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ABSTRACT 

 

 This work integrates petrographic and fieldwork studies and documents the spatial 

and temporal distributions of compositions and textures of the upper Permian-lowermost 

Triassic fluvial-lacustrine sandstones, Wutonggou low-order cycle (WTG LC), Bogda 

Mountains, NW China. In the first part, three petrofacies are identified on the basis of the 

relative abundances of quartz, feldspar, and lithics and conglomerate compositions and 

paleocurrent directions are documented. These data indicate that rocks of the eastern 

North Tianshan Suture (ENTS) and rift shoulders were the provenance lithology. 

Moreover, the upsection changes of petrofacies and conglomerate compositions suggest 

that the lithology of ENTS changed. During approximately Wuchiapingian, the eastern 

part of ENTS included the subduction complex, whereas the western part contained the 

undissected volcanic arc. During approximately Changhsingian to early Induan, the 

eastern part of ENTS was dominated with the transitional volcanic arc and subordinate 

with the subduction complex, whereas the subduction complex was exposed in the 

western part of ENTS. The second part documents the textural characteristics of the 

sandstones of WTG LC. Textures of different petrofacies are different in grain size, 

sorting, roundness, and textural maturity, indicating provenance is a major control factor 

in sandstone textures. Moreover, each petrofacies is subdivided into littoral/beach, 

deltaic, and fluvial sedimentary facies, of which the textural characteristics are similar. 

This work improves our understanding of the nature and the unroofing history of ENTS 

and factors in controlling compositions and textures of fluvial-lacustrine sandstones. 
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1. INTRODUCTION 

 

The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary 

orogen on Earth and formed by many episodes of accretion and collision (Sengör et al., 

1993; Sengör and Natl’in, 1996; Windley, 2007; Xiao et al., 2013). The eastern North 

Tianshan Suture was one of the key element in the southern CAOB and marked the 

closure of the southern segment of the Paleo-Asian Ocean (Xiao et al., 2009, 2013). 

Therefore, ENTS is critical to understand the final assembly of the southern CAOB. Most 

studies work on the rocks exposed in the present ENTS (e.g., Allen et al., 1993; Gao et 

al., 1998; Xiao et al., 2004; Charvet et al., 2011). However, as the ENTS was formed 

during Late Paleozoic, abundant rocks of the ancient ENTS were eroded and deposited in 

the adjacent basins and detailed works on these rocks are necessary to reconstruct the 

ancient ENTS. Sandstones in the greater Turpan-Junggar basin, about 100 km north of 

ENTS, provide clues on reconstructing the eroded ENTS. The reconstruction cannot be 

achieved by previous petrographic studies of sandstones in the greater Turpan-Junggar 

basin due to the out-of-date stratigraphy, large sampling spacing, and limited studied 

sections (Carroll et al., 1995; Shao et al., 2001; Greene et al., 2005; Guan et al., 2010; 

Guan, 2011). Therefore, a detailed provenance study of the sandstones are required.  

In addition, the composition and texture of sandstones record the tectonic, 

climatic, transportation and depositional processes on Earth’s surface (Suttner, 1974; 

Ingersoll, 1984; Johnsson, 1993). Although numerous studies have been conducted to 

investigate the relationships between composition and texture of sandstones and their 

controlling factors, these relationships are still not well understood, especially the 
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relationship between the texture and depositional environments. Many studies suggest 

that textures of sandstones are good criteria to distinguish different lithofacies, whereas 

others demonstrates that the textural characteristics should be restricted to the purpose of 

description (Folk and Ward, 1957; Friedman, 1962, 1967; Enrlich, 1983; Ehrlich and 

Full, 1987; Hartmann, 2007).  

This study focuses on the upper Permian-lowermost Triassic fluvial-lacustrine 

sandstones of Wutonggou low-order cycle in Bogda Mountains, NW China to document 

a comprehensive analysis of compositions and textures of these sandstones. The aim of 

this study is to present the temporal and spatial trends of the composition and texture of 

sandstones of Wutonggou low-order cycle, to interpret the provenance of sandstones in 

Bogda Mountains and the unroofing history of the provenance, and to investigate the 

controlling factors on the composition and texture of fluvial-lacustrine sandstones. The 

compositional and textural characteristics of sandstones of Wutonggou low-order cycle 

indicate that rocks in both ENTS and rift shoulders were the provenance lithology, two 

unroofing trends exist in ENTS, and provenance is a dominant control in sandstone 

textures. This study improves our understanding of the nature and unroofing process of 

ENTS during late Permian-earliest Triassic and provides clues on the controlling 

processes on compositional and textural characteristics of fluvial-lacustrine sandstones.  
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PAPER 

 

I. PROVENANCE OF UPPER PERMIAN-LOWERMOST TRIASSIC 

SANDSTONES, WUTONGGOU LOW-ORDER CYCLE, BOGDA MOUNTAINS, 

NW CHINA: IMPLICATIONS ON THE UNROOFING HISTORY OF THE 

EASTERN NORTH TIANSHAN SUTURE 

Dongyu Zheng and Wan Yang 

 

ABSTRACT 

 

The upper Permian-lowermost Triassic sandstones in Wutonggou low-order cycle 

(WTG) exposed in Bogda Mountains, NW China, provide clues to reconstruct the eroded 

lithologies of the eastern North Tianshan Suture (ENTS). Petrographic point counting 

data, compositions of conglomerates and paleocurrent directions from Zhaobishan (ZBS), 

North Tarlong (NTRL), Taodonggou (TDG) sections in the southern, and Dalongkou 

(DLK) section in the northern foothills of Bogda Mountains are used to interpret the 

provenance and to reconstruct the unroofing history of ENTS. Three petrofacies are 

defined by the relative abundance of quartz, feldspar, and lithic framework grains. 

Petrofacies 1 (PF1) has mean compositions of Q51F30L19 and Qm21F30Lt49 and occurs in 

the lower ZBS, upper NTRL and middle TDG sections. Petrofacies 2 (PF2) has mean 

compositions of Q28F36L36 and Qm14F36Lt50 and occurs in the upper ZBS section. 

Petrofacies 3 (PF3) has mean compositions of Q8F13L79 and Qm2F13Lt85 and occurs in the 

lower NTRL, lower and upper TDG, and DLK sections. The upsection change from PF1 

to PF2, the occurrence of quartzite and granite gravels in the upper part and northward 
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paleocurrent directions in ZBS section indicate that the sources changed from an 

undissected volcanic arc, accretionary wedge and trench to predominant transitional 

volcanic arc and subordinate accretionary wedge and trench in ENTS. The upsection 

changes from PF3 to PF1 in NTRL and TDG sections and the occurrence of granitic 

gravels in the upper part indicate that the sources shifted from an undissected volcanic arc 

in ENTS and local rift shoulders to transitional volcanic arc, accretionary wedge and 

trench. The occurrence of PF3 and variable paleocurrent directions in DLK section 

suggest that the sediments were derived from the undissected volcanic arc in ENTS and 

rift shoulders.  

An approximately coeval provenance shift of the WTG sandstones suggest 

persistent unroofing and probably uplift of ENTS during late Permian-earliest Triassic. 

During Wuchiapingian, the eastern part of ENTS consisted of the undissected volcanic 

arc, accretionary wedge and trench, and the western part an undissected volcanic arc. 

During Changhsingian to early Induan, a transitional volcanic arc in the eastern part of 

ENTS, and transitional volcanic arc, accretionary wedge and trench in the western part 

were exposed. The different unroofing trends for the eastern and western parts of ENTS 

indicate that the ENTS was an amalgamated complex with spatial and temporal variations 

in lithology during late Permian-earliest Triassic.  

 

1. INTRODUCTION 

 

The Central Asian Orogenic Belt (CAOB) is one of the accretionary orogens that 

were the main sites of continental growth since Phanerozoic and resulted from the 
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accretion and collision of magmatic arcs, accretionary complexes, trapped oceanic plates, 

and trailing continental plates (Sengör et al., 1993; Sengör and Natl’in, 1996; Windley, 

2007; Xiao et al., 2013). The eastern North Tianshan Suture (ENTS), located in the 

southern part of CAOB (Figure 1), marks the closure of the North Tianshan Ocean, which 

was the major southern segment of the Paleo-Asian Ocean (e.g., Xiao et al., 2009, 2013). 

Detailed studies of the ENTS can provide critical information on the final assembly of the 

southern parts of CAOB (e.g., Charvet et al., 2007; Han et al., 2010). Most studies of 

ENTS focus on its tectonic evolution based on regional tectonics, structures, and 

geochemical and geochronological data of the rocks exposed in ENTS (e.g., Allen et al., 

1993; Gao et al., 1998; Xiao et al., 2004, 2013; Wang et al., 2007; Han et al., 2010; 

Charvet et al., 2011). However, the eroded rocks in ENTS during late Permian-earliest 

Triassic are not well understood.  

Provenance studies of sandstones in basins adjacent to orogens are useful to 

reconstruct the eroded parts of the orogens (e.g., Dickinson and Suczek, 1979; Ingersoll 

and Suczek, 1979; Dickinson, 1985; Dorsey, 1988; Garzanti et al., 1996, 2007; Trop and 

Ridgway, 1997; Ingersoll, 2012). However, detailed reconstruction of rocks in ENTS 

during late Permian-earliest Triassic cannot be achieved by previous petrographic studies. 

Limitations of previous studies include the out-of-date chronostratigraphy (Carroll et al., 

1995), large sampling spacing (Shao et al., 2001; Greene et al., 2005), or limited study 

areas (Guan et al., 2010; Guan, 2011). This study focuses on the sandstones of the upper 

Permian-lowermost Triassic Wutonggou (WTG) low-order cycle exposed in the northern 

and southern foothills of Bogda Mountains, the greater Turpan-Junggar intracontinental 

rift basin (Yang et al., 2010), to document high-resolution temporal and spatial variations 
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of sandstone compositions, in order to interpret the provenance of these sandstones and 

reconstruct the unroofing history of ENTS. The results provide insights on the nature and 

tectonic evolution of ENTS as an amalgamated complex of the volcanic arc, accretionary 

wedge, and trench during late Permian-earliest Triassic.  

 

 

 

Figure 1. Tectonic map of the Central Asian Orogenic Belt. This orogenic belt is 

bordered by the East European Craton to the west, Siberia Craton to the east, and North 

China, Tarim, and Karakum Craton to the south. Modified from Sengör et al. (1993) and 

Jahn et al. (2000). The yellow box is the location of Figure 2. 

 
 

2. GEOLOGICAL BACKGROUND 

 

This study focuses on the upper Permian-lowermost Triassic fluvial-lacustrine 

sandstones of WTG low-order cycle in Zhaobishan (ZBS), North Tarlong (NTRL), and 

Taodonggou (TDG) sections in the southern and Dalongkou (DLK) section in the 

northern foothills of Bogda Mountains, NW China (Figures. 2, 3). The Bogda Mountains 

is an E-W striking giant anticline with Devonian to Quaternary sedimentary and igneous 
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rocks, located between the Junggar Basin to the north and Turpan-Hami Basin to the 

south (Figure 2). It was a part of the greater Turpan-Junggar basin during late 

Carboniferous-Jurassic (Shao et al., 1999, 2001; Greene et al., 2001, 2005; Yang et al., 

2007, 2010). The type of the greater Turpan-Junggar basin is speculated to be a back-arc 

basin (Hsü, 1988), a transitional basin from rift to foreland basin (Carroll et al., 1990; 

Hendrix et al., 1992; Shao et al., 1999, 2001; Greene et al., 2001, 2005), or a rift basin 

(Allen et al., 1991; Allen et al., 1993; Shu et al., 2005, 2011; Yang et al., 2010, 2013). 

The seismic profiles (Yang et al., 2010), mixed tholeiitic volcanism and marine 

sedimentation in the uppermost basement (Yang et al., 2013), the bimodal volcanic rocks 

(Shu et al., 2005, 2011), continental rift-type geochemical signatures (Allen et al., 1991; 

Shu et al., 2005, 2011), and regional scale strike-slip shear zones (Laurent-Charvet et al., 

2002, 2003; Shu et al., 2005, 2010) support that the greater Turpan-Junggar basin was an 

intracontinental rift basin with a Carboniferous volcanic arc or back-arc basement (Shu et 

al., 2005; Yang et al., 2010; Yang et al., 2013). Regional dextral strike-slip triggered the 

rifting starting in the latest Carboniferous (Laurent-Charvet et al., 2002, 2007; Yang et 

al., 2010, 2013; Shu et al., 2011). The rifting formed a series of grabens and half-grabens 

in the greater Turpan-Junggar basin, resemble the Basin and Range Province in the 

western United States (Yang et al., 2010).  

The Chinese Tianshan separates the Junggar Basin to the north from the Tarim 

Basin to the south and has been created since the Cenozoic collision between the Indian 

and Asian Plates (e.g., Windley et al., 1990; Hendrix et al., 1994; Yin et al., 1998). 

Before the Cenozoic collision, a series of suture zones were formed in Chinese Tianshan 

during Paleozoic, one of which is the North Tianshan Suture. The North Tianshan Suture 
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is further divided into the western and eastern segments in terms of their relative 

locations to the city of Urumqi (Figure 2). This study focuses on the eastern segment of 

North Tianshan Suture, which is situated about 100 km south of Bogda Mountains and 

north of Central Tianshan Suture. The formation of ENTS is not fully understood, but the 

southward subduction of North Tianshan Ocean beneath the Central Tianshan Suture, and 

the collision between the Central Tianshan Suture and the trailing Junggar Plate are 

widely accepted (Windley et al., 1990; Gao et al., 1998; Xiao et al., 2004, 2013; Charvet 

et al., 2011).  

The timing of the collision is in the debate, varying from Middle Ordovician (Gao 

et al., 1998), Devonian-early Carboniferous (Xiao et al., 2004, 2013) to Late Devonian-

Carboniferous (Charvet et al., 2011). Similarly, the closure time varies from the end of 

Early Carboniferous (Gao et al., 1998), late Carboniferous (Windley et al., 1990; Xiao et 

al., 2004, 2013; Han et al., 2010), to late Carboniferous-early Permian (Allen et al., 1993; 

Carroll et al., 1995). The current ENTS consists of Ordovician to Devonian-

Carboniferous volcanic-arc rocks and associated submarine volcanic-sedimentary rocks 

(Allen et al., 1993; Xiao et al., 2004). The fragmental ophiolites, radiolarian chert, 

turbidites, and high-pressure schists mark the subduction of the oceanic crust between the 

Junggar Plate and Central Tianshan Suture (Carroll et al., 1990; Gao et al., 1998; Shu et 

al., 1999; Xiao et al., 2004; Charvet et al., 2007).  

The WTG low-order cycle is an informal cyclostratigraphic unit defined by Yang 

et al. (2007, see also Yang et al., 2010) and approximately correlates to the Wutonggou 

and Guodikeng formations (Figure 3; XBGMR, 1993; Yang et al., 2007, 2010). A low-

order cycle formed during a period of long-term stable tectonic and/or climatic conditions 
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and contains high and intermediate-order cycles. The high-order cycle (HC) is the 

smallest unit that records the environmental changes caused by the transgression and 

regression of lakes or erosion and deposition of rivers. The intermediate-order cycle (IC) 

includes several HCs, representing longer trends of transgression and regression or 

erosion and deposition than the HCs. The WTG LC records an overall persistently 

uplifting history of the source areas and humid to subhumid climate conditions (Yang et 

al., 2007, 2010; Thomas et al., 2011).  

 

 

 

Figure 2. Tectonic map of eastern Xinjiang. This map shows the locations of the eastern 

North Tianshan Suture, Central Tianshan Suture, Bogda Mountains, and measured 

sections. Modified from Xia et al. (2004). 
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Figure 3. Geological maps of Zhaobishan (A), Tarlong-Taodonggou (B), and Dalongkou 

(C) areas. This map shows names and locations (red lines) of measured sections. 

Modified from Yang et al. (2010), Obrist-Farner and Yang (2015), and Fredericks (2017). 

 

 

Stratigraphic correlation has largely based on lithostratigraphy, biostratigraphy, 

and cyclostratigraphy (Zhang, 1981; Liao et al., 1987; Wartes et al., 2002; Yang et al., 

2007, 2010). The chronostratigraphy in the greater Turpan-Junggar basin is not well 

constrained. Yang et al. (2010) placed the Permo-Triassic boundary in a 90 m-thick 

interval in NTRL section. Based on stratigraphic correlation and petrographic studies, the 

strata in Tarlong and Taodonggou area were interpreted as being deposited within one 

half-graben, termed the Tarlong-Taodonggou half graben (Yang et al., 2010; see also 

Guan, 2011; Peng, 2016; Obrist-Farner and Yang, 2017; Fredericks, 2017). The basin 
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geometry of the ZBS and DLK areas is not clear due to a limited number of measured 

sections and is speculated to be similar to that of Tarlong-Taodonggou half-graben.  

 

 

 

Figure 4. Chrono-, litho-, and cyclostratigraphy of upper Carboniferous-Middle Triassic 

strata in Bogda Mountains. Wavy lines are major unconformities; dashed lines 

disconformity; and hachured areas missing strata. The studied Wutonggou low-order 

cycle is shown in the shaded box. Modified from Yang et al. (2010) and Obrist and Yang 

(2015). 

 
 

3. DATA AND METHODOLOGY 

 

 Sixty sandstones from four sections were studied to observe the compositional 

and textural characteristics (Figure 5; see Yang et al., 2007, 2010 for detailed measured 

sections). Three hundred framework grains in each thin section were counted using both 

Suttner’s (Suttner, 1974) and Gazzi-Dickinson’s methods (Gazzi, 1966; Dickinson, 
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1970). The Gazzi-Dickinson method counts sand-size (0.063 mm) mineral crystals within 

large rock fragments as individual grains, whereas the Suttner’s method does not count 

the mineral crystals, only as the rock fragments (Ingersoll et al., 1984). As most of the 

counted lithic grains in the studied sandstones contain minerals smaller than sand, the 

results of these two methods are similar. Definitions of raw and recalculated parameters 

of point counting categories are tabulated in Table 1. The interpretations of volcanic lithic 

fragments follow the descriptions of Dickinson (1970) and Marsaglia and Ingersoll 

(1992). The interpretation of polycrystalline quartz grains follows those of Basu et al. 

(1975), Young (1976), and Blatt and Tracy (2006). Point counting data in recalculated 

parameters are presented in Table 2 in terms of Gazzi-Dickinson method so that 

petrofacies can be defined by composition and compared with the tectonic fields in 

templates from previous studies (Dickinson and Suczek, 1979; Dickinson et al., 1983; 

Dickinson, 1985; Marsaglia and Ingersoll et al., 1992; Critelli et al., 1995).  

1914 gravels in 17 conglomeratic beds were counted and described in the field to 

obtain the spatial and temporal trends in clast composition. Fresh surfaces were used to 

identify lithologies. A rectangular grid on the outcrop surface was laid out as a guide for 

counting. About 100 clasts were counted in each location. In addition, 168 attitudes of 

nine tabular cross beds of fluvial sandstones were measured in the field. They were later 

corrected using the method of Davis et al. (1996, pp. 710-714). The correction, rose 

diagrams, and mean vectors were performed using the software StereoNet of 

Allmendinger (2005).  
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Figure 5. Highly-simplified lithological columns, sample names and locations, 

paleocurrent data, compositions of gravels, and petrofacies. See Figure 3 for locations of 

measured sections. See Yang et al., (2010) for detailed measured sections. DLK, 

Dalongkou section; TDG, Taodonggou section; NTRL, North-Tarlong section; ZBS, 

Zhaobishan section. 

 

 

4. RESULTS 

 

Sandstone compositions are used to classify petrofacies, of which the lithology 

and tectonic settings of the source areas can be interpreted. The results of clast 

compositions of conglomerates and paleocurrent directions supplement the classification 

of petrofacies and provenance interpretation. The stratigraphic distributions of 

petrofacies, clast compositions, and paleocurrent directions in individual sections show 

the temporal changes of sandstone compositions. Finally, the spatial variations of 
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sandstone compositions are interpreted on the basis of correlations among sections in the 

study areas.  

 

4.1. FRAMEWORK GRAINS  

The major framework grains in sandstones of WTG low-order cycle (WTG LC) 

include quartz, feldspar, and lithic fragment. They are further differentiated on the basis 

of optical mineralogic characteristics, such as extinction, twinning, and relict textures 

(Tables 1, 2). Accessory minerals, including micas and heavy and opaque minerals, are of 

a trace amount.  

4.1.1. Quartz. Quartz occurs as monocrystalline crystals (Qm) and 

polycrystalline (Qp) and microcrystalline aggregates (Cht). Qm grains are clear, 

inclusion-free, and subangular-angular, and are subdivided into nonundulatory (Qnu; 

Figure 6A) and undulatory types (Qu). Qnu grains exhibit straight extinctions, whereas 

Qu grains are strained with undulose extinction at an angle between 5-10 degrees. Qp 

grains are subdivided into polycrystalline ones with metamorphic deformed texture (Qpt; 

Figure 6B) and polycrystalline ones without such texture (Qpw). Qpt grains contain more 

than five sutured, elongate quartz crystals. In contrast, Qpw grains contain two to five 

monocrystalline quartz grains without sutured contacts. Cht grains are aggregates of 

microcrystalline quartz and interpreted as fragments of chert (Figure 6C).  

4.1.2. Feldspars. This group includes plagioclase (P; Figure 6A) and potassium 

feldspar (K; Figure 6A). Plagioclase grains usually exhibit polysynthetic twinning. The 

plagioclase grains in NTRL and TDG areas are common with albite twinning. They 

occur as discrete angular-subangular grains and lath or mosaic phenocrysts in volcanic 
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Table 1. Raw and recalculated grain types and categories for point-counting and 

petrofacies classification 

Symbol Definition 

 

Raw   

Qnu Nonundulose monocrystalline quartz 

Qu Undulose monocrystalline quartz 

Qpt Polycrystalline quartz with metamorphic textures 

Qpw Polycrystalline quartz without metamorphic textures 

Cht Chert and chalcedony 

K Potassium feldspar 

P Plagioclase 

Lvf Volcanic lithic with felsic texture 

Lvmi Volcanic lithic with microlitic texture 

Lvl Volcanic lithic with lathwork texture 

Lvv Volcanic lithic with vitric texture 

Lvun Unidentified volcanic lithic 

Lmd Mudrock fragment 

Lslt Siltstone fragment 

Lsd Sandstone fragment 

Lm Metamorphic lithic 

Carb Carbonate  

AM Accessory transparent minerals 

OM Opaque minerals 

Bio Bioclastic grains 

Uni Unidentified grain 

 

 
 

Recalculated  
Qm Qnu+Qu 

Qp Qpt+Qpw+Cht 

Q Qm+Qp 

F K+P 

Lv Lvf+Lvmi+Lvl+Lvv+Lvun 

Ls Lmd+Lslt+Lsd 

Lmt Lm+Qpt 

Lst Ls+Cht 

L Lv+Ls+Lm 

Lt Lv+Lmt+Lst 

 

 

lithic fragments. Potassium feldspar includes microcline and orthoclase. The microclines 

exhibit tartan twinning and only occur in ZBS and TDG sections. The orthoclase is 
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usually Carlsbad twinned or untwinned. Clear, inclusion-free orthoclase are common in 

the studied thin sections.  

4.1.3. Lithic Fragments. Lithic fragments include volcanic (Lv), sedimentary 

(Ls), and metamorphic (Lm). Lv and Ls grains dominate and account for over 99% of the 

total lithics. Lm grains are rare.  

 The Lv grains are subdivided into four types based on their textures, including 

felsic (Lvf; Figure 6D), microlitic (Lvmi; Figure 6E, F), lathwork (Lvl; Figure 6E), and 

vitric (Lvv; Figure 6F). Lvf, Lvmi, Lvl, and Lvv grains are interpreted to be derived from 

felsic (Lvf), intermediate (Lvmi), and mafic (Lvl) igneous rocks and volcanic glass 

(Lvv), respectively (Dickinson, 1970). The Ls grains are subdivided into three types 

based on their textures, including mudrock (Lmd; Figure 6E), siltstone (Lslt), and 

sandstone fragments (Lsd). The Lmd grains account for more than 95% of the total 

sedimentary lithics. Finally, a trace amount of Lm grains, mainly schist fragments, are 

identified on the basis of their foliations.  

4.1.4. Accessory Minerals. Accessory mineral grains are the minor framework 

grains in WTG sandstones and account for 2% of the total detrital grains. Muscovite, 

biotite, zircon, tourmaline, amphibole, and opaque minerals are observed.  

 

4.2. MATRIX, CEMENT, AND SANDSTONE CLASSIFICATION 

 WTG sandstones contain 1% matrix, grains smaller than 0.031 mm, on average. 

Based on the sandstone classification of Dott (1964), sandstones in this study include 

forty-six litharenites, eleven feldspathic arenites, and three lithic wackes (Table 2). The 
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Figure 6. Photomicrographs of sandstones in the Wutonggou low-order cycle (WTG). A) 

A nonundulatory monocrystalline quartz grain (Qnu) with embayment, a potassium 

feldspar with Carlsbad twinning, and a plagioclase with albite twinning. Sample TD110, 

lower WTG in Taodonggou (TDG) section. B) A polycrystalline quartz grain with 

sutured quartz crystals, indicating its metamorphic origin. The blue arrow points to an 

elongate muscovite grain. S15-36, lower WTG in Zhaobishan section. C) A slightly clay 

coated chert grain. NTR39-17, upper WTG in NTRL section. D) A volcanic lithic 

fragment with felsic texture. The phenocrysts are mainly feldspar grains. TD110, lower 

WTG in TDG section. E) A volcanic lithic fragment with microlitic texture, an angular 

mudrock fragment, and a volcanic lithic with lathwork texture showing large feldspar 

laths. These grains suggest sedimentary and volcanic origins. TD108, lower WTG in 

TDG section. F) A volcanic lithic fragment with microlitic texture and a volcanic lithic 

with vitric texture, suggesting a volcanic origin. TD168, upper WTG in TDG section. All 

micrographs are taken under XPL. Scale bar is 1 mm long in all photos. See Table 1 for 

the abbreviations of grain categories. 
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cements in the sandstones are predominately calcite, clays, and iron oxides and sulfides. 

Zeolite and silica are rare. As matrix is not further studied and cements are largely 

controlled by diagenesis rather than provenance lithology (Dickinson and Suczek, 1979), 

they are not included in the classification of petrofacies.   

 

4.3. COMPOSITION OF GRAVELS AND PALEOCURRENT MEASUREMENTS 

 Conglomerates in the WTG low-order cycle are typically polymictic, either clast- 

or matrix-supported. Compositions of gravels are described below (Figure 5; Table 3). 

The compositions of individual conglomeratic beds are summarized in Section 5 to 

facilitate the interpretations of source lithology.  

The gravels are igneous, sedimentary, or metamorphic. Igneous gravels are 

volcanic and plutonic clasts, including white or gray rhyolite, dark green or dark purple 

andesite, and dark green, dark purple or black basalt, and reddish granite. Sedimentary 

gravels are mudrock and chert, including green, purple, brown soft clasts of mudrock and 

massive or laminated gray chert. Metamorphic gravels include white quartzite, of which 

the boundaries of single quartz crystals are interlocking with each other. 

The paleocurrent directions were only measured from cross-beddings within point 

bar sandstones to remove the possible errors induced by the bed-form hierarchies (Allen, 

1968; Miall, 1974). The mean vectors of paleocurrent directions provide qualitative 

estimates of the locations of the surrounding highs. These results are further discussed in 

Section 5 to aid the interpretations of source locations (Figure 5).     
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4.4. PETROFACIES AND IMPLICATIONS ON LITHOLOGY AND TECTONIC 

SETTINGS OF SOURCE AREAS 

 Three petrofacies are classified for sandstones of the WTG low-order cycle on the 

basis of relative abundance of quartz, feldspar, and lithic fragment. The distributions of 

the petrofacies are shown in the QFL and QmFLt ternary diagrams (Figure 7; Table 2). 

All quartz grains are grouped together in QFL diagram to emphasize the variations of 

grain stability among quartz, feldspar, and lithic fragments. In contrast, polycrystalline 

and microcrystalline quartz grains are counted as lithic fragments in QmFLt diagram to 

emphasize the grain size of the source rocks because fine-sized source rocks produce 

more lithic fragments than monocrystalline grains (Dickinson and Suczek, 1979). 

Moreover, ternary diagrams of QmPK, QpLvLs, LmtLvLst, and LvfLvmiLvl use 

subgroups of QFL to show the characteristics of monocrystalline, polycrystalline, lithic, 

and volcanic lithic grains, respectively (Figure 7; Dickinson and Suczek, 1979; Dickinson 

et al., 1983). These diagrams are used to further classify the petrofacies for detailed 

interpretation of source lithology. Finally, ternary diagrams of QFL, QmFLt, and QpLvLs 

are used to interpret the tectonic settings of source areas using the templates of Dickinson 

and Suczek (1979) and Dickinson et al. (1983). 

4.4.1. Petrofacies 1. Petrofacies 1 (PF1) has mean compositions of Q51F30L19 and 

Qm21F30Lt49 and occurs in eleven lithic arenites, nine feldspathic arenites, and one lithic 

wacke (Figure 7; Table 2). Quartz grains dominate and consist of monocrystalline, 

polycrystalline, and chert grains, which account for 21%, 13%, and 17% of the total 

grains, respectively. Feldspars account for 30% of the total grains and are slightly more 

enriched with plagioclase than potassium feldspars with an average plagioclase/feldspar 

(P/F) ratio of 0.55 and a mean composition of Qm43P33K24 (Figure 7). Polycrystalline and 
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lithic grains are mainly polycrystalline quartz and chert with mean compositions of 

Qp61Lv25Ls14 and Lmt19Lv29Lst52 (Figure 7). Other lithic fragments include volcanic and 

mudrock, which account for 12% and 7% of the total grains, respectively. The volcanic 

lithic fragments are the minor component and are mainly felsic volcanic lithics with a 

mean composition of Lvf66Lvmi25Lvl9 (Figure 7).  

The mean composition of PF1 suggests that its source rocks are probably a suite 

of felsic igneous rocks, quartzite, chert, and mudrocks. The common monocrystalline 

quartz and feldspar grains and the occurrence of felsic volcanic lithic sandy and gravelly 

clasts (see also Section 5) indicate a felsic plutonic and volcanic origin of this petrofacies. 

The undulatory quartz grains and polycrystalline quartz with deformed texture indicate a 

metamorphic origin. Finally, chert and mudrock fragments were originated from 

sedimentary rocks. from QFL and QmFLt distributions are different because the 

polycrystalline quartz and chert grains are incorporated as quartz in QFL diagram but as 

lithic fragments in QmFLt diagram. The chert-rich sandstones from Klamath Mountains 

within Cordilleran with known magmatic arc and associated accretionary wedge and 

trench sources fall in the recycled orogen in QFL and lithic recycled field in QmFLt 

(Dickinson and Suczek, 1979; Dickinson et al., 1983). Similarly, PF1 of WTG sandstones 

is also enriched in polycrystalline quartz and chert and falls in the recycled orogen in 

QFL and transitional arc in QmFLt plots. Hence, PF1 was likely derived from sources of 

a transitional arc and associated accretionary wedge and trench, which, as a whole, is 

termed as subduction complex by Dickinson and Suczek (1979). The QpLvLs plot  

    



 

 
2
1
 

Table 2. Percentages of different types of framework grains derived from raw point-counting data 

Sample 

Number 
Q F L   Qm F Lt   Qm P K   Qp Lv Ls   Lm Lv Ls   Lvf Lvmi Lvl 

 

Matrix Classificaiton Petrofacies 

ZBS Section 

S15-31 55 32 13  29 32 39  47 43 9  27 32 41  22 34 44  90 10 0 
 

2 FA PF1 

S15-33 48 13 39  20 13 67  61 28 11  16 45 39  15 45 40  69 24 6 
 

0 LA PF1 

S15-35 49 32 19  15 32 53  34 39 27  55 21 23  42 28 30  77 19 3 
 

0 FA PF1 

S15-36 56 24 19  19 24 56  44 43 13  27 23 50  21 25 54  65 26 9 
 

3 LA PF1 

S15-37 63 17 20  22 17 60  56 18 26  16 25 58  12 27 62  71 29 0 
 

3 LA PF1 

S15-38 58 31 10  32 31 37  50 17 33  14 23 63  9 24 66  78 22 0 
 

3 LA PF1 

S15-40 53 37 10  34 37 29  48 18 34  25 25 49  21 27 52  65 29 6 
 

2 FA PF1 

S15-41 44 45 11  17 45 38  29 43 28  36 23 41  28 25 46  96 0 4 
 

0 FA PF1 

S15-45 64 21 15  30 21 49  59 17 24  33 18 50  27 19 54  59 41 0 
 

0 LA PF1 

S15-47 53 46 1  32 46 21  44 24 31  16 4 80  6 4 90  100 0 0 
 

0 FA PF1 

S15-48 51 7 42  25 7 68  77 10 13  14 24 62  13 25 63  47 37 16 
 

0 LA PF1 

S15-49 49 41 10  21 41 38  36 47 17  45 18 37  29 23 48  75 25 0 
 

1 FA PF1 

S15-51 42 37 21  16 37 47  30 45 24  16 38 46  6 43 51  43 18 39 
 

0 LA PF1 

S15-52 38 23 39  21 23 57  48 42 10  15 51 34  11 54 36  56 36 9 
 

0 LA PF1 

S15-53 20 43 37  7 43 50  15 53 32  14 71 15  6 77 17  69 18 13 
 

0 LA PF2 

S18-1 32 39 29  18 39 42  32 45 23  17 67 16  17 67 16  83 8 8 
 

0 FA PF2 

S18-2 26 39 35  13 39 48  25 60 15  14 67 19  13 67 20  84 12 4 
 

0 LA PF2 

15-55 32 30 38  15 30 55  37 46 18  20 54 26  7 62 30  71 22 8 
 

0 LA PF2 

S18-3 29 17 54  18 17 65  51 40 9  8 76 16  5 78 17  81 16 4 
 

0 FA PF2 

S15-59 31 43 26  11 43 46  24 47 30  14 57 29  4 64 33  75 11 14 
 

1 LA PF2 

S18-5 33 33 33  18 33 48  35 47 17  15 63 23  14 64 23  80 15 5 
 

0 LA PF2 

S18-6 24 39 36  13 39 47  25 41 34  11 70 19  9 71 19  80 15 6 
 

1 LA PF2 

S18-7 23 37 40  9 37 54  19 44 37  12 61 27  8 64 29  81 14 4 
 

1 LA PF2 
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Table 2. Percentages of different types of framework grains derived from raw point-counting data (cont.) 

 

NTRL Section 

gw9-10* 7 32 62  4 32 64  14 79 6  0 87 13  0 87 13  30 55 15 
 

0 LA PF3 

gw9-9* 12 14 74  2 14 84  16 80 5  4 46 51  0 47 53  52 28 20 
 

0 LA PF3 

gw9-12* 10 3 87  0 3 97  25 75 0  1 67 31  0 68 32  47 48 4 
 

0 LA PF3 

gw9-7* 18 1 80  1 1 98  33 67 0  1 25 74  0 25 75  67 33 0 
 

4 LA PF3 

NTR15-17 6 3 91  3 3 94  44 44 13  0 57 43  0 57 43  68 17 15 
 

0 LA PF3 

gw9-14* 13 16 70  1 17 83  4 92 4  4 45 51  0 47 53  50 25 25 
 

2 LA PF3 

TR140 6 3 91  0 3 97  13 63 25  0 35 65  0 35 65  46 41 13 
 

3 LA PF3 

GW9-15* 5 11 84  0 11 89  0 94 6  1 69 29  0 70 30  55 35 10 
 

2 LA PF3 

GW9-16* 10 6 84  1 6 93  15 85 0  0 30 70  0 30 70  50 33 18 
 

2 LA PF3 

GW9-17* 3 6 91  1 6 93  9 86 5  1 54 44  0 55 45  43 17 40 
 

1 LA PF3 

GW9-18* 9 28 63  0 28 71  1 96 3  4 74 22  1 77 23  59 22 19 
 

1 LA PF3 

GW9-19* 55 23 22  16 29 56  37 38 25  33 22 45  19 27 54  64 30 6 
 

2 FA PF1 

NTR36-17 49 27 24  18 33 49  40 27 34  31 18 51  21 20 59  75 14 11 
 

2 LA PF1 

NTR37-17 56 29 15  25 38 37  44 38 18  46 6 47  18 10 73  33 22 44 
 

6 LW PF1 

NTR39-17 39 33 28  16 38 45  33 53 14  25 34 41  12 40 48  49 33 18 
 

4 LA PF1 

TDG Section 

TD2-17 1 2 96  0 2 98  0 100 0  0 70 30  0 70 30  6 87 7 
 

0 LA PF3 

TD3-17 2 4 94  1 4 95  17 58 25  0 84 16  0 84 16  15 63 23 
 

0 LA PF3 

TD101 7 17 76  3 17 79  17 53 30  3 70 26  1 72 27  51 25 24 
 

1 LA PF3 

TD5-17 0 10 90  0 10 90  5 86 10  0 72 28  0 72 28  25 46 29 
 

0 LA PF3 

TD108 2 8 89  0 8 91  4 63 33  0 56 44  0 56 44  49 38 13 
 

1 LA PF3 

TD110 0 12 87  0 12 88  0 38 63  0 60 40  0 60 40  51 36 12 
 

0 LA PF3 

TD128 49 37 14  22 45 33  35 40 25  40 15 46  32 17 51  72 28 0 
 

2 FA PF1 

TD131 36 42 22  17 46 37  28 23 50  21 42 37  10 47 42  85 15 0 
 

1 FA PF1 

TD137 56 34 9  24 42 34  40 36 24  43 5 53  30 6 64  100 0 0 
 

0 LA PF1 

TD151 3 5 92  0 5 94  8 75 17  0 75 25  0 75 25  38 52 10 
 

0 LA PF3 
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Table 2. Percentages of different types of framework grains derived from raw point-counting data (cont.) 

 
 

TD157 12 19 69  3 19 77  14 38 48  2 84 14  0 85 15  47 44 9 
 

5 LW PF3 

TD162 7 17 75  4 17 78  20 45 34  0 87 13  0 87 13  58 31 11 
 

0 LA PF3 

TD168 8 21 72  2 21 77  9 57 34  3 88 9  0 91 9  50 27 23 
 

8 LW PF3 

TD174 7 9 84  2 9 89  17 63 20  0 57 43  1 56 43  34 47 19 
 

0 LA PF3 

TD185 8 20 71  6 20 73  23 49 28  2 54 44  0 55 45  63 25 13 
 

0 LA PF3 

DLK Section 

D1-17 9 21 70  5 22 74  21 45 34  7 41 53  4 42 55  47 24 29 
 

0 LA PF3 

D4-17 6 17 77  3 17 80  17 41 43  4 59 37  2 61 37  60 37 2 
 

2 LA PF3 

SD12-16 3 16 81  2 16 82  13 56 31  1 47 51  0 48 52  54 43 3 
 

0 LA PF3 

SD12-14 11 21 69  7 21 72  27 51 22  5 50 46  0 52 48  45 45 10 
 

0 LA PF3 

D8-17 7 6 87  6 6 88  50 26 24  1 41 58  0 41 58  51 45 4 
 

0 LA PF3 

D9-17 7 9 84  5 9 86  38 49 14  2 38 60  1 38 61  44 56 0 
 

0 LA PF3 

D10-17 4 35 61   2 35 62   7 65 28   3 57 40   2 58 40   23 59 18   3 LA PF3 

* Samples that were point counted in Guan (2011), and they are re-counted in this study to make the volcanic lithic fragments 

differentiated under same standard with other sandstones, and to obtain the textural information. All numbers are in percentage. 

See Table 1 for the explanation of the grain categories. LA, litharenite; FA, feldspathic arenite; LW, lithic wacke; FW, feldspathic 

wacke; PF1, petrofacies 1; PF2, petrofacies 2; PF3, petrofacies 3.  
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Table 3. Conglomerate compositions 

Section Thickness (m) 
Lithology (%) 

Rhyolite Andesite Basalt Chert Quartzite Granite Limestone Sandstone Mudstone 

ZBS 26 24 30 25 10 11 0 0 0 0 

ZBS 204 8 32 21 25 14 0 0 0 0 

ZBS 501 32 26 30 0 6 6 0 0 0 

ZBS 865 23 29 29 0 10 6 3 0 0 

Ave  22 29 26 9 10 3 1   

TDG 5 17 35 43 0 0 0 0 4 0 

TDG 29 43 26 26 4 0 0 0 0 0 

TDG 38 17 30 50 0 0 0 0 3 0 

TDG 80 13 35 48 4 0 0 0 0 0 

TDG 113 35 10 50 0 0 0 5 0 0 

TDG 139 29 7 64 0 0 0 0 0 0 

TDG 281 27 18 50 0 0 5 0 0 0 

Ave  26 23 47 1  1 1 1  

NTRL 35 16 72 6 3    3  

NTRL 160 28 41 28 0     3 

NTRL 232 72 16 10 0    2  

NTRL 247 56 32 9 0    3  

NTRL 322 48 22 26 0     4 

NTRL 523 39 13 35 0  9  4  

Ave  43 33 19 1  9  3 4 
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Figure 7. Ternary diagrams with mean compositions and classifications of petrofacies of 

Wutonggou sandstones. Sandstones of Petrofacies 1 (n=21), Petrofacies 2 (n=9), and 

Petrofacies 3 (n=30) are shown as orange, blue, and gray symbols, respectively. See 

Table 1 for definitions of grain categories and end-members. Fields of tectonic settings 

are adapted from Dickinson and Suczek (1979) and Dickinson et al., (1983). CI, craton 

interior; TC, transitional continent; BU, basement uplift; RO, recycled orogeny; DA, 

dissected arc; TA, transitional arc; UA, undissected arc; QR, quartzose recycled; TR, 

transitional recycled; LR, lithic recycled; SC, subduction complex; CO, collision orogen; 

AO, arc orogen. 

 

 

plot substantiates the interpretation that PF1 falls in the subduction complex field (Figure 

7). Overall, these three diagrams indicate that the sources of PF1 include felsic volcanic 

and plutonic rocks from a transitional volcanic arc, and quartzite, chert and mudrock 

from the associated accretionary wedge and trench.  
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4.4.2. Petrofacies 2. Petrofacies 2 (PF2) has mean compositions of Q28F36L36 and 

Qm14F36Lt50 and consists of seven litharenites and two feldspathic arenites (Figure 7; 

Table 2). Quartz is still the major component but less enriched than PF1. The 

monocrystalline and polycrystalline quartz and chert account for 14%, 7%, and 7% of the 

total grains, respectively. Feldspars are slightly enriched than PF1 and account for 36% 

of the total grains. Plagioclase is dominant with an average P/F ratio of 0.65 and a mean 

composition of Qm29P47K24 (Figure 7). The polycrystalline grains and lithic fragments 

include mainly volcanic lithic fragments and subordinate polycrystalline quartz, chert and 

mudrock fragments with mean compositions of Qp28Lv65Ls7 and Lmt9Lv68Lst23. Similar 

to PF1, the felsic volcanic lithic fragments are the major components of volcanic lithic 

fragments with a mean composition of Lvf78Lvmi15Lvl7.  

 The composition of PF2 suggests that the sources include predominant felsic 

volcanic and plutonic rocks and subordinate quartzite, chert, and mudrocks. The 

occurrence of large amounts of volcanic lithic fragments, especially felsic volcanic ones, 

is indicative of felsic volcanic and plutonic source rocks. The common occurrence of 

monocrystalline quartz and feldspar grains and rhyolitic and granitic gravels (see Section 

5) support the interpretation. The content of polycrystalline quartz, chert, and mudrock 

fragments is markedly lower than that of volcanic lithic fragments, suggesting that the 

metamorphic and sedimentary rocks are the subordinate sources.     

 The mean compositions of samples of PF2 on the QFL, QmFLt, and QpLvLs 

ternary diagrams fall within the tectonic fields of the transitional arc and the mixed zone 

between subduction complex and arc orogen (Figure 7). Mean compositions fall in the 

field of transitional arc in both QFL and QmFLt diagrams, indicating the transitional 
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volcanic arc origin of these sandstones. In addition, mean composition falls in the mixed 

zone rather than the arc orogen field in the QpLvLs diagram indicates that the sources are 

mixed rocks from the volcanic arc and accretionary wedge and trench. The sources of 

accretionary wedge and trench are not reflected in the QFL and QmFLt diagrams due to 

the relatively low content of chert and polycrystalline quartz grains. Overall, the three 

diagrams indicate that the transitional or dissected volcanic arc rocks are the major 

sources, and the accretionary wedge and trench metamorphic and sedimentary rocks the 

secondary sources.     

4.4.3. Petrofacies 3. Petrofacies 3 (PF3) has mean compositions of Q8F13L79 and 

Qm2F13Lt85 and occurs in twenty-eight litharenites and two lithic wackes (Figure 7; Table 

2). Quartz is no longer the major component. Monocrystalline, polycrystalline, and chert 

grains only account for 2%, 1%, and 5% of the total grains, respectively. Similarly, 

feldspars decrease significantly and only account for 13% of the total grains. Plagioclase 

is still more than K-feldspars with an average P/F ratio of 0.69 and a mean composition 

of Qm16P64K20 (Figure 7). In contrast to PF1 and PF2, the polycrystalline grains and lithic 

fragments are the major components and largely consist of volcanic and sedimentary 

fragments with mean compositions of Qp6Lv60Ls34 and Lmt0Lv60Lst40 (Figure 7D, E). 

Finally, although felsic volcanic lithic fragments still dominate in PF3, the proportion of 

microlitic volcanic lithic fragments increases significantly as indicated by the mean 

composition of volcanic lithic fragments Lvf46Lvmi39Lvl15 (Figure 7).  

 The mean compositions of PF3 indicate that the sources of PF3 are rhyolites, 

andesites, and mudrocks. Moreover, the mean compositions of PF3 fall within the fields 

of undissected volcanic arc in QFL and QmFLt diagrams and arc orogen in the QpLvLs 
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diagram, indicating undissected volcanic arc rocks in the sources. However, although the 

mean composition is in the undissected arc field in QmFLt diagram, fifteen sandstones of 

PF3 fall within the lithic recycled field (Figure 7). The recycled lithics may be derived 

from uplifted older sedimentary strata (Dickinson et al., 1983; Dickinson, 1985). Thus, 

these sandstones may have mixed sources of sedimentary and volcanic rocks. The 

sedimentary sources are unlikely the trench-fill sedimentary rocks because the mudrocks 

fragments of PF3 include abundant angular rip-up clasts and the concurrent chert 

fragments are rare. As a result, the mudrock fragments were more likely derived from a 

nearby source area, such as the rift shoulders, the uplifted hanging wall of the graben 

(Yang et al., 2010; Guan, 2011; Obrist-Farner and Yang, 2017).  

 

5. STRATIGRAPHIC DISTRIBUTION OF PETROFACIES AND EVOLUTION 

OF PROVENANCE 

 

 The stratigraphic distributions of petrofacies along each section provide clues on 

the evolution of provenance. Clast compositions of conglomerates and paleocurrent 

directions are used to substantiate provenance interpretations. Finally, the correlation of 

the four studied sections demonstrates the spatial variations of sandstone compositions 

and source areas.  

 

5.1. PROVENANCE OF ZHAOBISHAN SECTION  

 Petrofacies of sandstones of the WTG low-order cycle in ZBS section change 

upsection, suggesting that the lithology and tectonic setting of the source areas of the 

lower and upper WTG sandstones are different. PF1 occurs in fourteen sandstones in the 
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lower 420 m, whereas PF2 occurs in nine sandstones in the upper 350 m of ZBS section 

(Figures. 6, 8; Table 2). The occurrence of PF1 suggests that the sandstones in the lower 

WTG were derived from the transitional volcanic arc and associated accretionary wedge 

and trench. As the ENTS was the collisional product of oceanic plate, volcanic arc, and 

continental plates (Allen et al., 1991; Gao et al., 1998; Xiao et al., 2004, 2013; Charvet et 

al., 2011), it should contain volcanic, metamorphic, and sedimentary rocks. Rhyolites, 

fragmental radiolarian chert and high-pressure metamorphic rocks are still exposed in 

current ENTS (Xiao et al., 2004; Wang et al., 2006), indicating that ENTS was the 

available source area of ZBS section during late Permian-earliest Triassic.  

Clast composition of WTG conglomerates and paleocurrent directions support the 

provenance interpretation. Two conglomeratic beds at the 26 and 204 m thickness points 

in the lower ZBS section consist of abundant volcanic and a few quartzite and chert 

gravels (Figure 5; Table 3). The paleocurrent direction is northward at the bottom of ZBS 

section (Figure 5). These data indicate that the ENTS, located ~100 km south of the 

section, served as the volcanic, metamorphic, and sedimentary sources to the lower WTG 

sandstones in ZBS section. Finally, the absence of plutonic gravels in the conglomerates 

suggests that the volcanic arc might be undissected or slightly dissected without major 

exposure of plutons.   

In contrast, the occurrence of PF2 in the upper WTG sandstones indicates that the 

sources are mainly transitional volcanic arc and subordinately accretionary wedge and 

trench. The ENTS is still interpreted as the available source areas containing igneous, 

metamorphic and sedimentary rocks. The northward paleocurrent direction identified in 
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Figure 8. Correlation of petrofacies distribution of Wutonggou sandstones in five sections 

in the study area. The correlation assumes that the changes of petrofacies in the sections 

are approximately coeval. The correlation with DLK section is uncertain because there is 

no compositional change in the section. PF1, Petrofacies 1; PF2, Petrofacies 2; PF3, 

Petrofacies 3. 

 

 

the bed at 450 m in the upper half section, supports the interpretation (Figure 5). The 

significant decrease of polycrystalline quartz and chert fragments and the occurrence of 

granitic gravels in conglomeratic beds at the thickness of 501 and 765 m (Figure 5; Table 

3) indicate that the source lithology contains a significant amount of granites along with 

rhyolites from the transitional volcanic arc and diminishing quartzite and chert from the 

accretionary wedge and trench.  
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5.2. PROVENANCE OF NORTH TARLONG SECTION  

 The distribution of petrofacies of sandstones of the WTG low-order in NTRL 

section also indicates different provenances for lower and upper WTG sandstones. PF3 

occurs in eleven sandstones in the lower 600 m, whereas PF1 occurs in four sandstones in 

the upper 220 m of NTRL section. The occurrence of PF3 in the lower WTG sandstones 

indicates that the sources were an undissected volcanic arc and rift shoulders. The overall 

northward paleocurrent directions documented in the beds at 5, 29, and 38 m suggest a 

highland to the south, likely the ENTS (Figure 5; Table 3). Abundant volcanic clasts are 

present in the lower five conglomeratic beds (Figure 5). Thus, rhyolites and andesites 

probably covered a large area in the ENTS as the main source. In addition, the large 

number of mudrock fragments in the lower sandstones may have been derived from local 

rift shoulders.  

 In contrast, the occurrence of PF1 in the upper WTG sandstones suggests that the 

source changed to the transitional volcanic arc and associated accretionary wedge and 

trench of ENTS. The change is also evidenced by the granitic gravels in the uppermost 

conglomeratic bed in NTRL section (Figure 5; Table 3).  

 

5.3. PROVENANCE OF TAODONGGOU SECTION  

 Sandstone petrofacies of the WTG low-order cycle also vary in the TDG section, 

indicating changes of provenance. PF3 occurs in six sandstones in the lower 200 m and 

six sandstones in the upper 90 m of the section, whereas PF1 occurs in three sandstones 

in the middle 50 m of TDG section (Figures. 5 and 8). The occurrence of PF3 in the 

lower and upper parts of TDG section suggests volcanic and sedimentary sources. The 
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rift shoulders are likely the sources for mudrock fragments. In addition, the basement in 

the Taodonggou-Tarlong area contains upper Carboniferous basaltic, andesitic, and 

sedimentary rocks (Yang et al., 2010; Yang et al., 2013). Thus, the rift shoulders, if the 

basement rocks were exposed, might also supply basaltic and andesitic fragments. The 

abundant volcanic clasts in WTG conglomerates and southward paleocurrent directions 

documented in TDG section (Figure 5; Table 3) support a rift-shoulder source. However, 

the rhyolitic fragments might come from some other sources. Therefore, the ENTS might 

have provided fragments of rhyolites and likely, andesites.  

 In contrast, the occurrence of PF1 in the middle part of TDG section suggests that 

the sediments were derived from rocks in a transitional volcanic arc and the associated 

accretionary wedge and trench. ENTS might have been the likely source to supply the 

felsic volcanic and plutonic, metamorphic, and sedimentary rocks in the sandstones of the 

middle TDG section.   

 

5.4. PROVENANCE OF DALONGKOU SECTION  

 Only PF3 occurs in the seven sandstones in DLK section, suggesting a persistent 

provenance. PF3 indicates volcanic and sedimentary sources from rift shoulders and 

ENTS, as discussed above. In addition, the paleocurrent directions are either northward 

or southward (Figure 5), which suggest a complex dispersal pattern, probably originated 

from surrounding rift shoulders. No basement rocks are exposed in the DLK area at the 

present time. Thus, the volcanic clasts may have been derived from either ancient rift 

shoulders and/or undissected volcanic arc in ENTS.  A dominant rift-shoulder source 
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conforms to that for the sandstones of the underlying Quanzijie low-order cycle (Obrist-

Farner and Yang, 2017). 

 

5.5. SPATIAL CORRELATION OF PETROFACIES 

 The distributions of petrofacies in the four studied sections are correlated to 

identify spatial variations of sandstone compositions and provenance. Petrofacies of 

NTRL section is correlative with those of South Tarlong (STRL) section (Figure 8; Guan, 

2011). These sections are the northern and southern limbs of a syncline and both 

converge toward the axis and were deposited in the same graben (Figure 3; Yang et al., 

2010; Guan, 2011). Twenty-three WTG sandstones were divided into the lower lithic-rich 

and upper quartz- and feldspar-rich petrofacies, which resemble the distribution of 

petrofacies in NTRL section (Guan, 2011; Figures. 8, 9). The good correlation between 

these two sections suggests that they shared the same provenance during the deposition of 

the WTG low-order cycle.  

 Correlation between petrofacies of NTRL and STRL sections and those of TDG 

section shows a slight difference. The petrofacies of the three sections shift from PF3 to 

PF1 upsection, suggesting a similar trend of provenance evolution. However, PF1 occurs 

only in a thin interval in the middle part of the TDG section, about one-seventh of the 

total thickness, and abruptly changes to PF3 again. TDG section is 6 km away from the 

NTRL-STRL sections and located in the same half-graben as NTRL-STRL sections 

(Yang et al., 2010). However, the thickness and types of high-order cycles change 

significantly; TDG section was at the ramp of the half-graben and NTRL-STRL sections 

were at the depocenters (Yang et al., 2010). Thus, they do not have the same depositional 
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Figure 9. QFL ternary diagram of upper Permian-lowermost Triassic sandstones in Bogda 

Mountains and Turpan Basin. Data of South Tarlong (STRL) section are from Guan 

(2011); and data of Turpan Basin from Shao et al. (2001). See Figures 2 and 3 for 

locations of measured sections, STRL section and Turpan Basin. See Figure 7 for 

explanations of grain categories and tectonic fields. 

 

 

environments and even might not have the same drainage areas (e.g., Soreghan and 

Cohen, 1993). These factors may have caused the abrupt shift of petrofacies in the upper 

TDG section. 

Additionally, the correlation between petrofacies of Tarlong-Taodonggou areas 

and that of the northwestern Turpan Basin has variations. The northwestern Turpan Basin 

is about 30 km south of Tarlong-Taodonggou areas (Figure 2), where two Wutonggou 

Formation sandstones are lithic-rich, resemble the lower WTG sandstones in NTRL, 

STRL, and TDG sections (Shao et al., 2001; Figure 9). However, the upper quartz- and 

feldspar-rich sandstones are not documented in the northwestern Turpan Basin. 
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 The trend of petrofacies evolution of ZBS section cannot be correlated with those 

of NTRL, STRL, and TDG sections because PF3 is absent in ZBS section. On the other 

hand, the petrofacies shifts in these sections all occur in the middle parts of the sections 

(Figure 8), which suggests an approximately coeval tectonic event in both source areas of 

ZBS and Tarlong-Taodonggou areas in ENTS. The shift in NTRL section occurred at a 

bed 10 m below a bentonite with an age of 253.11±0.05 Ma (Yang et al., 2010; Figure 8). 

Therefore, the petrofacies shift of the studied sections occurred probably during 

Wuchiapingian-early Changhsingian transition. 

Moreover, the petrofacies of ZBS section may be similar to that of sandstones of 

the Wutonggou Formation in the northeastern part of the Turpan Basin as documented by 

Shao et al. (2001). Eleven sandstones of the Wutonggou Formation from Xishan and 

Kulai sections in northeastern Turpan Basin are quartz- and feldspar-rich, similar to PF2 

in this study (see Figure 2 for the section locations; Figure 9). This suggests that the two 

areas may share a similar provenance.  

The petrofacies trend of DLK section cannot be correlated with those in the other 

sections, because the section contains only PF3. The DLK section was interpreted to be in 

a separated drainage system (see above).  This interpretation fits the tectonic setting of 

the greater Turpan-Junggar basin as a highly-partitioned rift basin (Yang, 2008; Yang et 

al., 2010), where the abundant rift shoulders might have hampered the transport of 

sediments from the ENTS. Alternatively, rivers originating from ENTS might have been 

persistently draining an area rich in volcanic and sedimentary rocks during the deposition 

of the entire WTG low-order cycle.  
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Previous studies suggest the WTG low-order cycle sandstones in the southern 

Junggar Basin and Northern Turpan Basin are uniformly volcanic-rich with slight 

variations in compositions based on limited numbers of point-counting data (Carroll et 

al., 1995; Hendrix, 2000; Greene et al., 2005). The petrofacies distribution and 

correlation among multiple detailed stratigraphic sections present a clear spatial and 

temporal pattern of provenance evolution during the deposition of WTG sandstones. 

 

6. THE UNROOFING HISTORY OF THE EASTERN NORTH TIANSHAN 

SUTURE 

 

 The interpreted provenance lithology and tectonic setting and their evolution for 

WTG low-order cycle sandstones can be used to reconstruct of the unroofing history of 

the ENTS. Overall, ENTS had been persistently unroofed during late Permian-earliest 

Triassic to provide a large amount of siliciclastic sediments northward into the greater 

Turpan-Junggar basin. Uplifting of ENTS is likely but the rate of uplifting cannot be 

confirmed. During approximately the Wuchiapingian Stage when the lower WTG 

sandstones in ZBS section was deposited, the source area in the eastern part of ENTS was 

composed of rocks of the undissected volcanic arc, accretionary wedge, and trench 

(Figure 10). During approximately Changhsingian-early Induan stages when the upper 

WTG sandstone were deposited, the source area was covered by rocks mainly of the 

transitional volcanic arc and subordinately of accretionary wedge and trench, where deep-

seated granitic plutons started to expose (Figure 10). The unroofing trend indicates the 

amalgamation of accretionary wedge, trench, and volcanic arc rocks caused by the 

collision between Junggar Plate and Central Tianshan Suture (Allen et al., 1993; Gao et 
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al., 1998; Xiao et al., 2004, 2013; Charvet et al., 2011). The southward subduction of 

North Tianshan Ocean formed the accretionary wedge and trench and North Tianshan 

volcanic arc, which were accreted together by later continuous movement. A similar 

trend was reported from the Eocene-Middle Miocene sandstones in the collisional zone 

between Izu Arcs and the Honshu Arc in central Japan (Okuzawa and Hisada, 2008), of 

which the older sources are volcaniclasts, and the younger sources are accretionary 

wedge and trench rocks. The unroofing trend of ENTS continued through Triassic as 

indicated by increasingly quartzose compositions of Triassic sandstones in Turpan-Hami 

Basin (Shao et al., 2001; Greene et al., 2005), as a consequence of progressive dissection 

of the volcanic arc in ENTS.   

In contrast to the source area of the ZBS section in the eastern part of the ENTS, 

that of the Tarlong-Taodonggou sections is located in the western part of the ENTS, 

probably ~90 km west of the ZBS source area, which is the present-day distance between 

Zhaobishan and Tarlong-Taodonggou areas. The Tarlong-Taodonoggou source area in 

ENTS has a different unroofing history. It was covered by an undissected volcanic arc 

during Wuchiapingian during the deposition of the lower WTG sandstones. However, the 

area was covered with complex lithologies of the amalgamated transitional volcanic arc, 

accretionary wedge, and trench rocks during Changhsingian-early Induan during the 

deposition of the upper WTG sandstones. This unroofing trend is similar to those of the 

continental arc within the Turan Plate, Western Turkmenistan (Garzanti and Gaetani, 

2002) and the Andes in North America (Ingersoll, 2012), where the contents of quartz 

and feldspar in the studied sandstones increase at the expense of volcanic lithic 

fragments. During continuous plate consumption, sandstones may also show an increase 



38 

 

of polycrystalline quartz and chert fragments derived from the accretionary wedge and 

trench (Dickison and Suczek, 1979; Dickinson et al., 1983; Garzanti et al., 2007).  

 

 

 

Figure 10. Unroofing trends of sources area in eastern North Tianshan Suture, as 

interpreted from petrofacies of WTG sandstones in Bogda Mountains. The trend for the 

ZBS section shows that the sources changed from the undissected volcanic arc, 

accretionary wedge and trench rocks to the transitional volcanic arc rocks. The trend for 

NTRL, STRL, and TDG sections shows that the sources shifted from the undissected 

volcanic arc rocks to the transitional volcanic arc, accretionary wedge and trench rocks. 

See Figure 7 for the explanations of the tectonic fields. 

 

 

The two different unroofing trends between the source areas for ZBS and 

Tarlong-Taodonggou sections indicate that ENTS was an amalgamated complex with 

spatial and temporal variations in lithology during late Permian-earliest Triassic. During 

Wuchiapingian, the source areas of ZBS section in the eastern part of ENTS contained 

amalgamated rocks of the undissected volcanic arc, accretionary wedge and trench, 
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whereas the source areas of Tarlong-Taodonggou areas in the western part of ENTS 

contained assemblages of undissected volcanic arcs. During Changhsingian-early Induan, 

the eastern part of ENTS contained mainly rocks of volcanic arcs that were dissected, 

whereas the western part of ENTS contained rocks of the transitional volcanic arc, 

accretionary and trench (Figure 11).  

 

7. CONCLUSIONS 

 

Sandstones of the upper Permian-lowermost Triassic WTG low-order cycle in 

Bogda Mountains, NW China, provide critical information on the provenance and 

unroofing history of the ENTS. The source of the ZBS section to the east changed from 

the rocks of the undissected volcanic arc, accretionary wedge and trench to those of 

transitional volcanic arc with subordinate accretionary wedge and trench. The source of 

the NTRL and Taodongou (TDG) sections to the west shifted from the undissected 

volcanic arc and sedimentary rocks from ENTS and rift shoulders to rocks in the 

transitional volcanic arc, accretionary wedge and trench. The sources of the DLK section 

70 km north of the NTRL and TDG sections are the undissected volcanic arc and 

sedimentary rocks from ENTS and rift shoulders. Unroofing history differs between the 

source areas for ZBS and NTRL-TDG sections, indicating that the ENTS was an 

amalgamated complex of the volcanic arc, accretionary wedge and trench with spatial 

and temporal variations in lithology during late Permian-earliest Triassic.  
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Figure 11. Schematic maps showing the reconstruction of lithologic distributions in the 

source areas in the eastern North Tianshan Suture during late Permian-earliest Triassic. 

A) During Wuchiapingian, most parts of eastern North Tianshan Suture were covered by 

undissected arc volcanic rocks and sedimentary and metamorphic rocks were exposed in 

the eastern parts of the eastern North Tianshan Suture. B) During Changhsingian to early 

Induan, the exposure of sedimentary and metamorphic rocks expanded to the western part 

of eastern North Tianshan Suture and the deep-seated granites were initially exposed. See 

text for details. ENTS, eastern North Tianshan Suture; CTS, Central Tianshan Suture; 

STS, South Tianshan Suture. 



41 

 

ACKNOWLEDGEMENTS 

 

  This work is a part of the dissertation research of D. Y. Zheng at Missouri 

University of Science and Technology, U.S.A. We would like to thank Drs. J. Wang, M. 

L. Wan and Mr. S. W. Mei of Nanjing Institute of Geology and Paleontology of Chinese 

Academy of Sciences and Y. R. Lu, X. Zhan, J. Duan, J. Fredericks, Z.Y. Ju, S.X. Wu and 

J.J. Li for their field assistance and financial support. D. Y. Zheng would like to thank Drs. 

J. Obrist-Farner, D. Wronkiewicz, J. P. Hogan, and A. Eckert of Missouri University of 

Science and Technology for serving in the dissertation committee and improving this 

manuscript. This research was partially supported by Alfred Spreng Graduate Research 

Grant from Geology and Geophysics Program of Missouri University of Science and 

Technology to D. Y. Zheng and by a research grant (EAR-1714749) from National Science 

Foundation to W. Yang. 

 

REFERENCES 

 

Allen, J., 1968, The nature and origin of bed‐form hierarchies: Sedimentology, v. 10, 

no. 3, p. 161-182. 

 

Allen, M., Windley, B., Chi, Z., Zhong, Y. Z., and Guang, R. W., 1991, Basin evolution 

within and adjacent to the Tien Shan Range, NW China: Journal of the Geological 

Society, v. 148, no. 2, p. 369-378. 

 

Allen, M. B., Windley, B. F., and Zhang, C., 1993, Palaeozoic collisional tectonics and 

magmatism of the Chinese Tien Shan, central Asia: Tectonophysics, v. 220, no. 1, 

p. 89-115. 

 

Allmendinger, R., 2005, Stereonet: Program for stereographic projection. 

 



42 

 

Basu, A., Young, S. W., Suttner, L. J., James, W. C., and Mack, G. H., 1975, Re-

evaluation of the use of undulatory extinction and polycrystallinity in detrital 

quartz for provenance interpretation: Journal of Sedimentary Research, v. 45, no. 

4, p. 873-882. 

 

Blatt, H., Tracy, R., and Owens, B., 2006, Petrology: igneous, sedimentary, and 

metamorphic, Macmillan. 

 

Carroll, A., Graham, S., Hendrix, M., Ying, D., and Zhou, D., 1995, Late Paleozoic 

tectonic amalgamation of northwestern China: sedimentary record of the northern 

Tarim, northwestern Turpan, and southern Junggar basins: Geological Society of 

America Bulletin, v. 107, no. 5, p. 571-594. 

 

Carroll, A. R., Yunhai, L., Graham, S. A., Xuchang, X., Hendrix, M. S., Jinchi, C., and 

McKnight, C. L., 1990, Junggar basin, northwest China: trapped Late Paleozoic 

ocean: Tectonophysics, v. 181, no. 1-4, p. 1-14. 

 

Charvet, J., Shu, L., Laurent-Charvet, S., Wang, B., Faure, M., Cluzel, D., Chen, Y., and 

De Jong, K., 2011, Palaeozoic tectonic evolution of the Tianshan belt, NW China: 

Science China Earth Sciences, v. 54, no. 2, p. 166-184. 

 

Charvet, J., Shu, L. S., and Laurent-Charvet, S., 2007, Paleozoic structural and 

geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and 

Junggar plates: Episodes, v. 30, no. 3, p. 162-186. 

 

Critelli, S., and Ingersoll, R. V., 1995, Interpretation of neovolcanic versus 

palaeovolcanic sand grains: an example from Miocene deep‐marine sandstone 

of the Topanga Group (Southern California): Sedimentology, v. 42, no. 5, p. 783-

804. 

 

Davis, G. H., Reynolds, S. J., Kluth, C. F., and Kluth, C., 2011, Structural geology of 

rocks and regions, John Wiley & Sons. 

 

Dickinson, W. R., 1970, Interpreting detrital modes of graywacke and arkose: Journal of 

Sedimentary Research, v. 40, no. 2. 

 

Dickinson, 1985, Interpreting provenance relations from detrital modes of sandstones, 

Provenance of arenites, Springer, p. 333-361. 

 

Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., 

Inman, K. F., Knepp, R. A., Lindberg, F. A., and Ryberg, P. T., 1983, Provenance 

of North American Phanerozoic sandstones in relation to tectonic setting: 

Geological Society of America Bulletin, v. 94, no. 2, p. 222-235. 

 



43 

 

Dickinson, W. R., and Suczek, C., 1979, Plate tectonics and sandstone composition: 

American Association of Petroleum Geologists Bulletin, v. 63, no. 12, p. 2164-

2182. 

 

Dorsey, R. J., 1988, Provenance evolution and unroofing history of a modern arc-

continent collision; evidence from petrography of Plio-Pleistocene sandstones, 

eastern Taiwan: Journal of Sedimentary Research, v. 58, no. 2, p. 208-218. 

 

Fang, S., Song, Y., Jia, C., Wang, X., and Yuan, Q., 2007, The Mesozoic-Cenozoic 

clastic composition of Bogda Area, Xinjiang: implications on the evolution of 

basin-range pattern: Acta Geologica Sinica, v. 81, no. 9, p. 1229-1237. 

 

Fredericks, J. G., 2017, Provenance and depositional environments of fluvial-lacustrine 

deposits in a non-marine rift basin, Lower-Triassic Jiucaiyuan and Shaofanggou 

low-order cycles Bogda Shan, NW China. 

 

Garzanti, E., Critelli, S., and Ingersoll, R. V., 1996, Paleogeographic and paleotectonic 

evolution of the Himalayan Range as reflected by detrital modes of Tertiary 

sandstones and modern sands (Indus transect, India and Pakistan): Geological 

Society of America Bulletin, v. 108, no. 6, p. 631-642. 

 

Garzanti, E., Doglioni, C., Vezzoli, G., and Ando, S., 2007, Orogenic belts and orogenic 

sediment provenance: The Journal of Geology, v. 115, no. 3, p. 315-334. 

 

Garzanti, E., and Gaetani, M., 2002, Unroofing history of Late Paleozoic magmatic arcs 

within the “Turan plate”(Tuarkyr, Turkmenistan): Sedimentary Geology, v. 151, 

no. 1-2, p. 67-87. 

 

Garzanti, E., Vezzoli, G., Andò, S., and Castiglioni, G., 2001, Petrology of Rifted‐
Margin Sand (Red Sea and Gulf of Aden, Yemen): The Journal of Geology, v. 

109, no. 3, p. 277-297. 

 

Gawthorpe, R., and Leeder, M., 2000, Tectono-sedimentary evolution of active 

extensional basins: Basin Research, v. 12, no. 3-4, p. 195-218. 

 

Gazzi, P., 1966, Le arenarie del flysch sopracretaceo dell’Appennino modenese; 

correlazioni con il flysch di Monghidoro: Mineral. Petrogr. Acta, v. 12, no. 6, p. 

69-97. 

 

Greene, T. J., Carroll, A. R., Hendrix, M. S., Graham, S. A., Wartes, M. A., and Abbink, 

O. A., 2001, Sedimentary record of Mesozoic deformation and inception of the 

Turpan-Hami basin, northwest China: Paleozoic and Mesozoic tectonic evolution 

of central and eastern Asia, v. 194, p. 317. 

 

 



44 

 

Greene, T. J., Carroll, A. R., Wartes, M., Graham, S. A., and Wooden, J. L., 2005, 

Integrated provenance analysis of a complex orogenic terrane: Mesozoic uplift of 

the Bogda Shan and inception of the Turpan-Hami Basin, NW China: Journal of 

Sedimentary Research, v. 75, no. 2, p. 251-267. 

 

Guan, W., 2011, Provenance analysis of Upper Permian-basal Triassic fluvial-lacustrine 

sedimentary rocks in the greater Turpan-Junggar Basin, southern Bogda 

Mountains, NW China: Wichita State University. 

 

Guan, W., Yang, W., Jeffrey, B., Feng, Q., Liu, Y., Zhao, W., and Wang, Q., 

Distinguishing source areas of Upper-Permian fluvial-lacustrine deltaic sediment 

fills of a half-graben through petrographic study, southern Bogda Mountains, the 

Greater Turpan-Junggar basin, NW China: Abstract Volume, Am. Asso. Petrol, in 

Proceedings Geologists Annual Meeting, New Orleans2010. 

 

Han, B. F., Guo, Z. J., Zhang, Z. C., Zhang, L., Chen, J. F., and Song, B., 2010, Age, 

geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the 

North Tian Shan suture zone, western China: Bulletin, v. 122, no. 3-4, p. 627-640. 

 

Hendrix, M. S., 2000, Evolution of Mesozoic sandstone compositions, southern Junggar, 

northern Tarim, and western Turpan basins, northwest China: a detrital record of 

the ancestral Tian Shan: Journal of Sedimentary Research, v. 70, no. 3, p. 520-

532. 

 

Hendrix, M. S., Dumitru, T. A., and Graham, S. A., 1994, Late Oligocene-early Miocene 

unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision: 

Geology, v. 22, no. 6, p. 487-490. 

 

Hendrix, M. S., Graham, S. A., Carroll, A. R., Sobel, E. R., McKnight, C. L., Schulein, 

B. J., and Wang, Z., 1992, Sedimentary record and climatic implications of 

recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the 

north Tarim, south Junggar, and Turpan basins, northwest China: Geological 

Society of America Bulletin, v. 104, no. 1, p. 53-79. 

 

Hsü, K. J., 1988, Relict back-arc basins: principles of recognition and possible new 

examples from China, New perspectives in basin analysis, Springer, p. 245-263. 

 

Ingersoll, R. V., 2012, Composition of modern sand and Cretaceous sandstone derived 

from the Sierra Nevada, California, USA, with implications for Cenozoic and 

Mesozoic uplift and dissection: Sedimentary Geology, v. 280, p. 195-207. 

 

Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., and Sares, S. W., 

1984, The effect of grain size on detrital modes: a test of the Gazzi-Dickinson 

point-counting method: Journal of Sedimentary Research, v. 54, no. 1, p. 103-116. 

 



45 

 

Ingersoll, R. V., and Suczek, C. A., 1979, Petrology and provenance of Neogene sand 

from Nicobar and Bengal fans, DSDP sites 211 and 218: Journal of Sedimentary 

Research, v. 49, no. 4. 

 

Jahn, Bor-ming, Fuyuan Wu, and Bin Chen., 2000, Granitoids of the Central Asian 

Orogenic Belt and continental growth in the Phanerozoic: Earth and 

Environmental Science Transactions of the Royal Society of Edinburgh, v. 91, no. 

1-2: 181-193. 

 
Jun, G., Maosong, L., Xuchang, X., Yaoqing, T., and Guoqi, H., 1998, Paleozoic tectonic 

evolution of the Tianshan Orogen, northwestern China: Tectonophysics, v. 287, 

no. 1, p. 213-231. 

 

Laurent‐Charvet, S., Charvet, J., Monié, P., and Shu, L., 2003, Late Paleozoic strike‐
slip shear zones in eastern Central Asia (NW China): New structural and 

geochronological data: Tectonics, v. 22, no. 2. 

 

Laurent‐Charvet, S., Charvet, J., Shu, L., Ma, R., and Lu, H., 2002, Palaeozoic late 

collisional strike‐slip deformations in Tianshan and Altay, eastern Xinjiang, NW 

China: Terra Nova, v. 14, no. 4, p. 249-256. 

 

Liao, Z., Lu, L., Jiang, N., Xia, F., Sung, F., Zhou, Y., Li, S., and Zhang, Z., 

Carboniferous and Permian in the western part of the east Tianshan Mountains: 

Beijing, in Proceedings Eleventh Congress of Carboniferous Stratigraphy and 

Geology, Guide Book Excursion, 1987, Volume 4, p. 50. 

 

Liu, S., Guo, Z., Zhang, Z., Li, Q., and Zheng, H., 2004, Nature of the Precambrian 

metamorphic blocks in the eastern segment of Central Tianshan: constraint from 

geochronology and Nd isotopic geochemistry: Science in China Series D: Earth 

Sciences, v. 47, no. 12, p. 1085-1094. 

 

Marsaglia, K. M., and Ingersoll, R. V., 1992, Compositional trends in arc-related, deep-

marine sand and sandstone: a reassessment of magmatic-arc provenance: 

Geological Society of America Bulletin, v. 104, no. 12, p. 1637-1649. 

 

Miall, A. D., 1974, Paleocurrent analysis of alluvial sediments; a discussion of directional 

variance and vector magnitude: Journal of Sedimentary Research, v. 44, no. 4, p. 

1174-1185. 

 

Obrist-Farner, J., and Yang, W., 2015, Nonmarine time-stratigraphy in a rift setting: An 

example from the Mid-Permian lower Quanzijie low-order cycle Bogda 

Mountains, NW China: Journal of Palaeogeography, v. 4, p. 27-51. 

 
 



46 

 

Obrist-Farner, J., and Yang, W., 2017, Provenance and depositional conditions of fluvial 

conglomerates and sandstones and their controlling processes in a rift setting, 

mid-Permian lower and upper Quanzijie low order cycles, Bogda Mountains, NW 

China: Journal of Asian Earth Sciences, v. 138, p. 317-340.  
 

Okuzawa, K., and Hisada, K. i., 2008, Temporal changes in the composition of Miocene 

sandstone related to collision between the Honshu and Izu Arcs, central Japan: 

Special Papers, Geological Society of America, v. 436, p. 185. 

 

Peng, X., 2016, Provenance and depositional environments of fluvial-lacustrine 

sandstones of lower Permian Lucaogou low-order cycle, Bogda Mountains, NW 

China: Missouri University of Science and Technology. 

 

Şengör, A., Natal'In, B., and Burtman, V., 1993, Evolution of the Altaid tectonic collage 

and Palaeozoic crustal growth in Eurasia: Nature, v. 364, no. 6435, p. 299. 

 

Sengör, A., and Natalin, B., 1996, Paleotectonics of Asia: fragments of a synthesis. 

 

Shao, L., Stattegger, K., Li, W., and Haupt, B. J., 1999, Depositional style and subsidence 

history of the Turpan Basin (NW China): Sedimentary Geology, v. 128, no. 1, p. 

155-169. 

 

Shao, L., Stattegger, K., and Garbe-Schoenberg, C. D., 2001, Sandstone petrology and 

geochemistry of the Turpan basin (nw china): Implications for the tectonic 

evolution of a continental basin: Journal of Sedimentary Research, v. 71, no. 1, p. 

37-49. 

 

Shu, L., Charvet, J., Guo, L., Lu, H., and Laurent-Charvet, S., 1999, A large-scale 

Palaeozoic dextral ductile strike-slip zone: the Aqqikkudug–Weiya Zone along 

the Northern margin of the Central Tianshan Belt, Xinjiang, NW China: Acta 

Geologica Sinica (English edition), v. 73, no. 2, p. 148-162. 

 

Shu, L., Wang, B., Zhu, W., Guo, Z., Charvet, J., and Zhang, Y., 2011, Timing of 

initiation of extension in the Tianshan, based on structural, geochemical and 

geochronological analyses of bimodal volcanism and olistostrome in the Bogda 

Shan (NW China): International Journal of Earth Sciences, v. 100, no. 7, p. 1647-

1663. 

 

Shu, L. S., Zhu, W., Wang, B., Faure, M., Charvet, J., and Cluzel, D., 2005, The post-

collision intracontinental rifting and olistostrome on the southern slope of Bogda 

Mountains, Xinjiang: Acta Petrologica Sinica, v. 21, p. 1, 25-36. 

 

Soreghan, M. J., and Cohen, A. S., 1993, The effects of basin asymmetry on sand 

composition: examples from Lake Tanganyika, Africa: Special Papers-Geological 

Society of America, p. 285-285. 

 



47 

 

Suttner, L. J., 1974, Sedimentary petrographic provinces: an evaluation. 

 

Tang, W., Zhang, Z., Li, J., Li, K., Chen, Y., and Guo, Z., 2014, Late Paleozoic to 

Jurassic tectonic evolution of the Bogda area (northwest China): Evidence from 

detrital zircon U-Pb geochronology: Tectonophysics, v. 626, no. 1, p. 144-156. 

 

Thomas, S. G., Tabor, N. J., Yang, W., Myers, T. S., Yang, Y., and Wang, D., 2011, 

Palaeosol stratigraphy across the Permian-Triassic boundary, Bogda Mountains, 

NW China: Implications for palaeoenvironmental transition through earth's 

largest mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 

308, no. 1-2, p. 41-64. 

 

Trop, J. M., and Ridgway, K. D., 1997, Petrofacies and provenance of a Late Cretaceous 

suture zone thrust-top basin, Cantwell Basin, central Alaska Range: Journal of 

Sedimentary Research, v. 67, no. 3, p. 469-485. 

 

Wang, B., Faure, M., Cluzel, D., Shu, L., Charvet, J., Meffre, S., and Ma, Q., 2006, Late 

Paleozoic tectonic evolution of the northern West Chinese Tianshan belt: 

Geodinamica Acta, v. 19, no. 3-4, p. 237-247. 

 

Wang, B., Shu, L. S., Cluzel, D., Faure, M., and Charvet, J., 2007, Geochronological and 

geochemical studies on the Borohoro plutons, north of Yili, NW Tianshan and 

their tectonic implication: Acta Petrologica Sinica, v. 8, p. 1885-1900. 

 

Wartes, M. A., Carroll, A. R., and Greene, T. J., 2002, Permian sedimentary record of the 

Turpan-Hami basin and adjacent regions, northwest China: Constraints on post-

amalgamation tectonic evolution: Geological Society of America Bulletin, v. 114, 

no. 2, p. 131-152. 

 

Windley, B., Allen, M., Zhang, C., Zhao, Z., and Wang, G., 1990, Paleozoic accretion 

and Cenozoic red formation of the Chinese Tien Shan range, central Asia: 

Geology, v. 18, no. 2, p. 128-131. 

 

Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A., and Badarch, G., 2007, Tectonic 

models for accretion of the Central Asian Orogenic Belt: Journal of the 

Geological Society, v. 164, no. 1, p. 31-47. 

 

XBGMR, 1993. Regional geology of Xinjiang Uygur Autonomous Region. Geological        

 Memoirs, Series 1, No. 32. In: Xinjiang Bureau of Geology and Mineral resources 

 (In Chinese with English abstract). Ministry of Geology and Mineral Resources, 

 Geological Publication House, Beijing, p. 762. 

 

Xia, L.Q., Xu, X. Y., Xia, Z. C., Li, X. M., Ma, Z. P., and Wang, L. S., 2004, 

Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, 

northwestern China: Geological Society of America Bulletin, v. 116, no. 3-4, p. 

419-433. 



48 

 

Xiao, W.J., Zhang, L. C., Qin, K. Z., Sun, S., and Li, J. L., 2004, Paleozoic accretionary 

and collisional tectonics of the Eastern Tianshan (China): implications for the 

continental growth of central Asia: American Journal of Science, v. 304, no. 4, p. 

370-395. 

 

Xiao, W., Windley, B. F., Allen, M. B., and Han, C., 2013, Paleozoic multiple 

accretionary and collisional tectonics of the Chinese Tianshan orogenic collage: 

Gondwana Research, v. 23, no. 4, p. 1316-1341. 

 

Yang, W., 2008, Depositional systems analysis within a seismic sequence stratigraphic 

framework, Turpan-Hami basin, Internal Report, Tu-Ha Petroleum Bureau NW 

China. 

 

Yang, W., Crowley, J., Obrist-Farner, J., Tabor, N., Feng, Q., and Liu, Y., 2013, A 

marine back-arc origin for the Upper Carboniferous basement of intracontinental 

greater Turpan-Junggar basin-Volcanic, sedimentary, and geochronologic 

evidence from southern Bogda Mountains, in Proceedings NW China: Geological 

Society of America Annual Meeting, GSA Abstract with Programs, Volume 45. 

 

Yang, W., Feng, Q., Liu, Y., Tabor, N., Miggins, D., Crowley, J. L., Lin, J., and Thomas, 

S., 2010, Depositional environments and cyclo- and chronostratigraphy of 

uppermost Carboniferous–Lower Triassic fluvial–lacustrine deposits, southern 

Bogda Mountains, NW China — A terrestrial paleoclimatic record of mid-latitude 

NE Pangea: Global and Planetary Change, v. 73, no. 1–2, p. 15-113. 

 

Yang, W., Liu, Y., Feng, Q., Lin, J., Zhou, D., and Wang, D., 2007, Sedimentary 

evidence of Early–Late Permian mid-latitude continental climate variability, 

southern Bogda Mountains, NW China: Palaeogeography, Palaeoclimatology, 

Palaeoecology, v. 252, no. 1, p. 239-258. 

 

Yin, A., Nie, S., Craig, P., Harrison, T., Ryerson, F., Xianglin, Q., and Geng, Y., 1998, 

Late Cenozoic tectonic evolution of the southern Chinese Tian Shan: Tectonics, v. 

17, no. 1, p. 1-27. 

 

Young, S. W., 1976, Petrographic textures of detrital polycrystalline quartz as an aid to 

interpreting crystalline source rocks: Journal of Sedimentary Research, v. 46, no. 

3, p. 595-603. 

 

Zhang, X., 1981, Regional stratigraphic chart of northwestern China, branch of Xinjiang 

Uygur Autonomous Region, Beijing, Geological Publishing House. 

 

 

 



49 

 

II. TEXTURAL CHARACTERISTICS AND THEIR CONTROLLING 

PROCESSES OF UPPER PERMIAN-LOWERMOST TRIASSIC SANDSTONES, 

WUTONGGOU LOW-ORDER CYCLE, BOGDA MOUNTAINS, NW CHINA 

Dongyu Zheng and Wan Yang 

 

ABSTRACT 

 

 Textural characteristics of sandstones provide critical information to understand 

the processes on the Earth’s surfaces. This study focuses on the upper Permian-

lowermost Triassic sandstones of Wutonggou (WTG) low-order cycle in Bogda 

Mountains, NW China and conducts a detailed textural analysis of these sandstones. 

Three petrofacies are identified by their relative compositions of quartz, feldspar, and 

lithic fragment. Petrofacies 1, with highest quartz content, is overall coarse-sized, 

moderately well sorted, and submature-mature. Petrofacies 2, with intermediate quartz 

content, is overall coarse-sized, moderately well sorted, and mature. Petrofacies 3, with 

lowest quartz content, is overall coarse-sized, moderately sorted, and submature. 

Variations of textural characteristics of petrofacies 1, 2, and 3 suggest that provenance, 

including source lithology and location, is a dominant factor in controlling sandstone 

textures. Petrofacies 1 and petrofacies 2 were derived from a distant source and are finer, 

better sorted, and more mature than the mixed-sourced petrofacies 3. Moreover, although 

petrofacies 1 and petrofacies 2 shared the same source location, variations in source 

lithology make their textures different. In addition, each petrofacies is subdivided into 

littoral/beach, deltaic, and fluvial facies. These sedimentary facies show limited 

variations in sorting degree, skewness, and textural maturity, thus these facies cannot be 
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distinguished on the basis of their textural characteristics. This work documents the 

textural characteristics of the ancient fluvial-lacustrine sandstones and discusses the 

controlling factors on sandstone textures.  

 

1. INTRODUCTION 

 

 Sedimentary rocks recorded complex processes, involve with the tectonic 

activities, weathering, transportation, deposition, and diagenesis, and their interactions on 

the Earth’s surfaces (e.g., Suttner, 1974; Ingersoll, 1984; Johnsson, 1993). The 

provenance is widely accepted as the most determining control on compositions of 

sedimentary rocks (Dickinson and Suczek, 1979; Johnsson, 1993; Garzanti, 2016), but 

the relationship between the provenance and textures is less discussed (Folk and Ward, 

1957; Boulton, 1978; Arens et al., 2002; Obrist-Farner and Yang, 2017). Moreover, the 

textural characteristic is one of the widely-discussed attributes of sediments that many 

publications attempted to understand influences of processes of transportation and 

deposition on the textures (e.g., Passega, 1957; Visher, 1969; Barndorff-Nielsen, 1977; 

Folk, 1980; Boggs, 2009; Pettijohn et al., 2012). Different depositional environments, 

especially the beach, dune, and river, have been successfully distinguished by textural 

attributes of sediments (Folk and Ward, 1957; Friedman, 1962, 1967). However, 

skepticism of textural analysis demonstrates that the textural attributes should be 

restricted to the purpose of description (Ehrlich and Full, 1987; Hartmann, 2007). 

Therefore, it is intriguing to examine the relationship between textural features of ancient 

sedimentary rocks and depositional environments. 
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The upper Permian-lowermost Triassic Wutonggou (WTG) low-order cycle 

sandstones in Bogda Mountains, NW China provide a great opportunity to investigate the 

influences of the provenance and depositional environments on sandstone textures. The 

provenance, high-resolution measured sections and the associated depositional 

environments of WTG low-order were documented in previous studies (Yang et al., 

2007, 2010; Zheng and Yang, submitted manuscript). Therefore, this study focus on the 

sandstones of WTG low-order cycle exposed in the northern and southern foothills of 

Bogda Mountains to document their textural characteristics, to interpret their textural 

maturity, and further to investigate the influences of provenance and depositional 

environments. The result of this works can improve our understanding of the controlling 

processes on sandstone textures.  

 

2. GEOLOGICAL BACKGROUND 

 

 This study works on the upper Permian-lowermost Triassic fluvial-lacustrine 

sandstones and conglomerates of Wutonggou (WTG) low-order cycle exposed in Bogda 

Mountains (Figure1). Four sections, including the Zhaobishan (ZBS), North Tarlong 

(NTRL) and Taodonggou (TDG) sections, and Dalongkou (DLK) sections, in the 

southcentral, southwestern, and northern foothills of Bogda Mountains, are the focuses of 

this study (Figure 2). The Bogda Mountains is a giant E-W directed anticlines with 

Devonian to Quaternary sedimentary and igneous rocks and located between Junggar 

Basin to the north and Turapn-Hami Basin to the south in NW China. Before the 

Mesozoic uplift (Shao et al., 2001; Greene et al., 2005), Bogda Mountains was a part of 
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the greater Turpan-Junggar basin, which was an intracontinental rift basin caused by 

regional dextral strike-slip (Laurent-Charvet etal., 2002, 2007; Shu et al., 2011) and 

included a series of grabens and half-grabens (Yang et al., 2010; Obrist-Farner and Yang, 

2015, 2016). The Bogda Mountains has a volcanic basement which is with either 

volcanic arc or back-arc origins (Shu et al., 2005, 2011; Yang et al., 2010, 2013). The 

Bogda Mountains was bordered by the eastern Chinese North Tianshan Suture to the 

south. The eastern Chinese North Tianshan is an amalgamated complex involves with the 

subduction of the North Tianshan Ocean and the collision between the Junggar Plate and 

the Central Tianshan Suture (Gao et al., 1998; Xiao et al., 2004, 2013; Charvet et al., 

2011). The rocks of the eastern Chinese North Tianshan Suture and the volcanic and 

sedimentary rocks of the rift shoulders are interpreted as the main sources of the 

sandstones of WTG low-order cycle (Guan, 2011; Zheng and Yang, submitted 

manuscript).  

 The WTG low-order cycle is an informal cyclostratigraphic unit defined by 

overall long-term trends of subhumid-humid conditions and persistently uplifting history 

of the source areas (Yang et al., 2007, 2010; Thomas et al., 2011) and approximately 

correlates to Wutonggou and Guodikeng Formations (XBGMR, 1993; Figure3). The 

stratigraphy is correlated based on the lithostratigraphy, biostratigraphy, and 

cyclostratigraphy (Zhang, 1981; Liao et al., 1987; Wartes et al., 2002; Yang et al., 2007, 

2010). The chronostratigraphy in Bogda Mountains is not well constrained that a Permo-

Triassic boundary was placed within a 90 m-thick interval in North Tarlong section 

(Yang et al., 2010). Based on the stratigraphic correlation and petrographic studies (Yang 

et al., 2007, 2010; Guan, 2011; Peng, 2016; Fredericks, 2017; Obrist-Farner and Yang, 
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2017; Zheng and Yang, submitted manuscript), the strata in NTRL and TDG are 

interpreted as being deposited in one half-graben, named as Tarlong-Taodonggou half 

graben. The basin geometry of ZBS and DLK section is uncertain and is speculated to be 

similar to that of Tarlong-Taodonggou half-graben (Yang et al., 2010; Zheng and Yang, 

submitted manuscript).   

 

 

 

Figure 1. Tectonic map of study areas. This map shows the locations of Bogda Mountains 

and the eastern North Tianshan Suture, and the measured sections. Modified from Xia et 

al. (2004). 
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Figure 2. Geological maps of Zhaobishan (A), Tarlong-Taodonggou (B), and Dalongkou 

(C) areas. This map shows names and locations (red lines) of measured sections. 

Modified from Yang et al. (2010), Obrist-Farner and Yang (2015), and Fredericks (2017). 

 

 

Three depositional environments, including fluvial, delta, and littoral-beach 

environments, have been interpreted within WTG low-order cycle based on the lithology, 

sedimentary texture and structures, paleontological information, stratal geometry and 

boundary relationships (Yang et al., 2007, 2010). The fluvial environments are 

subdivided into braided stream and meandering stream environments. The Braided 

stream environment is identified by an upward-fining succession of clast-supported 

conglomerate and/or sandstone on a low-relief erosional base (Figure 4). The meandering 

stream environment is recognized by an upward-fining succession of channel-fill  
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Figure 3. Chrono-, litho-, and cyclostratigraphy of upper Carboniferous-Middle Triassic 

strata in Bogda Mountains. Wavy lines are major unconformities; dashed lines 

disconformity; and hachured areas missing strata. The studied Wutonggou low-order 

cycle is shown in the shaded box. Modified from Yang et al. (2010) and Obrist and Yang 

(2015). 

 
 

conglomerate and/or sandstone on a high-relief erosional base, highly cross-bedded point 

bar sandstones, and overbank sandstone, siltstone and shale (Figure 4). The deltaic 

environment is interpreted by the exposure of the upward-coarsening and thickening 

succession of prodeltaic shale, siltstone, sandstone and delta front siltstone, sandstone 

and/or conglomerate in the lower part of the succession, and distributary channel-fill and 

interdistributary deltaplain sandstone, conglomerate, mudrock, and paleosol in the upper 
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part (Figure 4). The littoral-beach environment is identified by the succession of laterally 

persistent sandstone and conglomerate, sublittoral shale, and overlying lakeplain muddy 

and sandy paleosols with high-angle cross-beddings (Figure 4). Transgressive lag 

deposits are common in WTG low-order cycle (Yang et al., 2007, 2010). The materials of 

the transgressive lags are derived from shore erosion of the underlying strata during lake 

transgression, characterizing by coarse-gravelly sandstone and conglomerate with 

common rip-up clasts. Some littoral-beach deposits are deficient with transgressive lag; 

the absence of transgressive lag may suggest the low-energy of the transgression (Yang et 

al., 2010).   

 

3. DATA AND METHODOLOGY 

 

 Fifty-two fine- to very coarse-sized sandstones are point counted to record their 

compositional and textural characteristics. Three hundred framework grains in each thin 

section are documented with their grain type, size, and roundness using Gazzi-

Dickinson’s methods (Gazzi, 1966; Dickinson, 1970) and Suttner’s method (Suttner, 

1974). Gazzi-Dickinson’s method counts sand-sized mineral crystals within large lithic 

fragments as individual mineral grains, whereas Suttner’s method counts the mineral 

crystals as lithic fragments. In this study, the grain composition are recorded follows 

Gazzi-Dickinson’s method to avoid the errors caused by grain size effects (Ingersoll, 

1984); the grain textures are documented followed Suttner’s method. Details of the grain 

composition are discussed in Zheng and Yang (Submitted Manuscript). Matrix and 
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Figure 4. Sedimentary facies and descriptions. The facies include braided stream, 

meandering stream, deltaic, and littoral-beach successions from lower to upper column. 
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cements are recorded with their mineralogical type. The classification of sandstones 

follows Dott’s (1964) scheme based on the grain composition and content of matrix. The 

grain size data in this study are in ϕ scale to overcome the problems caused by the great 

differences of each size class in the millimeter scale. The measurement of grain sizes of 

grains in thin sections underestimates the real values by 0.2023 ϕ because the spherical 

grains are observed in the two-dimensional view (Johnson, 1994). In this work, the raw 

grain-size data are used without corrections.  

The grain-size statistical parameters, including the graphic mean (Mz), inclusive 

graphic standard deviation (σi), inclusive graphic skewness (SKi), and graphic kurtosis 

(KG) are calculated using formulas in Folk and Ward (1957). Verbal terms of the grain 

sizes, sorting, skewness, and kurtosis are adapted from Udden-Wentworth grain-size 

scale (Udden-Wentworth, 1922) and verbal limits in Folk and Ward (1957). The grain 

roundness is estimated using the visual chart of roundness in Krumbein and Sloss (1951). 

The textural maturity and the associated textural inversion is defined on the basis of the 

matrix contents and degrees of sorting and roundness (Folk, 1951). As the degree of 

sorting of Folk and Ward (1957) has a better correlation with the standard deviation than 

Trask’s (1932) sorting degree (Friedman, 1962), the former sorting degree is used to 

define textural maturity instead of the latter one.  

 

4. RESULTS 

 

 Sandstones of Wutonggou low-order cycle are divided into three petrofacies on 

the basis of their relative content of quartz, feldspar, and lithic fragments (Figure 5; see 
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Zheng and Yang, submitted manuscript for details). The textural characteristics of each 

petrofacies, including the graphic mean, inclusive standard deviation, graphic skewness 

and kurtosis, matrix content, degree of roundness, and textural maturity and the 

associated textural inversion, are documented. In addition, each petrofacies is further 

subdivided in terms of their depositional environments to present the textural 

characteristics of various sandstone lithofacies. 

 

 

 

Figure 5. QFL ternary diagram and petrofacies. Petrofacies 1 has highest quartz content; 

petrofacies 2 has intermediate quartz content; petrofacies 3 has lowest quartz content. 

PF1, petrofacies 1; PF2, petrofacies 2; PF3, petrofacies 3. 

 

 

4.1. TEXTURAL CHARACTERISTICS OF PETROFACIES 1 

 Petrofacies 1 (PF1) has a mean composition of Q51F30L19 and occurs in eleven 

lithic arenites, nine feldspathic arenites, and one lithic wacke (Figure 5; Table 1). PF1 has 

an average graphic mean (Mz) of 0.88, corresponding to the grain size of coarse-sized, 

and includes three fine-, nine medium-, six coarse-, and three very coarse-sized 
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sandstones. PF1 is overall moderately well sorted with an average inclusive graphic 

standard deviation (σi) of 0.60 and is subdivided into eight well sorted-, eight moderately 

well sorted-, four moderately sorted-, and one poorly sorted-sandstones. PF1 is overall 

positively skewed with an average inclusive graphic skewness of 0.20 and contains one 

very negatively skewed-, one negatively skewed-, ten nearly symmetrically-, six 

positively skewed-, and two very positively skewed-sandstones. PF1 has an average 

graphic kurtosis of 1.34, corresponding to the degree of leptokurtic, and includes eighteen 

leptokurtic and three very leptokurtic sandstones. The average matrix content of PF1 is 

1.47%, of which one sandstone contains matrix more than 5% and the rest contain matrix 

less than 5%. Two angular-subangular, seventeen subangular-subrounded, and two 

subrounded-rounded sandstones occur in PF1, of which the framework grains are overall 

subangular-subrounded with an average roundness of 0.39. PF1 has one immature, five 

submature, and fifteen mature sandstones and includes three texturally inverted 

submature or immature sandstones (Figures. 6, 7, 8; Table 1). 

 PF1 occurs in the lower 420 m, upper 220 m, and middle 50 m of Zhaobishan 

(ZBS), North Tarlong (NTRL), and Taodonggou (TDG) sections, respectively (Figures. 

6, 7, 8). PF1 includes twelve littoral/beach, eight deltaic, and one fluvial sandstone 

(Figures. 6, 7, 8; Table 1). The deltaic sandstones have the average graphic mean, 

inclusive graphic standard deviation, inclusive graphic skewness, and graphic kurtosis of 

0.78, 0.66, 0.39, and 1.40, respectively. The average matrix content and the average 

roundness is 1.63% and 0.42, respectively. Deltaic sandstones of PF1 include one 

immature, three submature, and four mature sandstones and three of them are texturally 

inverted. The littoral/beach sandstones have the average graphic mean, inclusive graphic 
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standard deviation, inclusive graphic skewness, and graphic kurtosis of 1.15, 0.58, 0.06, 

and 1.32, respectively. The average matrix content and the average roundness is 1.36% 

and 0.37, respectively. Littoral/beach sandstones of PF1 include two submature and ten 

mature sandstones and none of them is texturally inverted. The only one fluvial sandstone 

of PF1 has graphic mean, inclusive graphic standard deviation, inclusive graphic 

skewness, and graphic kurtosis of 0.97, 0.52, 0.25, and 1.26, respectively. This fluvial 

sandstone is mature and includes 1.54% matrix with the roundness of 0.37 (Table 1).  

 

 4.2. TEXTURAL CHARACTERISTICS OF PETROFACIES 2 

 Petrofacies 2 (PF2) has a mean composition of Q28F36L36 and occurs in seven 

litharenites and two feldspathic arenites (Figure 5; Table 2). PF2 has an average graphic 

mean (Mz) of 0.96, corresponding to the coarse-sized, and includes six medium-, two 

coarse-, and one very coarse-sized sandstones. PF2 is overall moderately well sorted with 

an average inclusive graphic standard deviation (σi) of 0.51 and contains five well sorted- 

and four moderately well sorted-sandstones. PF2 is overall nearly symmetrical-positively 

skewed with an average inclusive graphic skewness of 0.88 and includes seven nearly 

symmetrically- and two positively skewed-sandstones. PF2 has an average graphic 

kurtosis of 1.38, corresponding to the degree of leptokurtic, and includes eighteen 

leptokurtic and one very leptokurtic sandstones. The average matrix content of PF2 is 

0.29%, of which all sandstones contain matrix less than 5%. One angular-subangular and 

eight subangualr-subrounded sandstones occur in PF2, of which the framework grains are
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Table 1. Compositional and textural characteristics of petrofacies 1 

Sample 

# 
Section Q F L Mz SD Ski KG Matrix% Roundness 

Textural  

Maturity 

Textural  

Inversion 

PF1-Littoral/beach facies 

S15-31 ZBS 39 32 29 0.76 0.58 -0.08 1.29 2.00 0.38 Mature No 

S15-35 ZBS 40 39 21 1.12 0.50 0.12 1.28 0.00 0.29 Mature No 

S15-36 ZBS 34 24 41 -0.11 0.78 -0.73 1.26 3.21 0.44 Submature No 

S15-38 ZBS 37 31 32 0.83 0.91 0.19 1.21 3.00 0.38 Submature No 

S15-41 ZBS 29 49 23 1.21 0.49 -0.04 1.38 0.30 0.33 Mature No 

S15-45 ZBS 46 21 34 0.01 0.51 0.82 1.37 0.00 0.45 Mature No 

S15-49 ZBS 36 43 20 1.28 0.48 -0.02 1.58 1.00 0.31 Mature No 

S15-51 ZBS 24 37 39 1.11 0.52 0.18 1.28 0.00 0.48 Mature No 

NTR39-17 NTRL 15 34 50 1.15 0.48 0.05 1.28 4.00 0.37 Mature No 

TD128 TDG 36 37 27 2.12 0.57 0.19 1.28 2.02 0.28 Mature No 

TD131 TDG 25 42 34 2.33 0.63 0.02 1.34 0.75 0.35 Mature No 

TD137 TDG 38 36 26 2.00 0.49 0.01 1.24 0.00 0.32 Mature No 

Ave  33 35 31 1.15 0.58 0.06 1.32 1.36 0.37   

PF1-Deltaic facies 

S15-33 ZBS 30 13 57 -0.95 0.89 -0.15 1.14 0.00 0.50 Submature Yes 

S15-37 ZBS 32 17 51 1.30 0.45 2.60 1.42 3.00 0.42 Mature No 

S15-47 ZBS 36 46 18 1.95 0.46 0.04 1.40 0.00 0.42 Mature No 

S15-48 ZBS 34 7 59 -0.52 1.05 0.21 1.57 0.00 0.54 Submature Yes 

S15-52 ZBS 29 23 48 0.04 0.87 0.33 1.44 0.00 0.45 Submature No 

GW9-19 NTRL 34 23 43 0.64 0.59 0.06 1.51 2.00 0.35 Mature No 

NTR36-17 NTRL 33 27 40 1.77 0.50 -0.03 1.43 2.00 0.30 Mature No 

NTR37-17 NTRL 43 29 27 1.98 0.44 0.09 1.27 6.00 0.35 Immature Yes 

Ave  34 23 43 0.78 0.66 0.39 1.40 1.63 0.42   

PF1-Fluvial facies 

S15-40 ZBS 41 37 22 0.97 0.52 0.25 1.26 1.54 0.38 Mature No 

             

Overall  

average 
  33 30 37 1.06 0.59 0.28 1.36 1.40 0.39     
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Figure 6. Simplified stratigraphic column of ZBS section showing compositions and 

textures of sandstones of Wutonggou low-order cycle. The triangle arrows indicate the 

petrofacies, and the color labeled sample numbers represent different lithofacies. In the 

last section, the texturally inverted sandstones are in orange color, and the normal 

sandstones are in blue color. PF1, petrofacies 1; PF2, petrofacies 2; PF3, petrofacies 3; 

L/B, littoral/beach; D, delta; Fl, fluvial; Fs, fine-sized; M, medium-sized; C, coarser-

sized; VC, very coarse-sized; W, well sorted; MW, moderately well sorted; M, 

moderately sorted; P, poorly sorted; N, negatively skewed; S, symmetrical; Ps, positively 

skewed; Pk, platykurtic; Mk, mesokurtic; Lk, leptokurtic; A-SA, angular-subangualr; SA-

SR, subangualr-subrounded; SR-R, subrouned-rounded; I, immature; Sub, submature; M, 

mature; Sp, supermature. 
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Figure 7. Simplified stratigraphic column of NTRL section showing compositions and 

textures of sandstones of Wutonggou low-order cycle. See figure 6 for legends and 

explanations of the abbreviations. 

 

 

overall subangular-rounded with an average roundness of 0.35. All sandstones occur in 

PF2 are mature without textural inversion (Figure 7; Table 2).  

 PF2 occurs in the upper 350 m of Zhaobishan section and includes three 

littoral/beach and six fluvial sandstones (Figure 7; Table 2). The littoral/beach sandstones 
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have average graphic mean, inclusive graphic standard deviation, inclusive graphic 

skewness, and graphic kurtosis of 1.01, 0.56, 0.10, and 1.49, respectively. The average 

matrix content and the average roundness are 0.57% and 0.37, respectively. All these 

three sandstones are mature and none of them is texturally inverted. The fluvial 

sandstones have average graphic mean, inclusive graphic standard deviation, inclusive 

graphic skewness, and graphic kurtosis of 0.94, 0.49, 0.07, and 1.32, respectively. The 

average matrix content and the average roundness are 0.15% and 0.34, respectively. 

Similarly, all fluvial sandstones of PF2 are mature and none of them is texturally inverted 

(Figure 7; Table 2).  

 

 

 

Figure 8. Simplified stratigraphic column of TDG section showing compositions and 

textures of sandstones of Wutonggou low-order cycle. See figure 6 for legends and 

explanations of the abbreviations. * samples are conglomerates, of which the textural 

characteristics are not discussed in this study. 
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4.3. TEXTURAL CHARACTERISTICS OF PETROFACIES 3 

 Petrofacies 3 (PF3) has a mean composition of Q8F13L79 and occurs in twenty-one 

litharenites and one lithic wackes (Figure 5; Table 3). PF3 has an average graphic mean 

(Mz) of 0.41, corresponding to the grain size of coarse-sized, and includes six very 

coarse-sized, twelve coarse-sized, three medium-sized, and one fine-sized sandstones. 

PF3 is overall moderately sorted with an average inclusive standard deviation of 0.77 and 

includes three well sorted-, six moderately well sorted-, nine moderately sorted-, and four 

poorly sorted-sandstones. PF3 is overall positively skewed with an average graphic 

skewness of 0.16 and contains two very negatively skewed-, one negatively skewed-, six 

nearly symmetrical-, nine positively skewed-, and four very positively skewed 

sandstones. PF3 is overall leptokurtic with an average graphic kurtosis of 1.18 and 

includes one platykurtic, five mesokurtic, fourteen leptokurtic, one very leptokurtic, and 

one extremely leptokurtic sandstones. The average matrix content of PF3 is 1.13%, of 

which one sandstone contains matrix more than 5%, and the rest contain matrix less than 

5%. One angular-subangular, seventeen subangular-subrounded, and four subrounded-

rounded sandstones occur in PF3, of which the framework grains are overall subangular-

subrounded with an average roundness of 0.44. PF3 is dominant with submature 

sandstones and consists of one immature, thirteen submature, six mature, and two 

supermature samples, of which eleven sandstones are texturally inverted (Figures. 7, 8, 9; 

Table 3).   

PF3 occurs in the lower 600 m of North Tarlong, lower 200 m and upper 90 m of 

Taodonggou, and the entire Dalongkou sections. PF3 includes seven deltaic, ten 

littoral/beach, and five fluvial samples. The deltaic samples have average graphic mean, 
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inclusive graphic standard deviation, inclusive graphic skewness, and graphic kurtosis of 

0.37, 0.59, 0.24, and 1.54, respectively. The average matrix content and the average 

roundness are 1.83% and 0.47, respectively. These samples have one immature, two 

submature, three mature, and one supermature sandstones, and four of the sandstones are 

texturally inverted. The littoral/beach samples have average graphic mean, inclusive 

graphic standard deviation, inclusive graphic skewness, and graphic kurtosis of 0.57, 

0.89, 0.16, and 1.09, respectively. The average matrix content and the average roundness 

are 0.72% and 0.42, respectively. The littoral/beach samples of PF3 consist nine 

submature and one mature sandstones, and one of them is texturally inverted. The fluvial 

samples have average graphic mean, inclusive graphic standard deviation, inclusive 

graphic skewness, and graphic kurtosis of 0.15, 0.79, 0.05, and 1.24, respectively. The 

average matrix content and the average roundness are 1.42% and 0.45, respectively. This 

lithofacies has two submature, two mature, and one supermature sandstones, and none of 

them is texturally inverted (Figures. 7, 8, 9; Table 3).  

 

 

 

Figure 9. Simplified stratigraphic column of DLK section showing compositions and 

textures of sandstones of Wutonggou low-order cycle. See figure 6 for legends and 

explanations of the abbreviations.
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Table 2. Compositional and textural characteristics of petrofacies 2 

Sample 

# 
Section Q F L Mz SD Ski KG Matrix% Roundness 

Textural  

Maturity 

Textural  

Inversion 

PF2-Littoral/beach lithofacies 

S15-55 ZBS 26 30 44 1.03 0.55 0.21 1.27 0.00 0.38 Mature No 

S15-59 ZBS 18 43 39 0.60 0.53 0.10 1.78 1.00 0.44 Mature No 

S18-7 ZBS 15 37 48 1.38 0.60 0.00 1.43 0.70 0.29 Mature No 

Ave  20 37 44 1.01 0.56 0.10 1.49 0.57 0.37   

PF2-Fluvial lithofacies 

S15-53 ZBS 14 43 43 1.00 0.50 0.09 1.28 0.00 0.38 Mature No 

S18-1 ZBS 26 39 35 0.83 0.46 0.09 1.44 0.00 0.34 Mature No 

S18-2 ZBS 20 39 41 1.22 0.50 0.05 1.29 0.20 0.33 Mature No 

S18-3 ZBS 23 17 59 -0.13 0.46 0.12 1.45 0.00 0.35 Mature No 

S18-5 ZBS 25 33 41 1.11 0.46 0.06 1.22 0.00 0.32 Mature No 

S18-6 ZBS 19 39 42 1.59 0.57 -0.01 1.28 0.70 0.31 Mature No 

Ave  21 35 44 0.94 0.49 0.07 1.32 0.15 0.34   

             

Overall 

average 
  21 35 44 0.94 0.49 0.07 1.32 0.15 0.34     
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Table 3. Compositional and textural characteristics of petrofacies 3 

Sample # Section Q F L Mz SD Ski KG Matrix% Roundness 
Textural  

Maturity 

Textural  

Inversion 

PF3-Littoral/beach lithofacies 

gw9-9 NTRL 6 14 81 0.02 0.80 0.84 1.12 0.00 0.45 Submature No 

GW9-15 NTRL 1 11 88 0.12 0.77 0.14 1.15 2.00 0.49 Submature No 

GW9-18 NTRL 4 28 68 1.06 0.67 0.24 1.22 0.68 0.39 Mature No 

TD5-17 TDG 0 10 90 2.33 0.73 0.01 1.18 0.00 0.46 Submature No 

TD151 TDG 0 5 94 -0.10 1.15 -0.34 0.88 0.00 0.36 Submature No 

TD157 TDG 4 19 76 1.25 0.88 -0.06 1.19 4.50 0.30 Submature No 

TD162 TDG 4 17 78 0.86 1.07 -0.07 1.02 0.00 0.36 Submature No 

TD174 TDG 2 9 89 -0.41 0.78 0.06 1.15 0.00 0.35 Submature No 

TD185 TDG 7 20 72 0.60 0.85 0.17 0.97 0.00 0.41 Submature No 

D1-17 DLK 9 21 70 -0.04 1.18 0.58 1.01 0.00 0.59 Submature Yes 

Ave  4 15 81 0.57 0.89 0.16 1.09 0.72 0.42   

PF3-Deltaic lithofacies 

TD168 TDG 5 21 75 0.32 0.63 0.26 1.15 7.80 0.42 Immature Yes 

D4-17 DLK 6 17 77 0.31 0.68 0.13 1.07 2.00 0.56 Mature Yes 

SD12-16 DLK 3 16 81 0.84 0.44 0.28 1.69 0.00 0.51 Supermature No 

SD12-14 DLK 11 21 69 0.55 0.39 0.23 3.09 0.00 0.45 Mature No 

D8-17 DLK 7 6 87 -0.53 0.72 0.05 1.08 0.00 0.46 Submature No 

D9-17 DLK 7 9 84 -0.02 0.78 0.56 1.44 0.00 0.50 Submature Yes 

D10-17 DLK 4 35 61 1.12 0.50 0.15 1.24 3.00 0.42 Mature No 

Ave  6 18 76 0.37 0.59 0.24 1.54 1.83 0.47   

PF3-Fluvial lithofacies 

gw9-10 NTRL 4 32 64 0.67 1.27 -0.38 1.27 0.00 0.39 Submature No 

gw9-12 NTRL 2 3 95 0.07 0.59 0.75 1.34 0.00 0.43 Mature No 

gw9-7 NTRL 2 1 97 0.23 0.68 0.20 1.27 4.14 0.46 Mature No 

gw9-14 NTRL 4 16 80 0.59 0.80 -0.26 1.16 1.97 0.48 Submature No 

GW9-17 NTRL 2 6 92 -0.79 0.62 -0.08 1.17 1.00 0.51 Supermature No 

Ave  3 12 86 0.15 0.79 0.05 1.24 1.42 0.45   

Overall 
Average 

  5 15 80 0.29 0.75 0.16 1.32 1.26 0.46     
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5. CONTROLS ON TEXTURE CHARACTERISTICS 

 

5.1. PROVENANCE 

 Three petrofacies are differentiated on the basis of their grain compositions that 

were derived from different provenance, including the source lithology and the locations. 

Both petrofacies 1 (PF1) and petrofacies 2 (PF2) are interpreted as derived from the 

eastern North Tianshan Suture (ENTS), about 100 km south of the studied areas. 

Moreover, the source lithologies of PF1 and PF2 were slightly different that the main 

source lithology of PF1 are rhyolite, chert, and quartzite, whereas the source lithology of 

PF2 are dominated by rhyolite and granite, and subordinate with chert and quartzite 

(Zheng and Yang, submitted manuscript).  

 The textural characteristics of PF1 and PF2, similar to their grain compositions, 

show slight differences. Overall, sandstones occur in PF1 and PF2 are mainly coarse- to 

medium-sized, moderately well sorted, and leptokurtic. Moreover, the matrix contents of 

PF1 and PF2 are low and the framework grains are subangular to subrounded. Despite the 

great similarities between PF1 and PF2, differences in the grain size distribution and 

textural maturity exist. PF1 has a broad grain size ranging from -0.95 to 2.33, whereas the 

sizes of PF2 range from -0.13 to 1.59. Moreover, the inclusive standard deviation of PF1 

ranges from 0.44 to 1.05, of which the range is also broader than the range of PF2, from 

0.46 to 0.60 (Figure 10). Seventy percent of the sandstones of PF1 are mature, whereas 

all sandstones of PF2 are mature. These textural characteristics suggest that sandstones of 

PF1 are relatively worse sorted and less mature than those of PF2. The differences in 

textural characteristics were likely caused by their different source lithologies. Source 
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rocks of PF1 were the mixtures of rhyolite, granite, chert, quartzite, whereas the source 

rocks of PF2 were uniform and dominated by rhyolites and granites. As rhyolites and 

granites, and chert and quartzite were derived from the volcanic arc and the accretionary 

wedge and trench, respectively, these grains might have different original grain sizes. In 

addition, these grains might also have different degrees of resistance during 

transportation that chert grains were likely more stable than the volcanic and 

metamorphic lithic fragments (Cameron and Blatt, 1971; Abbott and Peterson, 1978). As 

a result, PF1 shows more variations in grain sizes and sorting degrees and has lower 

textural maturity than PF2.   

 In contrast to PF1 and PF2, the textural characteristics of sandstones of PF3 are 

different. The average graphic mean of PF3 is 0.41, indicating that PF3 has an overall 

coarser grain size than PF1 and PF2. Moreover, the inclusive standard deviation of PF3 

ranges from 0.39 (well sorted) to 1.27 (poorly sorted) with an average value of 0.77 and 

suggests that PF3 has an overall worse sorting degree and a wider range of sorting degree 

than PF1 and PF2 (Figure 10). The average roundness of PF3 is 0.46, about 0.1 higher 

than the roundness of PF1 and PF2, indicating that the degree of roundness of PF3 is 

better than PF1 and PF2. Moreover, the textural maturity of PF3 is lower than the 

maturities of PF1 and PF2 that only 37% sandstones of PF3 are mature.  

The results indicate that the provenance not only controlled grain compositions, 

but also greatly influenced textural characteristics. The provenance of PF3 is interpreted 

as including the volcanic, metamorphic and sedimentary rocks from both volcanic arc, 

accretionary wedge and trench of the eastern North Tianshan Suture and rift shoulders 
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Figure 10. Box and whisker plot of graphic means and inclusive standard deviations of 

PF1, PF2, and PF3. Mz, graphic mean; SD, inclusive standard deviation. 

 

 

(Zheng and Yang, submitted manuscript). In contrast, rocks of the eastern North 

Tianshan Suture were the only provenance of PF1 and PF2. Therefore, PF3 has not only 

more lithic fragments but also broader ranges of grain sizes and sorting degrees than PF1 

and PF2. Local rock fragments from the rift shoulders without many transportations, such 

as the rip-up mud clasts, might be the origins of the coarse-sized clasts. In addition, as the 

greater Turpan-Junggar basin was a partitioned rift basin with abundant rift shoulders and 

complex drainage systems that local lithic fragments might experience long 

transportations on the gentle ramps of half-grabens within the rift basin (Soreghan and 
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Cohen, 1993; Obrist-Farner and Yang, 2017), thus to form the fine-sized and rounded 

grains.   

 

5.2. DEPOSITIONAL ENVIRONMENTS 

 To discuss the influences of depositional environments, textural characteristics, 

including sorting degree, skewness, and textural maturity, of littoral/beach, deltaic, and 

fluvial sandstones are compared. As the provenance greatly affects the textural 

characteristics, only sedimentary facies belong to the same petrofacies are compared.    

The littoral/beach, deltaic, and fluvial sandstones show limited variations in 

sorting degrees, skewness, and textural maturity. PF1 has eight deltaic, twelve 

littoral/beach, and one fluvial sandstones. As the fluvial sandstone is not statistically 

sufficient, it is not compared with other sandstone lithofacies. Both littoral/beach and 

deltaic facies are moderately well sorted and positively skewed, indicating these two 

facies cannot be distinguished by sorting degree and skewness (Figure 11). Moreover, 

these two facies are mainly dominated by submature-mature sandstones (Table 1). 

Similarly, the littoral/beach and fluvial sandstones of PF2 also have limited variations in 

sorting degrees, skewness, and textural maturity that these facies are moderately well 

sorted, positively skewed, and mature (Figure 12; Table 2). 

In contrary to PF1 and PF2, the textural characteristics of various sedimentary 

facies of PF3 are more complex. Among the three facies, deltaic sandstones are 

characterized by highest sorting degree that they are moderately well sorted, whereas 

littoral/beach and fluvial sandstones are moderately sorted (Figure 13; Table 3). 
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Figure 11. Bivariate plot of standard deviation versus skewness of petrofacies 1 

sandstones. This diagram shows that littoral/beach, deltaic and fluvial sandstones of 

petrofacies 1 have similar sorting degree and skewness. 

 
 

 

Figure 12. Bivariate plot of standard deviation versus skewness of petrofacies 2 

sandstones. This diagram shows that littoral/beach and fluvial sandstones of petrofacies 2 

have similar sorting degree and skewness. 
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In addition, littoral/beach facies are mainly submature sandstones, whereas the 

deltaic and fluvial facies include immature to supermature sandstones (Table 3). The 

overall textural maturities of deltaic and fluvial facies are relatively higher than that of 

littoral/beach facies.  

 

 

 

Figure 13. Bivariate plot of standard deviation versus skewness of petrofacies 3 

sandstones. This diagram shows that deltaic sandstones of petrofacies 3 are relatively 

better sorted than littoral/beach sandstones, and fluvial sandstones have variable sorting 

degrees. 

 

 

Previous studies demonstrate that littoral/beach sandstones in marine setting are 

typically well sorted, positively skewed, and mature resulting from forth and back 

transportation and high input energy (Folk, 1951; Folk and Ward, 1957; Friedman, 1962, 

1967). However, as the littoral/beach sandstones in this study are collected from 

nonmarine environment, the reworking process produced by tides are absent. Moreover, 

the directions of waves are greatly influenced by regional factors thus may form 
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sandstones with distinct textural characteristics in different positions of a lake. Finally, as 

the frequent lake expansion and contraction in the greater Turpan-Junggar basin (Yang et 

al., 2007, 2010), the depositional environments may differ even within a thin interval. 

The depositional environments are interpreted with their broad terms, such as the 

littoral/beach (Yang et al., 2007, 2010), but detailed sub-environments are difficult to be 

obtained by the field interpretations. These sub-environments are necessary for detailed 

textural analysis. For example, backshore and upper shoreface are both interpreted as 

littoral/beach environment, but depositional processes of backshore and uppershore facies 

are caused by waves and tides, respectively. The result of this study indicates that textural 

characteristics of sandstones in nonmarine fluvial-lacustrine environments are not good 

criteria to distinguish different sedimentary facies.     

 

6. CONCLUSIONS 

 

Sandstones of the upper Permian-lowermost Triassic Wutonggou low-order cycle 

in Bogda Mountains, NW China are classified as three petrofacies, of which the textural 

characteristics are documented. Petrofacies 1 is overall coarse-sized, moderately well 

sorted, and submature-mature. Textural characteristics of petrofacies 2 are similar to 

petrofacies 1, but are slightly finer, better sorted, and more mature. In contrast to 

petrofacies 1 and petrofacies 2, petrofacies 3 is the coarsest-sized with a broad grain size 

range, worst sorted, and least mature. Variations of textural characteristics of petrofacies 

1, 2, and 3 suggest that provenance, including source lithology and location, is a 

dominant factor in controlling sandstone textures. Moreover, each petrofacies is 
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subdivided into littoral/beach, deltaic, and fluvial sedimentary facies. Sandstones of 

different facies do not show great differences in sorting, skewness, and textural 

maturities, and thus are unlikely to be distinguished on the basis of their textural 

characteristics. The results of this study present the textural characteristics of the ancient 

fluvial-lacustrine sandstones and discuss the possible controlling factors of the sandstone 

textures. 
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SECTION 

 

2. CONCLUSIONS 

 

 The integrated petrographic and field studies of sandstones of Wutonggou low-

order cycle, exposed in the northern and southern foothills of Bogda Moutains, NW 

China provide clues to interpret the provenance, the unroofing history of the eastern 

North Tianshan Suture, and investigate the influences of provenance and depositional 

environments on sandstone textures. Based on the stratigraphic distribution of the 

identified three petrofacies, conglomerate composition, and paleocurrent direction, the 

provenance of sandstones in Bogda Mountains are interpreted. The provenance of 

Zhaobishan (ZBS) section changed from the undissected volcanic arc, accretionary 

wedge, and trench to dominat transitional volcanic arc. The provenance of North Tarlong 

(NTRL) and Taodonggou (TDG) sections changed from the undissected volcanic arc and 

rift shoulders to the transitional volcanic arc, accretionary wedge, and trench. The 

provenance of Dalongkou (DLK) section unchanged and was the undissected volcanic 

arc and rift shoulders. The differences in petrofacies distributions in ZBS and NTRL-

TDG sections suggest two unroofing trends existed in the eastern North Tianshan Suture 

(ENTS). ENTS was an amalgamated complex of volcanic arc, accretionary wedge, and 

trench with spatial and temporal variations in lithology during late Permian-earliest 

Triassic.  

 The textural characteristics of the three petrofacies are documented that 

petrofacies 2 is slightly better sorted and more mature than petrofacies 1, and petrofacies 
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3 is coarser in grain size, worse sorted and less mature than petrofacies 1 and 2. The 

provenance greatly influence the textural characteristics of these sandstones. Moreover, 

the three petrofacies are subdivided into littoral/beach, deltaic, and fluvial sedimentary 

facies. These facies show limited variations in sorting, skewness, and textural maturity, 

thus they are difficult to be distinguished by textural characteristics.  

 This work demonstrates that sandstones of ancient rift basins bordered by suture 

zones are derived from both suture zones and rift basins. In addition, this work provides a 

detailed provenance study to reconstruct a key element of one of the largest accretionary 

orogenic belts on Earth and to understand the nature and unroofing process of the ancient 

suture zone that shows great heterogeneity in lithology spatially and temporally. Finally, 

this work indicates that provenance is the major control on composition and textural of 

sandstones, and the influence of depositional environments for fluvial-lacustrine 

sandstones is likely limited. The results of this work can serve as an analogy for 

provenance studies of other suture zones and enrich our understanding of the controlling 

factors on sandstones.  
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