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ABSTRACT

This work presents a geometric error compensatiethaod for large 5-axis
machine tools. The compensation method presentedulses tool tip measurements
recorded throughout the axis space to construosdipn-dependent geometric error
model that can easily be used for error compensaiibe measurements are taken using
a laser tracker, permitting rapid error data gatigeat most locations in the axis space.
First two model types are compared for generatiigtbased error compensation and
experimental results are presented. Table-basepeusation is then extended to
machine tool controller types with restrictionstbe number or combination of
compensation tables using an artificial intelligemeethod. The overall methodology is
then extended to the integration of additionalrinstents. A particular strength of the
proposed methodology is the simultaneous generafiarcomplete set of compensation
tables that accurately captures complicated kiniensators independent of whether they

arise from expected and unexpected sources.
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SECTION
1 INTRODUCTION

Monolithic parts have become increasingly commothéeaerospace industry.
Figure 1.1 shows an example of such a part. Thade pan be beneficial in decreasing
the amount of hand work and number of fastenertsalso increases part complexity and
the demand for tight tolerances over longer disganso new strategies for improving the

accuracy of these machines is needed.

Figure 1.1: An example of a monolithic part thatntines smaller components
with features requiring tight tolerances.

Additionally, many machine shops have aging. Treisacy of machine tool is
typically improved through calibration or mecharniadjustment since machine tools are
very repeatable. Machine tool accuracy may alsogda@ver time due to wear or
collisions with a work part or table, so calibratiis a part of regular maintenance.
Calibration common practice in the industry, butdrhon techniques developed
originally for three-axis machine tools. Three-axiachine tools often used direct

measurement methods since they have only linea ®tect measurement methods are



measurement methods that attempt to isolate avidudil error. These methods can be
more time consuming and are not as suited to nmrgEx machines. Sartori and Zhang
[1] and Schwenke et al [2] both give an overviewdibéct measurement methods. ISO
230-1 describes the current practice for machinkdalibration [3]. These methods
generally calibrate the three linear axes indiviljughen measure the rotary axes
separately. Calibration of the rotary axes usesantimeasurement, which uses
measurement of the tooltip position, rather thaiirect measurement of individual
errors. Indirect measurement types are summanzgt,iincluding instruments such as a
ball bar [5, 6] or the R-test [7, 8]. The ball bas traditionally been used to identify
errors between two linear axes, but has been eatetadrotary axes in Tsustsumi and
Saito [5], Zargarbashi and Mayer [6], and LeilgBh Some less common instruments
include the cross grid encoder, “capball”, devetbpg Zargarbashi and Mayer [6], and
“non-bar,” developed by Jywe et al [10]. These radthassume perfectly calibrated
linear axes so that the errors of the rotary agesbe isolated. There are several
problems with this approach. First, assumptionsareg made that the errors on each
axis can be separated from one another and tleaithé linear axes are calibrated, their
errors have no further influence on the rotary akeaddition to this, each of these
individual errors requires a different instrumentlér setup, and a full calibration can
require several weeks to complete according torexjpeside Boeing. In response to this,
Dr. Phil Freeman and Sam Easley developed a méthcalibrate a machine tool using a
laser tracker in a single setup and implement cosgu@n through a real-time inverse
Jacobian based algorithm [11]. This work was comepl¢hrough a Metals Affordability
Initiative project, and won a Defense award in 26866 ground breaking technology.
The real-time algorithm was developed in conjunttidth Siemens, and as a result can
only be implemented on the Siemens 840D. Even withios specific restriction, the
real-time algorithm requires deep access to thé&alhand will not work on many
controller types. However, most controllers havesdype of position dependent look
up tables meant to be used for geometric error enisgtion.

This work presents a method for generating optiadale-based compensation for
a variety of controllers and presents results ottiple machines. Paper | presents a

general method for creating optimal table-basedpmamation from tool tip



measurements taken with a laser tracker and prewgerimental results on a 5-axis
machine tool in a laboratory setting.

Section 2 presents results using the methodologgepnted in Section 2 on six
additional machines. Two of these machines arer@pPefense production, two are
Boeing Commercial production, one is an additidd@ing lab machine, and one is a
NASA production machine.

Paper Il presents and extension of the table-bemegensation methodology
proposed in Paper | to multiple controller typeable-based compensation method
developed previously assumes that all tables wikhailable on a machine tool
controller, and this is frequently not the casetipalarly on older controllers. There is
often some freedom in how the available tablesaasggned, so what is the best way to
assign them for a specific machine. An artificigklligence methodology is presented to
solve this problem.

Section 3 addresses concerns about laser trackeragy and presents methods to
mitigate any issue with instrument accuracy as aglh way of integrating other
measurement instruments. Some studies raise canakout the accuracy of laser
trackers being inadequate for machine tool calinatVhile it is true that laser trackers
are less accurate than some traditional instrunigetenterferometers, there are
techniques for mitigating noisy measurements. Aoi#lly, the laser tracker is used to
measure volumetric error, which tends to be latigean the errors of an individual axis.
The accuracy of the laser tracker does impact tineber of measurements required and
to some extent the model accuracy, so ways tonatiegnore accurate instruments at
sensitive poses or to better use the informati@il@ve are needed. This section
experiments with using native spherical coordimagasurements from the laser tracker

and their uncertainties in a maximum likelihoodrastor.



PAPER

|. TABLE-BASED VOLUMETRIC ERROR COMPENSATION FOR LARGE 5-
AXISMACHINE TOOLS

J. Creamér D.A. Bristow?, R.G. Landers P. Freemah S. Easley
Boeing Research and Technology, St. Louis, MO
’Department of Mechanical and Aerospace Engineering,
Missouri University of Science and Technology, BpMO
3Boeing Research and Technology, Charleston, NC

ABSTRACT

This paper presents a geometric error compensatéthod for large 5-axis
machine tools uses tool tip measurements recofdeddhout the axis space to construct
an explicit model of a machine tool's geometrioesrfrom which a corresponding set of
compensation tables are constructed. The measuterrentaken using a laser tracker,
permitting rapid error data gathering at most lmcet in the axis space. Two position-
dependent geometric error models are considertgdsipaper. The first model, referred
to as the six degree-of-freedom model, utilizex alegree-of-freedom kinematic error
description at each axis, and the second modelresf to as the axis perturbation model,
describes geometric errors as small perturbatmtiset axis commands. The parameters
of both models are identified from the measurendaté using a maximum likelihood
estimator. Compensation tables are generated lpgatirg the error model onto the
compensation space created by the compensatiagstahilable in the machine tool
controller. Experimental results on a commerciaks machine tool are presented and
analyzed. Compensation using the first model isdoto reduce the mean volumetric
error of a validation data set from 551 to,38, a 93.1% reduction. Compensation using
the second model reduced the mean volumetric ardhe same validation data set to
43 um, a 92.2% reduction. Despite significant differesnian the machine tool error
descriptions, both methods produce similar reswlithin the repeatability of the
machine tool. Reasons for this unexpected resellliacussed. Analysis of the models
and compensation tables reveals significant coaf@d; and unexpected kinematic



behavior in the experimental machine tool. A paitar strength of the proposed
methodology is the simultaneous generation of apteta set of compensation tables that
accurately captures complicated kinematic erralependent of whether they arise from
expected and unexpected sources.

Keywords. 5-axis machine tools, geometric errors, volunsegrror compensation

1 INTRODUCTION

The trend towards the manufacture of large monoljlarts in the aircraft and
other industries is driving the demand for highuaacy from 5-axis machine tools. One
of the largest sources of machine tool inaccurag@ebmetric errors, which are typically
corrected through regular calibration. Five-axichae tools are known to have 41 basic
geometric errors [1] and standard methods for nreagthese errors are well
established. Many of these methods separate measotref the three linear axes from
the two rotary axes. The basic geometric errorsghame typically isolated and directly
measured individually, particularly those associatgth the linear axes. Such methods
are well described in ISO standard 230-1 [2], ardflequently used for calibrating 5-
axis machine tools. Other methods use indirect nreasents of the error through
measurements of the tooltip and a fitting procesdéntify several errors simultaneously
and, thus, are an improvement over direct methodsimon indirect measurement
methods for rotary axes include the ball bar [3R4est [5, 6], touch trigger probes [7,
8, 9], and machining tests [10]. These methodsamemarized in [11]. Nearly all of the
previously described tools calibrate only a portddmachine tool geometric errors and
must be combined with other tools and methods ptuca all 41 basic geometric errors.
This piecemeal approach means that calibrationrbes@ time-consuming and
expensive process. Furthermore, a complete pictutee machine tool behavior
throughout the workspace is not obtained; therefome errors, especially complicated
or unexpected geometric errors, are not measuweadirlg to erroneous confidence in the
compensation.

As an alternative to some of the measurement ttessribed above, another
indirect measurement instrument, the laser tradeer be used to measure machine tool

geometric errors more rapidly as it only requiras set up. The laser tracker is less



accurate than some conventional measurement instrigndue to the inaccuracy of the
angular positioning. For example, the accuracy typecal laser interferometer is 0.5
ppm, while the angular accuracy of a typical lasseker is 3.5 ppm. To mitigate this,
multiple laser trackers [12, 13] or multiple setlapations [14, 15] have been used. Since
the geometric errors are not being directly meaksur®re measurement points and a
fitting algorithm that accounts for measurementarazes can also mitigate less accurate
individual measurements. Both Freeman [16] and dlakand Bonev [17] reported
measuring hundreds of points in a few hours onaldraxis machine tool and a 6-axis
industrial robot, respectively, demonstrating theesl of this instrument. Both used a
single laser tracker for calibration and reporteddjimprovement over the workspace,
suggesting this instrument is not only quick, bas khe accuracy needed to measure the
geometric errors present in these types of machines

In order to use indirect measurements for compensa model of the geometric
errors must be constructed. It is desirable foe@ngetric error model to be 1) complete,
in that it models each machine tool error, 2) qumus, in that small changes in the axis
positions do not cause large changes in the corafiensralues, and 3) minimal, in that
the model does not include redundant parametever&8econventions are used to
describe the rigid body kinematics of machinestett geometric errors. The Denavit-
Hartenberg (D-H) convention based models, origyn@discribed by Denavit and
Hartenberg [18], have been used for the kinematib@tion of robots and machine
tools. However, the D-H convention lacks continwityen two axes are parallel and the
model is not complete. Modifications have been psg by Hayati [19] and
Veitschegger and Wu [20]. Alternative kinematic ralsdthat attempt to address these
issues include modeling shape and joint transfaonatseparately [21, 22, 23], the
Complete and Parametrically Continuous (CPC) mpdgbosed by Zhuang et al. [24],
the multi-body system model [25], screw theory [28pduct-of-exponentials model [27,
28] for robot calibration, and the matrix summatiathod proposed by Lin and Shen
[29]. The work in this paper makes use of the Zgeterence Model [30] to describe the
nominal kinematics and describes geometric errothr@e small translations and
rotations between each machine tool axis, whieghdsmmon way to represent these

types of errors [31, 32]. This method has been shimwe complete, continuous, and



minimal [16], making it an appropriate model to isemachine tool geometric error
calibration.

The overall goal of calibration is to improve a miae tool’s accuracy, which is
typically achieved through compensation. Geometnior compensation is achieved by
adjusting the machine tool's commanded axis posstio account for the modeled
geometric errors. Typically this compensation ipliemented using options available on
machine tool controllers such as table-based cosgtiem. Alternatively, offline
compensation is implemented through the alteraifqre-task trajectories or the
alteration of the part program for each part, as d@ne in [33].

Compensation tables, available on most machinectmatollers, may be a more
practical option since they are calculated offlamel are well integrated with other
controller features. Each table contains a sebofpensation values that correspond to a
set of axis positions. The compensation valuesher@amounts a compensation axis will
move when the input axis is at the corresponding pasition. When the input axis is at
a position not found in the set of axis positiangrpolation is utilized. Different
machine tool controllers have varying numbers ohpensation tables, table resolution,
and limitations on the combinations of tables tat be utilized. Most compensation
tables use the measurement from an input axisjtstathe position of an output axis to
correct for the geometric errors. For 3-axis maehools, determining how to fill the
compensation tables is relatively straight forwdnokvever, this is not always the case for
5-axis machine tools. Therefore, a method to quiaekid accurately calibrate 5-axis
machine tools using table-based compensation edkee

The primary contribution of this chapter is the elepment of a novel modeling
framework for capturing complicated geometric esrand generating the corresponding
table-based compensation for those geometric ei$pexcifically, two models capable of
describing complicated geometric error models appg@sed. The first describes each
machine tool axis with a six degree-of-freedom kiaéic error that changes continuously
along the range of the axis, while the second dessthe machine tool with axis
command-based geometric errors that lack the palysituition of the former model, but
are more amenable to the generation of compendatides. A compensation-table

generating algorithm for each model is presentetdexiperimental evaluation of both



methods are obtained and compared. The remaindiee giaper is organized as follows.
Section 2.2 develops the kinematics for two geoimetror models. Model identification
is discussed in Section 2.3 and the compensatidhatie are presented in Section 2.4.
The experimental setup is described in Section@eBtion 2.6 presents experimental

results, and Section 2.7 summarizes this chaptepeasents conclusions.

2. KINEMATIC MODELING

This section presents nominal machine tool kinersatis well as two different
kinematic models that describe position-dependexthime tool geometric errors.

2.1. Nominal Kinematics. Nominal kinematic equations describe the ideal
position and orientation of a machine tool. Gigeset of axis commands, the expected
tooltip position is determined by transforming thachine tool base frame through a
series of coordinate frames associate with eaghtaxhe tooltip. Such transformations

can be described using Linear Homogeneous Tranafeom(LHT) matrices [18],

nx Ox ax px

T - ny Oy ay py (1)
nz Oz az pz ’
0O 0 0 1

where the unit vectors, = [nxny n]™, 0 = [ox 0, 0] ", anda = [ax ay & are the
orientations of the X, y, and z-axes, respectivelyg frame with respect to the previous
frame andp = [px py p4 " is a vector from the origin to the origin of therent frame. The

nominal kinematics for an-axis machine tool is

F.(a) =T () To(a,) - To-u( o) To( @), (2)

whereq = [g1 02 ... ] is the axis command vector afig(qy),..., Tn(gn) are LHTS for
axes 1,..n, respectively.



The Zero Reference model [34] is a convenient wayetfine the LHT between
two axes for machine tools. Using the Zero Refezanodel, the orientation of the
machine tool reference coordinate frame can beerhagbitrarily; however, it is
convenient to select an orientation that alignspib&tive coordinate directions with the
positive direction of travel of the linear axesTlbcation of the reference coordinate
frame is also arbitrary; however, depending omtiaghine tool configuration, some
locations can simplify the kinematics. For 5-axigamine tools with both rotary axes at
the spindle, it is convenient to place the refeeetmordinate frame at the intersection of
the axes of rotation of the rotary axes.

Because of inaccuracies in machine tool comporaartdation and assembly, the
actual machine tool kinematics are never equivdtettiose of the nominal kinematics.

In the following two subsections, two models arepmsed to describe the actual machine
tool kinematics.

2.2.  Six Degree of Freedom (6-DoF) Model. The Six Degree of Freedom

(6-DoF) model assumes the actual machine tool katiesican be described by
the nominal kinematic model with three small pasitdependent error rotations and
three small position-dependent error translatiookided in each axis transformation.
This idea is illustrated in Figure 1 where an etransformation appended to the nominal
transformation is used to describe the locatiothefactual transformation.

For ann-axis machine tool, the 6-DoF model takes the form,

Fopor (Q) = Tl(Ch)El(Ch)Tz( qZ) E 2( qz)"'Tn( CL)En( Q1)’ 3)

whereE(qgx) is the axis position-dependent 6-DoF kinematioretransformation from
axisk to axisk'. Assuming the kinematic errors are small, theskmatic error

transformation can be modeled by the linear appnakbn,

ay)
—£o(a) Iu(ay) , (4)
a,)
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wheree,,, Ey ande,, are position-dependent rotational errors inkhaxis’s local

coordinate frame about the X, Y, and Z axes, reéspdg, ands, ,, J,,, andd, , are

ky?
position-dependent translational errors inkHexis’s local coordinate frame along the

X, Y, and Z axes, respectively.

Nominal K"
7 axis coordinat
kel frame

\x“

K .
Actual K" axis
coordinate
X1 frame

Figure 1: lllustration of nominal and actual axeoainate frames whereE
describes transformation from nominal frakie actual framé’.

In order to capture complicated geometric errdrs,@-DoF errors are permitted
to change along the range of the axis. To faadithts position dependency, each of the

error functions (e.94,,, &, & 90 Jy,» @NAJ,,) are described by a function basis. In

ky?
practice, a finite set of the basis functions a&leced such that the number of basis
functions is used as a tuning variable to selentden model complexity and error
modeling fidelity. To be a good candidate, basiefions need to be orthogonal over an
interval and have similar scaling over the samerva. In the authors’ experience,
Chebyshev polynomials provide a particularly eéidi basis for modeling machine tool
geometric errors and, thus, are used throughosiptiper. The Chebyshev polynomial
basis functions are described recursively suchahat" order Chebyshev polynomial

normalized to the range -1xx< 1 is

f(x)=a,6(X)+ag( X+ ac( y+-+ ac,( X (5)
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where

G()=16(4= X 6( 32281 6 J= gl ) ga ) O

anda,, a,,..., am are model parameters that need to be identified.

This type of model has been commonly used to etalin@ errors of machine
tools [16, 32]. The 6-DoF model is complete [1@ntnuous if the function basis is
continuous, and, depending on the machine tooligar#tion, minimal. For machine tool
configurations where the 6-DoF model is not minintatan be made minimal by
identifying and removing redundant terms, i.e., tiplé terms describing the same
position and orientation change at the tool tipeSédredundant terms can cause model
fitting issues such as slow fitting and poor estasaso removing them from the model is
preferable. Typically, the redundant terms for ecsic axis depend on the axis which
directly follows it. More detailed derivations dfe redundant terms are available in [35].
For the XYZCB machine tool used in Section 4, thysedundant terms are the first
order terms in(qx) that are orthogonal to the direction of travelttte translational
axes. Proof that the model can be made minimainsained in [16] based on the work in
[35].

2.3. AxisPerturbation (AP) Model. A new machine tool geometric error
model is presented here for the purpose of efftlyeralculating machine tool
compensation tables. Compensation tables typieadiyfook-up tables which depend on a
single axis position (i.e., input axis) and contaismall adjustment to a single axis (i.e.,
output axis). The geometric error model that cqroesls to this type of compensation
space is one that represents the machine tooliseeiz errors as small position-
dependent perturbations to the nominal axis commafiuis model is referred to in this

paper as the Axis Perturbation (AP) model, and is

F(0) =F,(a+d(a)), (7)
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whered(a)=[q(d) &(a) - qu(q)]T is a vector of functions that perturb the nominal

axis commands arieh is the nominal kinematic model as described inR&mark: The
reader may note that while the 6-DoF model intr@suerror kinematicEk,i, with a direct
connection to the underlying geometric errors,akglicit relationship between the
perturbation functions in the AP model and speg&ometric errors may not be
apparent. Indeed, the AP model is not explicittinated by specific geometric errors,
but rather by the structure of the compensatiolesattnat will be generated by the model.
Thus, while the 6-DoF model can be said to be nateid by kinematics, the AP model is
motivated by compensation. As will be shown arstaésed in Section 5, both models
demonstrate good capability for describing and cemspting complicated kinematic
errors.

Unlike the 6-DoF model, the AP model is not necelysa complete model of the
basic geometric errors. An example is the traresiali offset between the axes of rotation
in successive rotational axes, which is illustratethe experimental system in Section 4.
In some cases, the offset corrections for suchrgrreferred to here as mechanical
offsets, can be corrected as parameters in theinetdol controller, which is different
from the compensation tables. As demonstrated atic®de4, the AP model can be easily
extended to include additional parameters corredipgrio these additional
compensation parameters.

The axis command perturbation functions in the Adtleh are described as an

uncoupled sum of perturbations of each axis comni@ndp,..., ¢n) as,

, (8)

wherefij(q;) is a scalar function mapping the axis commapndn axisi onto a
perturbation to the command for axi#\s in the 6-DoF model, the unknown error-
describing functiondj(qg), are modeled with a Chebyshev polynomial baSjsaqd (6)
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in this paper. Although the AP model is not comg)eis discussed above, the axis
perturbation structure ensures that it is contisuwben the basis functions are

continuous.

3. MODEL PARAMETER IDENTIFICATION

The first step in the model parameter identificaiwocess is to measure a variety
of machine tool positions and orientations. In ®ect.1, the measurement technique
used in this paper is described. Once measureraentollected, a maximum likelihood
estimator is used to identify the model paramefinss algorithm is described in Section
4.2. The geometric error model is then used to &dineptimal set of table compensation
functions, as described in Section 4.3.

3.1. Measurement. The proposed method uses a laser tracker to &cquir
position measurements of a tool located in theddpinThe position measured by the

laser tracker is described by,

pm :TmEOF* (q+v)pTI+§l (9)

wherepm = [Xm Ym zm 1]" is the &m, ym, Zn) measurement in the laser tracker measurement
frame,Tmis the nominal transformation from the machind mse frame to the

measurement frameg&p is the (unknown) 6-DoF error kinematic in the tfansiationT m,

1 ~&,  €oy 50)(
£ =| o 1 =&, Oy (10)
&, & 1 Oy
0 0 0 1

F is the 6-DoF model, (3), or the AP model, §7)s the positioning error of the axésis

the measurement noise, o= [uxLt uyLt ULt 1]7, whereLr is the length of the
measurement tool mounted in the machine spindlgwang u;]" is the unit vector

defining the tool direction with respect to thetlasis frame. Note that here, the
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positioning errory, represents the random positioning error of thelmme tool, typically
measured as repeatability. The measurement noistharpositioning error are assumed
to be Gaussian.

3.2. Parameter Identification. The model parameter identification method
chosen for this problem is the Implicit Loop Meth@®LM) as described in [36]. The
ILM treats the machine tool as having a closedrkatic chain from the reference
coordinate frame to the tooltip, with the measunenmestrument included in the chain in
order to close the loop. The unknown machine parer®are estimated to maximize the
likelihood, while satisfying the constraint. A kagvantage of this method is that
measurement errors and machine tool repeatabitibysecan be treated independently,
using separate statistical models for each.

Let X, be the covariance of the measurement ngjsspd X, be the covariance

of the positioning error (repeatability) of the rhaw tool axesy reflecting that the
machine tool axes do not always achieve exactlgtmemanded position. Létbe a
vector containing th&o parameters in (10), all mechanical offsets to bdifreal in the
machine tool controller, and the model parameins.model parameters are the
Chebyshev polynomial coefficients for the 6-DoFgmaeters in (5) in the case of the 6-
DoF model, and the Chebyshev polynomial coeffiddat the perturbation functions in
(8) in the case of the AP model. Now, considermghmmeters ib as random variables

with normal distributions and assign a standardat®n, o, to each parameter m
Then, the covariance matrix fbris,X, = diag(of,af,...,a,ﬁb) , Whereg; is the standard

deviation for tha™ parameter ib and the vectab containsN, parameters. Then, the

most likely parameter description of the systembtained by minimizing,

argmin i(viTZ;lvi +ETEG ) +b'y b, (11)

V61 VN AN D =L

subject to the implicit loop constraints from (§iven by,
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P~ TuEoF (qi+vi)pﬂ+§i =0 i=1,2...N, (12)

where the index represents the measurement numbemManteasurements are acquired.
In practice, determining appropriate standard dmna,oi, i = 1,... Np, a priori
for the parametens is challenging. Therefore, here these standarthtiens are treated
as tuning variables that can be used to controlelative magnitude of each of the
parameters to be identified. Larger values forstfamdard deviations will encourage a
tighter model fit, but can cause challenges incithrevergence of (11), (12) due to
numerical sensitivity. Based on experience, the imeslels are obtained by starting with
small variances and iteratively tuning the variangetil desirable model performance is
achieved. Model performance can be judged base¢keoresidual volumetric errors and
the value of the objective functiogf, given in (11). The expected valueydfoased on

[36] is 5N with a standard deviation af = V10N . For large enough values Nf the
distribution ofy?is approximately Gaussian, agtwill value within three standard
deviations of the expected value 99.7% of the Witteny?is above this range, the
parameter or measurement variances may not bedamegh, and when it falls below,
they may be too large. The residual volumetricrsrfor the geometric error models of
most machine tools measured with a laser trackietypically fall below 0.125 mm, and
when the residual error is larger than this, mditl@hay be improved by identifying
errors outside of the typical range and increailoge parameter variances (ie comparing
the size of parameters to their variances indiviglua

3.3. Compensation. The identified kinematic models provide the
foundation for constructing optimal machine toohqmensation tables. Compensation
tables are lookup tables whose input is the measemeof one axis and output is a value
to be added to (or subtracted from) an axis commiamdexample, a table whose input is

a measurement of axisnd output is a correction to axisnay be represented as,
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Entry Input Outpu
1 qit,l i

j -1 qit,j—l toi,j—l
j qltj toi,j
j +1 CIit,j+1 toi,j+1

(13)

N, dy  bin

wheregq, is thej™" table listing of the input axig,. . is the corresponding compensation

bi, j
value to be added to the axis command for the datys, andN, is the number of table
entries. Then, the compensated command tocaxjs, is linearly interpolated from table

entries as,

c q — t'-
q, = Oo+tui,j—1+(tai,j _toi’j_l)q.‘.——cl]"].Z (14)
i j i

wherej is selected such that the measured input axisiposj satisfiesq; , < g < ¢

andqo is the nominal command of the output axis.

To reduce the computational cost of generatingmgitiables from the identified
machine tool models (6-DoF or AP), the compensdtiotions toi, are treated as
smooth during optimization. After optimal smootmgaensation functions are identified,
they are discretized for lookup table entry. Coesal complete set of compensation
tables, that is, a table for each combination chsneement axis inputs to compensation

axis outputs. Then, the compensated axis commaggs a

q°=q+t(q) (15)

where,g°=[qf o - o], and,
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tll(ql) +t12(q2) teoet ity (qw)
t(q) _ t21(q1) +t22(qz:) Tt tzn(qw) '

(16)

(@) + () +-+ 1, (0)

The table functions should be selected so thakittematics of the actual system, with

compensated commands, are close to the nominahkiines. That is, it is desirable to
have FD(qC)an(q). For the AP model, the table optimization problismolved from (7)

and (15) by selecting compensation tables as thative of axis perturbations, or

tap (q) =-q (CI), (17)

for which Fo,(0-+t .+(0)) =F,(q) . For the 6-DoF problem equality is not guarantesed

some tradeoff must be determined between accunaityeiposition versus orientation of
the compensated machine. The approach used herades the numerical tools
developed for parameter identification in Sectiahtd solve the table optimization
problem. Two tool lengthg, are selected to span the length of cutting ttwolghe
machine tool, one short tool length and one lomd lEngth. A sequence of joint
commands spanning the axis workspace are genenateplseudo-measurements of the
6-DoF model and nominal model are obtained numiéyiaheach tool length and joint

command, yielding the implicit loop constraint etjoi,

Fsoor (Qi *lepor (qi))pTI -F, (qi)pTI -6 =0 i :1""'Npm ) (18)

wheresg is the position error of the compensated systetriNaq is the number of

pseudo-measurements. The talilgsare approximated with a basis of Chebyshev

polynomials whose coefficients are collected invhetorb: optimized through the

minimization of,
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Npm
argmin ) ele +b/ X", , (19)

€Ny b =1

with constraint (18), wher&, is a diagonal matrix of weighting parameters tbinithe

optimization.

4. EXPERIMENTAL SETUP

An industrial 5-axis machine tool with a Siemenf®B4£ontroller, shown in
Figure 2, was used to evaluate and compare theFéaldd AP models and their
respective methods of generating compensationdabhes axis ordering for this machine
tool is XYZCB, with both rotary axes at the spindle

The machine tool axis limits are listed in Table'he nominal distance between
the center of the B axis and the spindle facksst= 98.0 mm. This is the only
mechanical offset necessary for this machine toofiguration due to the choice of the
fixed reference coordinate frame, which is showRigure 3. The fixed reference frame
for the Zero Reference model is placed at the cerfitthe B axis when all of the axes are
in their zero positions. The unit vectors that déscthe machine tool axes are with
respect to this frame.

Table 1: Axis limits for industrial 5-axis machitmol.

AXis Minimum Maximum
X (mm) -8.1 6101.0
Y (mm) -2.5 2557.3
Z (mm) 0 1001.8

C -272° 272°

B -111° 111°
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The nominal kinematics for an XYZCB 5-axis machioel are

Fn(q):Tl(qx)Tz(qf)TS(qZ)T4(qc)T5(qs)’ (20)
where
10 0 q 100 0
010 0 01 0g,
T = ,T = ,
x (0) 001 O (%) 0010
0 0 0 1 0 00 1
1 00 O cof(q.) -sifq) 0 O
0100 sin(q.) codq.) 0 O
T = T = ,
000 1 0 0 01
| cos(g;) 0 sin(gy) -L; sin(q)
0 1 0 0
T =
s (%) -sin(gy) 0 cogqs) -L, c0s(qs)
0 0 0 1

andgy, Qv, gz, qc, andgs are the commands for the X, Y, Z, C, and B axespectively.
The parameteforisetis a modifiable mechanical offset in the machoa tontroller;
therefore, a correction to it is included in thedalbparameter vectab, for both error
models.

The machine tool tip position is measured usingatomated Precision Inc. T3
laser tracker and Active Target (AT). This instrurhlas a reported volumetric accuracy
of £15um or 5ppm, whichever is greater. Over the lengtthefexperimental machine,
the volumetric accuracy is at least 8. The repeatability of the laser tracker to astat
target was also measured at three locations mehsues distances between 1-8 m, and
the standard deviation is shown in Figure 4. Tipeagability of the tracker should lie
within three standard deviations 99.7% of the tifitee noise is Gaussian, so

considering this and that the experimental machaseaverage volumetric errors in
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excess of 0.5 mm (Table 2), the laser trackerdsii@te enough to measure these errors

given enough measurement points.

Figure 2: Industrial 5-axis machine tool used fgperimental studies conducted

/Yo

Oy

in this paper.
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% Y5
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Figure 3: Diagram of axis kinematics for industBadxis machine tool.
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Figure 4: Standard deviation for laser tracker a¢giaility.

The machine tool repeatability, a measure of itbtglbo return to the same
commanded position, is meaningful in the contextadibration in that it provides a
lower bound to the measureable accuracy of thereddid machine tool. To determine
machine tool repeatability, a sequenc®&lpfandom positions throughout the machine
tool axis space are measubfddimes each. The order in which the positions are
measured is random for each sequence. The repégtabihe i position for thg™"

measuremenpi;j = [Pijx Piy Pijz] " iS

=

[Nizpi,kJ_pi,j H (22)

t k=1

ForNp = 12 and\; = 4, the repeatability of the machine tool usethia paper has
a mean of 1&m, and a standard deviation ofi, which is within the same range as the
instrument’s repeatability, meaning that the maehénlikely more repeatable than can be
measured with this instrument.

A set of 295 commanded positions are measured teazh set with a different
tool length, giving a total of 590 three dimensiop@sition measurements. The two

measurement sets, referred to as the short todureraent set and the long tool
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measurement set, ensure that the complete measurdata is rich enough to contain
spindle position and orientation. The length ofretool is calculated using
measurements of a tool of known length, a Sphéyidédunted Retrotreflector (SMR),
and the laser tracker. The known tool is insentd the spindle and its position is
measured with the laser tracker. Then, without mg¥he machine tool, this tool is
replaced with the AT, and the AT is aligned to tlkeater of the spindle axis. The AT
position is measured and compared against the megasat from the fixed length tool to
obtain the AT tool length. This is illustrated ilg&re 5. For this experiment, the short
and long tool lengths are 214.88 and 312.86 mmpecti/ely.

The measurement points are distributed throughmuéxis space using a random
number generator. However, some points are remiovsakisfy line-of-sight and
collision-avoidance constraints. Figure 6 showsakis space distribution of the
measurement points with the areas labeled “LOS™@&#d where points were removed
due to Line-Of-Sight and Collision-Avoidance coastis, respectively. These
measurements are then used to identify the 6-DdFA&Bmodel parameters. Section 5
describes the performance of these models, asawdtie experimental results when
compensation based on these models is implementdteandustrial 5-axis machine

tool.

<« Machine

spindle
=
Sy .
2
S Spindle
3 [ Face ~
S
~ ‘
i SMR 7 Active
target

Figure 5: lllustration of tool length measurement.
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S. EXPERIMENTAL RESULTSAND DISCUSSION

The accuracies of the 6-DoF and AP models are medy the distance
between the measured points and the correspondintspredicted by the model. In
addition to the 590 points used to identify the gled35 additional measurement points
distributed throughout the axis space are selagtédy a quasi-random sequence to serve
as validation points. Both models are construcgdgia variety of Chebyshev
polynomial orders for the basis functions. Both mlsdncludeEo, the correction to the
laser tracker and machine frame, and the nomimaiofmpensated) model includes a
nominal transformation from the instrument to tlasdframe of the machine tool. As
seen in Table 2, the performance of both modelsorgs with increasing basis order up
to a point, after which the validation residualbesrbegin to increase, an indication of
over fitting. For the 6-DoF model, 80% of the meafumetric error in the identification
data set can be accounted for using a zero ordéelmanlike the AP model, which only
accounts for between 43-60% of the mean volumetrir, based on either the validation
or identification set, respectively. The 6-DoF tygalescription has more complexity at
low order than the AP model. The AP model can o#seh axis (5 parameters) and
correct the base frame (6 parameters), while tbeB-model has 6 zero order
parameters per axis and 6 for the base frame,gavitotal of 36. Additionally, as will be
shown later, this machine has a significant rotatg offset which can be described as a
single parameter in the 6-DoF model, but requirkigha order position-dependent
description in the AP model. Beyond zero order,ttwglels perform similarly.

Expanding on this, the effect of using less dateotastruct both models was explored. A
50 and 150 point subset was randomly selected fhendentification set and used to fit
models of different polynomial orders. The resalts shown in Figure 7 and Figure 8.
The 6-DoF model fits the identification and validatdata better than the AP model
when fewer points are used, with a more pronouetiedt when only 50 points are used.
This could be because the 6-DoF model is able $ordee some errors using a lower
order polynomial, as discussed previously.

The best validation results for the 6-DoF modelabtined with § order
polynomials, while the best results for the AP made 8" order, with only minor

performance loss at'Gand 7" order. For consistency"®rder polynomials are used for
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both models in the subsequent analysis in thisrpaféistogram of the identification
measurements for thd'®rder models is shown in Figure 9.

Comparing the selected models, the 6-DoF model slzoslightly larger mean
error at 62um versus 49um for the AP model, while the AP model has a larger
maximum error at 13gm versus 92um for the 6-DoF model. Recalling that the
machine tool repeatability was measured atirh@ both models achieve a mean accuracy
over the entire workspace of approximately threes the machine tool repeatability.
Noting that both models achieve approximately 96%rovement compared to the

nominal model, it is clear that significant improvent is obtained.
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Figure 6: Distribution of measurement points usadchiodel identification. Large circles
show where points were removed due to Collisionidance (CA) and Line Of Sight
(LOS) constraints.

A set of 25 machine tool compensation tables (i@es for each axis) and the

correction to the mechanical offSkefsetare generated for each model using the
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procedures outlined previously. The correctioiidfgetwas 68um for the AP tables and
72 um for the 6-DoF tables. Figure 10 shows the geadr&tDoF and AP table
compensation functions. The horizontal axis ongitaghs is the traveling, or input,
machine tool axis and the vertical axis on the kysap the compensating, or output,
machine tool axis. As seen in Figure 10, the tablapensation functions generated from
both models are similar. The function with the gestadifferencefy;, is on average gm
different and at the maximum @4n different. The slight differences may be duehi® t

additional fitting step required to generate thed~ compensation tables.

Table 2: Polynomial order selection via identifioatand validation residual errors for 6-
DoF and AP models.

Identification Points Validation Points

Model Order Calculation Mean Max Reduction Mean Max Reduction

time (min) (mm) (mm) inmean (mm) (mm) inmean
Uncompensated -- 0.602 1.417 - 0.568 1.110 -

6-DoF 0 23.70 0.124 0.323 80.0%  0.143 0.357 75.4%
6-DoF 1 267.10 0.109 0.334 81.7%  0.134 0.349 77.2%
6-DoF 2 110.50 0.081 0.242 86.7%  0.141 0.344 75.4%
6-DoF 3 136.20 0.054 0.206 91.7%  0.114 0.208 80.7%
6-DoF 4 75.10 0.029 0.124 95.0%  0.103 0.183 82.5%
6-DoF 5 214.20 0.031 0.113 95.0%  0.074 0.112 87.7%
6-DoF 6 144.20 0.027 0.071 96.7%  0.062 0.092 89.5%
6-DoF 7 118.70 0.025 0.072 96.7%  0.092 0.143 84.2%
AP 0 27.30 0.242 0.544 60.0%  0.323 0.552 43.9%
AP 1 26.70 0.081 0.353 86.7%  0.109 0.314 80.7%
AP 2 30.60 0.074 0.307 88.3%  0.103 0.316 82.5%
AP 3 27.40 0.053 0.173 91.7%  0.092 0.273 84.2%
AP 4 28.80 0.039 0.108 93.3%  0.074 0.157 87.7%
AP 5 27.40 0.034 0.102 95.0%  0.053 0.124 91.2%
AP 6 27.05 0.029 0.091 95.0%  0.049 0.132 91.2%
AP 7 38.30 0.027 0.084 95.0%  0.051 0.133 91.2%

The compensation functions shown in Figure 10 ibeltraditional pitch and
linear straightness errors, as well as some lessman geometric errors. Pitch
compensation functions are along the diagonal (gecton to an axis based on the

position of that axis).
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Figure 7: Mean residual volumetric error for ditfat polynomial orders using 50
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Figure 8: Mean residual volumetric error for ditfat polynomial orders using 50
randomly selected points.

The linear straightness errors are located in thdiagonal of the upper 3x3
graphs. The dominating linear component of theapltgs can be attributed to squareness
errors in the axis. However, the higher-order congmts of these graphs, especially
notable in thdx, graph, can be attributed to the non-straightnétisecaxes. The largest
linear compensations to the X and Y axes arise ftwrotary C axis positioric¢and

fcy). The sinusoidal shape and 90° offsefcyiandfcy can be attributed to an offset
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between the spindle axis and the C axis, resultirggcircular path in the X-Y plane for

C rotations. The amplitude and phase of the sidagmovides the magnitude and
direction, respectively, of the offset. The C aximtains another large error in its pitch
compensatioffcc, Wwhere the sinusoidal shape indicates that tlsese ieccentricity in the
transmission between the C axis and the motoreoetitoder mounting and the axis
average line. The sinusoidal shape has more tharfull rotation because the C axis has
more than 360° of travel, returning the axis togame physical location more than once
during its full travel. Notably lacking in the tasl are any significant coupling from the
linear axes to the rotary axes, which would anieenfa position-dependent angular error

in the linear axes.
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Figure 9: Histogram of identification measuremdaotsnominal, 6-DoF, and AP
models.
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The complexity of the identified errors highligl@particular strength of the
proposed method of populating compensation tablegrior knowledge of the important
machine tool errors is required. While some erveege not expected, other errors that
may have been expected were not seen or were vety. 3 herefore, good performance
over the entire workspace was achieved witlgoptiori knowledge of the significant
error sources. Likewise, time was not wasted iasudng errors that ultimately were
insignificant. Furthermore, the complete set ahpensation tables was generated in one
step without recursively editing compensation tablgh each measurement, as is
typically done in classical methods.

The identified compensation functions were diseestiinto 1024 points along
each axis and the resulting values were loadedtbetmachine tool controller
compensation tables. Then, the controller valud§@gktis modified by the amount
identified. The compensation tables for both meshedre activated in separate
experiments and a new set of machine positions megsured at each of these points
using the short tool length and the laser trackiee measurements are compared to the
uncompensated machine measurements in Table 3 laistbgram of the measurement
accuracy is shown in Figure 11. The compensatearacg in Table 3 is comparable with
the model accuracy results in Figure 9. The diffiees between the model identification
set and compensation results, in this case withyinaximately twice the repeatability,
are expected since these points are not the sathesesused to identify or validate the
models.

As seen in Figure 11, both sets of compensatidesabkduce the mean machine
geometric error of the uncompensated system byoappately 90%. However, the
performance difference between the two compensabautions is a fraction of the
machine tool repeatability, and therefore neglgifiihus, it can be concluded that both
methods provide comparable performance improvemehis conclusion is notable
because 6-DoF solutions originate from a complaidehy whose foundations are well
rooted in classical kinematics (a 6-DoF kinematirection to each axis), whereas the
AP model is incomplete and lacks a clear conne¢tdoundational kinematics. The
comparable performance may be attributable todbethat both methods are constrained

to the same solution space, compensation tabldsle\We AP model maps identically
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onto the compensation space, there is a loss @fation in the incomplete mapping of
the 6-DoF model to the table-based compensation.
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Figure 10: Compensation table functions generatad AP and 6-DoF models.

Table 3: Mean and maximum residuals between medswmpensated positions and
commanded positions and error reduction for eachpemsation type.

Model Mean (mm)  Error Maximum (mm) Error
Reduction Reduction

Uncompensated 0.551 -- 0.940 --

6-DoF Tables 0.038 93.1% 0.099 89.5%

AP Tables 0.043 92.2% 0.094  90.0%
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Figure 11: Histogram of validation measurementsctonpensated performance
of AP and 6-DoF models.

A final compensation test, referred to as the roatiest, is performed to illustrate
the performance improvements in the two methodss tEst involves placing the tool tip
at a location and rotating the orientation throadgtB0° arc, requiring a coordinated
motion (and compensation) of at least three axles.€kperimental results are shown in
Figure 12. The uncompensated points are 377 umtheraverage location at the worst
point, while the compensated points are 53 um fileeraverage location at the worst
point for the AP tables and 58 pm from the avetagation at the worst point for the 6-
DoF tables. Both experiments further demonstradettie compensation methods are
effective in reducing machine tool geometric errarkich are particularly useful for

complex 5-axis motions.
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Figure 12: Experimental results for rotation test.

6. SUMMARY AND CONCLUSIONS

A method to generate table-based compensationdchime tool geometric errors
using tool tip measurements distributed througlloeitaxis space is presented. Two
models for the geometric errors of a machine todlpresented, and methods for
identifying optimal table compensation from each @eveloped. Measurements are
taken using a laser tracker with two tool lengthsdpture both position and orientation
errors. An industrial 5-axis machine tool was ukegdhe experimental tests conducted in
this paper. The machine tool was measured in 28hkigos with two tool lengths, giving
590 total measurements, and was found to have \atioerrors of up to 1.417 mm,
with a mean volumetric error of 0.602 mm. The maehbol repeatability was found
experimentally as 18m. Both methods compensate the machine tool wéh, average
volumetric errors over the entire workspace of 8.68n and 0.043 mm for the 6-DoF
and AP solutions, respectively. Both solutionswaitbin 2.5 times the machine tool
repeatability, demonstrating good accuracy, andlitierence between the two is a
fraction of the repeatability, demonstrating neiglig difference between the solutions.

Analysis of the effect of increasing polynomial isasrder on the model accuracy,
as well as analysis of the compensating table isolsit demonstrates that significant and
unexpected complicated kinematic behavior of thelme tool is present. The novel
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methodology presented in this paper, a one-timesareanent sequence using
simultaneous motion of all axes over the entirekspace and simultaneous generation
of all compensating tables, is particularly effeetin efficiently capturing the unexpected

complicated kinematics of the machine tool.
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II.SELECTION OF LIMITED AND CONSTRAINED COMPENSATION
TABLESFOR 5-AXISMACHINE TOOLS

J. Creamé D.A. Bristow, R.G. Landers
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Missouri University of Science and Technology, BpMO

ABSTRACT

Machine tool geometric inaccuracies are frequertlyected through the use of
compensation tables available in machine tool odlets. Each compensation table
contains a set of values that determine the incnémhehange in the commanded position
of an axis given the current positions of the a¥ekile a five-axis machine tool, for
example, can have at most 25 compensation tabkest, machine tool controllers limit
the number of compensation tables that can be mgaéed and provide constraints on
the combinations of compensation tables that cautibeed. This work presents an
artificial intelligence-based methodology to selaatl populate the optimal set of
machine tool compensation tables when these limitatand constraints exist. Using
data from an industrial 5-axis machine tool to ¢arct a kinematic error model,
simulation results for the proposed methodology aheéuristic based on the impact of
individual compensation tables when selecting sixgensation tables are compared,
and the proposed methodology is found to outperfitwerheuristic. The proposed
methodology and a solution based on a full sebaipgensation tables are experimentally
implemented on the machine tool and the mean vdhicrezror resulting from the
proposed methodology is found to be onlyu®® less than the volumetric error resulting
from the full set of tables. The proposed methogylis then implemented in two more
simulation studies where constraints are imposedlioh combination of compensation
tables could be used and which type of compens#diaes could not be utilized. The
resulting mean volumetric error was 7.0 and 28tBgreater, respectively, than the
unconstrained solution.

Keywords: volumetric error, geometric error comits, 5-axis machine tools
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1. INTRODUCTION

Changes in the way parts are manufactured in ttospace industry are driving a
need for more accurate 5-axis machine tools. Martsgare designed as monolithic
structures, requiring a machine tool capable ofufesturing a large part with small,
geometrically complex features, while maintainiigint tolerances over large distances.
Machine tools inherently have errors arising fronadety of sources, such as geometric
errors due to manufacturing and assembly toleranoes and wear of machine tool
components, thermal expansion, and structural deftbon. No machine tool design
changes can eliminate all geometric errors, anddrigccuracy machine tools are much
more expensive to manufacture and maintain. Howevkarge fraction of machine tool
errors are repeatable and, as a result, machihedtloration can be a cost effective
means to substantially increase accuracy. In gemeeghine tool geometric errors
change slowly over time due to wear of the moviagg however, they can change
quickly in the event the cutting tool collides witie part or machine tool table. As a
result, a machine tool should be recalibrated guleg intervals or after a collision.
Machine tool down time is costly and, thereforethods for quickly calibrating machine
tools are in demand.

Conventional approaches to machine tool calibratifoen attempt to isolate and
measure individual geometric errors, which is tenasuming and often makes the
complete calibration of a machine tool prohibitiVéese traditional methods are
described in the ISO 230-1 standard [1]. Sartodi Zmang [2] and Schwenke, et al. [3]
provided thorough overviews of direct measuremegthods, and indirect measurement
methods are summarized in Ibaraki, et al. [4]. E&ireeasurement methods measure
machine tool errors individually [5], while indiremeasurements attempt to identify
several errors simultaneously. However, indirecthoéstypically require that the linear
and rotary axes be calibrated separately, or ms&enaptions about being able to isolate
the rotary axis errors from other geometric errdterefore, these methods typically
involve multiple measurement instrument set upsskilted personnel, leading to long
calibration times (i.e., several days), and mayrastilt in an accurate description of the
machine tool geometric errors. Further, most geametror modeling techniques

employ low order models. Cheng et al. [6] usedstometric error models to conduct
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an analysis based on multibody system theory terdwhe critical geometric errors.

Matrix summation modeling using linear geometrioes was conducted in [7] such that
the errors had physical meaning. Given the low oetier modeling employed in these
studies, they cannot account for the complexitgarhe geometric errors, such as sagging
and twisting.

A method for machine tool geometric error compeansaaddressing the issues of
long calibration times and the inability to deseritomplex machine tool errors was
proposed in [8]. Unlike many calibration techniq(esg., 6,7], the method in [8] uses
high-order error descriptions to capture complesngetric errors. This method also uses
a laser tracker, a metrology tool being used inenad more industrial applications [9],
and was shown to work very well for the volumetrienpensation of a subset of machine
tool controllers that allow for the use of a contglset of compensation tables [10].
Many common machine tool controllers limit the nienbf compensation tables
available due to memory or computational constsaia$ well as cost, often with
limitations on the possible combinations of compgios tables that can be implemented.
Therefore, a method to select and populate thepussible set of compensation tables
when limitations exist is needed. Selecting andupetphg a subset of compensation
tables from all possible sets of compensation sgbiile satisfying existing constraints,
is a computationally intensive combinatorial optiation problem. A brute force
approach that analyzes all possible combinatiom®wipensation tables is impractical
for this type of problem. Further, this class adlfgem cannot be solved with traditional
gradient search techniques. An artificial intelige method capable of incorporating
constraints is needed. A genetic algorithm is armomtechnique for combinatorial
optimization and can easily be tailored to consteacommon in machine tool
controllers.

The rest of the paper is organized as follows.i8e& briefly describes the
general method to populate an unconstrained seaohine tool compensation tables.
Section 3 presents a method of selecting and ptipgldne optimal set of compensation
tables when constraints exist. Section 4 presestdts using data from an industrial 5-
axis machine tool and Section 5 presents the imghéation and experimental validation

of compensation tables selected with the methogodogl additional simulations for
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several classes of constraints. Section 6 sumnsattizepaper and draws conclusions

from the work.

2. BACKGROUND

A novel method for machine tool calibration usingahine tool compensation
tables was developed in [10]. Compensation tabketoakup tables on the machine tool
controller whose input is the measurement of as ard whose output is an incremental
value to be added to (or subtracted from) an aosstipn command. Note these axes may
or may not be the same. A table whose input is asomement of axisand whose output

IS a correction to axis may be represented as,

Entry Input Outpu

1 Olit,l L

i-1 g, t,._

J . q|t] 1 -1 ’ (1)
J di; L

j +l qit,j+l toi,j+l

No o dy b

whereq ; is thej™ table listing of thé"” input axis,t, ; is the corresponding

i, j
compensation value to be added to (or subtracted)fthe axis command of tio&
output axis, and\; is the number of table entries. Then, the comgedsaommand to

axiso is linearly interpolated from the table entries as

g - qt,j—l

PrERTE (2)
qi,j_q,j-l

0 =0+ toi,j—l+(t0i,j - toi,j—l)

wherej is selected such that the measured input axisiposj satisfiesq; , < q < ¢,

andqo is the nominal position command of the output axis
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This method takes tool tip error measurementsibiggd throughout the axis
space with a laser tracker using two different tengths, i.e., distances between the
spindle face and measurement device, allowing position and orientation errors to be
measured. In order to relate the position and tatem measurements of the machine
tool with the commanded axis positions, a modé¢hefrelationships between the
nominal axes is developed by assuming the macholean be treated as a kinematic
chain of rigid axes, with the relationships betwésmnaxes described by Linear

Homogeneous Transformation (LHT) matrices [4],

rlx ox a)( Ix

T= ny Oy ay Iy (3)
rlz Oz az Iz ,
O 0 O

where the unit vectors, = [nxnyn;]", 0 = [0x0y 07", anda = [ax &y a;] " are the orientations
of the X, y, and z-axes, respectively, of an arisrdinate frame with respect to the
coordinate frame of the previous axis in the kinenzhain and = [Ixly1,]Tis a vector
from the origin of an axis coordinate frame to tiigin of the coordinate frame of the
previous axis in the kinematic chain. The nominagknatic model for an-axis machine

tool is,

F, (q’ LT) :Tl(ql)Tz(qz)---TH( qu)Tn( qn)TT| ( LT) 1 (4)

whereq = [g1 0 ... g " is the axis command vectdr(qu),...,Tn(gn) are LHTSs for axes
1,....n, respectivelyT T is the transformation from the last axis to tha tg, andLt is
the tool length. The conventions described in tamAReference Model [11], a model
commonly applied in robotics [12], are used to mkefihe vectors, o, a, andl for each
transformation matrix.

Machine tools are never perfectly described bynitrainal kinematics due to
manufacturing tolerances, errors in assembly, agal wver time. Consider a model of
the actual kinematics &s(q,Lt), which may be generated by any kinematic modeling
method. One method accounts for complex kineneatirs by introducing an error
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transformationEx(gx), between each axis transformation in the nonkim@matic model,
as in Freeman [8]. For anaxis machine tool, the actual kinematics are mextlak,

F(a,Lr) = To(ay) Ey(a) To(a) E () T, () En q)TT' (L), (5)

The kinematic error transformation at machine #ask, E, is described by
three rotational errors and three translationalrsrthat depend on the commanded axis
positiongk. For small errors, the kinematic error transfoiorabf thek™ axis can be

approximated by

(6)

whereskx, exy, andsxz are rotational errors in thé' axis’ local coordinate frame about the
X, Y, and z axes, respectively, afs, kv, anddkz are translational errors in th# axis’
local coordinate frame along the X, y, and z as&spectively. The error transformations
are identified from the machine tooltip error measuents using a maximum likelihood
estimator [13].

The kinematic error model can be used to genewtections to the nominal
machine tool commands to improve the machine t@a&iracy via machine tool
compensation tables. These tables are modelechéiswous, position-dependent
corrections to the axis commands and populated thattihe difference between the
nominal machine tool position and orientation amel¢compensated actual machine tool

position and orientation is minimized. That&,(q +t(a),L;) =F,(q,L;), where
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t11(q1)+t12(q2)+"'+ tn(qw)
t(q)— tzl(q1)+t22((312:)+"'+tm(qw) @)

tnl(ql) +tn2(q2) ot 1:nn(qn)

is the update to the axis commands based on thesrabntained in the individual
compensation tablet(q;), where is the output axis ands the input axisFor ease of
optimizing compensation tables from the identifiredchine tool modek,, the discrete
data in each compensation table will be modeledgoth functions. After these
functions, referred to here as compensation funstiare determined, they are sampled
discretely to populate the compensation tablegshEuinformation regarding the
kinematic error models can be found in [10]. A<dssed in [10], the kinematic error
model is not a complete geometric error model efrttachine tool. Rather, the kinematic
error model is based on the compensation tablekabiein the machine tool controller.
The next step in the calibration process is tatifiethe parameters of the
compensation functions. The approach used heredges the numerical tools developed
for parameter identification [13] to identify thagameters of the basis functions used to
represent the compensation functions. Two measunetoel lengths are selected to span
a considerable portion of the length of cuttingi$agpically used in the machine tool:
one short measurement tool length and one longunaagnt tool length, denoted= 1
and 2, respectively. A sequence of axis commanalsrspg the axis workspace are

generated over which the cost function,

Npm
X'=2 €6 +b/I b, (8)

i=1

is minimized for all axis commands. This cost fumaetminimizes the positional errors,
with the most likely values of geometric error mbgarametersh:. Thei™ position error

of the compensated system for tapé, is,



44

0

(F. (6 +4(a) dro) =Rl ko)) o 1= 2o Ny @)
1

whereNpm is the number of pseudo-measurements, which afdipopositions discretely
sampled from the machine tool geometric error mdelelThe compensation tabl&s))
are approximated by Chebyshev polynomials whos#Hiceats are collected in the
vectorb:. The matrixXo: is a diagonal matrix of weighting parameters Hratset based
on experience to appropriately scale the probleadihg to easier optimizatioRoor
scaling, due to the finite precision of any sohaam cause numerical instability. After
optimal, smooth compensation functions are idesdifthey are discretized into
compensation tables and loaded onto a machineootoller.

However, the full set of compensation tables cdg ba implemented on
relatively few models of machine tool controllévghen there are a limited set of
compensation tables available and constraints orpeasation table combinations exist,
it is not clear how to best select and populatectirapensation tables. A method that can
select the optimal set of compensation tablesfgaigsconstraints imposed by a specific
machine tool controller is needed to extend thikbeion method to machine tool
controllers with limited compensation options. Athd based on artificial intelligence

optimization, in this case a genetic algorithngescribed in the next section.

3. REDUCED TABLE SELECTION METHODOLOGY

The problem of selecting the best set of machinedompensation tables from
the full set of compensation tables is a combinatoptimization problem. These types
of problems tend to be very computationally inteasior a five-axis machine tool,
assuming the five pitch compensation tables araysvincluded, there are 20
compensation tables to choose from. Figure 1 slamwexample of a full set of
compensation tables for a 5-axis machine tool. @hasles are divided into four
sections. The upper left section contains six gitaiess tables (on the off diagonals) and

three pitch tables (on the diagonals) that comgertba linear axes by incrementing
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linear axis positions. The bottom left section ¢stssof tables that compensate rotary
axes by incrementing linear axis positions. Thabées, in combination with other tables,
can be used to correct some of the linear axislangurors. The top right section
contains six tables that compensate linear axesdogmenting rotary axis positions, and
compensate geometric errors such as an offsetaihey axis. The bottom right section
contains four tables that compensate rotary axesdsgmenting rotary axis positions.
The two tables on the diagonals are the rotarhpgablesRemark 1: A 5-axis machine
tool does not have enough degrees of freedom tpepsate all possible geometric
errors; therefore, even the full set of compensatadles do not describe all of the
machine tool geometric errors.

When there are 20 total compensation tables fromhwhtables are selected,

wherek < 20, the number of table combinations is,

|
N, (k) :ﬁ , (10)
The identification of a single solution requirepegpximately 10 min using a 2.6 GHz
Intel Xeon processor with 12 parallel cores. ker6,Ns = 38,760, which would require
approximately 550 hr using the same computer. Biartee methods (i.e., exhaustive
searches) are, therefore, impractical for all hatsimplest problems. One way to
efficiently determine the optimum set of comperwatables is to apply artificial
intelligence. One such technique is a Genetic Algor (GA), which is based on
biological principles and is widely used for compbnd intensive search and
optimization problems. This technique is particiylarseful for optimization problems
with large discrete decision spaces since it doésaguire the evaluation of all possible
solutions, while still sampling from the solutiopage effectively [14].

Genetic Algorithms find the solution to search aptimization problems by
mimicking the biological natural selection proces#eratively improve the solutions.
Each iteration is referred to agi@neration Genetic algorithms operate on a set of
individual solutions, which is referred to ap@pulation Individual solutions are referred

to aschromosomesand the variables that compose each chromosaerefarred to as
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genesFor the compensation table selection problemidensd here, each gene is a
specific compensation table, and a chromosomedmrlete set of compensation tables.
Genes are denoted here by the pawherei is the output axis ands the input axis. For
example, if six compensation tables are to be ehfisea machine tool with three linear
axes (denoted x, y, and z) and two rotational éesoted b and c), a potential
chromosome would be ‘cx cy xy cb zx yz’, where $regenes are

‘cx,’‘cy,'xy, "cb,*zx, and ‘yz.’
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Figure 1: Example of full set of compensation tabldorizontal axis is ranges of
machine tool axes to be compensated (i.e., inpegt)eand vertical axis is compensation
functions of axes to be incremented (i.e., outpesa
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The performance of a particular chromosome is re€eto as ititness.Here, the
mean volumetric erroem, which is the distance between the actual togbtigition at a
given set of position commands and the nominaltipgbosition, is used as the fitness. It

is calculated using the geometric error model aledtified compensation tables,

0 0
1000 100

_1AN 0 Ol » (11)

miﬁl 01 0 O|F,(q+t(q), Ta)o— 010 gF(q L“’)o
0010 L Lo .

whereN is the total number of measurements and the total number of tool lengths.
Solutions with smaller mean volumetric errors cadéarge set of commanded positions
are more fit (i.e., they are better solutions).

Once a fitness value is assigned to each chromgsomewv generation of
chromosomes is created. New chromosomes are ireddato the population in two
ways: reproduction and mutation. A percentage, §0%is study, of the fittest
chromosomes of the previous population (i.e. pdeentg is retained and new
chromosomes are added through reproduction. Regtiodus the process of splicing
together genes from two parents to produce newnohisomes. In order to ensure more
fit chromosomes are chosen as parents, weightelbmaselection is used. A standard
weighted random selection algorithm [15] is useddtect parents based on a set of
weights calculated below. Each chromosome is rablaseéd on its fithess from the most
fit (i.,e., n = 1) to the least fit, and this rank,is used to determine the weight for each

chromosome,

W = Nkeep— n+1

n Nieep ! (12)
25
whereNeepiS the number of chromosomes to retain each ieerandn is the
chromosome rank. Only the chromosomes ranked batlve@dNkeepare used for
reproduction (i.e., the creation of new chromosgmiBse chromosomes selected as

parents are paired randomly. To create new chromesdrom the parents, several
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different methods can be employed. The most commethods of reproduction
employed in GAs are not well suited to this probkance the ordering of compensation
tables in the chromosome does not matter. Foiptioislem, a new method that does not
consider the order of genes is introduced. A ramdamber of genes from the parents
are selected and swapped for the same number e§ gethe other parent. The genes to
be swapped are initially selected in the first par€or each gene to be swapped in the
first parent, the second parent is checked to aterif it contains a copy of this gene.
If it does, then the duplicate genes are exchasgdtat new chromosome will not have
more than one copy of a specific gene (i.e., th®@seompensation tables should not
contain multiple instances of the same compensédiole). Machine tool controllers may
have constraints that create limitations when emgimg genes which must be integrated
into the algorithm for gene exchange. These coimssrand their resulting limitations on
the exchange of genes during reproduction are ssgtlibelow. The entire reproduction
process for the compensation table selection pmoidallustrated in Figure Remark 2:
It is possible for both parents to be identicaljclhwould result in ally genes in parent
#1 existing in parent #2. In this case, the resglthromosome is the same as the parents
before mutation. This can lead to saturation, ergresence of only very similar
solutions, which can be mitigated by using mutatperations, as discussed below.
After reproduction occurs, random mutations altpeecentage of the genes in the
population. For the compensation table selectioblpm, a percentage of the
compensation tables are exchanged for other corapengables selected at random
from the set of all possible compensation tablekjext to machine tool controller
constraints. If the randomly selected new geneatésl a constraint, a new gene is
selected at random until a gene is found that eseatvalid solution. Mutations serve as
a way to randomly introduce new solutions. A higimertation rate creates an algorithm
which acts more like a random search method, vehitever mutation rate limits the rate
at which new genes are introduced into potentiaitems. The GA reproduction method
without mutation is prone to saturation, also ahllebreeding. That is, the population
will contain only very similar solutions and be bi&to create different solutions via
reproduction. Either extreme (i.e., high or low atign rates) is slow and inefficient.
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Figure 2: lllustration of reproduction.

The iterative process then starts over with théuaten of the fithess for each
chromosome in the new generation, and the proepeats until a specified convergence
criterion is satisfied. An outline for the sequentesteps for the GA used in this work is

shown in Figure 3.
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Figure 3: Outline of Genetic Algorithm steps.

3.1. Parameter Tuning. The GA has several tunable parameters, namely the
mutation rate, population size, and convergenderarn. The effect these parameters
have on the compensation table selection problemwsexplored using data from the
machine described in Section 4 for the selectiosivotompensation tables. Figure 4
shows the minimum cost at each generation averagedfive different GA runs for
different mutation rates. The 0% mutation rate sheaturation in early iterations and
does not perform as well as higher mutation rates after 50 generations. Once the
algorithm is completely saturated and without matato introduce new compensation
tables, it will never perform better regardles$iolv many generations it is allowed to
run. At the other extreme, a mutation rate of 8zMses the best solution to improve
more slowly. By 50 generations, the best solutias & mean volumetric error of 0.046
mm, while lower mutation rates have a best soluss than 0.040 mm. High mutation
rates cause the algorithm to rely mostly on randearch, which is slow and does not
take advantage of previous solutions with goodgserance. For this problem, a
mutation rate of 20% produces the lowest minimust;dberefore, this mutation rate
provides enough of a random search element to pteaturation without causing the

algorithm to require significantly more iteratiotosconverge. Figure 5 shows the
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minimum cost at each generation averaged overdiiterent GA runs for population
sizes of 8, 16, and 24. Note that this study waslaoted on a computer with 8 processor
cores; therefore, population sizes with multipleé8 avere selected. Initially, larger
population sizes perform better, but after 35 gatiens, all population sizes have
approximately the same performance, although lgsgpulation sizes reach this
performance level in fewer generations. Since itha performance between all
population sizes is similar and a population siz& muns faster (though requires more
generations), a population size of 8 is used mshidy. The iteration limit is set to 50 for
both the mutation rate and population size studibs.average minimum cost for both
studies reaches their minimum value before 50 ggiosis, with many occurring before
35 generations. The convergence criterion is ssdettt be a maximum of 50 generations
for the rest of the experiments conducted in thidygbased on this fact since additional
generations add significant time to experiment$ \itle probability of increased
performance. If the algorithm remains at the sarmemum cost for more than 20
generations, it is assumed to have converged amint&tes even if 50 generations have
not yet been completed.

3.2. Congtraint Inclusion. Three general classes of table compensation
constraints exist. The first is a constraint ondkierall number of compensation tables.
The other two are 1) constraints on the specifeesakat may be used and 2) constraints
on the combinations of compensation tables that apggar together.

3.2.1. Constrained number. Many controllers limit the total number of
compensation tables or the memory allocated forpeprsation tables. This is the most
common constraint and has been discussed in @eidiigr in this paper.

3.2.2. Constrained axes. This constraint can be caused by the way an axis is

integrated into a machine tool controller. In satnafigurations, an axis encoder signal
is available to the machine tool controller; howetiee axis motion is controlled
separately and, therefore, may not be able to acoeppensation commands.
Implementation of such a rule would involve redigcihe number of compensation tables
available to select from. For example, for a typ&axis machine tool, there are 25
compensation tables. If a specific axis cannotdb@s an output axis, then there are five

fewer compensation tables to choose from.
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Figure 5: Minimum cost averaged over five runsvarous population sizes and
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3.2.3. Constrained combinations. This type of constraint is often machine
tool controller specific. An example of this typkoonstraint is circular compensation,
i.e., when two compensation tables have swappead s output axes, such as the two

compensation tables ‘bc’ and ‘cb’. If a gene s&ddtom parent 1 would combine with a
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gene in parent 2 to form an illegal combinatiomnthhe selected gene is instead swapped
with the gene in parent 2 which would cause thestamt violation, yielding new
solutions that do not violate any constraints. nscess is illustrated in Figure 6. Other

machine tool controller constraints can be incaaped in a similar manner.

4. RESULTSAND DISCUSSION

Data collected from an industrial 5-axis machina tocated in a Boeing
experimental laboratory is used in the followingesiments. The machine tool
configuration is illustrated in Figure 7 and thesaimits are listed in Table 1. The
machine tool is measured at 295 unique randomcaxiBgurations using an API T3
laser tracker and active target (see Figure 8)hpasition is measured twice, using long
and short tool lengths of 317.15 mm and 218.44 mespectively, which are the
distances from the active target to the spindle.fade tool length is obtained using laser
tracker measurements and a comparison to a toblknawn length. A parameter is
included in the geometric error model to correctif@ccuracies in the tool length
measurements. Using two tool lengths allows bo#itjpm and orientation errors to be
captured.

This data is used to fit the error model descriipe8ection 2. The volumetric
errors between the model outputs and measurecadashown in Table 2. The error
model fits its identification data well, with theetan distance between the measured tool
tip position and the modeled position being onlyu®% which is within twice the
machine tool repeatability. A set of compensatadrids is then identified as described in
Section 2 and, to analyze their ability to compénsiae machine tool, the performance in
simulation for the set of identification pointsagaluated. The identified set of
compensation tables is predicted to be able touatdor 94.0% of the mean volumetric
error and 93.9% of the maximum volumetric errorjchihis the largest volumetric error

over the entire set of measured volumetric errors.
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Figure 6: lllustration of reproduction when cirau@mpensation is prohibited.

Table 1: Axis limits of industrial 5-axis machir@ot used in experimental studies.
Axis | Minimum | Maximum

X (mm) -8.1 6101.0
Y (mm) -2.5 2557.3
Z (mm) 0 1001.8
B -111° 111°

C -272° 272°
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Figure 7: Industrial 5-axis machine tool kinematiagram.

The most basic set of compensation tables onlyuatsdor individual axis
positioning. These compensation tables are knowsitels compensation tables and are
included on virtually every machine tool controll&his set of compensation tables
serves as a performance baseline, i.e., any seingbensation tables that includes more
than this basic set should perform better. Thehgtimpensation tables are applied to the
identification points in simulation and are ableatwount for 76.2% of the mean
volumetric error and 75.5% of the maximum voluneeéiror. These sets of
compensation tables (i.e., full and pitch) form badsi for other sets of compensation
tables. The volumetric errors for any set of congagion tables should be less than when
using pitch compensation tables alone and morelingem using the full set of
compensation tables.

The compensation table selection methodology is applied to the problem of
selecting the best six compensation tables ou@gfdasible compensation tables,
assuming the pitch compensation tables are alw@ized. Note the 20 possible

compensation tables are the non-diagonal tablEgyure 1. The problem of selecting six
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compensation tables is considered here as manyimestciol controllers only allow six
compensation tables to be implemented.
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Figure 8: lllustration of laser tracker and actiagget.

Table 2: Volumetric errors for error model and &abbhsed compensation.

Model Mean error (mm) Maximum error (mm)
Uncalibrated 0.597 1.420
Error model 0.025 0.071
Full set of tables 0.031 0.071
Pitch tables only 0.142 0.348

The algorithm is run on a computer with 12 IntelbX¥e2.60 GHz processing
cores. Solution evaluations for each generatiomaren parallel. The population size
and mutation rate are 12 and 20%, respectivelytlamdonvergence criterion is that the

GA produces the same solution for 20 generatioriayenerations have been produced,
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whichever occurs first. The results are shown ibl@8. The average calculation time for
the GA solutions is 5.2 hr, which is significantister than 550 hr (i.e., the time required
for an exhaustive search to calculate all 38,64%ide solutions). The solutions share
the compensation tables ‘yc xz zx’ and all but sakition has the compensation table
‘xc’. The full set of compensation tables are @dtin Figure 9. The shared compensation
tables ‘yc xz zx’ and the compensation table ‘x& all large when compared to the
machine volumetric error, with ‘xz’ and ‘zx’ spamgi 0.25 mm and 0.14 mm,
respectively, which is 42.3% and 23.7% of the vadtna error; however, other
compensation tables such as ‘yb’ and ‘cy’ span®1®2n and 0.004 mm. Compensation
tables correcting the rotary axes are not as olsvsce they cannot be directly
compared to the volumetric error. Additionally, thiech errors on the rotary axes of this
machine tool clearly dominate, with compensatidids such as ‘bc’ and ‘cy’, having
maximum values of 5.8% and 3.1% of the maximunhefgitch compensation function,
fec.

Another solution to the problem of selecting congaion tables may be to
develop a heuristic to select compensation taldssdbon the relative size of each
compensation function. Many metrics can be usexitopare the significance of each
compensation table. One possible heuristic is basdtie impact an individual
compensation table has on the overall compenspgdormance, as measured by the

mean volumetric error for the identification set.

Table 3: Performance for each GA run.
Run Computation Time (hrs) Mean error (mm) Solution

1 6.1 0.0493 XZ zX yC Xc yb cy
2 4.7 0.0493 Xz zx yc xc cb bc
3 5.8 0.0445 Xz zX yc Xc yx bc
4 5.8 0.0460 XZ zZX yC Xy cb zc
5 3.8 0.0460 XZ zX yc xc yb zy

Average 5.2 0.0470 --
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Table 4 shows the mean volumetric errors for mouhelsiding all compensation
tables except the one listed in the first columime Targer the mean volumetric error is
without a compensation table, the greater the impiihat compensation table on the
compensation performance. The six compensatiorgahbith the most impact are then
selected to form the heuristic solution. Usingittentification measurement set collected
above, the heuristic solution is ‘yz zx xc yc zy th a mean volumetric error of
0.0625 mm, 15.am worse than the GA solution and 318 worse than the full set of
compensation tables. Referring to the GA solutignsye of the selected compensation
tables, such as ‘yb’, ‘zc’, and ‘cy,” are rankedhaving low impact in Table 4. These
compensation tables are ranked' 186", and 19, respectively. Therefore, examining
the impact of the mean volumetric error of an imndlial compensation table is not always
an adequate indicator of whether the compensaaiole should be included in the
solution. The compensation functions using thedatlof compensation tables are plotted
alongside the GA solution and the heuristic sotutroFigure 9. Where the heuristic or
GA solutions share tables with the solution thdizes all of the tables, the shape and
magnitude for some of those compensation functiamsbe very different, for example,
the compensation functions ‘xx’, ‘yx’, and ‘zx’. method of identifying table-based
compensation finds the best set of functions tocedhe machine tool kinematic errors
so that the tool tip position and orientation mdesely match the desired position and
orientation described biyn. As a result, some errors are being approximayed b
compensation functions that do not necessarilyrdesthe physical source of the
measured error, which will be particularly truehwa reduced number of compensation
tables. Evaluating the impact of a single compeosdable on the mean or maximum
volumetric error of the full set does not measuwe lwell an error might be
approximated using other terms, only its size aorplete solution. For this reason,
evaluating the entire solution together is moredffe than evaluating the impact of a
single compensation table. The heuristic solutsocompared to the average GA solution
in Table 5.
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Figure 9: Compensation table functions generatat &rror model for full set of
compensation tables, best GA solution, and hearsstiution.

4.1. Experimental Compensation Results. The previously described machine
tool was measured at 295 unique measurementdosatising two tool lengths, and the
new set of data was used to identify a set of corsgion tables using the GA. The GA
compensation tables are compared in simulatiot) fmen implemented on the machine
tool controller. The predicted mean volumetric efay the GA compensation tables is
the same as for the full set of compensation tallage the maximum mean volumetric
error is 11um larger. However, the repeatability of the machow and measurement
instrument is 17um, so there is unlikely to be a measureable diffezebetween the two.
The set of compensation tables identified using@Aewas implemented on the machine
tool and compared to the full set of compensatatnets experimentally. Both sets of
compensation tables are discretized into 1024 pqet table. The compensated mean

volumetric errors are evaluated over a validatietno$ 35 quasi-random points, which are
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different from those used to generate the compemstgbles. The results are shown in
Table 6. The GA compensation tables have a melumatric error 8 um larger than the
full set of compensation tables for the validatsa@h. The maximum error is similarly
close, with the GA compensation tables being 10arger than the full set of
compensation tables. Good performance over thdatadn set indicates that the low
mean volumetric error for the GA compensation taldenot due to overfitting, and
translates to verifiable performance improvementh@xmachine tool. The GA
compensation tables perform nearly as well asuhedmpensation tables when
implemented on the machine tool, demonstratingxAds able to find near optimal
solutions even when the number of compensatioesablrestricted.

Table 4: Model mean volumetric error excluding cemgation table listed in column 1.

Table Rank Mean error (mm)
zX 1 0.1169
yc 2 0.1126
Xc 3 0.1000
2y 4 0.0924
yz 5 0.0792
bx 6 0.0751
by 7 0.0725
bc 8 0.0724
bz 9 0.0701
xb 17 0.0530
X 18 0.0489
cy 19 0.0474
cz 20 0.0463
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Table 5: Performance of heuristic and average Giisns.

Solution Computational Time (hr) | Mean error (mm) Solution
Full tables - 0.0310 -
Heuristic 1.0 0.0625 | yz zx xc yc zy bx
Average GA 5.2 0.0470 -

Table 6: Volumetric errors for validation experineon 5-axis industrial machine tool,

mm.

Model errors Comp. errors
Model Tables Mean | Maximum | Mean | Maximum
Full tables --

0.036 | 0.086 .043 | 0.122
GA XC ZX YC YX yz CzZ

0.036 | 0.097 .051 | 0.132

4.2. Constraint Inclusion. Data from the previously described machine tool
is used to test two specific controller constraimtsich were described in Section 3.2.
The first constraint is largely seen in older maehtiool controllers and prevents what is
termed circular compensation, i.e., the situatitveng the compensation taljles
populated and, thus, the compensation tabtegay not be used. The GA is run five times
for each constraint and the mean volumetric emwes the identification set are
compared to the unrestricted GA in Table 7. Thev@# the constraint on circular
compensation is slightly worse than the average @, one solution 5.6m worse and
the other solution 10.Am worse. The difference between the GA solutiorth wi
constraints on circular compensation and the urtcained GA solutions is statistically
significant based on a paired t-test of the medametric error using a significance level
of 0.05. This is expected since added constragusce the number of possible solutions
and, for this particular machine tool, there aneesal circular combinations of
compensation tables that are large. For exampmentchine tool has a significant error
described by the compensation table function ‘wxkiich represents sagging of the long

axis, X, as well as an error described by the corsgigon table function ‘xz’ that
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represents the Z axis ram not travelling straihere also is significant coupling
between the rotary axes, described by the compendable functions ‘cb’ and ‘bc’.

Table 7: Mean volumetric error for ga solutionshwiio constraints, no circular
compensation, and no x axis compensation.

Model Mean error (mm) Solution

Full tables 0.0310 -

Average GA 0.0470 --
Best GA 0.0445 XZ yC XC yX zX bc

Circular compensation
Result 1 0.0571 Zx yc Xc zy cb xb
Result 2 0.0526 zx yc xc xy yb xb
Result 3 0.0526 Xz yc xc yx cb yb
Result 4 0.0540 XZ yC XC yx cb zy
Result 5 0.0535 Xz yc xc yx yb xb
Restricted axis (X)

Result 1 0.0753 zZx yx yc zb cb bc
Result 2 0.0753 zZx yx yc zb cb bc
Result 3 0.0753 zZx yx yc zb cb bc
Result 4 0.0753 zx yx yc zb cb bc
Result 5 0.0753 zx yx yc zb cb bc

The second constraint considered here does net abpensation for a specific
axis, in this case the X axis. Three runs of thef@d the same solution for the second
constraint, and this solution performs worse th@nunrestricted GA solution, with the
mean volumetric error being 28.81 worse than the average unrestricted GA solution.
This is not unexpected based on the size of theiX@mpensations in the full set of
compensation table functions shown in Figure 9thedunrestricted GA solutions, the
best of which contains the tables ‘xz’ and ‘xc’.

The proposed volumetric error compensation mettaggotliffers from the
methodologies reported in the literature, summadring3,4], in two ways. First, nearly

every machine tool calibration methodology measaordg a few geometric errors in one
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set up, e.g., interferometers for linear axes alddars and R test for rotational axes,
and, thus, populates only a few compensation tabidseach set up. The proposed
methodology measures geometric errors over theeeatis space and is able to populate
the entire set of compensation tables, if no litiates or constraints exists, in just one set
up. Second, if there is a limitation on the numiiecompensation tables that can be
implemented or there are constraints on the coribimaf compensation tables that can
be utilized, the proposed methodology is able tinugdly select the best combination of
compensation tables. To the authors’ knowledgs,ifisiue has not been previously

addressed in the literature.

5. SUMMARY AND CONCLUSIONS

A quick machine tool geometric error calibrationthus that generates
compensation tables from tooltip measurements wihded in this paper to situations
where the number of machine tool controller compean tables is limited and
constraints exist on the possible combinationsbliels that can be utilized. The reduced
table selection methodology is based on artificigdlligence that utilizes a Generic
Algorithm (GA) to find the optimal set of compenisattables without having to evaluate
all possible combinations of tables. Data fromragustrial 5-axis machine tool was used
in a simulation study to compare the GA methodoltmgthe selection of compensation
tables using a heuristic. The heuristic uses a@gnetric based on the impact of
individual compensation tables to select a sebaimensation tables. When selecting six
compensation tables, the mean volumetric errotailes selected by the GA
methodology was 44.7% smaller than the mean volueretror for the tables selected by
the heuristic. The heuristic and GA methodologyies 1 and 5.2 hr, respectively, to
find solutions, while 550 hr were required for athaustive search, which is impractical
for most applications. The GA methodology was tBeperimentally implemented on an
industrial 5-axis machine tool using a validati@tadset and the resulting mean and
maximum volumetric errors were 8.0 and 10, respectively, greater than the mean
and maximum volumetric errors when the full set@mpensation tables were
implemented. In a second simulation study, the Gsthmdology was used to select six
compensation tables for the industrial machine &ssluming that circular compensation
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could not be utilized. The GA methodology was innpésted and the resulting mean
volumetric error was 7.0m greater than the mean volumetric error for thmpensation
tables found by the unconstrained GA methodologdnys @emonstrates the importance of
using circular compensation for this machine taslthe compensation tables xz and zx
were present in the unconstrained solution. Inrd $imulation study, the GA
methodology was used to select six compensatidagdbr the industrial machine tool
assuming that compensation could not be implemdbtetie x axis. The GA
methodology was implemented and the resulting nvedimmetric error was 28.8m
greater than the mean volumetric error for the camsption tables found by the
unconstrained GA methodology. This demonstratestipertance of compensating the x
axis for this machine tool, as the compensatioletakz and xc were present in the
unconstrained solution. The GA methodology preskhege is able to efficiently select
compensation tables for a variety of machine toaoitllers, even when their existing
compensation options limit the number of tables tam be implemented or the

combination of tables that can be utilized.
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SECTION

2. TABLE-BASED VOLUMETRIC ERROR COMPENSATION
IMPLEMENTATIONS

In addition to the laboratory machine presenteth@previous papers, table-
based volumetric error compensation has been imgiéd or evaluated for
implementation on a variety of other machine toBts. each machine tool was
evaluated, a set of tool tip measurements wereael using a laser tracker and a table-
based model was identified In the following secsiosach machine is described and

some results from measurement and modeling areness

2.1. CINCINNATI 20V, BOEING RESEARCH AND TECH ST. LOUIS

The Cincinnati 20V, shown in Figure 2.1, is alsodt®d in a laboratory
environment. It is a small 5-axis hard metals maicky center with an XYZAB
configuration with axis travel shown in Table 2ZThe machine has a Siemens 840D

controller.

Table 2.1:Axis limits for Cincinnati 20V

Axis Minimum Maximum
X -14in 80in

Y -30.16in 23in

Zz -24in Oin

B -25 deg 25 deg

A -25 deg 25 deg
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Model performance is shown in Table 2.2. The meaanaetric error for the JP
model is 0.7x18in, which is a 96.5% reduction in error. The maoaeturacy over its
identification set is nearing the accuracy of treasurement instrument, (repeatability of
0.7x10%in, as detailed in Paper 1), indicating that motkhe residual error could be
attributed to measurement noise. The gage linebéisrection was found to be 0.5510
in, which is near the accuracy of the tool leng#masurement, so this is small enough to

be noise. The axis perturbation functions aret@dbin Figure 2.2.

Figure 2.1: Cincinnati machine

Table 2.2: Machine volumetric error, new data
Model Mean (in x10°3) Max (in x1073)

Uncalibrated 20.1 37.4

JP 0.7 2.1
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Some high order effects are present at Z axisipasitclose to the table, but this
is likely due to poor measurement coverage indhés due to the length of the active
target mounted in the spindle. This area is comsitl®o be outside the work volume for
most standard tools. The largest translationalpmmations are to the Z axis. One is
dependent on Y position, representing that this exslanted. The other is the Z
positioning error. The largest X compensation deljgeam the B axis position. The largest
angular compensation is the angular positioningresf the A axis, but a close second is
the Z dependent B compensation, which has a lazgk pear the top of the Z axis. This
machine has significantly less travel in the rotaxgs than the previous experimental
machine (Flow 5-axis, C travel [-272, 272] and &/#&l [-11,111]) and has a smaller
work volume. It was expected that this type oflmaiion would provide less benefit to
small machines with less complexity, however, thechine, despite small travels for the
rotary axes, has non-trivial errors that depentherrotary axis locatiorfy, foz). The
model accuracy on this machine also predicts saamif error reduction, demonstrating

that VEC is of benefit to even small 5-axis machkine

2.2.  SNK 120V BOEING DEFENSE AND SPACE, ST. LOUIS

The SNK 120V is a production 5-axis machining cemntéh XYZAB
configuration and axis travels shown in Table Z/8s machine has a Fanuc 30i
controller. Results for this machine are shownabl€ 2.4. This machine presents a new
challenge compared to most others in this secAamajority of the machines evaluated
have Siemens 840D controllers, which allow a largenber of compensation tables (64).
However, the Fanuc 30i allows 5 pitch compensatitaes and 6 straightness tables of
some description. There are 20 straightness tatdesare possible, so a new method to
select the best tables is needed. A method ustifigial intelligence is presented in

Paper II.
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Figure 2.2: Axis perturbation functions.

Table 2.3: Axis limits for SNK.

Axis Minimum Maximum
X -4in 120 in

Y -48in 0in

YA -27 in 0in

A -25 deg 25 deg

B -25 deg 25 deg

70
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Table 2.4: Results for the SNK machine tool.

Mean (inx1073) Max (inx1073)
Uncalibrated 8.4 19.1
AP Model 0.8 2.5

2.3. INGERSOLL HORIZONTAL MACHINING CENTER, NASA

The NASA Ingersoll is a large 5-axis gantry horitgmmachining center with and
additional rotary table and tail stock. It has ar2CA configuration with axis travels
shown in Table 2.5 (without considering the rotiatyle). The machine is pictured in
Figure 2.3. This machine was measured as a parjaft effort with Automated
Precision, Inc.

Table 2.5: NASA Ingersoll axis limits.

Axis Min Max
X (in) -196.89 276.22
Y (in) -0.04 157.52
Z (in) -1.97 137.83
C -400° 400°
A -110° 110°

The machine was measured using a set of pseudosmapdints and an axis
perturbation model was fit. The initial results ah®wn in Table 2.6. The performance of

the compensation degrades as a function of Y as&gipn on the grid of validation
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points, indicating that some error on the machsneat well described by the model, as
shown in Figure 2.4.

Figure 2.3: Photo of machine tool during calibratio

The Y gantry of this machine is known to have digant skewing based on the
original compensation and the mismatched curreth@two motors, so it may be that
these errors are hard to model using the AP md@ems representing possible skewing
between the gantry axes are introduced and a nieod seodel parameters are identified.
For the Y gantry, a small rotation about the X a&ig, is inserted, and for the X gantry, a

similar small rotationéxg, is introduced as

Fao (a+8) =T (e + ) To, (6, )T (@ 8T, (6,) T (2 + @) Te( @+ Q)T g+ 9T (23)

whereflygis modeled as a function of each axis position,
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8, = f(ax)+ f(a)+ f(a)+ f(ac)+ f(ay) (24)

and 0xg, Is modeled in much the same way.. In this matiel maximum residual error
is reduced to 3.21x1rom 5.5x10°, which is a 42% decrease. The identified functions

are plotted in Figure 2.5.
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Figure 2.4: Vector plot of grid point errors witbrapensation active.

Table 2.6: Residual error for uncompensated macmaeAP model.

Model Mean (in) Makx (in)
Uncompensated 10.5x10°3 25.0x103
AP model 1.57x10°3 5.50x10°3
AP+8yg, Bxg model 1.34x103 3.21x10°
AP tables (validation) 2.6x10°3 4.8x103
Original tables 5x103 10x1073
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2.4. SPAR MILL 23, BOEING COMMERCIAL (BCA), SEATTLE, WA

Spar mill 23 is a 110ft long four-axis mill with aspindles that run mirrored,
meaning that their movements are synchronized o site. The controller is a Fanuc
33i. This machine is older, but had undergone amexetrofit. The repeatability of the
machine is shown in Figure 2.7, and is found toraeg somewhat over several hours
between the two data sets shown. The volumetrar ernr the uncompensated machine is
shown in Figure 2.6. Data is shown ordered by paumhber to check for any time
dependence in the measurements. Based on a longedpeatability of 3.4 thou and a
mean volumetric error of 3.6 thou with an obsermekimum of 8.2 thou, it was
determined that the machine was unlikely to beffiefin VEC and no tables were

implemented.
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Repeatability of this machine was established bgsugng nine points four times
using the SMR over 19 minutes, and again by compgahe two sets of identification
measurements, taken over 5 hours and 50 minutesdistributions of the repeatability
over long and short measurement times are showigure 2.10 and Figure 2.11. The

results are in Table 2.8.

0.01r1
Mean: 3.6 thou

0.008 1 Max: 8.2 thou
=
S 0.006 |
o
E
% 0.004
0'e

0.002 r

0 ‘ ‘ ‘
0 50 100 150

Point #
Figure 2.6: Volumetric error before compensatiorSpar Mill 23.

The average repeatability over the short measurepegiod is on average 0.7
thou, which is approximately equivalent to the pbility of the instrument, meaning
the machine is more repeatable than a laser tragkemeasure when time dependent
effects (such as thermal changes) are minimizededer, when the repeatability was
calculated using 287 points over 5.8 hours, themigereases to 2.1 thou and the
maximum to 9.0 thou. During this timé, B of temperature change was recorded at the
machine table, and this temperature change mawtblp/ responsible for the
degradation of the repeatability.
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Figure 2.7: Grid of repeated points evaluating atpleility of Spar Mill 23 over
time.

Table 2.7: Master Mill axis limits.
Axis | Min | Max Naming

X(in) | -325 | 325 | AX1, AX8

Y(in)| -80 | 80 AX2

Z(in)| 30 | 110 AX3

C | -200° | 200° AX4

A | -110° | 110° AX5

These measurements were then used to fit a jorturpation model using the
implicit loop method. This model used a base fravite orientation fixed to the machine
table. Table 2.9 shows the mean and maximum vohlieretror between the model and

identification points. The functions are showrFigure 2.12.
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Figure 2.8: Master Mill machining a complex part.
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Figure 2.9: View down the long axis (X) of the Masmill.
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Figure 2.10: Distribution of short term repeataili
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Figure 2.11: Distribution of long term repeatalilit

Table 2.8: Mean and maximum repeatability.

Repeatability type | Mean (thou) | Max (thou) | Std. (thou) | Time (hr)

Short term 0.7 2.3 0.1 0.3

Long term 2.1 9.0 1.6 5.8




Table 2.9: Model residual errors, thousandths ahah.
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Identification Validation

Model Mean Max Mean Max
Uncompensated 11.6 30.4 11.6 20.4
Joint perturbation 2.2 5.8 3.7 8.7
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Figure 2.12: Axis perturbation functions, thous#sdsf an inch (thou) and
degrees.

In Figure 2.12, the horizontal axis for each fuoetis the input axis, and the

vertical axis is the compensated machine axis.fihetionsfcxandfey are sinusoidal in C
position, representing an unaccounted for offsevéen the C and A axes. The function

fyxindicates that the Y axis bows out in the X dii@ett In addition to the compensation
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tables, the nominal lengths of any links are cda@cThe correction to the gage line
offset was 0.3 thou.

The AP model functions, shown in the previous secin Figure 2.12, were each
discretized into 1024 points and loaded into 30 pensation tables. Normally there are
5x5=25 tables possible for a 5-axis machine, bstrttachine has a gantry system and
needs to have X compensation tables for both tding and following axes. The
functions in the top row of Figure 2.11 were plagetlvo tables, one for the leading and
one for the following axis.

Both new and old compensation tables were evaluatedthis validation set,
and the mean and maximum residual errors after easgiion are shown in Table 2.10.
Figure 2.13 shows the distribution of residual woediric error for both sets of

compensation tables and the uncompensated machine.

Table 2.10: Compensated residual error, thousaradtas inch.

Compensation Mean Max
Uncompensated 11.6 204
Original 14.2 23.2
Volumetric 6.7 13.6

2.6. UNDISCLOSED PRODUCTION MACHINE, ST.LOUIS, MO

The undisclosed production machine is a large gahat has an XYZBAW
configuration, where W is the translational axisumied after the B and A rotary axes
that moves in the tool Z direction. The axis limate shown Table 2.11. This machine
has a Siemens 840D controller and is a productiggiementation of table-based VEC.
The machine is calibrated in small zones to geaebebmpensation performance, which

is a strategy unique to this machine in terms o€CMBEBplementations. The performance
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overall and in these zones is shown in Table ZLh2.residual volumetric error after
compensation is marginally higher than on otherhimaas presented here, but may
partially be attributed to the longer X-axis andigsé tracker setup. This distance causes
the laser tracker to have more error in its measargs, affecting both the model quality
and the ability to measure the true residual esvar a small set of points. Future
implementations on this machine should considerlaser tracker locations to mitigate

the distance related measurement error.

9r I Uncompensated
I Original comp
I \olumetric

0 0.005 0.01 0.015 0.02 0.025 0.03
Residual error, in

Figure 2.13: VEC performance over old validatioh se

2.7.MACHINE TOOL EVALUATION SUMMARY

This section has presented results from measureonémiplementation on a variety of
machines in different settings. Two machines weareiBg Defense production machines
(SNK 120V and the undisclosed production machitve), were Boeing Commercial
production machines (Master mill and the Spar milje was a Boeing lab machine, and
one was a NASA production machine. Each machindtBadique challenges, with
some being very long, some having odd configuratiamnd some having errors not
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encountered in the lab setting such as temperfiturteiations and skewing between
multiple gantry axes. Despite this, table-based W&S able to reduce errors on all of
these machines with the exception of a single nmechihose accuracy was already as

good as typical VEC accuracies.

Table 2.11: Axis limits of production machine.

Axis Min Max
X | 450in 1000 in
Y Oin 30in
z 0in 130in
B |-5° 5°
A | -200° 17°
W | -15in Oin

Table 2.12: Compensation performance in selectadszo

Model Overall East West
Mean Max Mean Max Mean Max
Uncalibrated | 16.4 33.9 18.6 46.6 13.6 343
AP Model 2.2 6.0 1.8 4.2 1.8 4.1
Compensated | 5.6 9.4 4.3 7.1 4.2 8.4
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3. INSTRUMENT INTEGRATION
31 INTRODUCTION

The cost of machine down time and the speed witiciwlaser trackers can
collect measurements of a machine tool has drikeim tise as a calibration tool for
machine tools. Due to the lower accuracy of theubrgositioning of a laser tracker,
multiple laser trackers [17, 18]or multiple positso[43, 19] are sometimes used so that
the three-dimensional position of the tool tip ne@yfound by triangulation. Ibaraki et al
[18] found that even using this method, the lassiter error in identifying the position
of a corner cube could be as large as typical jpositg errors. In [20], Nubiola and
Bonev used a single laser tracker and multiplecédirs to calibrate an ABB IRB1600
robot and achieved good improvement in the voluimetror in simulation. A laser
tracker is also used for measurements by Aguadb[ét]. Most of the measurement
methods reviewed here require several differentigetto acquire enough measurements
to build a complete model. Some require additioneasurement methods. Laser trackers
have the potential to be very fast, and are thg imstrument required to build a
complete model. Nubiola and Bonev [20] reportsrigki0O00 measurements in 1-2 hours.
However as of 2009, even using multilaterationetdsackers were reported in [18] not
to be accurate enough for this purpose. The comatdaser tracker used in [20] has a
volumetric accuracy at 10m of 49 um, and an erf@3gumwhen measuring a 2.3 m
scale bar from 2 m away.

The use of large numbers of measurements (200&5@a maximum likelihood
estimator can mitigate the issue of laser trackeumcy. Measurements of the tooltip are
typically recorded in Cartesian coordinates sinig is how the machine tool kinematics
are described. However, it is known that the anguleasurements are much less
accurate than the range measurements for thettasker, and that the accuracy depends
on the distance away from the laser tracker. Tifrmation can be incorporated into the
maximum likelihood estimator to improve the modetw@racy by converting the

kinematic equations to spherical coordinates.
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3.2. BACKGROUND

The relationship between a set of axis commapnddqg: g2...qs] and the tooltip
position and orientation can be described by tngatie machine tool as a kinematic
chain of rigid links. The relationship between #héaks can be described using Linear
Homogeneous Transformation (LHT) matrices, as desdrin Paper I.

The machine tool kinematics are modeled using #re Reference Model [45], a
method commonly applied in robotics [33]. The noahikinematics for am-link

machine tool are then given by
Fn (q1 LT,a) :Tl(ql)Tz(qz)"'Tn—l( qw—J)Tn( q1)TT( IT") (25)

where andr' 1(qu),...,Tn(gn) are LHTs for axes 1,.nrespectively and r(Lt,) is the
transformation from the last joint to the tool tyhereLr,, is the length of the tool.
Because of inaccuracies in machine tool comporaartdation and assembly, the actual
kinematics of the machine tool are not equivalerthbse of the nominal kinematic
model. Errors are introduced as a small deviatiomfthe nominal axis command. For an

n-link machine tool, the actual kinematics are

Fao (P00 L) =Eo (D) (a+d(p.0) Lr ) (26)

wherep is a vector of model parameters &i(®,q) =[¢,(p.a) &(p.a) - g(pa)] isa
vector of axis perturbation functions that perttive nominal joint variables. The base
frame correctiorko is defined as three small constant rotary comestand three small

constant translational corrections,

1 _602 gOy a-Ox
£ 1 -, O
E = % S S -, N, N 27
I (27)
0 0 0 1
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Each perturbation is composed of a combinationagfdbfunctions depending on

each joint position individually and is representésdarm™ order Chebychev polynomial,

G(0)=a+a.C(a)** an G( 9+ & A A+ -+ 3 & o
%(a)= 2+ 2uC(A)** 3n G( Q) 3 A A+ -+ 80 Gl 0 g

én(q)=ano+amQ(q)+---+ Bun Gl @)t @ A A+ -F A G 9

whereCi(q) is thek" order Chebychev polynomial. Then the parametetovgg, is
composed of the six terms frof and theajk terms,

p:|:80x oy € 5q 5(1/ Jq Quo 0 @ 7 Gpo q]nm:| (29)

The position and orientation of the machine toolaie measured at each of
hundreds of axis positioms The position and orientation are captured by meéaguhe
tool tip position with two tool lengths,;r1andLt2. The laser tracker measures three

dimensional position for each tool length in spba&rcoordinates,

s..=[R. 4. 8.] (30)

wherei =1,..,N, Nbeing the total number of measuremeats,1, ...,Ntis the number
of tools, R« is the rangeyi . is the elevation, anf . is the azimuth. The kinematics for a
machine tool expressed in Cartesian coordinatetheskaser tracker measurement is
often converted to Cartesian coordinates for tleatification of parameters. The tool tip

measurement is then

Xi,LTva :I:)g,a M,a Z,HT— (31)
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wherexiq, Vi« , andz ,are the x, y, and z components of the tooltip mesasant,
respectively. Assume for sorpethat the machine motion is described by

F.e (P.0, *+4d;,L;, ), then the measurement can be described as

0
1000
~ 0 .
1, 7|0 1 0 OFu(pa+a ke |+, (32)
0010
1
where@, =[¢ - Q]Tistheerroronthe axis commands and =[%X, ¥, z'a]T

is the error on the measurement. The Cartesiatiggnkasurement is related to the

spherical one by the operatGs(-)

R sin(¢) cog4)
X1, =Cu ($.1,,) =| Rsin(¢)sin(q) (33)
R cos(¢)

Since the measurement is natively in sphericaldioates, the measurement

error3, =[R, ¢, éya]T, is also. Then,
X, %0, =Co (S0, +50,) (34)
whereCi(-) is the spherical to Cartesian conversion. HaevesinceCn(-) is a nonlinear

transformationC, (s’LTa +§,Lm) % C, (sLTa)+ G, ($Lm), so the information about the

measurement error cannot be directly used in Gantewordinates. To best utilize
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information about measurement accuracy (i.e.,ittddpends on the rangg,from the
tracker), the kinematics are also expressed inrggahi€oordinates using the following

conversion operator, S(-),

0.1 R VLRl o
S| p||=|¢|=| tan'(R. n) (35)
P, 0 _tan'l( P2+ p;’ pz)_

wherex = [pxpyp4" is a position in Cartesian coordinates and'¢gris the four quadrant
inverse tangent. Figure 3llustrates the relationship between Cartesianspicrical

coordinate systems. The measurement can then belecdloaks

0
1000 0

s, =S[|0 1 0 O[F,.(pa+d L,) 0 +5, (36)
0010 .

[Px Py, P2

. ®
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X

Figure 3.1: lllustration of the conversion betwepierical and Cartesian
coordinates.
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Methods for identifying the model parametgrsand the measurement errors

§ = [S,L” 8. G ] from the machine tooltip error measurements asertteed in

Section 0. The constraint equations are developsddon the Implicit Loop Method
[38], but can be adapted to other solution methods.

Rather than consider the measurements and thpeatage noise in spherical
coordinates, sometimes multiple laser trackersiaeel and the noisy azimuth and
elevation measurements are discarded in a proaied enultilateration. The next
section compares the technique described in tisoseto multilateration.

33. TRIANGULATION AND MULTILATERATION

Triangulation or multilateration refers to the pess of using three (or multiple)
laser trackers or laser tracker locations to meathe position of a retroreflector more
accurately. This is the common practice when lasekers are used for metrology of
tooling and parts and for machine tool calibratidhis section will demonstrate that
using a maximum likelihood estimator and a singkel tracker approaches the solution
with multiple laser trackers.

Triangulation assumes the position of three lasekers is exactly known. Both
techniques use only the distance measurer®gntyherei = 1, ...,N is the measurement
number ang = 1, ...,M is the tracker number, aftj is the distance between ttik tool
position and thgth laser tracker. The tracker position for fi¢racker isU;j = [uj v; wj]".

Then the™ tool tip positionpi = [x yi 2] is the solution to

RJ:HQ_UJH (37)

fori=1,...,.Nandj=1, ...,M. WhenM = 3, the positions of the laser trackésg, must
be exactly known in order to identify eaghWhenM > 3, the additional measurements
can be used to identify the laser tracker locatitm&terature, this system of equations is
often solved with the Newton Method, or a similagthrod [18]. To formulate this

problem in the same way as the use of one lasgkdrait is assumed that there is
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Gaussian noise on the measurentgrand on the axis commands giving a constraint

equation similar to the ball bar for eachMtrackers andN measurements,
0
0
1

0
O Ko (P & +G bo)-U (38)
0

This problem can also be formulated in the same agay single laser tracker

with minor modifications. The constraint equati@me

0
1000 0

fio(s+3.0)=s,-S/|0 1 0 OF,.(pa +q L,) 0 +5,=0C (39
0 0 0 .

wherei = 1, ...,N, N being the total number of measurement commands2M andp

contains 6{1-1) additional parameters to define the locatioeadh laser tracker. The
model parameterg, and the measurement err§gs [5,1"‘5 N, q] are identified
from the machine tooltip error measurements usiogretrained optimization routine.
The error on the measurements and the model pagesiBep , are assumed to be
independent and Gaussian with the probability dgrfishction e =2 \where

n= [sT p] andX is the covariance matrix for the measurement emod the

parameters. Based on these assumptions (indepe@rgsian), maximizing the
likelihood is the same as minimizing =™ [46]. The maximum likelihood estimate is

then

N
{p.§ =argminy? =argmin) §'5'5 +p3’p (40)
p.s p.s i=1
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while satisfying (49) for all anda. For a single laser tracker,

Zyﬁ:diag([aqx o, O, 0, 0, 0y 0, aq,]) (41)

whereagy, ...,0qb are the standard deviations for the machine aresr, o, andoy are
the static standard deviations associated with eadsurement component from the

laser tracker. The multilateration solution carapproached assuming:

qi -0
04,0, - ® (42)
o; -0

Then, rewriting the objective function,

e B zlq}pz]p )
g, o}

as Nt
{p.%} = arg mln)( =arg mlnz Z(

p.X i=1 a=1

and taking the limit

NmeasNT N2 " N2
lim argmin Z(Rf ﬂi Q—Z+quélqu+pTzélp=
0‘ I

0.0y P&

ql JRHO 1=l a=l R ¢ ¢
. 3 Nmeas NT RZ
limargmin ) >'| & |+p's lp =
Ir~0 p i=1 a=1 JR
Nmeas NT

lim arg mlnaR > +p'Zp (44)
TR0 i=1 g=1

meas NT 2 T _1
lim argmlnzz +op'sp=
TR0 i=1 g=1
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the solution reduces to a simple least squaresmization of the sum of the squared
errors on the measuremd®it. This shows that this methodology approaches thdisal
achieved using multilateration under certain cirstances, but is more flexible since the

estimates include information on measurement noise.

34. RADIAL FRAMEWORK

On some machines, it may be desirable to integratdl or more accurate
measurement tools into the calibration strategggmted in previous sections. One such
instrument that might be integrated alongside &dsed tracker is the telescoping ball bar,
and this will be used as an example of how addidiomstruments can be integrated.

3.4.1. Ball Bar Description. The telescoping ball bar measures the deviation of
the radius of a circle, as illustrated in Figur2. 3.

Machine
spindle

Mounting
point,
0=[o0y0]"

*‘ »

Known length

Figure 3.2: Diagram of ball bar measuring a machine



92

The ball bar returns a single scalar value, a gditieach measurement position.

To predict this radius, the distance between tbéipoposition as modeled and the

mounting location of the ball baw,= [ox 0y 0],

rp(0) =

The measured radius can be represented as theagdidiatween the actual

o O

o+ O

— O O

o O O

Far (0 Lr )

0
1

—0

(45)

machine with noise on the axis positiods, and the mounting location, with noiser;

corrupting the measured radius,

q
1
o O B+
o +— O

This instrument is incorporated as an additionaplequation (constraint

= O O

0 0
OF(pa +aL;,)
0

0

0
1

equation) in the ILM or another solution method as

fi (Xi’p):ri —f

o O B

O - O

= O O

F

AP

o o o

—0

(p o+ Loy

+

0
1

—0

(46)

(47)

where X, is a vector of measurement noise on both themosgions ;) and the tooltip

measurementry ).
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3.4.2. Parameter Identification. Throughout the majority of this work, the
Implicit Loop Method has been used to identify pagters of the geometric errors
models. This method is generally well suited tg tiask, but encounters some problems
when integrating different types of measuremenrgsttoer. The following subsections
discuss methods of solving the constrained optitiwagroblem using the constraint
(loop) equations and cost function presented iniptes sections, beginning with one of
the most common solvers, then discussing the 1L, fanally discussing the quasi-
newton methods used by commercially available sgaekages such as Matlab.

3.4.2.1. Newton method. The Newton method is a common optimization routine
when arx that minimizegy(a) is desired. Starting with some initial vala&, the new

value ofa, a, can be calculated based on the previous valtfe,

a =a""'-t0%g ( ak‘l)_l O g(ak‘l) (48)

wheret is the step size. This method requires the seceridadives of the objective
function, which may be difficult to obtain. Severmaéthods to avoid using second
derivatives have been developed. For the problemawhine tool and robot calibration,
an algorithm called the Implicit Loop Method (ILNB8] has been developed and is
presented below.

3.4.2.2. Implicit loop method. The model parameters, p, and the measurement
errors§ =[S’LT1 "'sLT,NT o } are identified from the machine tooltip error

measurements using the Implicit Loop Method (ILMifdtion], which is a maximum
likelihood estimator. The ILM uses constraint edquad, called loop equations, which
ensure that all deviation between the measuredifpbsition and modeled one be

assigned either to the model parameters, p, angesurement and axis position errors,

S '

0
1 00O 0
fi,a (Sﬁ +S,p) =S La =S/|0 1 0 OjF, (p q,+q; 1Lr,a) 0 +§i,LTva =C (49)
0 010

1
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wherei =1, ...,Nanda =1, ...,A. The implicit loop method then finds the most like

values for§ and model parameters, so that these loop equations are satisfied. The

error on the measurements and the model param@fprsare assumed to be

independent and Gaussian with the probability derisnction e > 72 where

n= [éﬁ p] andX is the covariance matrix for the measurement ermod the

parameters. Based on these assumptions (indepe@argsian), maximizing the
likelihood is the same as minimizing =7 [46]. The maximum likelihood estimate is

then

N
{p.g= ar% grnin)(2 =argminy 33§ +pz’p (50)

p.s i=1

while satisfying (49) for ali anda. For each, the loop equations are
f; (S +§ ’p) = : (51)

In order to simplify the solution to the minimizani, an iterative method that
requires only the first derivatives of the loop afjons,fi ., is developed. First, the
normalized variable§ andy are introduced, each having a covariance matialketp

identity. These are related to the measuremeneraoid parameters by
§=2% v =2,"p (52)

Rewriting the costy? in (50),

Xi= ZFJ‘; + ‘l’T‘l’ (53)
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The algorithm is initialized with a guess of zeoo both& andy. At each step a

correctionAg andAw is calculated to minimize

T

X =2(&i £0) (& +08 )+ (v +Dy) (y+Dy) (54)

subject to the constraints

I8 + 3, Ay =~ f (S +Zj:2§ !zpl/z‘l’) (55)

whereJ,i andJs are matrices of partial derivativesfobbtained using the chain rule. To
simplify the solution, an orthogonal decompositiomemoveAy; can be performed.
First the QR-decomposition of the Jacobian magigalculated

QR = ‘J;i (56)

Then, the decomposition is used to defin@ndD;, which are used to pose the
problem in the form of least squares,

D, = Ri_T‘Jz,//i 57
E =Q'&-Rf ($ +lei/2&_. ,ﬁ+Zp1/2\|1) (57)
ThenAGg; is the least squares solution to
Dl El
Clag = 58
o %=\ (58)



96

andAwy can be found using

§ +Ag =Q, (Ei _D.A‘l’) (59)

This is iterated upon until convergence, widanandAg&; are smaller than a set
tolerance (typically 18has yielded good results).

3.4.2.3. Quasi-newton methods. These methods are similar to the Newton
method described in 5.1.1.1, but use first denestito approximate the gradient, and are
advantageous over the solution algorithm in the lhé&tause they do not use a least
squares update to the parameters as in (58), wh@toblematic when using
measurements with different numbers of constraimse the matrices in (52) would not
be invertible. A general quasi-Newton method forates the minimization aj(a) so
that starting with some initial valua®, the new value dd, a, can be calculated based on

the previous valueg®?,

a“ =a" - tH 0g(a"") (60)

wheret is the step size artdk.1 is the Hessian at stégl. One of several ways to update
the Hessianklk, is to use the Broyden-Fletcher-Goldfarb-ShanneGB) algorithm [47].

The inverse update equation based on BFGS is

Hk‘1=(l —i)Hé(l -y—TSTJJf ST_Sl (61)

wheres=d -a“* andy = Elg( ak) - Dg( é_l). This algorithm can be applied wig)

as the previously defined objective function,
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X (p.§)=2.§55+pZ,p (62)

i=1

with the constraints described in (49).

3.5.SIMULATION AND EXPERIMENTAL RESULTS

Below are selected results for a measurement ewvepherical coordinates and
simulations integrating a ball bar with laser trackneasurements.

3.5.1. Spherical Coordinate Experiments. The Flow machine, described
previously, was measured at 262 locations usingttwblengths and a single laser
tracker location. Of those measurement, 50 werrved for validation purposes and 212
were used to fit an Axis Perturbation model of tiechine geometric errors with the
measurements described either in Cartesian codedimath static variances, or with
Spherical coordinates with variances dependindherdistance from the trackd, Table
3.1 shows the mean and maximum residual volumetrar of each model over the
validation set. The residual error in tRalirection is also calculated. Using spherical
coordinates improves the model by a small margme mean residual error is reduced by
0.28 thousandths of an inch (0.00028") and the manri is reduced by 0.13 thousandths.
The residual in th& direction is significantly smaller when sphericabrdinates are
used, so the more accurate component of the measnteés being used more effectively.
However, the Flow machine is only 240" long, so lleaefit of using spherical
coordinates is not as obvious since the laser ¢raskreasonably accurate in this range
(see accuracy/repeatability data for the API TRaper I). This improvement could be
more significant on longer machines such as thetéadill and the Spar Mill presented
in Section 2. While very long machines still regunultiple laser tracker locations, using
distance-based accuracy information is expectedaice the modeling process less

sensitive to inevitable noisy measurements.
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Table 3.1: Modeling results for spherical and Cage coordinates.
Measurement type | Mean error, thou | Max error, thou | Mean R resid., thou

Cartesian 1.70 4.00 1.23
Spherical 1.42 3.87 -0.02

3.5.2. Ball Bar Integration. The AP model from 5/2015 Flow data and the Flow
machine configuration were used to test the integraf the ball bar. Laser tracker (LT)
data was simulated for 300 quasi-random measurelmeations and two tool lengths.
Ball bar (BB) data was generated for a single ocatvith 300 quasi-randomly selected
machine orientations and locations on a sphereavit@ in radius. Two angles, andas,
are used to describe the position of the end ob#tlebar, and therefore the tool tip. The

tool tip position depends on the angles by

Py rcos(al) Sir(az)
p=|p, |=| rsin(a,)sin(a,) (63)
P, reog(a,)

The tool orientation is specified by randomly setegtwo of the three
components of the tool unit vector, § k>. Since random combinations do not
necessarily make a unit vector, the vector is ceeédk ensure that for some value of the
third component, the magnitude is 1. If not, itlkexdk components are re-selected until
the criterion is met. Once the unit vector compaseandk and the angles: anda;, are
selected, the axis commands are

a1 | cos* (k)
q. cos™(i/ sir{a,))
g, =|a, |=| p,—cos(q,) sifq,) L; (64)

| | p,—sin(q)sin(q) Lt
(%] | p,—cos(q,) L
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The radial measurements can be calculated frortrilbenodel parametergs,

0
1 000 0
ri,sim: 0100 FAP(pa Qi+C]i,sim J‘T,a) 0 -0 +r~i,sim (65)
0010
1 2

whereg, ;,and f; ;. are randomly generated to be normally distributéd zero mean

and variance as listed in Table 1. Similarly, tAierheasurements at a positigrare
generated as

0

1 00O 0
Xigm={0 1 0 O FAP(pa a; +G; gim ’LT,a) 0 + X sin (66)

0O 01O 1

whereg, ;,and %, . are randomly generated to be normally distributéd zero mean
and variance as listed in Table 3.4.
A validation set of 3000 quasi-random points withmeasurement noise was

generated to evaluate all models. Each validat@mntpxy,i, is generated from the true
model parameterp,,

0
1000 0

X,;=[0 1 0 O[F(q p, L) 0 (67)
0010 .

The problem is initialized with all parameter vadus zero and all deviation
between measured and modeled position assigneddsurement noise so that the
constraints are satisfied. The solver is set toraatically scale the problem based on the

initial objective and constraint values since thelalem as posed is poorly scaled. A sixth
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order axis perturbation model is fit to the simatht. T measurement data, and the model
is evaluated over 3000 quasi-random simulated atdéid points with no measurement
noise to calculate the residual volumetric erroEYMDifferent combinations of laser
tracker and ball bar measurements and differemidefor the measurement variances are
tested to determine the impact of integrating aexamrcurate instrument on the residual

volumetric error. The results are shown in Tab® 3.

Table 3.2: Variance settings for simulated measergs(and algorithm).

Variance Setting
0x?, 0,2, 072 (linear axis positioning) 2.5x1077
oc, ov? (rotary axis positioning) 4.0x10®
owr® (laser tracker measurements) 1.0x10®
o2 (ball bar measurements) 1.0x108

Integration of ball bar measurements causes nafisigmt change in the residual
volumetric error with 300 or 100 LT measurementshwither one tool length or two
(meaning either only position, or position and ot&ion data). However, when only 50
LT measurements are used, an additional 30 balneaisurements reduce the mean
residual VE from 13.5 thousandths of an inch tov@itd one tool length, and from 6.7 to
2.8 with two tool lengths. This demonstrates thathall bar measurements can be
successfully integrated into the model fitting gss without negative effect. The ball
bar, or a similar instrument could be of particulae where parts of the machine are not
visible to the laser tracker, or where taking géanumber of laser tracker measurements

is not practical due to space or time constraints.
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Table 3.3: Mean and maximum residual volumetriomsrfor models fit from indicated

measurements.
L aser Ball Bar Variances and notes M ean M ax

tracker (thou) (thou)
300 0 Baseline 0.6 2.5
300 30 Baseline 0.7 2.4
100 0 Baseline 14 5.1
100 30 Baseline 1.3 5.0
100 0 1 tool length (baseline variances) 1.7 6.4
100 30 1 tool length (baseline variances) 1.7 7.1
50 0 1 tool length (baseline variances) 13.5 70.4
50 30 1 tool length (baseline variances) 3.9 17.2
50 0 Baseline 6.7 28.2
50 30 Baseline 2.8 13.1

3.6. CONCLUSIONS

This section introduced a modeling and parametecen methodology that
accounts for the accuracy of individual measurersentponents, which mitigates the
lower accuracy of laser trackers. Measurementsisgd in spherical coordinates so that
the dependence of the accuracy on the distancetfrenmstrument can be included in
the modeling process. Spherical and Cartesian merasmts are compared
experimentally on the Flow machine and sphericadsneements are found to have an
advantage even on a machine only 240" in lengthgérabenefits are expected on longer
machines due to the distance dependence of thetfasker accuracy. This methodology
was then compared to the industry standard methbdralling laser tracker inaccuracy-
multilateration. It is common to measure the samaehime or part location from four
different laser tracker locations and use onlydis¢ance measurement from each to
solve for the three dimensional position. A proafswresented that the methodology
presented here is equivalent under an assumptanhé error variance on the azimuth

and elevation is infinitely large and the erroriaace of the range measuremdyt,



102

approaches zero. Since this is not practically, tifue presented methodology better
accounts for the real measurement errors andesilzore available information, which
will yield a more accurate model.

This method was then extended to instruments itiaddo the laser tracker. The
ball bar was selected as an example and a descrifoti its measurements was
developed. Algorithms for parameter identificatisare examined to allow each
measurement to have a variable number of consegumtions (i.e. for measurements to
come from different instruments). Simulations weren performed demonstrating the
integration of the ball bar with laser tracker mgaments. The ball bar was found not to
significantly impact model accuracy as evaluateer@validation set when a sufficient
number of laser tracker measurements were used (pltbis case), but when too few
laser tracker measurements were used (50), thédratheasurements were able to
drastically improve the model accuracy. This cdagda particular significance for
difficult to measure machines that are either Jeng or have areas of their work volume
with poor visibility to the laser tracker, allowirsgmore accurate or compact instrument

to be used to supplement measurements in that area.
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4. SUMMARY AND CONCLUSIONS

This work presents a novel machine tool calibratithodology using a laser
tracker to collect position and orientation of thel tip, then examines models of the
geometric errors and generates optimal compensfatianvariety of machine tool
controllers. Paper 1 presents the general methgg@ond compares two ways of
modeling the machine tool geometric errors withghepose of creating compensation
that is implemented via look up tables on the maehool controller. This compensation
is then validated experimentally on a lab 5-axi€ini@e tool. The table-based volumetric
error compensation methodology is shown to be @bigenerate a model of the machine
that accounts for the interaction between the difiemachine tool axes that significantly
reduces the machine geometric errors.

Section 2 takes this methodology and implemerds & wide variety of machines
in different settings. Previous work was conduaiaty on a laboratory machine in a
well-controlled environment, but this section presesix different machine tools, five of
which were in a production environment. Two machkiaach were Boeing Commercial
and Boeing Defense, and the fifth machine was a Alp®duction machine. Each
machine had its unique challenges, with some beng long (Boeing Commercial-Spar
Mill), some having odd configurations (Boeing Dedejy and some having errors not
encountered in the lab setting such as temper#ituateiations (Boeing Commercial-
Master Mill) and skewing between multiple gantryeaXNASA Ingersoll). Despite this,
table-based VEC was able to reduce errors on diesfe machines with the exception of
a single machine whose accuracy was already asapbgbical VEC accuracies.

Compensation was implemented on certain machingsaxsiemens 840D,
which allows a larger number of compensation lopkables. However, several of the
machine tool controllers encountered had limitagitmthe number or combinations of
look up tables that could be used. The method deeel in Paper | assumes that all
possible compensation tables can be implementeékdeomachine tool controller, and this
is not the case. In Paper IlI, an artificial inggince algorithm was proposed to solve the
difficult combinatorial optimization problem of selting an optimal subset of
compensation tables from the set of possible tableis method was compared to a

simple heuristic in simulation and validated omldratory machine experimentally. The
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artificial intelligence algorithm was able to pradua better performing solution than the
heuristic in less time than a brute force solution.

Section 3 addresses the accuracy of the instruosent to collect tool tip data for
the construction of the models used in previoui@es. Measurements are modeled in
spherical rather than Cartesian coordinates ardraie dependent variances are used in a
Maximum Likelihood Estimator to identify model paraters. This method is shown to
improve model accuracy even on smaller machinesnay have an even larger impact
on longer machines were laser tracker accuracycp&atly suffers. This method was
also compared to multilateration, which is a stadgmactice of measuring the same tool
tip location from at least four different laserdkar locations and identifying the three
dimensional position from only the more accurateriierometer measurement provided
by each of the laser trackers. This is demonstriaté@ equivalent to the proposed
method under an assumption that the error variandbe encoder measurements
(azimuth and elevation) is infinitely large and #reor variance of the interferometer
measuremenR, approaches zero. Since this is not practicallg,tthe presented
methodology better accounts for the real measureereors and utilizes more available
information, which will yield a more accurate modehe model fitting method was also
adapted to include more accurate instruments, @inthe studied instrument only
improved the model over a validation set in simalatvhen an inadequate number of
laser tracker measurements were used. Howeveudimg an additional instrument
could be of more benefit when parts of a machineksmace have poor visibility to the
laser tracker or are not possible to reach withdker tracker’s active target mounted in
the spindle. For example, the workspace very dogke table is difficult to measure
particularly on small machines, and other machig be very enclosed. In these cases a
minimal number of laser tracker measurements coatbwith another instrument could
allow a model to be made of errors in otherwise easarable areas of the workspace.

Overall, this work presents a fast method of maehdaol calibration that requires
no foreknowledge of errors and builds whole modejemmetric errors with one set of
measurements. This method is able to create optiompensation for a variety of
machine tool controllers and has been proven aariaty of machine tools, bringing

volumetric error compensation to both old and neacihmes, regardless of controller
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capability or difficult to measure configuratiori$ie proposed methodology benefits a
wide variety of machine tools and can bring costregs by causing less machine down

time, producing better quality parts, and feweecggd parts due to machine inaccuracy.
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