specifically, an upper bound for an mi value cannot be determined because

the lower bound for t is 0. On the other hand, a commonly used lower bound value for

the t value in minimization of C1(t,m) is mini

{√
2ai/λihi

}
independent of m (see,

e.g., Goyal, 1974, Moon and Cha, 2006, Khouja and Goyal, 2008). Similarly, one can

consider t ≥ mini

{√
2âi/λiĥi

}
for minimizing E1(t,m). Therefore, for SJRP-IGS,

it is assumed that t ≥ tLB, where

tLB = min

{
min
i

{√
2ai/λihi

}
,min

i

{√
2âi/λiĥi

}}
. (43)

Then, following the argument in the proof of Property 13, one can show that mi ≤
dm̃UB

i e ∀i, i = 1, 2, . . . , n, where

m̃UB
i = min

{
1

tLB

√
2ai
hiλi

,
1

tLB

√
2âi

ĥiλi

}
. (44)

Therefore, in GA-I, for which the details are explained next, assume that tLB ≤ t ≤
tUB and bm̃LB

i c ≤ mi ≤ dm̃UB
i e ∀i, i = 1, 2, . . . , n for any (t,m) ∈ PF I .

4.2.1.2. Genetic algorithm for SJRP-IGS. GA-I consists of the four

aforementioned steps. The details for each step are as follows.

(i) Chromosome Representation and Initialization: As noted above, ap-

proximating PF I(m) for a given m is relatively easier than approximating PF I(t) for

a given t. Therefore, in GA-I, each chromosome is defined as an n-vector of integer

mi values. To initiate the GA-I, a set of 2n chromosomes are randomly generated as

follows. For each chromosome, mi ∀i, i = 1, 2, . . . , n is randomly selected such that

mi ∈ [bm̃LB
i c, dm̃UB

i e]. Let Sr be the set of chromosomes in the rth population and let

mrk define the kth chromosome in the rth population such that k ∈ {1, 2, . . . , |Sr|}.
(ii) Fitness Evaluation: Given the rth population of chromosomes, i.e., Sr,

first generate PF I(mrk) ∀k ∈ {1, 2, . . . , |Sr|} using Routine 5. If PF I(mrk1) ≺
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PF I(mrk2) for any k1 and k2 such that k1, k2 ∈ {1, 2, . . . , |Sr|}, mrk2 is not con-

sidered in generating the next population. To find the dominance relations be-

tween any pair of chromosomes within the current population, instead of making

pairwise comparisons, the following approach is adopted. First, the set PF I
r =

PF I(mr1)
⋃
PF I(mr2)

⋃
· · ·
⋃
PF I(mr|Sr|) is defined. Then, PE(PF I

r ) is generated

using Routine 4. Note that PE(PF I
r ) will consist of a set of (t,m) pairs. The dis-

tinct m vectors in PE(PF I
r ) are taken as the set of parent chromosomes for the next

generation. Figure 4.1 illustrates this process for a given population r with 8 chromo-

somes in it such that each PF I(mrk) (the blue points) for 1 ≤ k ≤ 8 has 10 (t,mrk)

solutions. PE(PF I
r ) consists of the blue points with red circles around them. The

parent set of chromosomes for population r + 1 will be {mr2,mr3,mr4,mr7}.
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Figure 4.1. Illustration of fitness evaluation of GA-I

(iii) Genetic Operations: Given a set of parent chromosomes, three different

mutation operators are used to generate the new population of chromosomes. The

new population of chromosomes will consist of the current set of parent chromosomes

plus the newly generated chromosomes. The current set of parent chromosomes are

used in the next population to ensure that the next set of parent chromosomes is not

Pareto dominated by the current set of parent chromosomes. This guarantees that
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GA-I will not find worsening solutions. The new chromosomes are generated with the

following mutation operators: neighbor search, random mutation, and crossover.

• The neighbor search operator generates at most 2n new chromosomes from a

given parent chromosome. For each i, i = 1, 2, . . . , n, neighbor search simply

generates 2 new chromosomes by increasing and decreasing mi by 1 if possible.

• The random mutation operator generates one new chromosome from each given

parent chromosome by replacing each mi value of the given parent chromosome

with a mi value that is randomly generated from [bm̃LB
i c, dm̃UB

i e] with a pre-

specified probability (in case the mi value is not replaced, it is kept the same

in the new chromosome).

• The crossover operator randomly selects two parent chromosomes and performs

a single point crossover at a randomly selectedmi value. The crossed over parent

chromosomes are not considered for further crossover. The crossover operator

is repeated until there are no new pair of parent chromosomes available for

crossover. Through crossover, the number of the newly generated chromosomes

is equal to half of the number of the parent chromosomes.

(iv) Termination: The GA-I is terminated when there is no change in the set of

parent chromosomes for a pre-specified number of consecutive populations. That is,

if PE(PF I
r ) remains the same for a pre-specified number of populations, GA-I stops.

The PE(PF I
r ) at termination is accepted as PF I .

4.2.2. Pareto Front Approximation for SJRP-DGS. Here, the details

of the genetic algorithm that approximates the Pareto front for the sustainable joint

replenishment problem under the direct grouping strategy (GA-D) are explained step

by step. Prior to describing the details of each step of the GA-D, some properties of

the SJRP-DGS are discussed first that are utilized in GA-D.

4.2.2.1. Properties of SJRP-DGS. Let the Pareto front of SJRP-DGS be

denoted by PFD, that is, PFD consists of Pareto efficient (T,X) pairs. Furthermore,

let PFD(X) denote the Pareto front of SJRP-DGS for a given X, that is, PFD(X)

consists of Pareto efficient (T(X),X) solutions, where T(X) denotes a T vector for

any given X. Similarly, let PFD(T) denote the Pareto front of SJRP-DGS for a
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given T, that is, PFD(T) consists of Pareto efficient (T,X(T)) solutions, where

X(T) denotes a X matrix for any given T vector. Note that PFD ⊆
⋃
X∈χ

PFD(X)

and PFD ⊆
⋃

T∈Rn
+

PFD(T), where χ is the set of n× n binary X matrices such that∑n
j=1 xij = 1 ∀i = 1, 2, . . . , n.

Recall that given a T, XC(T) and XE(T) can be found using Equations (37)-

(38) and Equations (39)-(40), respectively, which requires sorting at most n values.

On the other hand, as given in Equations (35) and (36), given an X, TC(X) and

TE(X) have explicit solutions. Furthermore, due to the binary nature of X, repre-

senting it as a chromosome is more tractable. Therefore, in what follows, focus is

placed on characterizing PFD(X). The next property defines the range for T(X)

such that (T(X),X) ∈ PFD(X).

Property 14. Given X ∈ χ, if (T(X),X) ∈ PFD(X), then tj(X) ∈ [min{tCj (X),

tEj (X)},max{tCj (X), tEj (X)}] ∀j = 1, 2, . . . , n.

It follows from Property 14 that both (TC(X),X) and (TE(X),X) are in

PFD(X). However, any (T(X),X) such that T(X) consists of tj(X) values that are

randomly generated from [min{tCj (X), tEj (X)},max{tCj (X), tEj (X)}] ∀j = 1, 2, . . . , n

is not necessarily in PFD(X). To approximate PFD(X), the normalized weighted

approach is utilized as detailed in the next property.

Property 15. Given X ∈ χ and ω ∈ [0, 1], (Tω(X),X) ∈ PFD(X) such that

tωj (X) =

√√√√2((w1A+ w2Â) +
∑n

i=1(w1ai + w2âi)xij)∑n
i=1(w1hi + w2ĥi)λixij

, (45)

where w1 = ω/C2(TC(X),X|X) and w2 = (1− ω)/E2(TE(X),X|X).

Property 15 indicates that one can approximate PFD(X) by generating different

Tω(X) vectors for different ω values as described in Routine 6.
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Routine 6: Approximating PFD(X) for a given X

0: Let X and ` be given. Set PFD(X) = ∅.

1: For y = 1 : `+ 1

2: w = (y − 1)/` and set PFD(X) := PFD(X)
⋃
{(Tω(X),X)}

3: End

4: Return PFD(X).

Routine 6 generates `+1 (T(X),X) solutions in PFD(X) by starting with ω = 0

and increasing ω in ` equal increments up to ω = 1. At each ω value, Equation (45)

is used to find Tω(X). Routine 6 is used in GA-D, for which the details are explained

next.

4.2.2.2. Genetic algorithm for SJRP-DGS. Similar to GA-I, GA-D

consists of the four main steps, for which the details are explained next.

(i) Chromosome Representation and Initialization: As mentioned previ-

ously, the GA-D evolves with X matrices. To represent X, similar to Olsen (2005)

and Wang et al. (2012b), v = [v1, v2, . . . , vn]t is defined as the n-vector of vi values,

where vi is an integer number denoting the group that item i belongs to. In this

sense, v actually defines a vector similar to m. Note that given a v, the X matrix

can be constructed such that X ∈ χ. Therefore, v is used as the chromosomes of

the GA-D. Furthermore, note that 1 ≤ vi ≤ n ∀i = 1, 2, . . . , n. Similar to the ini-

tialization of GA-I, 2n chromosomes are generated by randomly selecting integer vi

values such that vi ∈ [1, n] ∀i = 1, 2, . . . , n. Let Sr be the set of chromosomes in the

rth population and let vrk define the kth chromosome in the rth population such that

k ∈ {1, 2, . . . , |Sr|} and Xrk denote the X matrix constructed using vrk.

(ii) Fitness Evaluation: Given Sr, first generate PFD(Xrk) ∀k ∈ {1, 2, . . . ,
|Sr|} using the normalized weighted approach given in Routine 6. If PFD(Xrk1) ≺
PFD(Xrk2) for any k1 and k2 such that k1, k2 ∈ {1, 2, . . . , |Sr|}, vrk2 is not considered

in generating the next population. Similar to GA-I, one can use Routine 4 to find the

set of parent chromosomes for the next generation, which will consist of the vrk vectors

that resulted in non-dominated PFD(Xrk) sets and PE(PFD
r ) is defined similar to

PE(PF I
r ).
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(iii) Genetic Operations: To generate a new population, the mutation

operators of GA-I are used, i.e., neighbor search, random mutation, and crossover, in

GA-D as well since the chromosomes in both genetic algorithms are n-vectors of inte-

gers with upper and lower bounds. The parent set of chromosomes are also included

in the new generation to assure generating non-worsening parent chromosomes.

(iv) Termination: The GA-D is terminated if PE(PFD
r ) remains the same

for a pre-specified number of populations.

4.3. NUMERICAL STUDIES

In this section, the focus is on two sets of numerical studies: convergence of the

genetic algorithms, and comparison of the indirect and direct grouping strategies in

terms of cost and environmental performance. The test data used in the analyses is

similar to the data used for JRPs (see, e.g., Olsen, 2005, Goyal and Deshmukh, 1993,

Kaspi and Rosenblatt, 1991). As the procurement costs and procurement emissions

per unit time are constants and not effective in the search of the Pareto efficient

solutions, pi = p̂i = 1 ∀i = 1, 2, . . . , n. For any problem instance, the demand of item

i is randomly generated from a uniform distribution such that λi ∼ U [1000, 2000].

For any item i, the cost parameters used to randomly generate problem in-

stances assume uniform distributions with the following ranges: ai ∼ U [1, 10] and

hi ∼ U [0.2, 10]. For any item i, the carbon emissions parameters used to randomly

generate problem instances assume uniform distributions with the following ranges:

âi ∼ U [1, 10] and ĥi ∼ U [2, 22] (note that similar carbon emissions parameter values

are used in inventory control models with carbon emissions considerations, see, e.g.,

Hua et al., 2011, Chen et al., 2013, and Toptal et al., 2014).

In the single objective JRPs, a major factor for comparing the indirect grouping

strategy to direct grouping strategy in terms of cost performance is the ratio of the

major setup costs to the minor setup costs (van Eijs et al., 1992). For the bi-objective

JRPs defined in SJRP-IGS and SJRP-DGS, this section uses both the ratio of major

setup costs (A) to the minor setup costs (ai) and the ratio of carbon emissions from an

order (Â) to the carbon emissions due to including an item within the order (âi). To

do so, the major setup costs are assumed to take values A ∈ {2.75, 5.5, 11, 55, 550} and

the carbon emissions from an order are assumed to take values Â ∈ {4, 8, 16, 80, 800}.
Using these values for A and Â indicate that the possible values for the average A/ai
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and Â/âi ratios are {0.5, 1, 2, 10, 100}.
In the following studies, 4 different problem sizes are considered: n ∈ {5, 10, 15,

20}. For each problem size, 25 different problem classes are considered, each of which

corresponds to a combination of A/ai and Â/âi ratios. Routines 4, 5, and 6 and GA-I

an GA-D are implemented in MATLAB 2012. The problem instances generated are

solved on a desktop PC with 2.8 GHz processor and 10 GB of RAM. For each problem

size and for each problem class, 10 problem instances are generated and solved with

GA-I and GA-D (i.e., 1000 problem instances are solved with GA-I and GA-D).

4.3.1. Convergence of GA-I and GA-D. To evaluate the convergence of

GA-I and GA-D, the following statistics are considered assuming that zI and zD are

the population numbers at termination: number of solutions returned at termination

(i.e., |PF I | and |PFD|), population size of the last population (i.e., the number

of m vectors and X matrices) denoted as |SzI | and |SzD |, average population size

denoted as |SI | and |SD|, population number at termination (i.e., zI and zD), and

the computational time, in seconds (CPU). In both of the genetic algorithms, the

algorithm terminates if there is no improvement in 20 consecutive populations and

Routines 5 and 6 generate 15 solutions.

Table 4.1 shows the average result over 250 problem instances solved for each

n. Tables 4.2 and 4.3 shows the average computation time over 10 problem instances

solved for each 25 combinations of A/ai and Â/âi ratios. As expected, it can be

observed from Table 4.1 that computational time is increasing as the problem size

increases with both indirect and direct grouping. Furthermore, as n increases, the

number of Pareto efficient solutions returned also increases. It can be observed from

Tables 4.2 and 4.3 that the smaller the A/ai and Â/âi ratios, the longer the compu-

tational time. This is also expected as the smaller the ratio is, the denser the Pareto

front gets. Finally, in Figures 4.2 and 4.3, the changes of the Pareto fronts over

populations of the GA-I and GA-D can be observed for an example with 20 items.

As noted previously, both of the genetic algorithms guarantee non-worsening Pareto

fronts over populations, as observed in Figures 4.2 and 4.3.

4.3.2. Comparison of Grouping Strategies. Comparing different group-

ing strategies in the case of single objective JRPs is relatively easier as one can just

compare the minimum costs achieved with each grouping strategy. On the other
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Table 4.1. Genetic algorithm statistics for different problem sizes

GA-I GA-D

n |PF I | |SzI | |SI | zI CPU |PFD| |SzD | |SD| zD CPU
5 25.8 3.5 12.8 26.4 0.6 17.4 1.6 7.3 22.8 0.6
10 40.3 9.4 41.9 36.3 2.7 21.2 3.1 18.0 25.9 2.0
15 84.4 25.2 88.0 65.3 11.4 33.2 7.1 40.0 30.3 5.4
20 164.7 59.5 141.9 126.0 46.2 52.4 14.6 69.7 38.5 13.0

Average 78.8 24.4 71.1 63.5 15.2 31.0 6.6 33.7 29.4 5.3

Table 4.2. CPU of GA-I for different A/ai and Â/âi ratios

Â/âi
0.5 1 2 10 100

0.5 85.3 44.5 30.6 9.5 9.0
1 36.5 27.9 15.5 7.3 7.1

A/ai 2 19.1 15.4 10.5 6.0 5.7
10 8.1 6.3 5.4 3.1 2.8
100 9.1 6.9 5.3 3.1 1.0

Table 4.3. CPU of GA-D for different A/ai and Â/âi ratios

Â/âi
0.5 1 2 10 100

0.5 16.6 13.2 11.9 6.6 6.4
1 11.7 8.5 6.9 4.4 4.4

A/ai 2 7.9 5.0 3.4 2.5 2.1
10 4.7 2.4 1.1 0.8 0.8
100 4.7 2.5 1.2 0.8 0.8

hand, in the case of multi-objective models, comparing different strategies requires

accounting for all the objectives considered. To compare indirect and direct grouping

strategies for the SJRP, the comparison is made between PF I and PFD returned by

GA-I and GA-D, respectively. Specifically, if one of these approximated Pareto fronts

dominates the other, one can conclude that the corresponding grouping strategy is

better. On the other hand, if there is no dominant Pareto front, then both grouping
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strategies may have advantages over one another.

Table 4.4 documents the percentages of problem instances where the set of

Pareto efficient solutions of indirect grouping dominates the set of Pareto efficient

solutions of direct grouping, i.e., PF I ≺ PFD, for different A/ai and Â/âi ratios.

It can be observed that as A/ai or Â/âi ratio is increasing, it is less likely that

PF I ≺ PFD. Therefore, one can conclude that, specially in scenarios where A/ai or

Â/âi ratio is lower, indirect grouping is often preferred over direct grouping. In all of

the problem instances solved, it is not observed that PFD ≺ PF I ; hence, one cannot

say that direct grouping is always better than indirect grouping strategy. Particularly,

Table 4.5 shows the percentages of the problem instances where no dominance relation

is observed between PF I and PFD, denoted as PF I ≷ PFD. Similarly, it can be

concluded that if A/ai or Â/âi ratio is higher, the direct grouping strategy may

be preferred over the indirect grouping strategy depending on the economical and

environmental goals. For instance, a sample problem instance is illustrated in Figure

4.4, where PF I and PFD are given. As it can be seen, for a given environmental

goal, it is possible that direct grouping will result in lower costs. Similarly, it is also

possible that for a given cost target, direct grouping will result in less emissions.
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Table 4.4. Percentage of problem instances where PF I ≺ PFD for different A/ai and

Â/âi ratios

Â/âi
0.5 1 2 10 100

0.5 55.0% 62.5% 70.0% 37.5% 0.0%
1 65.0% 70.0% 70.0% 35.0% 0.0%

A/ai 2 55.0% 55.0% 55.0% 32.5% 0.0%
10 12.5% 12.5% 15.0% 10.0% 0.0%
100 0.0% 0.0% 0.0% 0.0% 0.0%

Table 4.5. Percentage of problem instances where PF I ≷ PFD for different A/ai and

Â/âi ratios

Â/âi
0.5 1 2 10 100

0.5 45.0% 37.5% 30.0% 62.5% 100.0%
1 35.0% 30.0% 30.0% 65.0% 100.0%

A/ai 2 45.0% 45.0% 45.0% 67.5% 100.0%
10 87.5% 87.5% 85.0% 90.0% 100.0%
100 100.0% 100.0% 100.0% 100.0% 100.0%
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Figure 4.4. Costs and emission results for varying cap levels
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4.4. CONCLUSIONS AND FUTURE RESEARCH

In this section, a bi-objective deterministic joint replenishment problem is an-

alyzed, where a retailer’s costs and carbon emissions are minimized. This problem

is referred to as the sustainable joint replenishment problem. Two common practi-

cal grouping strategies are considered for the problem of interest: indirect grouping

and direct grouping. For each sustainable joint replenishment problem with different

grouping strategy, a genetic algorithm is developed utilizing the properties of the bi-

objective optimization method. A set of numerical studies is documented to analyze

the efficiency of the heuristic methods. Furthermore, a set of numerical analyses is

conducted to compare the indirect grouping strategy to the direct grouping strategy

not only in terms of costs but also carbon emissions. It is observed that the major

setup to minor setup ratio is important for preferring one strategy over the other

as well as the ratio of emissions from order setup to emissions due to including an

item within an order. Specifically, it is observed that when these ratios are lower, the

indirect grouping strategy can perform better both with regards to costs and emis-

sions. On the other hand, in scenarios where these ratios are higher, it is retailer’s

economical and environmental targets that will determine the grouping strategy to

adopt.

This section contributes to inventory control models with environmental consid-

erations by modeling and developing solution methods for a multi-item coordinated

inventory control model with environmental objective in addition to the classical

economical objectives. Furthermore, analysis of multi-objective joint replenishment

problems is rather limited in the literature and the solution methods discussed here

give some properties and develop approaches for the bi-objective joint replenishment

problems of interest, which can be used for different settings. Future research direc-

tions include to analyze stochastic joint replenishment problem with environmental

considerations. Furthermore, coordinated multi-echelon inventory control models can

be studied with environmental considerations. For instance, Section 5 focuses on an

integrated inventory control and transportation problem in a multi-item stochastic

inventory system. While environmental considerations are not directly formulated,

environmental performance of coordination, specifically, consolidation of the deliveries

of different items, is evaluated.
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5. TIME BASED SHIPMENT CONSOLIDATION IN MULTI-ITEM

STOCHASTIC INVENTORY SYSTEMS WITH HETEROGENEOUS

FREIGHT TRUCKS

Integrated inventory control and transportation problems can be challenging

considering the nonlinear nature of inventory related costs, jointly controlled invento-

ries of multiple items, and demand uncertainties. This section focuses on a retailer’s

integrated inventory control and transportation problem for multiple items, each of

which has its own stochastic demand. Inbound transportation costs are also explicitly

modeled by taking into account that a retailer can use different freight truck types

to ship an order. Furthermore, to utilize transportation capacity better, the retailer

can consolidate shipments of different items. To avail consolidation, it is assumed

that a retailer adopts a time based order-up-to-level inventory control policy, where

the retailer replenishes each consolidated set of items in equal time intervals which

enables joint use of the transportation capacity by the consolidated items. The re-

tailer’s problem is to find the cost minimizing consolidation strategy, i.e., of which

items’ orders are replenished together, the time interval between two consecutive or-

ders of a set of consolidated items, and the order-up-to-level for each item within a

consolidation.

Due to the stochastic demand environment, the retailer’s objective is to min-

imize the expected costs. While the expected inventory holding costs, order setup

costs, and penalty costs associated with shortages are well defined, the derivation of

the expected inbound transportation costs is cumbersome due to the fact that freight

truck choices for each order of a set of consolidated items are dynamic in nature. That

is, the retailer can determine how many trucks of each truck type to be used for each

order at order initiation depending on the order quantities of the individual items

in the consolidation. This, in turn, makes the retailer’s problem of expected cost

minimization a bi-level optimization model with infinitely many lower level problems

(each one is corresponding to a combination of the demands of the items within a

given consolidation).
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In this section, the retailer’s problem is first formulated for a given

consolidation of items. Here, a bi-level mixed integer nonlinear optimization problem

is modeled, where the retailer decides on the common replenishment cycle length

for the consolidated items and the order-up-to-level for each item within the given

consolidation. Then, a set partitioning problem is presented to find the best consol-

idation strategy. As a solution approach, an approximation formulation is provided

for a given consolidation and solves the approximated formulation with a neighbor-

hood search heuristic. Then, an evolutionary heuristic method is discussed for the

set partitioning problem of interest. A set of numerical studies are conducted to jus-

tify the approximation formulation and use of heuristic methods. Furthermore, a set

of numerical studies demonstrate the cost savings and environmental benefits of the

proposed time based order-up-to-level inventory control with shipment consolidation

and explicit freight trucks modeling in multi-item stochastic inventory systems. This

section contributes to the inventory control literature and practice in the following

fields: explicit transportation modeling, shipment consolidation, and stochastic joint

replenishment problems.

This section assumes TL transportation with the availability of heterogeneous

freight trucks for inbound shipment. In multi-item inventory settings, there are a lim-

ited number of studies assuming TL transportation. Ben-Khedher and Yano (1994)

analyze a multi-item deterministic joint replenishment problem with trucking costs

as well as capacity constraints. They propose a heuristic method to solve the result-

ing NP-hard problem. In a similar setting, Kiesmuller (2009) analyzes a multi-item

stochastic inventory system with periodic review and they account for TL transporta-

tion costs. Specifically, they propose a periodic order-up-to inventory policy where

the trucks used for shipment have to be fully loaded; nevertheless, it is noted that a

full truckloads policy can be suboptimal for a retailer as it might lead to increased

holding costs at such levels that a decrease in shipping costs cannot counterbalance.

A similar observation has been made by Toptal et al. (2003) in a single item model;

they note that it might be beneficial to have one of the trucks to be partially loaded.

In the aforementioned studies, only a single truck type is considered. TL

transportation modeling is further generalized by taking different freight trucks into

consideration, as was done in the previous sections. In cases where a retailer uses
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second or third party logistics for inbound transportation, there might be different TL

carriers available, each of which has distinct truck fleets. Even in the case of a single

TL carrier, it might be the case that the retailer can be forced to select among a

set of different freight trucks for their inbound transportation. In such a case, the

retailer needs to dynamically determine how many trucks of each truck type to use

for the inbound shipment of each order. This section contributes to the multi-item

inventory control models by providing generalized formulation for TL transportation

with heterogeneous freight trucks. Specifically, different per truck capacities and per

truck costs are considered for distinct truck types available for inbound shipment.

Furthermore, the aforementioned studies define truck capacity in terms of the num-

ber of items that can be carried. The truck capacity definition is extended by jointly

regarding the weight and volume capacities for different truck types.

As mentioned previously, transportation costs constitute a significant part of

total costs in many industries; therefore, utilization of transportation capacity can

substantially save costs. The practice of shipment consolidation targets better uti-

lization of the transportation capacity by combining shipments of small quantities to

achieve a shipment with a larger quantity that utilizes the transportation capacity

better. This, in turn, reduces costs due to economies of scale in the transportation

costs (Mutlu et al., 2010).

Three common shipment consolidation policies considered are quantity-based,

time based, and time-and-quantity-based consolidation (Çetinkaya et al., 2006). In

the quantity-based shipment consolidation, the customer demands are accumulated

until a specified quantity is achieved; and, then a shipment is released. On the

other hand, in the time based shipment consolidation, the customer demands are

accumulated for a specified time period; and, then a shipment is released. In the

time-and-quantity-based consolidation, the customer demands are accumulated until

a specified quantity is achieved or a specified time period has ended; and, then a

shipment is released. Çetinkaya (2005) provides a detailed review of coordinated

inventory control models with shipment consolidation. This section assumes a time

based shipment consolidation policy, that is, an order is placed in equal time intervals.

However, note that the decisions on which items to consolidate is also formulated.

The joint replenishment problem considers how to jointly replenish a set of



101

different products in a multi-item inventory system. The main motivation for jointly

replenishing the different products are the economies of scale of the order setup costs.

Generally, order setup costs are defined by the transportation costs of a shipment. The

reader is referred to a review of joint replenishment problems by Khouja and Goyal

(2008) for different settings, models, and solution approaches studied in the literature

for joint replenishment problems. In stochastic joint replenishment problems, each

product has its own stochastic demand.

Balintfy (1964) proposes a can-order policy for a stochastic joint replenishment

problem, where each item has a must-order level s, a can-order level c, and an order-

up-to-level S. In a can-order policy, denoted by (s, c, S), an item is ordered when

its inventory level reaches the must-order level, and any other item, whose inventory

level is below the can-order level, is then ordered with it such that the order quantities

for the ordered items build their inventory levels to the specified order-up-to-levels.

While Balintfy (1964) assumes continuous inventory review, Johansen and Melchiors

(2003) analyze the can-order policy under periodic review noting that replenishment

opportunities may only come once or twice a day and; therefore, a periodic review

model can be superior for some customers.

Atkins and Iyogun (1988) analyze joint replenishment problem strategies where

the items are ordered up to an order-up-to-level R every time period of length T .

These policies are referred to as (R, T ) polices and Atkins and Iyogun (1988) inves-

tigate two (R, T ) polices: a periodic policy, where all items are ordered with each

replenishment and a modified periodic policy, where a base set of items is ordered

with each replenishment and the remaining items are ordered at each specified con-

secutive replenishment. In this section, a (R, T ) type of policy is adopted for a given

set of consolidated items: the inventories of the items in the consolidation are replen-

ished every T time units up to their individual order-up-to-levels. Atkins and Iyogun

(1988) conclude that the periodic (R, T ) type policies show more promise than the

(s, c, S) type policies. However, Pantumsinchai (1992) notes that different policies

can be superior to the others depending on the specific problem parameters.

Viswanathan (1997) introduces a new class of policies known as the P (s, S)

policy. The P (s, S) policy is a periodic review policy where the amount of items on

hand are reviewed at intervals of time T . If the amount of items on hand is less than
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s then items are ordered to bring the inventory up to S. They test their algorithm

against the same problems in Atkins and Iyogun (1988) and find that their proposed

policy generally gives dominating solutions and that the extra computational require-

ment is nominal. Nielsen and Larsen (2005) use Markov decision theory and find an

analytical solution to the Q(s, S) policy, which was listed as a future research direc-

tion by Viswanathan (1997). In the Q(s, S) policy, the total number of items are

reviewed continuously but the items themselves are only reviewed once the total de-

mand reaches Q. Nielsen and Larsen (2005) find the Q(s, S) model to be superior

to the periodic review P (s, S) models. Ozkaya et al. (2006) propose a new hybrid

(Q,S, T ) policy. The policy is considered to be both continuous and periodic as or-

ders are placed to the order-up-to level S whenever total demand level Q is reached

or time T has elapsed since the last order. Using the same problem settings with

Atkins and Iyogun (1988) and Viswanathan (1997) as a benchmark, Ozkaya et al.

(2006) find their proposed method to be better 72% of the time.

All of the above models are unconstrained and Zhao et al. (2012) state that

“Inventory systems with limited and sharable-common resource exist widely in the

real logistics field, yet studies on such systems are limited.” Minner and Silver (2005)

develop a multi-product inventory replenishment problem where the inventory level

at any time is constrained by budget or space limitations. They assume a Poisson de-

mand, zero lead time, and no backorders and formulate the problem as a semi-Markov

decision process. Zhao et al. (2012) also study a constrained policy, specifically, the

(r,Q) policy with a limited sharable common resource. In the (r,Q) policy, when

an item’s inventory drops below r then Q units of that item are ordered. Betts and

Johnston (2005) study a similar model with a constraint on the investment capi-

tal available. In this section, the resource commonly shared is the transportation

capacity, which is also a decision variable of the retailer at each replenishment.

5.1. PROBLEM FORMULATION

Consider a set of n items indexed by i, i ∈ I, where I = {1, 2, . . . , n}, such that

each item has a stochastic demand. Let f i(Di) and F i(Di) denote the probability

density function and cumulative distribution function of item i’s demand, Di, over

unit time. This section assumes that the unit time demand for any item i is normally

distributed with mean λi and standard deviation σi. Thus, item i’s demand over a



103

period of t time units is normally distributed with mean λit and standard deviation

σi
√
t (see, e.g., Nahmias, 2009). Denote fi(D

(t)
i ) as the probability density function

of item i’s demand over a period of t time units, where D
(t)
i is the random variable

defining item i’s demand over t time units5.

Under the current settings, the retailer is subject to inventory holding, order

setup, and shortage costs. In particular, let hi denote the inventory holding cost

per unit per unit time, ai denote the order setup cost per each order, and pi denote

the penalty cost per unit shortage for item i. In addition to these costs, the retailer

is subject to explicit transportation costs associated with each order. This section

assumes that the retailer can use m different truck types for inbound shipment. Let

different truck types be indexed by j, j ∈ J , where J = {1, 2, . . . ,m} such that a

single truck of type j has a weight capacity of Wj, volume capacity of Vj, and cost of

Rj. Furthermore, let each unit of item i have weight wi and volume vi.

The retailer is assumed to adopt a time based order-up-to-level inventory control

policy. That is, for a single item or a set of consolidated items, the retailer will place an

order at identical time intervals such that each item’s order quantity is determined to

increase the inventory level of that item to a specific point. This section assumes that

delivery lead time is negligible6. If the retailer plans to manage item i individually,

their decision variables would be order-up-to-level for item i, denoted by si, and the

replenishment cycle length ti. Figure 5.1 illustrates the expected inventory level over

time for a single item with replenishment cycle length t, order-up-to-level s, and λ

demand per unit time.

5.1.1. Single Item Time Based Order-up-to-level Inventory. Consider

that item i is individually replenished. As noted previously, the retailer is subject

to inventory holding, order setup, shortage, and inbound transportation costs. Due

to the stochastic demand, the retailer’s objective is to minimize the total expected

costs per unit time associated with item i. Expected inventory holding cost per

unit time amounts to hi(si − λiti
2

). Order setup cost per unit time is a deterministic

variable depending on ti and it amounts to ai/ti. Now, let ni(si, ti) be the expected

5The problem formulation and the solution methods presented can be easily modified for other
demand distributions.

6It should be noted that the problem formulation provided can be modified to handle constant
lead times. Specifically, once the time interval for consecutive orders is determined, a retailer can
initiate the order accordingly regarding the delivery lead time.
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Figure 5.1. Inventory level in time based order-up-to-level control for single item

number of shortages within one replenishment cycle as a function of si and ti. Then,

expected shortage cost per unit time amounts to pini(si, ti)/ti. Note that the number

of shortages within a replenishment cycle depends on both the replenishment cycle

length ti and the order-up-to-level si; hence, ni(si, ti) is a function of si and ti. One

can show that ni(si, ti) =
∫∞
si

(D
(ti)
i − si)fi(D

(ti)
i )dD

(ti)
i . Therefore, expected shortage

per unit time is pi/ti
∫∞
si

(D
(ti)
i − si)fi(D

(ti)
i )dD

(ti)
i .

The only remaining cost term is the expected inbound transportation costs.

Recall that the retailer can use m different truck types for inbound transportation.

At each order replenishment, the retailer needs to decide on how many of each truck

type should be used. Let xj be the integer number of type j trucks to be used for

inbound transportation of an order and x = [x1, x2, . . . , xm]. The order quantity to

be shipped will be equal to the demand realized during the replenishment cycle, i.e.,

D
(ti)
i . In this case, the retailer will determine the truck configuration x that will

minimize inbound transportation costs to ship D
(ti)
i units. Therefore, the following

problem needs to be solved at each replenishment:

ITCi(D
(ti)
i ) = minx

∑
j∈J xjRj

s.t.
∑

j∈J xjWj ≥ wiD
(ti)
i∑

j∈J xjVj ≥ viD
(ti)
i

xj ∈ {0, 1, 2, . . .} ∀j ∈ J.

(46)
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The objective function in the definition of ITCi(D
(ti)
i ) given in Equation (46) is

the total trucking cost. The first and second constraints assure that the selected

trucks cumulatively have the sufficient weight and volume capacity to ship D
(ti)
i

units, respectively. The third set of constraints is the integer definition for the xj

values. (Note that if D
(ti)
i ≤ 0, xj = 0 ∀j = 1, 2, . . . ,m; hence, ITCi(D

(ti)
i ) = 0 for

D
(ti)
i ≤ 0.) Then, expected inbound transportation cost per unit time amounts to

1/ti
∫∞

0
ITCi(D

(ti)
i )fi(D

(ti)
i )dD

(ti)
i .

The retailer’s total expected costs per unit time when item i is individually

replenished, denoted by gi(si, ti), amount to

gi(si, ti) = hi

(
si −

λiti
2

)
+
ai
ti

+
pi
ti

∫ ∞
si

(
D

(ti)
i − si

)
fi(D

(ti)
i )dD

(ti)
i

+
1

ti

∫ ∞
0

ITCi(D
(ti)
i )fi(D

(ti)
i )dD

(ti)
i

(47)

where the first, second, third, and forth terms of Equation (47) are the expected

inventory holding, order setup, shortage, and inbound transportation costs per unit

time. The retailer’s optimization problem for individually replenished item i then

reads as

(Pi) min
(si,ti)

gi(si, ti)

s.t. ti ≥ 0

si ≥ 0

ITCi(D
(ti)
i ) = min

x

∑
j∈J

xjRj

s.t.
∑
j∈J

xjWj ≥ wiD
(ti)
i∑

j∈J

xjVj ≥ viD
(ti)
i

xj ∈ {0, 1, 2, . . .} ∀j ∈ J.

5.1.2. Consolidated Time Based Order-up-to-level Inventory. Now

suppose that a set of items are ordered together, that is, their shipments are consoli-

dated. The retailer’s objective is to determine the order-up-to-level for each item in

the consolidation and the replenishment cycle length for the consolidation so that the

total expected costs per unit time for the items in the consolidation are minimized.
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Any subset of the set of items I is a possible consolidation; thus, there are 2n−1 sub-

sets of items that can be consolidated. Let each possible subset of items be indexed

by k, k ∈ K where K = {1, 2, . . . , 2n − 1} and Ωk denote a subset. Furthermore, let

Tk denote the common replenishment cycle when Ωk is selected as a consolidation,

i.e., ti = Tk ∀i ∈ Ωk.

Similar to the single item case, a consolidated set of items has inventory holding,

order setup, shortage, and inbound transportation costs. Note that inventory holding,

order setup, and shortage costs of the items in a consolidation are individual cost

terms; therefore, total expected holding, order setup, and shortage costs per unit

time for the consolidation will be equal to the sum of the expected holding, order

setup, and shortage cost per unit time of each item in the consolidation. That is,

the total expected holding cost per unit time of consolidation Ωk k ∈ K is equal to

the sum of the expected holding costs per unit time of the consolidated items. The

total expected holding cost per unit time of the consolidation is, therefore, equal to∑
i∈Ωk

hisi − Tk
2

∑
i∈Ωk

hiλi. Similarly, it follows that the total order setup cost per

unit time for Ωk amounts to 1
Tk

∑
i∈Ωk

ai, and the total shortage cost per unit time

for Ωk is equal to 1
Tk

∑
i∈Ωk

pi(
∫∞
si

(D
(Tk)
i − si)fi(D(Tk)

i )dD
(Tk)
i ).

Unlike the inventory holding, order setup, and shortage costs for Ωk, the in-

bound transportation costs will not be equal to the sum of the individual items’

transportation costs as different items can share truck capacities due to being re-

plenished simultaneously. In particular, at each replenishment, the retailer needs to

decide on the number of trucks of each type to ship the realized demands of the

items in the consolidation. Let D
(Tk)
Ωk

be the |Ωk|-vector of D
(Tk)
i values for i ∈ Ωk.

The following problem then should be solved at each replenishment to determine the

inbound transportation cost of consolidation Ωk:

ITCΩk
(D

(Tk)
Ωk

) = minx

∑
j∈J xjRj

s.t.
∑

j∈J xjWj ≥
∑

i∈Ωk
wiD

(Tk)
i∑

j∈J xjVj ≥
∑

i∈Ωk
viD

(Tk)
i

xj ∈ {0, 1, 2, . . .} ∀j ∈ J.

(48)
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Similar to Equation (46), the objective function in the definition of ITCΩk
(D

(Tk)
Ωk

)

given in Equation (48) is the total trucking cost. The first and second constraints

guarantee that the selected trucks cumulatively have the sufficient weight and volume

capacity to ship D
(ti)
i ∀i ∈ Ωk, respectively. The third set of constraints is the integer

definition for the xj values. Now, this section assumes that Ωk = {1, 2, . . . , `} such

that ` ≤ n. Then, expected inbound transportation cost per unit time amounts to

1
Tk

∫∞
0
ITCΩk

(D
(Tk)
Ωk

)f(D
(Tk)
Ωk

)dD
(Tk)
Ωk

= 1
Tk

∫∞
0

∫∞
0
. . .
∫∞

0
ITCΩk

(D
(Tk)
Ωk

)f1(D
(Tk)
1 )

f2(D
(Tk)
2 ) . . . f`(D

(Tk)
` )dD

(Tk)
1 dD

(Tk)
2 . . . dD

(Tk)
` .

The retailer’s total expected costs per unit time when items in Ωk are consoli-

dated, denoted by Gk(Sk, Tk), amount to

Gk(Sk, Tk) =
∑
i∈Ωk

hisi −
Tk
2

∑
i∈Ωk

hiλi +
1

Tk

∑
i∈Ωk

ai

+ 1
Tk

∑
i∈Ωk

pi

(∫∞
si

(
D

(Tk)
i − si

)
fi(D

(Tk)
i )dD

(Tk)
i

)
+

1

Tk

∫ ∞
0

ITCΩk
(D

(Tk)
Ωk

)f(D
(Tk)
Ωk

)dD
(Tk)
Ωk

(49)

where Sk is a |Ωk|-vector of si values for ∀i ∈ Ωk. The first, second, third, and forth

terms of Equation (49) are the expected inventory holding, order setup, shortage, and

inbound transportation costs per unit time for the consolidation Ωk. The retailer’s

optimization problem for consolidation Ωk then reads as

(PΩk) min
(Sk,Tk)

Gk(Sk, Tk)

s.t. Tk ≥ 0

si ≥ 0

ITCΩk
(D

(Tk)
Ωk

) = min
x

∑
j∈J

xjRj

s.t.
∑
j∈J

xjWj ≥
∑
i∈Ωk

wiD
(Tk)
i∑

j∈J

xjVj ≥
∑
i∈Ωk

viD
(Tk)
i

xj ∈ {0, 1, 2, . . .}∀j ∈ J.

Let S∗k and T ∗k denote an optimum solution of (PΩk).

5.1.3. Consolidation Decisions. Ultimately, the retailer’s goal is to deter-

mine which items will be consolidated and what will be the common replenishment
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cycle length for each consolidation and order-up-to-level for each set of items in the

consolidations. Therefore, the retailer needs to select which subsets of items will be

consolidated such that each item will be replenished within a single consolidation. A

given consolidation Ωk can be defined by cik values such that

cik =

 1 if item i is in consolidation Ωk,

0 otherwise.

Let

yk =

 1 if consolidation Ωk is selected,

0 otherwise.

Assuming that the retailer will adopt the optimum common replenishment cycle

length and order-up-to-levels for any consolidation Ωk, i.e., S∗k and T ∗k , the retailer’s

consolidation problem reads as

(P) min
(y)

C(y) =
∑
k∈K

ykGk(S
∗
k, T

∗
k )

s.t.
∑
k∈K

cikyk = 1 ∀i ∈ I

yk ∈ {0, 1} ∀k ∈ K.

where y is the binary (2n − 1)-vector of yk values. The objective function of (P)

minimizes the total expected costs per unit time. The first set of constraints ensures

that each item is included within one of the selected consolidations. The second set

of constraints are the binary definitions for the decision variables. Note that (P)

is a set partitioning problem, which is known to be NP-hard (see, e.g., Garey and

Johnson, 1979). Furthermore, definitions of S∗k and T ∗k require a bi-level mixed integer

nonlinear optimization problem to be solved.

5.2. SOLUTION ANALYSIS

In this section, a genetic algorithm is proposed based on the meta-heuristic

approach for solving problem (P), denoted by GA-P. GA-P has the following four

main steps: (i) chromosome representation and initialization, (ii) fitness evaluation,

(iii) mutation, and (iv) termination. The details of each step are discussed in what

follows.
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5.2.1. Chromosome Representation and Initialization. Note that

the retailer can select at most n consolidations (when each item is individually re-

plenished), that is,
∑

k∈K yk ≤ n. Therefore, a solution to (P) can be presented

by an integer n-vector chrom = [c1, c2, . . . , cn], where ci denotes the consolidation

number that item i belongs to. Note that one should have 1 ≤ ci ≤ n ∀i ∈ I. The

important point about defining a solution for (P) as a chrom vector is that the corre-

sponding consolidation decisions are feasible for (P) as each item is guaranteed to be

within one consolidation. For instance, for a problem instance with n = 5 items, let

chrom = [3, 1, 2, 3, 2]; then, items 1 and 4 form one consolidation, items 3 and 5 form

one consolidation, and item 2 forms one consolidation. That is, {1, 4}, {3, 5}, {2} are

the three consolidations selected. Furthermore, chrom representation enables mu-

tation operations to be simply executed. As an initialization, nm number of chrom

vectors are randomly generated by randomly generating ci values such that 1 ≤ ci ≤ n

∀i ∈ I.

5.2.2. Fitness Evaluation. Now suppose that a set of chromosomes are

given. For each chromosome, one can determine the number of consolidations and the

items in each consolidation as explained above. The fitness value for a chromosome

is the total expected costs of the consolidations in the chromosome. Therefore, one

needs to find the total expected costs per unit time for each consolidation of a given

chromosome and calculate the summation to find the fitness value of the chromosome.

To do so, problem (PΩk) should be solved for each consolidation associated with the

chromosome. Note that (PΩk) is a bi-level mixed integer nonlinear optimization

problem due to the calculation of expected inbound transportation costs present in

the objective function, i.e., Equation (48). Even the simplest bi-level optimization

problems, when optimization problems at both levels are linear, are shown to be NP-

hard (see, e.g., Hansen et al., 1992). Furthermore, one needs to solve (PΩk) at least

once and at most n times for each chromosome to be evaluated. Therefore, an efficient

method to solve (PΩk) is required. In what follows, an approximated reformulation

is discussed for (PΩk), which gives a single level mixed integer nonlinear optimization

problem; then, a local search algorithm is proposed to solve the resulting single level

mixed integer nonlinear optimization problem.
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5.2.3. Approximated Reformulation for A Consolidation. In de-

termining S∗k and T ∗k for a given consolidation Ωk, the retailer should consider how

much inbound transportation costs on average will be paid. However, inbound trans-

portation decisions, i.e. x, are dynamic in the sense that the retailer will find their

optimal truck choices with every replenishment. Nevertheless, since Sk and Tk heavily

affect the replenishment quantities, problem (PΩk), therefore, explicitly includes the

expected inbound transportation costs in finding S∗k and T ∗k . This, in turn, results

in the bi-level optimization problem given by (PΩk). Specifically, the lower level of

(PΩk) is required in order to find the exact expected inbound transportation costs per

unit time. As aforementioned, bi-level optimization problems are complex, therefore

this section approximates (PΩk) with a single level optimization problem as follows.

Note that the expected order quantity for each item in Ωk will be equal to the

expected demand during one replenishment cycle, i.e., λiTk ∀i ∈ Ωk. Then, Equation

(48) is approximated by defining the expected number of trucks of type j used for

consolidation Ωk, denoted by x̃jk. That is, Equation (48) is defined assuming that, on

average, the retailer decides to use x̃jk number of type j trucks in each replenishment

of the items in Ωk. Let x̃k be the m-vector of x̃jk values. Using this approximation,

average shipment cost per replenishment of Ωk amounts to ITCΩk
(x̃k) =

∑
j∈J x̃kjRj.

Then, the retailer’s approximated total expected costs per unit time when items in

Ωk are consolidated, denoted by G̃k(Sk, Tk, x̃
k), are equal to

G̃k(Sk, Tk, x̃
k) =

∑
i∈Ωk

hisi −
Tk
2

∑
i∈Ωk

hiλi +
1

Tk

∑
i∈Ωk

ai+

1

Tk

∑
i∈Ωk

pin(si, Tk) +
1

Tk

∑
j∈J

x̃kjRj.

(50)

The only difference between Equation (50) and Equation (49) is that Equation (50)

uses ITCΩk
(x̃k) while Equation (49) requires the solution of Equation (48) for any

combinations of demand realizations of the items in Ωk. Using Equation (50), the

retailer’s optimization problem for consolidation with approximated total expected

costs per unit time reads as
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(P̃
Ωk

) min
(Sk,Tk,x̃

k)
G̃k(Sk, Tk, x̃

k)

s.t. Tk ≥ 0

si ≥ 0 ∀i ∈ Ωk∑
j∈J

x̃jkWj ≥
∑
i∈Ωk

wiλiTk∑
j∈J

x̃jkVj ≥
∑
i∈Ωk

viλiTk

xj ∈ {0, 1, 2, . . .} ∀j ∈ J.

(P̃
Ωk

) is a single level mixed integer nonlinear optimization problem. Note that

(P̃
Ωk

) is NP-hard as a special case of (P̃
Ωk

) when wi = 0 ∀i ∈ I (or Wj → ∞) is an

integer knapsack problem for given Sk and Tk. Therefore, a heuristic method is next

developed to solve (P̃
Ωk

).

5.2.4. Local Search Heuristic for Consolidation Approximation. A

local search heuristic is proposed for solving (P̃
Ωk

), denoted by LSH-k. Particularly,

LSH-k works as follows. Given x̃k, Sk and Tk are first determined by solving (P̃
Ωk

)

with the given x̃k. Given x̃k, (P̃
Ωk

) reduces to the following optimization problem:

(P̃
x̃k

) min
(Sk,Tk)

G̃k(Sk, Tk, x̃
k|x̃k)

s.t. Tk ≤ min
{∑

j∈J x̃jkWj∑
i∈Ωk

wiλi
,
∑

j∈J x̃jkVj∑
i∈Ωk

viλi

}
Tk ≥ 0

si ≥ 0 ∀i ∈ Ωk

(P̃
x̃k

) is a nonlinear optimization problem. A common method to solve such nonlinear

models is the interior point method. Since (P̃
x̃k

) needs to be solved many times within

LSH-k (which is also needed to be executed many times within GA-P), developing

an efficient method to find solutions for (P̃
x̃k

) in less computational time is studied.

In particular, given Sk, if the number of expected shortages is overestimated for any

item within one replenishment cycle and assume it is equal to the expected demand

for that item within one replenishment cycle, i.e., ni(si, Tk) ∼= λiTk; then, one can

easily show that Tk = min
{∑

j∈J x̃jkWj∑
i∈Ωk

wiλi
,
∑

j∈J x̃jkVj∑
i∈Ωk

viλi

}
minimizes G̃k(Sk, Tk, x̃

k|x̃k,Sk)

over the feasible Tk values of (P̃
x̃k

). Furthermore, given Tk, G̃k(Sk, Tk, x̃
k|x̃k, Tk)

is separable in and convex with respect to each si∀i ∈ Ωk. Thus, it follows from

the first order condition that the si that minimizes G̃k(Sk, Tk, x̃
k|x̃k, Tk) will be the
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solution of F
(Tk)
i (si) = 1− hiTk

pi
, where F

(Tk)
i (·) is the cumulative distribution function

of item i’s demand over Tk time units (i.e., cumulative distribution of the normal

random variable, D
(Tk)
i , with mean λiTk and standard deviation σi

√
Tk). Therefore,

the solution of (P̃
x̃k

) is accepted, denoted by S̃k and T̃k, as given in the following

equations:

T̃k = min

{∑
j∈J x̃jkWj∑
i∈Ωk

wiλi
,

∑
j∈J x̃jkVj∑
i∈Ωk

viλi

}
, (51)

F
(Tk)
i (s̃i) = 1− hiT̃k

pi
. (52)

In Section 5.3, Equations (51) and (52) are compared to the interior point method and

it can be seen from Table 5.2 that Equations (51) and (52) are computationally very

efficient compared to the interior point method. Furthermore, the solution qualities

are very close over the problem instances solved. Therefore, Equations (51) and (52)

are used to solve (P̃
x̃k

).

Once (P̃
x̃k

) is solved, G̃k(S̃k, T̃k, x̃
k) is calculated as the cost value of x̃k. After

that, all neighbors of x̃k are checked. To do so, the number of trucks of each type

are increased and decreased (if possible) by 1. That is, x̃jk is increased by 1 and x̃jk

decreased by 1 (if x̃jk ≥ 1) for each j. This generates all neighbors of x̃k. If there is

a neighbor with a lower cost value, the neighbor with the lowest cost is taken as the

new solution and the neighbor search is repeated with this solution. This process is

repeated until no neighbor with a lower cost value is determined. At termination, a

local minimum is guaranteed.

To avoid getting a high cost local minimum, the LSH-k is started with multiple

x̃k. Initially, m x̃k vectors are randomly generated such that 0 ≤ x̃jk ≤ uk where

uk = maxj∈J

{⌈∑
i∈Ωk

wiλit
max

Wj

⌉
,
⌈∑

i∈Ωk
viλit

max

Vj

⌉}
and tmax = maxi∈Ωk

{
√

2ai
hiλi
} (note

that
√

2ai
hiλi

is the replenishment cycle length of item i assuming that σi = 0, i.e., the

economic order quantity model); thus, uk is the maximum number of trucks needed

to ship the total order quantity of the items in the consolidation assuming that each

item’s order quantity is given by the economic order quantity and a single truck

type is used. The details of LSH-k for a given starting solution are explained below.



113

Local Search Heuristic for (P̃
x̃k

) (LSH-k)

Step 0: Let x̃k be given for a consolidation Ωk.

Step 1: Calculate Sk and Tk using Equations (51) and (52) and determine

G̃k(Sk, Tk, x̃
k|x̃k)

Step 2: For j = 1 : m

Step 3: Let x̃k[−j] = x̃
[+j]
jk = x̃k. If x̃

[−j]
jk > 0, let

x̃
[−j]
jk = x̃

[−j]
jk − 1; and, let x̃

[+j]
jk = x̃

[+j]
jk + 1

Step 4: Calculate G̃k(Sk, Tk, x̃
k[−j]|x̃k[−j]) and G̃k(Sk, Tk, x̃

k[+j]|x̃k[+j]) using

Equations (51) and (52)

Step 5: End

Step 6: If minj∈J{G̃k(Sk, Tk, x̃
k[−j]|x̃k[−j]), G̃k(Sk, Tk, x̃

k[+j]|x̃k[+j])} <
G̃k(Sk, Tk, x̃

k|x̃k)

Step 7: Set x̃k = arg minj∈J{G̃k(Sk, Tk, x̃
k[−j]|x̃k[−j])G̃k(Sk, Tk, x̃

k[+j]|x̃k[+j])},
go to Step 2

Step 8: Else, terminate and return x̃k

5.2.5. Mutation. Now suppose that there is a population of evaluated chro-

mosomes, that is, the total approximated expected cost per unit time for each chromo-

some is known. Let chromdl be the dth d ∈ {1, 2, . . . , popl} chromosome in the lth pop-

ulation, where popl is the number of chromosomes in the lth population. Furthermore,

let C̃(chromdl) be the total approximated expected cost per unit time of chromdl.

Without loss of generality, let C̃(chrom1l) < C̃(chrom2l) < . . . < C̃(chrompopll). To

generate the (l+1)st population, the following three mutation operations are executed:

(i) Local Mutation: A local mutation is applied to the chromosomes that

are randomly selected from the first 45% of the popl chromosomes within the lth

population, i.e., the best 45% of the population. Local search mutation randomly

picks an item i from a selected chromosome and randomly increases or decreases ci of

the chromosome by 1. For a given population of evaluated chromosomes, d0.45pople
new chromosomes are generated at the end of local mutation operations.
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(ii) Crossover: Crossover mutation is applied to the chromosomes in the best

50% of the population. Pairs of chromosomes are randomly selected from the best

50% of the population and have the random single point crossover mutation applied to

them. Each pair of chromosomes crossover mutated generates two new chromosomes,

one from each chromosome within the pair. For a given population of evaluated

chromosomes, d0.5pople new chromosomes are generated at the end of the crossover

operations.

(iii) Random Mutation: Random mutation is applied to create a number

of chromosomes so that the new population has the same population size with the

current population. First, the number of chromosomes needed after local mutation

and crossover operations is determined. Then, chromosomes are randomly selected

from the best 50% of the population and random mutation is applied. A random

mutation on a selected chromosome randomly generates a ci value such that 1 ≤ ci ≤
n for a randomly selected item i.

At the end of mutation operations, the newly generated population has the same

number of chromosomes with the previous population.

5.2.6. Termination. If there is no improvement in C̃(chrom1l) for L

consecutive populations or O populations are evaluated, the GA-P terminates.

5.3. NUMERICAL ANALYSES

In this section, the focus is on two sets of numerical analyses. In the first set of

numerical analyses, the subroutine defined by Equations (51) and (52) is compared

to the interior point method and the approximated reformulation of a consolidation

is tested with a simulation study. In the second set of numerical analyses, the cost

and environmental benefits of consolidating items and using multiple truck types for

shipment are illustrated. In both of the numerical analyses, the demand per unit

time for any item i is assumed to be normally distributed with mean λi and standard

deviation σi. The problem instances are randomly generated using uniform distribu-

tions with the given ranges in Table 5.1. Similar numerical values are assumed for

these parameters in the literature on integrated inventory control and transportation

(see, e.g., Toptal et al., 2003, Toptal and Çetinkaya, 2006, Toptal, 2009, Konur and

Toptal, 2012). In all of the following analysis, 15 different problem classes are con-

sidered, each of which corresponds to a combination of n = {5, 10, 15, 20, 25} and
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Table 5.1. Problem parameters

λ ∼ U [1750, 2250] wi ∼ U [1, 4]
σ ∼ U [150, 250] vi ∼ U [0.5, 2]
hi ∼ U [1, 5] Wj ∼ U [200, 600]
ai ∼ U [50, 250] Vj ∼ U [100, 300]
pi ∼ U [2, 10] Rj ∼ U [150, 450]

m = {5, 10, 15}. For each problem class, 10 problem instances are generated. The

values shown in the tables of this section for a given problem class are the average

values over all 10 problem instances solved within that problem class.

Equations (51) and (52) are first compared to the interior point method. Here,

it is assumed that all of the items are consolidated in one single group and the ap-

proximated truck choices for the consolidation is given as the two alternative solution

methods are being compared for problem (P̃
x̃k

). That is, x̃k is given for Ωk such

that Ωk = I. Given the number of truck types, x̃k is randomly generated such that

x̃jk ∈ [0, 5]. For each problem class, Table 5.2 shows average values, over the 10

randomly generated problem instances, for Tk and corresponding G̃k(Sk, Tk, x̃
k|x̃k)

values along with the computation times in seconds (CPU) for Equations (51) and

(52) and the interior point method. Furthermore, the cost difference column gives

the average difference in G̃k(Sk, Tk, x̃
k|x̃k) values between Equations (51) and (52)

and the interior point method.

As it can be seen from Table 5.2, the average computational time (CPU) with

Equations (51) and (52) is significantly lower than the average computational time

with the interior point method. Moreover, while the interior point method method

results in lower approximated costs, i.e., G̃k(Sk, Tk, x̃
k|x̃k) values, Equations (51) and

(52) were able to find good quality solutions; the increase in costs is less than 4%

on average. Finally, Tk values returned by each alternative method are very close on

average. Therefore, one can conclude that Equations (51) and (52) are efficient for

solving (P̃
x̃k

) and they are used in GA-P.

Next, the approximated reformulation of a given consolidation is evaluated. Re-

call that truck choice decisions are dynamic as the retailer can select the number

of trucks of each type to ship each order. However, the calculation of the expected
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Table 5.2. Comparing solution methods for (P̃
x̃k

)

Equations (51) and (52) Interior Point Cost

n m T̃k G̃k CPU T̃k G̃k CPU Difference
5 5 0.93 36,307 0.001 0.78 35,927 0.272 0.90%

10 1.91 48,520 0.001 1.64 47,238 0.275 2.63%
15 2.70 57,123 0.001 2.02 53,281 0.260 6.74%

10 5 0.88 74,563 0.001 0.81 74,044 0.702 0.68%
10 1.93 91,088 0.001 1.50 87,296 0.757 4.35%
15 2.65 112,154 0.001 2.00 104,929 0.746 6.89%

15 5 0.80 106,073 0.001 0.76 105,705 1.270 0.35%
10 1.65 135,966 0.001 1.44 132,389 1.390 2.66%
15 2.62 164,629 0.001 1.90 154,024 1.290 6.70%

20 5 0.90 146,863 0.001 0.82 146,040 1.367 0.58%
10 1.72 183,057 0.001 1.47 179,075 1.365 2.25%
15 2.75 217,362 0.001 1.93 203,171 1.370 6.78%

25 5 0.87 183,909 0.001 0.79 183,602 1.362 0.21%
10 1.69 229,604 0.001 1.37 223,512 1.356 2.70%
15 2.62 274,293 0.001 1.87 256,578 1.358 6.79%

Average 1.78 137,434 0.001 1.41 132,454 1.009 3.41%

transportation costs resulted in a bi-level optimization problem (PΩk), which has been

approximated by problem (P̃
Ωk

). Particularly, in (P̃
Ωk

), x̃k defines the approximated

number of trucks of each truck type to be used by the retailer for a given consolida-

tion. To see how close Gk(Sk, Tk) and G̃k(Sk, Tk, x̃
k) are to one another, the truck

choice decisions are simulated as well as the order quantity decisions for a given con-

solidation. Particularly, given a problem instance, it is assumed that all of the items

are consolidated in one single group. Then, Sk, Tk, and x̃k values are determined

using LSH-k. After that, with the determined Sk and Tk values, 1,000 replenishment

cycles are simulated for the problem instance (to do so, for each item i ∈ I, 1,000

demand realizations, i.e., D
(Tk)
i values, are generated using normal distribution with

mean λiTk and standard deviation σi
√
Tk). At each replenishment of the simulation,

the best truck choices for the order are determined by solving Equation (48) with

CPLEX (as the number of decision variables are 15 maximum, it was not very time

consuming to solve Equation (48) at each of the 1,000 replenishments). As a result of

simulation, the mean value of the cost per cycle is found and then one can determine



117

the mean value of the cost per unit time, denoted by Gk(Sk, Tk). Furthermore, the

mean number of trucks of each type used is found, denoted by xjk. Note that, in the

approximated formulation, xjk is assumed to be given by x̃jk values.

Table 5.3. Comparing approximated and simulated results for a given consolidation

Approximation Simulation

n m Tk G̃k(Sk, Tk, x̃
k)

∑
j∈J x̃jk Gk(Sk, Tk)

∑
j∈J xjk

5 5 0.090 26,198 5.2 26,390 5.5
10 0.121 25,574 7.1 23,793 7.0
15 0.126 24,504 7.1 22,996 7.1

10 5 0.044 77,365 6.0 70,302 6.2
10 0.077 60,447 10.0 50,552 9.5
15 0.101 58,872 13.2 47,650 12.2

15 5 0.030 142,823 5.9 129,527 6.0
10 0.053 116,794 10.7 92,551 9.5
15 0.073 96,696 14.6 74,720 13.3

20 5 0.022 221,195 5.9 205,388 6.1
10 0.041 164,768 11.0 135,303 10.7
15 0.056 146,727 15.2 111,474 13.5

25 5 0.018 327,658 6.0 300,110 6.1
10 0.035 212,767 10.5 176,580 9.6
15 0.049 183,637 15.9 145,397 13.8

Average 0.062 125,735 9.6 107,516 9.1

In Table 5.3, the average values over the 10 randomly generated problem in-

stances for Tk, G̃k(Sk, Tk, x̃
k),
∑

j∈J x̃jk, Gk(Sk, Tk), and
∑

j∈J xjk are documented

for each problem class. It can be observed that from Table 5.3 that G̃k(Sk, Tk, x̃
k)

overestimates Gk(Sk, Tk) for most of the problem classes (and this was the case in most

of the problem instances solved). This result was expected since the approximation

reformulation does not define the minimum transportation costs in each replenish-

ment. Specifically, G̃k(Sk, Tk, x̃
k) over estimated Gk(Sk, Tk) by approximately 17%

on average. Nevertheless, x̃jk can over or under estimate xjk values and the same

observation holds for the total number of trucks used for inbound shipment; however,

the difference between
∑

j∈J x̃jk and
∑

j∈J xjk is within ±15% and is 6% on average.
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These observations demonstrate that the approximation reformulation of a consoli-

dation is sufficiently well reflecting the actual costs; hence, can be naively used to

evaluate the cost performance of a given consolidation and find good Sk and Tk values

for a given consolidation Ωk.

The following numerical analyses document the cost and environmental benefits

of consolidation. Specifically, a comparison is made between the three consolidation

policies: (i) consolidation policy, the consolidations adopted as the solution of problem

(P) via GA-P, (ii) no-consolidation policy, when all of the items are individually

replenished, and (iii) single-consolidation policy, when all of the items are consolidated

in a single group. For each policy, the approximated expected costs are determined

(denoted by C̃) and truck density (denoted by φ). Truck density is defined as the

average number of trucks used per unit time. Particularly, for a given consolidation

of items, Ωk, truck density, φk, is defined as follows:

φk =

∑
j∈J x̃jk

Tk
.

Then, truck density of a consolidation policy, is equal to the sum of the truck densities

of the consolidations suggested by the policy. Tables 5.4 and 5.5 give the average

values over 10 problem instances solved within each problem class for C̃ and φ for the

no-consolidation policy and the single consolidation policy, respectively. Furthermore,

the average values of the percent increases of C̃ and φ due to adopting no-consolidation

and single-consolidation policies over the consolidation policy are given as ∆C̃ and

∆φ, respectively.

As it can be seen from Tables 5.4 and 5.5, consolidation policies heavily affect

the costs and truck density. Specifically, a retailer can save in costs by efficiently

determining which items will be consolidated. Note that both single-consolidation

and no-consolidation policies are suboptimal for problem (P); therefore, as expected,

consolidation results in lower costs than no-consolidation and single-consolidation

policies. Compared to the no-consolidation policy, consolidation can save costs over

50% on average; and, compared to the single-consolidation policy, consolidation can

save costs over 75% on average over the problem instances solved. Furthermore,

efficient consolidation can reduce truck density. As expected, truck density is the
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Table 5.4. Comparing consolidation to no consolidation for (P)

Consolidation No Consolidation

n m C̃ φ C̃ φ ∆C̃ ∆φ
5 5 21,650 65.6 32,266 79.2 51.1% 34.0%

10 20,896 58.1 28,099 63.3 35.9% 23.6%
15 19,814 55.8 30,439 68.3 53.7% 19.5%

10 5 45,067 135.0 61,120 138.1 37.5% 8.4%
10 42,020 118.5 62,761 150.3 50.5% 38.2%
15 39,230 111.3 63,512 144.6 61.8% 25.5%

15 5 76,210 200.1 109,856 241.0 44.0% 23.4%
10 60,394 179.3 99,554 230.3 64.8% 22.9%
15 56,535 168.4 96,132 206.4 70.0% 12.5%

20 5 84,902 244.3 127,190 297.1 50.2% 20.4%
10 78,609 233.1 131,619 278.5 68.2% 40.9%
15 74,479 213.5 126,769 276.1 70.0% 33.3%

25 5 106,471 291.5 163,163 345.5 54.0% 26.0%
10 106,574 288.7 182,291 395.7 72.3% 49.0%
15 102,087 288.9 165,087 398.0 62.4% 24.6%

Average 62,329 176.8 98,657 220.8 56.4% 26.8%

Table 5.5. Comparing consolidation against single consolidation for (P)

Consolidation Single Consolidation

n m C̃ φ C̃ φ ∆C̃ ∆φ
5 5 21,650 65.6 25,322 64.5 14.7% 9.1%

10 20,896 58.1 25,422 57.2 17.1% 6.3%
15 19,814 55.8 25,707 57.9 27.3% 4.3%

10 5 45,067 135.0 69,559 128.2 53.6% 3.4%
10 42,020 118.5 63,063 131.6 53.1% 14.0%
15 39,230 111.3 56,851 126.6 46.6% 14.1%

15 5 76,210 200.1 164,045 222.2 119.9% 23.4%
10 60,394 179.3 104,445 194.0 77.1% 4.3%
15 56,535 168.4 93,314 186.9 68.5% 10.3%

20 5 84,902 244.3 205,520 260.1 138.5% 11.3%
10 78,609 233.1 156,509 260.6 103.4% 29.8%
15 74,479 213.5 134,975 257.2 77.1% 23.5%

25 5 106,471 291.5 287,827 312.3 161.0% 7.1%
10 106,574 288.7 235,357 347.1 126.2% 28.1%
15 102,087 288.9 184,080 323.1 89.2% 9.1%

Average 62,329 176.8 122,133 195.3 78.2% 13.2%
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highest on average for the no-consolidation policy as the utilization of truck capacities

is minimum in the no-consolidation policy. Compared to the no-consolidation policy,

consolidation can decrease truck density over 25% on average; and, compared to

the single-consolidation policy, consolidation can decrease truck density over 10%

on average. These observations suggest that efficient consolidation in multi-item

inventory systems can save costs and result in environmental benefits significantly.

Finally, the cases of when the retailer uses a single truck type instead of multiple

truck types are compared for inbound transportation. Specifically, it is assumed that

the retailer will select the truck type which minimizes the total of the approximated

expected costs of the consolidations selected, i.e., sum of the costs defined in Equation

(50) over the consolidations. To find the single truck type to be used, the consolidation

policy assuming a single truck type is first found via GA-P for each truck type, and

selects the one which gives lower approximated expected costs. Table 5.6 gives the

average values over 10 problem instances solved within each problem class for C̃ and

φ for inbound transportation with consideration of multiple truck types and a single

truck type. Furthermore, the average values of the percent increases in C̃ and φ are

given (denoted by ∆C̃ and ∆φ, respectively) due to adopting the restricting single

truck type for inbound shipment.

As expected and can be observed in Table 5.6, restricting the model to a single

truck type for inbound shipment increases costs. On average, a single truck type

inbound shipment increases costs by 2.3% compared to allowing use of different truck

types for inbound shipment. Furthermore, the single truck type restriction increases

the truck density by 4.9% on average over the problem instances solved. There-

fore, one can conclude that consideration of different truck types simultaneously for

inbound shipment can have cost savings as well as environmental benefits.

5.4. CONCLUSIONS AND FUTURE RESEARCH

The models given in this section study a multi-item inventory system with

shipment consolidation and explicit TL transportation in a stochastic demand en-

vironment. A time based order-up-to-level inventory policy is proposed for a set of

consolidated items. Furthermore, a retailer’s consolidation decisions are formulated

as a set partitioning problem. Due to the complexity of the problem, heuristic meth-

ods are developed. First, for a given consolidation, an approximated reformulation of
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Table 5.6. Comparing consolidation with multiple truck types to single truck type

Multiple-Truck Single-Truck

n m C̃ φ C̃ φ ∆C̃ ∆φ
5 5 21,650 65.6 21,991 69 1.6% 4.8%

10 20,896 58.1 21,108 59 0.8% 0.8%
15 19,814 55.8 20,490 62 3.3% 9.7%

10 5 45,067 135.0 45,713 139 1.3% 3.5%
10 42,020 118.5 42,785 123 1.8% 3.1%
15 39,230 111.3 39,714 113 1.2% 1.7%

15 5 76,210 200.1 78,276 216 2.6% 6.3%
10 60,394 179.3 62,054 189 2.8% 5.4%
15 56,535 168.4 58,435 177 3.2% 4.7%

20 5 84,902 244.3 90,581 281 5.8% 15.3%
10 78,609 233.1 79,519 240 1.1% 3.2%
15 74,479 213.5 75,105 214 0.9% 0.3%

25 5 106,471 291.5 107,900 298 1.4% 2.0%
10 106,574 288.7 110,478 311 3.7% 6.7%
15 102,087 288.9 104,624 308 2.4% 6.2%

Average 62,329 176.8 63,918 186.6 2.3% 4.9%

the time based order-up-to-level inventory policy with heterogeneous freight trucks is

provided. A local search heuristic is proposed for the approximated reformulation.

This search heuristic is utilized in a genetic algorithm to find good quality consolida-

tion strategies for the retailer’s consolidation problem.

This section contributes to the literature on multi-item inventory systems by

explicitly accounting for transportation costs when heterogeneous freight trucks can

be used for inbound shipment, proposing a practical inventory control policy for a set

of consolidated items with distinct characteristics, and developing a solution method

for determining consolidation strategies.

With a set of numerical studies, the accuracy of the approximated reformulation

of a consolidation is presented. Furthermore, a set of numerical studies is conducted

to illustrate the economical as well as environmental benefits of shipment consoli-

dation with heterogeneous freight trucks. Specifically, it is observed that shipment

consolidation not only saves costs but also reduces truck density. Reduced truck

density implies less transportation emissions and less truck congestion.
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A future research direction would be to analyze different inventory control

policies for a given set of consolidated items. For instance, a quantity based order-

up-to-level policy can be studied and compared to the time based order-up-to-level

policy examined in this section. Furthermore, the joint replenishment problem with

explicit transportation costs considering the availability of different truck types is a

remaining problem to be investigated.
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6. CONCLUSIONS

Greenhouse gas emissions are becoming increasingly high and the public is be-

coming motivated to reverse this trend. Everyone from regulators, stakeholders, and

the end consumers are changing their habits in response to the increasing carbon

emissions. As a major percentage of carbon emissions comes from trucking, logistics,

and inventory holding, it is therefore important for companies to reevaluate their poli-

cies regarding these topics. This dissertation introduces four new models for retailers

to consider that take into account both their costs and carbon emissions from inven-

tory holding and its associated transportation activities. Also, since these models are

targeted towards retailers, they can be used by virtually all companies. These models

can be used to help reduce their carbon footprint as well as to save costs.

This dissertation considered two carrier options available for inbound shipment,

the LTL and the TL carrier. Both transportation costs and emissions were explicitly

taken into account. In Section 2, a retailer’s problem was formulated assuming the

basic EOQ model with both LTL and TL carriers under different carbon emission

regulations. The model was optimally solved given carbon cap, carbon cap and trade,

carbon cap and offset, and carbon taxing regulations. The tools provided would give

a retailer their optimal ordering quantity under each carbon regulation with each

transportation carrier. Results were presented showing that under a given carbon

regulation, a retailer may prefer a different carrier (LTL or TL) depending on the

parameters of the retailer, the carrier, and the regulation.

While Section 2 assumed a deterministic demand, Section 3 considered a stochas-

tic demand environment, which can be more representative of a retailer’s demands.

In Section 3, it was not carbon regulations that motivated the retailer, but the re-

tailer’s own green goals. The (Q,R) model presented in Section 3 gives the retailer

tools to select both an ordering quantity and a reorder point minimizing both costs

and emissions based on their own goals. This bi-objective model was introduced as

the sustainable (Q,R) model and, again, accounted for both LTL and TL carriers.

A discussion was presented on the effects of demand variance and lead time on the

expected costs and carbon emissions for each case. The tools provided in this section
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allow retailers to choose between various LTL and TL carriers depending on their

green goals.

The previous models accounted for a single item and it was acknowledged that

many retailers must consider the replenishment of multiple items simultaneously.

Therefore, in Sections 4 and 5, multi-item models were presented that considered

deterministic and stochastic demand, respectively. A bi-objective model was intro-

duced in Section 4 that enables a retailer to jointly replenish different items while

minimizing their costs and emissions simultaneously. This model was introduced as

the sustainable joint replenishment problem, an extension of the popular joint replen-

ishment problem. The model considered two common grouping strategies, indirect

and direct grouping. Results demonstrated that a retailer may want to choose one

grouping strategy over the other depending on their environmental goals.

A multi-item stochastic inventory control model was introduced in Section 5.

Environment considerations were not directly integrated, however, inventory control

models with a transportation policy are considered to not only reduce costs but also

transportation emissions. The model proposed in this section considers the explicit

costs and emissions from heterogenous freight trucks. The policy determines which

items are to be shipped together, how much should be ordered, the order cycle length,

and how many of each truck type to use. A heuristic method was developed for

the model and results of a numerical study showed the efficiency of the proposed

heuristic. Furthermore, the savings in costs and reduction in carbon emissions due

to the adoption of the proposed consolidation strategy are documented with a set of

numerical studies.



APPENDIX A

PROOFS AND DETAILS FOR THE CARBON EMISSIONS REGULATIONS

MODELS
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A.1. NOTATION AND POSSIBLE METRICS

Table A.1 lists the notation and possible metrics for the carbon emissions reg-

ulations models.

Table A.1. Notation and possible metrics for the carbon emissions regulation models

Notation Description Metric
Retailer Parameters

λ: Demand rate units/year
p: Per unit procurement cost $/unit

K: Fixed order setup cost $/order

h: Inventory holding cost per unit per unit
time

$/unit/year

K̂: Emissions due to order placement lbs CO2/order

ĥ: Emissions due to inventory holding per
unit per unit time

lbs CO2/unit/year

Transportation Parameters
t: Transportation cost per unit by LTL car-

rier
$/unit

t̂: Emissions due to per unit transportation
with LTL carrier

lbs CO2/unit

R: Transportation cost per truck by TL car-
rier

$/truck

P : Transportation capacity per truck by TL
carrier

units/truck

ŵ: Emissions due to per empty truck trans-
portation with TL carrier

lbs CO2/truck

ê: Emissions due to per unit transportation
with TL carrier

lbs CO2/unit

Carbon Emissions Regulation Parameters
C: Carbon cap lbs CO2/year
α: Carbon emissions trading price $/lbs CO2

r: Carbon emissions offset investment cost $/lbs CO2

γ: Carbon emissions tax $/lbs CO2
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A.2. PROOF OF PROPERTY 2

Note that when ((i − 1)P, iP ] ∩ [q
TL(i)
l , q

TL(i)
u ] = ∅, it follows from Equations

(7) and (8) and definition of ETL
i (Q) that ETL(Q) > C for Q ∈ ((i − 1)P, iP ], i.e.,

order quantities within the range ((i − 1)P, iP ] are not feasible for M1-TL. In case

(i − 1)P < iP < q
TL(i)
l < q

TL(i)
u and q

TL(i)
l < q

TL(i)
u < (i − 1)P < iP , it is easy to

verify that ((i−1)P, iP ]∩ [q
TL(i)
l , q

TL(i)
u ] = ∅. Therefore, the following 4 possible cases,

where ((i− 1)P, iP ] ∩ [q
TL(i)
l , q

TL(i)
u ] 6= ∅, are considered.

Case 1: (i− 1)P ≤ q
TL(i)
l ≤ iP ≤ q

TL(i)
u

In this case, if (i − 1)P < q
TL(i)
l , then ((i − 1)P, iP ] ∩ [q

TL(i)
l , q

TL(i)
u ] =

[max{qTL(i)
l , (i − 1)P},min{qTL(i)

u , iP}] and ETL
i (Q) ≤ C for Q ∈

[max{qTL(i)
l , (i − 1)P},min{qTL(i)

u , iP}], which means that ETL(Q) ≤ C

for Q ∈ [max{qTL(i)
l , (i−1)P},min{qTL(i)

u , iP}]. On the other hand, when

(i − 1)P = q
TL(i)
l , since ETL

(i−1)(Q) < ETL
i (Q) for any Q ≥ 0 and i ≥ 2, it

follows that ETL(Q) ≤ C for Q ∈ [max{qTL(i)
l , (i− 1)P},min{qTL(i)

u , iP}].

Case 2: (i− 1)P ≤ q
TL(i)
l ≤ q

TL(i)
u ≤ iP

Similar to Case 2, in this case, if (i − 1)P < q
TL(i)
l , then ((i − 1)P, iP ] ∩

[q
TL(i)
l , q

TL(i)
u ] = [max{qTL(i)

l , (i − 1)P},min{qTL(i)
u , iP}] and ETL

i (Q) ≤
C for Q ∈ [max{qTL(i)

l , (i − 1)P},min{qTL(i)
u , iP}], which means that

ETL(Q) ≤ C for Q ∈ [max{qTL(i)
l , (i − 1)P},min{qTL(i)

u , iP}]. On the

other hand, when (i − 1)P = q
TL(i)
l , since ETL

(i−1)(Q) < ETL
i (Q) for any

Q ≥ 0 and i ≥ 2, it follows that ETL(Q) ≤ C for Q ∈ [max{qTL(i)
l , (i −

1)P},min{qTL(i)
u , iP}].

Case 3: q
TL(i)
l ≤ (i− 1)P ≤ iP ≤ q

TL(i)
u

In this case, ((i − 1)P, iP ] ∩ [q
TL(i)
l , q

TL(i)
u ] = (max{qTL(i)

l , (i − 1)P},
min{qTL(i)

u , iP}] and ETL
i (Q) ≤ C for Q ∈ (max{qTL(i)

l , (i − 1)P},
min{qTL(i)

u , iP}], which means that ETL(Q) ≤ C for Q ∈ (max{qTL(i)
l , (i−

1)P},min{qTL(i)
u , iP}]. Furthermore, since ETL

(i−1)(Q) < ETL
i (Q) for any

Q ≥ 0 and i ≥ 2, it follows that ETL(Q) ≤ C for Q ∈ [max{qTL(i)
l , (i −

1)P},min{qTL(i)
u , iP}].

Case 4: q
TL(i)
l ≤ (i− 1)P ≤ q

TL(i)
u ≤ iP

Similar to Case 4, in this case, ((i−1)P, iP ]∩[q
TL(i)
l , q

TL(i)
u ] = (max{qTL(i)

l ,



128

(i−1)P},min{qTL(i)
u , iP}] and ETL

i (Q) ≤ C forQ ∈ (max{qTL(i)
l , (i−1)P},

min{qTL(i)
u , iP}], which means that ETL(Q) ≤ C for Q ∈ (max{qTL(i)

l , (i−
1)P},min{qTL(i)

u , iP}]. Furthermore, since ETL
(i−1)(Q) < ETL

i (Q) for any

Q ≥ 0 and i ≥ 2, it follows that ETL(Q) ≤ C for Q ∈ [max{qTL(i)
l , (i −

1)P},min{qTL(i)
u , iP}].

The result then follows from Cases 1-4. �

A.3. PROOF OF PROPERTY 3

Suppose that t1 6= t2. To get a contradiction, let Q
TL(i)
u = q

TL(i)
u for some i such

that t1 ≤ i ≤ t2 − 1. It then follows from Property 2 that (i − 1)P < q
TL(i)
u ≤ iP .

By definition of q
TL(i)
u given in Equation (8), one can show that q

TL(i+1)
u < q

TL(i)
u ;

therefore, q
TL(t2)
u < q

TL(i)
u for i ≤ t2 − 1. This, then means that q

TL(t2)
u < (t2 − 1)P

as it is assumed that there exists some i such that i ≤ t2 − 1 and q
TL(i)
u ≤ iP . This

further implies that ((t2 − 1)P, t2P ] ∩ [q
TL(t2)
l , q

TL(t2)
u ] = ∅ as q

TL(t2)
l < q

TL(t2)
u , which

is a contradiction as ((t2 − 1)P, t2P ] ∩ [q
TL(t2)
l , q

TL(t2)
u ] 6= ∅ by definition. Therefore,

when t1 6= t2, there does not exist any i such that t1 ≤ i ≤ t2− 1 and Q
TL(i)
u 6= iP . �

A.4. PROOF OF PROPERTY 4

Suppose that t1 ≥ k + 1. Consider the following two cases:

Case (i): t1 = t2

In this case, ETL(Q) ≤ C only for Q ∈ [Q
TL(t1)
l , Q

TL(t1)
u ]. Now, when

Q∗t1 < Q
TL(t1)
l , HTL

1 (Q) is increasing over [Q
TL(t1)
l , Q

TL(t1)
u ]; hence, QTL

1 =

Q
TL(t1)
l . When Q

TL(t1)
l ≤ Q∗t1 ≤ Q

TL(t1)
u , HTL

1 (Q) is minimized at Q∗t1 by

the definition of Q∗t1 . When, Q
TL(t1)
u < Q∗t1 , HTL

1 (Q) is decreasing over

[Q
TL(t1)
l , Q

TL(t1)
u ]; hence, QTL

1 = Q
TL(t1)
u .

Case (ii): t1 6= t2

In this case, it follows from Property 3 that Q
TL(t1)
u = t1P . From Property

1, it is known that HTL
1 (iP ) ≤ HTL

1 (Q) for i ≥ k + 1, therefore, it follows

that HTL
1 (t1P ) ≤ HTL

1 (Q) for Q ≥ t1P . It then leads that Q
TL(t1)
l ≤

QTL
1 ≤ Q

TL(t1)
u . Following the same discussion in Case (i), one then can

conclude that QTL
1 = Q

TL(t1)
l if Q∗t1 < Q

TL(t1)
l ; QTL

1 = Q∗t1 if Q
TL(t1)
l ≤

Q∗t1 ≤ Q
TL(t1)
u ; and QTL

1 = Q
TL(t1)
u if Q

TL(t1)
u < Q∗t1 .
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The result then follows from Cases (i) and (ii). �

A.5. PROOF OF PROPERTY 5

Suppose that t2 ≤ k. Note that, from Property 1, it is known that HTL
1 (Q) is

decreasing over (i− 1)P < Q ≤ iP for i ≤ k. Consider the following two cases:

Case (i): t1 = t2

In this case, ETL(Q) ≤ C only for Q ∈ [Q
TL(t1)
l , Q

TL(t1)
u ]. Furthermore,

since t2 = t1 ≤ k, it is known from Property 1 that HTL
1 (Q) is decreasing

over Q ∈ [Q
TL(t1)
l , Q

TL(t1)
u ]. Therefore, Q1 = Q

TL(t1)
u .

Case (ii): t1 6= t2

In this case, it follows from Property 3 that Q
TL(t2−1)
u = (t2 − 1)P , which

implies that QTL
1 ≥ (t2−1)P . Furthermore, since t2 ≤ k, it is known from

Property 1 that HTL
1 (Q

TL(t2)
u ) < HTL

1 (Q) for Q ∈ [Q
TL(t2)
l , Q

TL(t2)
u ]. Thus,

it follows that QTL
1 = arg min{HTL

1 (Q
TL(t2−1)
u ), HTL

1 (Q
TL(t2)
u )}.

The result then follows from Cases (i) and (ii). �

A.6. PROOF OF PROPERTY 6

Suppose that t1 ≤ k < k + 1 ≤ t2. In this case, t1 6= t2. Property 3 implies

that kP is feasible, i.e., ETL(kP ) ≤ C. Furthermore, it is known from Property

1 that QTL
1 ≥ kP when t1 ≤ k < k + 1 ≤ t2. Then one can show that QTL

1 =

arg min{HTL
1 (kP ), HTL

1 (min{Q∗k+1, Q
TL(k+1)
u })}. �

A.7. PROOF OF PROPERTY 7

Observe thatHLTL
3b (Q) is a strictly convex function with respect toQ and qLTL3b =√

2λ(K+rK̂)

h+rĥ
minimizes HLTL

3b (Q). Furthermore, by definition of qLTLl and qLTLu , any

Q ≤ qLTLl or Q ≥ qLTLu is feasible for M3-LTL-b. Therefore, if qLTL3b ≤ qLTLl or

qLTL3b ≥ qLTLu , ELTL(qLTL3b ) ≥ C, which means that QLTL
3b = qLTL3b . On the other

hand, if qLTLl < qLTL3b < qLTLu , ELTL(qLTL3b ) < C. Moreover, HLTL
3b (Q) is decreasing

over 0 ≤ Q ≤ qLTLl and HLTL
3b (Q) is increasing over Q ≥ qLTLu . It then follows that

QLTL
3b = arg min{HLTL

3b (qLTLl ), HLTL
3b (qLTLu )} if qLTLl < qLTL3b < qLTLu . �

A.8. PROOF OF PROPERTY 8

First note that q
TL(i)
3b =

√
2(K + rK̂ + i(R + rŵ))λ/(h+ rĥ) is the minimizer

of HTL
3b (Q) when i trucks are used for transportation. Furthermore, by definition of

(Q̂
TL(i)
l , Q̂

TL(i)
u ), (Q̂

TL(i)
l , Q̂

TL(i)
u ) ⊂ ((i − 1)P, iP ] and ETL(Q) ≥ C for Q ∈ (Q̂

TL(i)
l ,
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Q̂
TL(i)
u ). Now, if q

TL(i)
3b ≤ Q̂

TL(i)
l , it follows from convexity of HTL

3b (Q) over ((i−1)P, iP ]

that HTL
3b (Q) is increasing over Q ∈ (Q̂

TL(i)
l , Q̂

TL(i)
u ); thus, Q

TL(i)
3b = limQ→+ Q̂

TL(i)
l .

If, Q̂
TL(i)
l < q

TL(i)
3b < Q̂

TL(i)
u , it then follows that Q

TL(i)
3b = q

TL(i)
3b as q

TL(i)
3b minimizes

HTL
3b (Q) for Q ∈ ((i−1)P, iP ]. Finally, if Q̂

TL(i)
u ≤ q

TL(i)
3b , it then follows from convex-

ity of HTL
3b (Q) over ((i−1)P, iP ] that HTL

3b (Q) is decreasing over Q ∈ (Q̂
TL(i)
l , Q̂

TL(i)
u );

thus, Q
TL(i)
3b = limQ→− Q̂

TL(i)
u . �

A.9. PROOF OF PROPERTY 9

First note that HTL
3b (Q) has a similar form with HTL(Q); thus, one can apply

this to find the minimizer of HTL
3b (Q). Particularly, it follows from Property 1 that the

minimizer of HTL
3b (Q) is less than or equal to (z + 1)P where z is the unique integer

such that zP <

√
2(K + rK̂)λ/(h+ rĥ) ≤ (z + 1)P (see Equation (4)). Therefore,

if the minimizer of HTL
3b (Q) is feasible to M3-TL-b, it will be the optimum solution

of M3-TL-b. However, it is possible that the minimizer of HTL
3b (Q) is not feasible

to M3-TL-b. Let x be the first integer such that q
TL(x)
u ≤ (x − 1)P . Note that if

q
TL(x)
u ≤ (x − 1)P then (((i − 1)P, iP ] \ (Q

TL(i)
l , Q

TL(i)
u )) = ((i − 1)P, iP ] for i ≥ x

as q
TL(x)
u < q

TL(x+1)
u by definition of q

TL(x)
u given in Equation (8). It then follows

that Q ≥ (x − 1)P is feasible for M3-TL-b. Now, if (z + 1)P ≤ xP , QTL
3b ≤ xP

as known from Property 1 that HTL
3b (iP ) ≤ HTL

3b ((i + 1)P ) for i ≥ (z + 1)P . If,

(z + 1)P ≥ (x − 1)P , it is already known from Equation (4) that QTL
3b ≤ (z + 1)P .

Therefore, one can conclude that QTL
3b ≤ (max{z, x}+ 1)P . �

A.10. PROOF OF PROPERTY 10

When ELTL(QLTL) ≥ C, by definitions of qLTLl and qLTLu , one will have either

QLTL ≤ qLTLl or QLTL ≥ qLTLu . Corollary 1 the implies that either QLTL
1 = qLTLl or

QLTL
1 = qLTLu . In both cases, ELTL(QLTL

1 ) = C. Since ETL(QTL
1 ) ≤ C, it follows that

ETL(QTL
1 ) ≤ ELTL(QLTL

1 ). �

A.11. PROOF OF PROPERTY 11

Part (i) is proven first. Suppose that t + αt̂ < αê. HLTL
2 (Q) − HTL

2 (Q) =

(t + αt̂)λ − αêλ −
⌈
Q
P

⌉ (R+αŵ)λ
Q

; thus, HLTL
2 (Q) < HTL

2 (Q) when (t + αt̂) < αê +⌈
Q
P

⌉ (R+αŵ)
Q

for any Q. Since
⌈
Q
P

⌉ (R+αŵ)
Q

≥ 0 for any Q and t + αt̂ < αê, it follows

that HLTL
2 (Q) < HTL

2 (Q) for any Q. This implies that HLTL
2 (QTL

2 ) < HTL
2 (QTL

2 ). By

definition of QLTL
2 , HLTL

2 (QLTL
2 ) ≤ HLTL

2 (QTL
2 ). It then follows that, if t + αt̂ < αê,

HLTL
2 (QLTL

2 ) < HTL
2 (QTL

2 ). Proof of part (ii) is similar. HLTL
2 (Q) > HTL

2 (Q) when
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(t + αt̂) > αê +
⌈
Q
P

⌉
(R+αŵ)

Q
. Since

⌈
Q
P

⌉
≤ Q for any Q and t + αt̂ > R + αŵ + αê,

it follows that HLTL
2 (Q) > HTL

2 (Q) for any Q. This implies that HLTL
2 (QLTL

2 ) >

HTL
2 (QLTL

2 ). By definition of QTL
2 , HTL

2 (QTL
2 ) ≤ HTL

2 (QLTL
2 ). It then follows that, if

t+ αt̂ > R + αŵ + αê, HLTL
2 (QLTL

2 ) > HTL
2 (QTL

2 ). �
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B.1. NOTATION AND POSSIBLE METRICS

Table B.1 lists the demand, cost, and emissions notation along with some ex-

ample metrics for use in the sustainable (Q,R) models. Table B.2 lists the notation

and possible metrics for the transportation and the retailer’s parameters and decision

variables for use in the sustainable (Q,R) models.

Table B.1. Demand, cost, and emissions notation and possible metrics for the sus-
tainable (Q,R) models

Notation Description Metric
Demand Parameters

λ: Expected demand rate units/year
ϑ: Standard deviation of demand rate units

τ : Lead time duration year

D: Random variable defining lead time demand units

f(D): Probability density function of D

F (D): Cumulative distribution function of D

µ: Expected lead time demand units

σ: Standard deviation of lead time demand units

Cost Parameters
c: Per unit procurement cost $/unit
K: Fixed order setup cost $/order

h: Inventory holding cost per unit per unit time $/unit/year

p: Unit backorder cost $/unit

Emission Parameters
ĉ: Emissions due to per unit procurement CO2 lbs/unit

K̂: Emissions due to order placement CO2 lbs/order

ĥ: Emissions due to inventory holding per unit per
unit time

CO2 lbs/unit/year

p̂: Emissions due to per unit backorder CO2 lbs/unit

It should be noted that emissions are given in terms of carbon emissions as other

greenhouse gas emissions can be measured in terms of equivalent CO2 emissions (see,

e.g., EPA, 2013a).
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Table B.2. Transportation and retailer’s notation and possible metrics for the sus-
tainable (Q,R) models

Notation Description Metric
Transportation Parameters

t: Transportation cost per unit by LTL carrier $/unit
w: Transportation cost per truck by TL carrier $/truck

v: Transportation capacity per truck by TL carrier units/truck

t̂: Emissions per unit due to transportation with a
LTL carrier

CO2 lbs/unit

ŵ: Emissions per empty truck due to transportation
with a TL carrier

CO2 lbs/truck

ê: Emissions per unit due to transportation with a
TL carrier

CO2 lbs/unit

Retailer Parameters and Decision Variables
k: Retailer’s safety factor k ≥ 0
Q: Retailer’s order quantity per order units

R: Retailer’s re-order quantity units

m: Number of trucks of TL carrier used in each order m ∈ {0, 1, 2, . . .}
x: Number of trucks of certain type of TL carrier

used in each order
x ∈ {0, 1, 2, . . .}

B.2. COMPARISON OF ROUTINE 2 TO INTERIOR POINT

METHOD

Recall that Routine 2 is proposed to solve S-(Q,R)-TL(m, θ) and the interior

point method is another method available to solve S-(Q,R)-TL(m, θ). To compare

Routine 2 to the interior point method, problem instances are considered for different

m values increasing from 1 to 10 in increments of 1. For each m value, 250 problem

instances are generated using the design in Appendix B.3 and each problem is then

solved with 50 different values of θ. That is, for each m value, 12500 different problem

instances are solved with Routine 2 and the interior point method. Note that for a

given problem instance with a specific value m, solving the problem instance with

different θ values approximates the PF 2(m); hence, 50 Pareto efficient solutions are

generated for each problem instance with the given number of trucks. Once PF 2(m)

is approximated with 50 points for a given problem instance and number of trucks,
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the standard deviation of the costs and emissions are calculated for the solutions

in PF 2(m).

For each m value, the ”mean” columns in Tables B.3 and B.4 summarize the

averages of costs and emissions over the problem instances solved (i.e., averages over

12500 problem instances), averages of the standard deviations of costs and emissions

of the solutions in the Pareto fronts under are shown under the ”standard deviation”

columns (i.e., averages of standard deviations over 250 problem instances), and the

average time to solve a problem instance (i.e., the time to generate a Pareto efficient

solution, PE) and average time to generate a Pareto front with 50 Pareto efficient

solutions are shown under the ”time” columns, for Routine 2 and the interior point

method, respectively.

Table B.3. Routine 2 statistics

Mean Standard Deviation Time (in secs)
m Costs Emissions Costs Emissions PP PF
1 7,394.42 11,251.49 2,040.17 4,231.04 0.00070 0.03481
2 6,829.90 10,748.95 1,671.42 3,839.48 0.00069 0.03401
3 6,825.01 10,886.86 1,546.62 3,682.06 0.00068 0.03330
4 6,965.34 11,184.68 1,487.48 3,590.37 0.00067 0.03352
5 7,162.50 11,539.83 1,463.06 3,536.94 0.00066 0.03355
6 7,384.53 11,916.82 1,461.71 3,511.53 0.00066 0.03294
7 7,616.64 12,299.64 1,476.46 3,507.52 0.00066 0.03330
8 7,851.47 12,679.97 1,502.22 3,520.12 0.00066 0.03362
9 8,085.09 13,053.62 1,535.8 3,545.23 0.00066 0.03336
10 8,315.72 13,418.71 1,574.72 3,579.77 0.00067 0.03322
avg 7,443.06 11,898.06 1,575.96 3,654.40 0.00067 0.03356

It can be observed from Tables B.3 and B.4 that Routine 2 and the interior

point methods find very close solutions. Furthermore, the Pareto fronts generated

with each method have very close standard deviations. Nevertheless, Routine 2 is

more efficient compared to the interior point method in terms of computational time

to find a Pareto efficient solution and to approximate the Pareto front for a problem

instance.
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Table B.4. Interior point method statistics

Mean Standard Deviation Time (in secs)
m Costs Emissions Costs Emissions PP PF
1 7,394.42 11,251.49 2,040.17 4,231.04 0.08299 4.24734
2 6,829.90 10,748.95 1,671.42 3,839.48 0.07840 4.02386
3 6,825.02 10,886.86 1,546.62 3,682.06 0.07898 4.05503
4 6,965.36 11,184.68 1,487.47 3,590.37 0.07696 3.95535
5 7,162.51 11,539.84 1,463.06 3,536.96 0.07661 3.93904
6 7,384.58 11,916.85 1,461.71 3,511.58 0.07700 3.95904
7 7,616.72 12,299.7 1,476.47 3,507.63 0.07760 3.99030
8 7,851.60 12,679.97 1,502.26 3,520.35 0.07767 3.99374
9 8,085.29 13,053.58 1,535.85 3,545.63 0.07771 3.99659
10 8,316.04 13,418.53 1,574.81 3,580.36 0.07783 4.00281
avg 7,443.14 11,898.05 1,575.98 3,654.55 0.07818 4.01631

B.3. DESIGN DETAILS FOR THE NUMERICAL STUDIES OF

SECTION 3.3

In all of the problem instances solved, it is assumed that k = 0, λ = 2, 000

units, and ϑ = 200. Note that in analyses (i) and (ii) of Section 3.3, the standard

deviation of lead time demand, and lead time duration will vary; thus, different

demand characteristics will be captured. Furthermore, this section assumes that the

retailer orders from a single supplier; hence, their procurement costs and procurement

emissions are fixed per unit time. This further suggests that they are not effective in

decision making. Therefore, this section simply assumes that c = ĉ = 1.

In generating cost and emission parameters that are not related to transporta-

tion (except c and ĉ), a lower and an upper bound is defined for each parameter. The

parameter value in a problem instance is then determined by randomly generating a

value from a uniform distribution defined within the lower and upper bounds of the

parameter. U [a, b] denotes a uniform distribution with bounds a and b.

• The uniform distribution for each cost parameter is designed as follows: h ∼
U [1, 5], K ∼ U [50, 250], and p ∼ U [2, 10]. Note that similar values are assumed

in many inventory control studies as well as in numerical analysis of the studies

focusing on inventory control models with carbon emission considerations (see,
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e.g., Benjaafar et al., 2013, Hua et al., 2011, Chen et al., 2013, Toptal et al.,

2014).

• The uniform distribution for each emission parameter is designed as follows:

Following the similar values in related literature (see, e.g., Benjaafar et al.,

2013, Hua et al., 2011, Chen et al., 2013, Arikan et al., 2013), this section sets

ĥ ∼ U [2, 8] and K̂ ∼ U [50, 300]. In defining the range for p̂, it is assumed that

it is defined similar to the relation between h and p, therefore, it is assumed

that p̂ ∼ U [5, 15].

In generating transportation parameters related to emissions, values are adopted

from integrated inventory control and truckload transportation studies. Specifically,

it is assumed that w ∼ U [150, 450] and v ∼ U [100, 300] (similar values are defined

in integrated inventory control and truckload transportation, see, e.g., Toptal et al.,

2003, Toptal and Çetinkaya, 2006, Toptal, 2009, Konur and Toptal, 2012). v is

rounded to the nearest multiplier of 10 for practical purposes. Furthermore, it is

noted by Toptal and Bingol (2011) that w
v
< t < w. However, assuming that t → w

v

is not practical as unit transportation cost would be very close to per truck cost.

Therefore, this section assumes that t ∼ U [w
v
, 2w

v
]. In generating transportation

parameters related to emissions, this section focuses on the following observations

from the literature. Generally, emission characteristics for trucks are given for empty

truck and full truck per mile or kilometer (km)(see, e.g., Pan et al., 2013, Reed et al.,

2010). Let ŵe and ŵf denote the carbon emissions generated per unit distance by

an empty and full truck, respectively. It is observed from the values given by Pan

et al. (2013) and Reed et al. (2010) that ŵf ≈ 1.5ŵe for different truck types and ŵe

varies between 1 and 1.5 kg CO2/km (similar numbers can also be deducted from a

simulation study provided by Daccarett-Garcia, 2009). Therefore, problem instances

with ŵe ∼ U [1, 1.5] and ŵf = βŵe are considered where β ∼ U [1.2, 1.8]. Then, the

emissions generated from a unit load per unit distance is determined as
ŵf−ŵe

v
for a

truck with capacity of v units. Given the distance between supplier and the retailer

store, say g units, one can estimate ŵ = gŵe and ê = g
ŵf−ŵe

v
. Furthermore, problem

instances are considered with g ∼ U [100, 500]. Therefore, ŵ and ê are randomly

generated by randomly generating ŵe (empty truck emissions per unit distance), β
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(the ratio of full truck emissions per unit distance to empty truck emissions per unit

distance), and g (the distance between the retailer and the supplier). In generating

t̂, this section assumes that t̂ = ϕê, where ϕ ∼ U [0.5, 2]. This enables this model to

capture cases where unit transportation emissions of a LTL carrier can be higher and

lower than the unit transportation emissions of the TL carrier.

In all of the problem instances solved, Routine 1 and Routine 2 generated 25

points on the PFs.

B.4. TABLES OF SECTION 3.3

For each σ value, Table B.5 summarizes the changes in averages over 250 prob-

lem instances under LTL transportation in expected costs (C1) and emissions (E1)

for the cost minimizing (Q,R) policy ((QC , RC)1), emission minimizing (Q,R) pol-

icy ((QE, RE)1), and the average of the (Q,R) policies in PF 1 ((QS, RS)1). Table

B.6 summarizes the changes in averages over 250 problem instances under TL trans-

portation in expected costs (C2) and emissions (E2) for the cost minimizing (Q,R,m)

policy ((QC , RC ,mC)2), emission minimizing policy (Q,R,m) policy ((QE, RE,mE)2),

and the average of the (Q,R,m) policies in PF 2 ((QS, RS,mS)2). Tables B.7 and B.8

are constructed similar to Tables B.5 and B.6 but for the τ values.

Table B.5. Expected costs and emissions with LTL transportation as σ changes

(QC , RC)1 (QE, RE)1 (QS, RS)1

σ C1 E1 C1 E1 C1 E1

10 7144 6927 7452 6445 7270 6564
20 7184 7028 7496 6538 7311 6659
30 7224 7130 7539 6631 7353 6755
40 7264 7231 7584 6723 7394 6850
50 7304 7332 7628 6815 7435 6944
60 7343 7433 7672 6906 7477 7039
70 7383 7534 7717 6997 7518 7133
80 7422 7634 7761 7088 7559 7226
90 7461 7735 7806 7178 7600 7319
100 7501 7835 7851 7268 7641 7412
avg. 7323 7382 7650 6859 7456 6990
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Table B.6. Expected costs and emissions with TL transportation as σ changes

(QC , RC ,mC)2 (QE, RE,mE)2 (QS, RS,mS)2

σ C2 E2 C2 E2 C2 E2

10 5850 9372 6149 8893 5938 9129
20 5906 9507 6212 9021 6000 9247
30 5962 9637 6276 9149 6060 9366
40 6018 9766 6323 9276 6119 9486
50 6074 9895 6385 9401 6179 9603
60 6130 10019 6443 9526 6238 9724
70 6185 10140 6506 9650 6296 9844
80 6241 10273 6557 9773 6353 9964
90 6296 10398 6607 9895 6409 10083
100 6351 10524 6672 10017 6467 10200
avg. 6101 9953 6413 9460 6206 9665

Table B.7. Expected costs and emissions with LTL transportation as τ changes

(QC , RC)1 (QE, RE)1 (QS, RS)1

τ C1 E1 C1 E1 C1 E1

0.1 7231 7146 7547 6646 7359 6770
0.2 7283 7279 7604 6766 7413 6895
0.3 7323 7381 7649 6859 7455 6990
0.4 7356 7466 7686 6936 7490 7069
0.5 7386 7541 7720 7004 7521 7139
0.6 7412 7609 7750 7065 7549 7202
0.7 7437 7671 7778 7121 7574 7260
0.8 7459 7729 7803 7173 7598 7314
0.9 7480 7783 7828 7222 7620 7365
1.0 7501 7835 7851 7268 7641 7412
avg. 7387 7544 7722 7006 7522 7142

B.5. EXAMPLES OF SECTION 3.3.3

In Examples 5–7, the same retailer has been considered to control inventory

and transportation of a single product such that the demand per unit time for the

product is normally distributed with λ = 2, 000 units and ϑ = 200. The lead time is

assumed to be fixed at τ = 0.25; hence, the lead time demand is normally distributed

with µ = 500 and σ = 100. The safety factor is assumed to be fixed at k = 0. The
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Table B.8. Expected costs and emissions with TL transportation as τ changes

(QC , RC ,mC)2 (QE, RE,mE)2 (QS, RS,mS)2

τ C2 E2 C2 E2 C2 E2

0.1 5971 9659 6287 9170 6070 9386
0.2 6044 9828 6356 9335 6148 9541
0.3 6100 9954 6409 9461 6207 9661
0.4 6148 10055 6463 9566 6256 9763
0.5 6189 10153 6510 9659 6300 9852
0.6 6227 10243 6542 9742 6338 9934
0.7 6261 10321 6576 9818 6374 10008
0.8 6293 10392 6608 9888 6406 10077
0.9 6323 10451 6633 9955 6438 10139
1.0 6351 10524 6672 10017 6467 10200
avg. 6191 10158 6506 9661 6300 9856

retailer has the cost and emission parameters given in Table B.9.

LTL carriers A and B in Example 5 and the LTL carrier in Example 6 have the

parameter values given in Table B.10 below.

The TL carrier in Example 6 is the TL carrier B of Example 7 and TL carriers

A and B in Example 7 have the parameter values given in Table B.11 below.

Table B.9. Retailer’s cost and emission parameters

Cost Parameters Emission Parameters
Parameter Value Parameter Value

c 10 ĉ 10

h 0.2 ĥ 5

K 50 K̂ 250
p 5 p̂ 10

Table B.10. Cost and emission parameters for LTL carriers

LTL carrier A LTL carrier B LTL carrier
t 0.03 0.05 0.03

t̂ 50 49.9 50.01
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Table B.11. Cost and emission parameters for TL carriers A and B

TL carrier A TL carrier B
w 5 10
v 280 280
ê 50 50
ŵ 60 10



APPENDIX C

DETAILS FOR THE SUSTAINABLE JOINT REPLENISHMENT MODELS
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C.1. PROOF OF PROPERTY 12

Recall that for a given m, both C1(t,m|m) and E1(t,m|m) are strictly convex

with respect to t. This implies that PF I(m) is a convex set (see, e.g., Marler and

Arora, 2004). Along with the continuity of these functions, this further indicates

that any (t(m),m) such that t(m) ∈ [min{tC(m), tE(m)},max{tC(m), tE(m)}] is in

PF I(m).

Recall that for a given t, C1(t,m|t) and E1(t,m|t) are the summation of n sepa-

rable convex functions denoted by C1
i (mi) and E1

i (mi) for each i, i = 1, 2, . . . , n. Thus,

if (t,m(t)) ∈ PF I(t), mi(t) has to be in the Pareto front of the bi-objective optimiza-

tion model which minimizes C1
i (mi) and E1

i (mi). Due to convexity of C1
i (mi) and

E1
i (mi), it then follows similar to above thatmi(t) ∈ [min{mC

i (t),mE
i (t)},max{mC

i (t),

mE
i (t)}] ∀i = 1, 2, . . . , n. �

C.2. PROOF OF PROPERTY 13

Recall that PF I ⊆
⋃

m∈Zn
+

PF I(m). This means that if (t,m) ∈ PF I , (t,m) ∈

PF I(m). It then follows from Property 12 that min{tC(m), tE(m)} ≤ t ≤ max{tC(m),

tE(m)}. Therefore, for any (t,m) such that (t,m) ∈ PF I , one should have

minm∈Zn
+

{
min{tC(m), tE(m)}

}
≤ t ≤ maxm∈Zn

+

{
max{tC(m), tE(m)}

}
, where tC(m)

and tE(m) are defined in Equations (27) and (28), respectively. This implies that

min
{

minm∈Zn
+

{
tC(m)

}
,minm∈Zn

+

{
tE(m)

}}
≤ t ≤ max{maxm∈Zn

+

{
tC(m)

}
,

maxm∈Zn
+

{
tE(m)

}
}. Note that both tC(m) and tE(m) are decreasing with m (see,

e.g., Goyal, 1974); thus, one can show that minm∈Zn
+

{
tC(m)

}
= minm∈Zn

+

{
tE(m)

}
=

0 by having mi → ∞ ∀i = 1, 2, . . . , n. Therefore, there does not exist a pos-

itive lower bound for t. Furthermore, one can show that maxm∈Zn
+

{
tC(m)

}
=√

2 (A+
∑n

i=1 ai) /
∑n

i=1 λihi and maxm∈Zn
+

{
tE(m)

}
=√

2(Â+
∑n

i=1 âi)/
∑n

i=1 λiĥi by having mi = 1 ∀i = 1, 2, . . . , n. These imply that, for

any (t,m) ∈ PF I , one should have 0 ≤ t ≤ max

{√
2(A+

∑n
i=1 ai)∑n

i=1 λihi
,

√
2(Â+

∑n
i=1 âi)∑n

i=1 λiĥi

}
.

Recall that PF I ⊆
⋃
t:t>0

PF I(t). This means that if (t,m) ∈ PF I , (t,m) ∈

PF I(t). It then follows from Property 12 that min{mC
i (t),mE

i (t)} ≤ mi ≤ max{mC
i (t),

mE
i (t)}∀i = 1, 2, . . . , n, where mC

i (t) and mE
i (t) are defined in Equations (29) and

(31), respectively. Therefore, for any (t,m) such that (t,m) ∈ PF I , one should



144

have mint:t>0

{
min{mC

i (t),mE
i (t)}

}
≤ mi ≤ maxt:t>0

{
max{mC

i (t),mE
i (t)}

}
. Con-

sidering definitions of mC
i (t) and mE

i (t) in Equations (29) and (31), respectively,

and referring to Equations (30) and (32), it then follows that bmin{mint:t>0{m̃C
i (t)},

mint:t>0{m̃E
i (t)}}c ≤ mi ≤

⌈
max

{
maxt:t>0{m̃C

i (t)},maxt:t>0{m̃E
i (t)}

}⌉
. Note that

both m̃C
i (t) and m̃E

i (t) are decreasing with t. Since, 0 < t ≤ tUB, one can show that

tUB is the solution of mint:t>0{m̃C
i (t)} and mint:t>0{m̃E

i (t)}; hence, mi ≥⌊
min

{
1
tUB

√
2ai
hiλi

, 1
tUB

√
2âi
ĥiλi

}⌋
. Furthermore, since maxt:t>0{m̃C

i (t)} → ∞ and

maxt:t>0{m̃E
i (t)} → ∞ as t→ 0, there does not exist an upper bound for mi. �

C.3. PROOF OF PROPERTY 14

Suppose that X ∈ χ and T(X) ∈ PFD(X). To establish a contradiction, one

should assume that there exists at least one j, j ∈ {1, 2, . . . , n} such that tj(X) /∈
[min{tCj (X), tEj (X)},max{tCj (X), tEj (X)}]. Without loss of generality, assume that

tj(X) < min{tCj (X), tEj (X)}. Then, by definition of tCj (X) and tEj (X), it follows that

both C2(T(X),X|X) and E2(T(X),X|X) can be reduced by increasing tj(X). This

contradicts that T(X) ∈ PFD(X) as it is Pareto dominated by another T for the

given X. �

C.4. PROOF OF PROPERTY 15

First note that, given X ∈ χ, PFD(X) is convex as both C2(T,X|X) and

E2(T,X|X) are convex in T. In case of convex Pareto fronts, the normalized weighted

approach can be used to generate the full Pareto front (see, e.g., Marler and Arora,

2010). Specifically, it follows that, for a given ω such that ω ∈ [0, 1], the solution of

the following optimization problem will be in PFD(X)

min f(T|ω) = ω
C2(T,X|X)

C2(TC(X),X|X)
+ (1− ω)

E2(T,X|X)

E2(TE(X),X|X)

One can observe that f(T|ω) is summation of n convex functions of tj ∀j = 1, 2, . . . , n.

Similar to Equations (35) and (36), one can show, using first order conditions, that

T minimizing f(T|ω) is equal to Tω = [tω1 , t
ω
2 , . . . , t

ω
n] such that

tωj =

√√√√2((w1A+ w2Â) +
∑n

i=1(w1ai + w2âi)xij)∑n
i=1(w1hi + w2ĥi)λixij

where w1 = ω
C2(TC(X),X|X)

and w2 = 1−ω
E2(TE(X),X|X)

. �
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