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ABSTRACT 

Differential probe is wildly used in the signal integrity area to do the accuracy 

signal measurement in frequency domain or time domain. Comparing with traditional 

SMA connector measurement, the probe measurement has several advantages such as the 

high flexibility and measurement efficiency. Nevertheless, the probe has some 

disadvantages such as multiple design patterns and the difficulty of fast landing. In this 

thesis, a unified probe landing pattern is provided to solve the con of probes and a probe 

testing fixture is designed for characterize probe and extract the probe model. 

In the first portion, a unified differential probe launching pattern is proposed for 

universal usage of different types of differential probes. Full wave-modeling of the 

transition with the unified probe launching pattern is developed for optimization of 

dimensions. For the unified probe launching pattern evaluation, 16-layer test vehicles 

were designed with engineered transitions for performance up to 40 GHz.  Four-port 

measurement results of different differential pairs from the test vehicle are used as the 2x 

thru reference and DUT for de-embedding. By using GSSG probe, accurate DK and DF 

along with frequency can be extracted. 

In the second portion, a probe testing fixture is designed based on the unified 

probe launch pattern design to characterize the performance of probe based on the smart 

fixture de-embedding method. The full wave model is extracted from the fixture design to 

server future probing measurement design and the circuit model is extracted to study the 

effectiveness from the specific portion behavior. 
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1. INTRODUCTION 

Micro-probes [20-21] are increasingly more ubiquitous in high-frequency 

measurements for characterization of accuracy differential signal measurement. Most 

commercial differential probes need a unique probe launching footprint, though the 

dimensions of different launching patterns are very similar. Therefore, to improve the 

efficiency and accuracy of probe measurements, a unified probe launching pattern is 

proposed to fit most commercial RF probes. A test vehicle with the unified probe 

launching pad is designed for a differential signal measurement and print circuit board 

material extraction. 

In this paper, two kinds of pitch size unified probe launch patterns are studied, 

i.e., 1 mm and 0.5 mm pitch. For the both pitch sizes of the unified probe launch patterns, 

full wave models of the launching pattern are developed for several kinds of probe model 

[1-3], Signal-Signal (SS) probe, Signal-Ground-Signal (GSG) probe, and, Ground-Signal-

Signal-Ground (GSSG) probe [5].  All of the probes are landed on the unified probe 

launch pattern to get the insertion loss of the differential pairs. 

For further probe measurements and the unified probe launching pattern 

evaluation, two test vehicles with the two pitch sizes of unified probe launching pattern 

are designed. Both of the designed test vehicles are 16-layer boards with differential pairs 

located in Layer 1, Layer 10, Layer 12 and Layer 14 with three different lengths on each 

layer of 2 inches, 5 inches and 10 inches.  To ensure good quality of the fixture for de-

embedding [4], a full wave model is developed to optimize the transition [10], which 

includes the studied probe, the unified launching pattern and the differential pairs. For the 
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0.5mm pitch unified probe launch pattern, the final optimized transition has adequate 

performance up to 40 GHz.  The probe landing is studied based on the 0.5 mm pitch 

unified probe launch pattern full wave model.  

The test vehicle with 1mm pitch unified probe launch pattern is manufactured and 

measured for the system characterization and material extraction.  Four-port 

measurement results of the different pairs are used as the 2x thru reference and DUT 

respectively for de-embedding [7-9]. Then the results after de-embedding are used for 

extracting the DK and DF [6-7] of the board. The test vehicle with 0.5 mm pitch unified 

probe launch pattern is designed to add 2.92 mm connector measurement section as a 

golden standard to verify the probe measurement results.    
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2. UNIFIED PROBE LAUNCH PATTERN – 1MM PITCH 

In this section, the 1mm pitch unified probe launch pattern design is detailed in 

four portions, the probe launch pattern design, the full wave model of the unified probe 

launch pattern transition optimization, the test vehicle with the unified probe launch 

pattern design and measurement, and, the printed circuit board DK and DF extraction.  

2.1. UNIFIED PROBE LAUNCH PATTERN DESIGN 

Due to more and more microprobes being used in the RF measurement, a unified 

probe launch pattern is advantageous for accommodating different commercial 

microprobes. For increasing the utility of the differential probe launch pattern, three 

different 1 mm probe pitch launch patterns are studied as shown in Figure 2.1.  

  

  

Figure 2.1. Differential probe launch patterns. 

 

From the Figure 2.1, three basic probe designs are considered, i.e., signal-signal 

(SS) probe, signal-ground-signal (SGS) probe and ground-signal-signal-ground (GSSG) 
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probe. For each probe design, the pitch size of signal pins is the same 1 mm, and the 

difference of the three probe launch patterns is the ground pin landing location. 

Considering whether the probe has the ground pin and the position of the ground pin, a 

U-shape ground is provided for guaranteeing that any ground pin landing is well 

accommodated.  

 

 

Figure 2.2. 1 mm pitch unified probe launch pattern dimensions. 

 

In the unified probe launch pattern, Figure 2.2, a 160 mil x 117 mil U-shape 

ground area is added around the differential signal pins. A pair of signal pads has 1mm 

pitch at the bottom of the U-shape ground plane. Five ground vias are on the U-shape for 

providing a good landing and connection to the reference for the ground pins.  
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2.2. FULL WAVE TRANSITION MODEL DESIGN  

Full wave modeling of the transition is undertaken for the unified probe launch 

pattern, which consists of three parts, a differential probe whose differential impedance is 

100 Ω, the unified probe launch pattern, and a pair of differential traces, whose 

differential impedance is 85 Ω. Due to the impedance mismatch between the probe and 

the differential pairs, the impedance transition geometry design and optimization is very 

important. 

 

 

         (a)                                                 (b)                                        (c)                                 

Figure 2.3. (a) Differential probe with mechanical holder 3D model, (b) simplified full 

wave differential probe model, (c) manufactured differential probe. 

 

A signal-signal (SS) differential probe is designed and manufactured, which 

provides high accuracy and efficiency in simulation and measurement. In Figure 2.3(a), a 

3D model is used to show the complete probe geometry and a metal base with guide-pins 

is used to ensure a repeatable probe landing. For the full wave simulation, a simplified 

probe model is provided based on the complete 3D model as shown in Figure 2.3(b).  In 
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the simplified full wave probe model, the mechanical base portion is removed to reduce 

the complexity of the model and save the simulation time. In Figure 2.3(c), according to 

the probe model design, the signal-signal (SS) differential model is manufactured and 

used for the 4-port S-parameter measurements. 

In addition to the new differential probe model, the full wave transition model is 

developed as shown in Figure 2.4. In this model, the transition part works on the 16 layer 

boards, and the new differential probe lands on the unified probe launch pattern.  The 

signal is transmitted from the launch pattern through the microstrip and differential vias 

to the differential stripline at Layer 10, which is the worst case with the longest via stub.  

 

 

            (a)                                     (b)                                               (c) 

Figure 2.4. (a) Top view of the full wave impedance transition model, (b) the detailed 

view of the unified launch pattern, and (c) the side view of the transition model.  

 

The goal of the simulation optimization is to make the impedance transition 

sufficiently smooth to allow for de-embedding [18].  After several iterations of the 

geometry of the transition, the best simulation results are shown in Figure 2.5. From the 
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|Sdd11| result, the return loss of the transition model is around the 15 dB up to 20 GHz, and 

the insertion loss, less than 1 dB at 20GHz, as seen from |Sdd21|.   

 

 

(a)                                                                  (b) 

Figure 2.5. Full wave modeling results for (a) |Sdd21| of the transition, (b) |Sdd11| of the 

transition. 

 

 

  (c) 

Figure 2.6. Full wave model simulation results for differential TDR. 

 

The differential mode TDR response, as shown in Figure 2.6 is also used to guide 

the engineering of the transition. Even though there is an impedance mismatch between 

the trace and the probe, the extra impedance variation from 100 Ω to 85 Ω is well 

controlled at less than 5 Ω from the differential mode TDR. The response from 2.3 ns to 
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2.4 ns corresponds to the differential pair with characterized impedance of 85 Ω.  The 

impedance at later times is 100 Ω because of the settings in the commercial modeling 

tool during the TDR calculation. 

2.3. THE TEST VEHICLE DESIGN AND MEASUREMENT  

The geometry determined from full wave modeling is used, and a 16 layer printed 

circuit board (PCB) with the unified probe launch pattern is designed and manufactured 

as shown in Figure 2.7.  In this board, 3 routing lengths, 2 inch, 5 inch, and 10inch 

differential pairs are located in the top layer, and layers 10, 12 and 14.  The 10 inch 

differential pairs are the DUT during the de-embedding calculation.  

 

 

(a) 

 

                       (b)                                                                   (c)                                                                 

Figure 2.7. (a) Top view of the test vehicle and (b) zoomed in view of the unified probe 

launch pattern, and (c) the routing view of the 2 inch differential pairs.   
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The 2 inch and 5 inch differential pairs are used as the 2x thru references to do the 

de-embedding and remove the fixture with the de-embedding method, leaving an 8 inch 

or 5 inch differential pair to do the DK and DF extraction. A 10 MHz to 20 GHz four-

port measurement is done with the differential probe as shown in Figure 2.8(a).  In Figure 

2.8(b), the differential probe landing with the metal base is shown, whose four guide pins 

provide for easily landing the probe on the probing pad in an efficient and repeatable 

manner.   

After 4-port SOLT calibration, the differential probes are connected to the 

precision cable and landed on the test vehicle to do the S-parameter measurements. The 

measured S-parameter results with SOLT calibration, on layers 10 12 and 14, for the 2 

inch differential traces are shown in Figure 2.9 as an example. 

 

 

(a)                                                                          (b) 

Figure 2.8. (a) 4-port measurement setup and (b) probe landing photo showing the SS 

probe and the mechanical base with guide pins in the foreground. 
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From the S-parameter comparison, there are some ripples caused by the 

impedance mismatch between the differential pair and the probe. And the amplitude of 

the functional variation for the Layer 10 result is greater than the others because of the 

longer via stub, as can be seen from the differential TDR shown in Figure 2.10 for the 2 

inch differential pair for layers 10 12 and 14.  

 

 

(a)                                                                   (b) 

Figure 2.9. (a) Layer 10 12 and 14, 2 inch differential pairs |Sdd21|, and (b) |Sdd11|. 

 

 

Figure 2.10. 2 inch differential trace differential mode TDR at layer 10, layer 12, and 

layer 14, and comparison with the layer 12 simulations.  
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 SOLT calibration at the cable ends was used for the S-parameter measurements, 

and then an inverse Fourier transform to get the time-domain results.  The layer 12 

simulation calculations of the differential mode characteristic impedance is also added for 

comparison with the measurements and corroborating the simulation.  

The manufactured PCB did not achieve the specified 85 , as seen in the Figure 

2.10 TDR results, and there is an impedance difference between the simulation and 

measurement results. There is a 0.1 ns time delay difference between the simulations and 

measurement results which is caused by the different trace lengths. In the measurement, 

the actual differential pair length is 2118 mil which is longer than the simulation.  

Nevertheless, the measurement impedance of transition part is matched well with the 

simulation.   

2.4. DE-EMBEDDING RESULTS AND DK DF EXTRACTION 

A new de-embedding method denoted Smart Fixture De-embedding (SFD) is used 

for de-embedding the fixture part of the device under test [5]. 

 

 

(a)                                                                    (b) 

Figure 2.11. (a) 5 inch differential pair |Sdd21| after SFD, and (b) differential TDR.  
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For the test vehicle, the raw S-parameters of the10 inch differential pairs are the 

DUT and the raw S-parameters of the 2 inch, and 5 inch pairs are used as the 2x thru 

reference to de-embed the fixture part included the differential probe, transition parts and 

a small length of the differential pairs. Thus, the S-parameters of 8 inch and 5 inch 

differential pairs without the fixture artifacts can be extracted.  

 

 

(a)                                                                (b) 

 

     (c)                                                               (d) 

Figure 2.12. (a) and (b) the 5 inch differential pair DK and DF, (c) and (d) the 8 inch 

differential pair DK and DF. 
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In Figure 2.11, the 10 inch and 5 inch differential pairs are used to get the 5 inch 

DUT after de-embedding. The |Sdd21| of the 5 inch de-embedded differential pairs are 

shown in Figure 2.11. (a). Small ripples of the |Sdd21| are from the 90 Ω differential 

impedance. The insertion loss of the differential pair at Layer 10 is less than the other 

layers due to the manufacturing of the PCB. 

The S-parameters after SFD are used to do the DK and DF extraction [6-9]. An 

algorithm for DK and DF extraction is provided based on the | Sdd21| and |Scc21| of the 

differential pair [10]. The results of the DK and DF extraction from the 8 inch and 5 inch 

DUT are shown in Figure 2.12. 

The DK and DF results show that the Layer 10 results have less loss than the 

other layers. From the comparison of the DK with different lengths, the extracted DK for 

the 8 inch and 5 inch DUT are very consistent.  The DF results also show the same 

consistency in the results between the 5 inch and 8 inch DUT.  
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3. UNIFIED PROBE LAUNCH PATTERN – 0.5 MM PITCH 

A high-frequency microprobe for measurements up to 40 GHz was designed 

using a 0.5 mm probe pitch. Thus, to accommodate the higher frequency probe transition, 

several portions of the probe launch geometry are changed, the Figure 3.1.  

For the 0.5 mm pitch probe launch pattern, not only the signal pad pitch is 

reduced to 0.5 mm, but the shape of the signal pad is changed to a rectangle for better 

transition parasitic control as well. The air gap from the U-shape ground plane to the 

signal pad is less than the 8mil to make sure that the ground pin of the probe lands well.   

 

 

Figure 3.1. 0.5 mm pitch unified probe launch pattern dimension. 

3.1. FULL WAVE MODEL DESIGN AND FREQUENCY EXTENSION 

Due to the probe pitch and launch pattern changing, the full wave model is 

modified in several parts. Firstly, the previous 1 mm pitch differential probe is changed to 

a new 0.5 mm pitch probe, and the model is developed for the full wave simulation.  
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For the new probe as shown in the Figure 3.2, the coaxial parts are kept as before, 

but the landing portion is different. Two ground pins are added for measuring the 

common mode S-parameters and the two blade ground blocks attached on the ground pin 

are used to reduce the inductance between the probe tips and launch pattern. Several 

additional modifications to the transition are made as well to improve the performance. 

  

 

Figure 3.2. Schematic diagram for the probe landing dimensions. 

 

In the 1 mm pitch probe launch, the via stubs were not back-drilled, which limited 

the frequency range. However, for performance up to 40 GHz, the via stubs must be 

back-drilled to achieve adequate high frequency performance [11].  In the new transition 

section, the additional via stubs were removed to simulate back-drilling, and the results 

with and without the back-drill are shown in Figure 3.3. (a).  From the |Sdd21| comparison, 

the back-drilling dramatically improves the transition performance beyond 25 GHz. 

Additionally, two ground vias are added beside the pair of signal vias, to achieve better 

high frequency performance [12]. Because of the two ground vias, a near current return 

path is used for tuning the parasitics of the via. In Figure 3.3. (b), with the ground vias, 

the |Sdd21| has a smoother functional variation from 25 GHz to 35 GHz. 
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(a) 

 

(b) 

Figure 3.3. (a) Transition with and without back-drill |Sdd21| and (b) with and without 

ground via transition part |Sdd21|. 

 

Including the two primary modifications noted above, and several geometry 

optimizations, the full wave model and dimensions are shown in Figure 3.4. In this 

model, the same 16 layer PCB stackup and design as in Section 2 is used. The total width 

and length of the simulated transition are 250 mil and 500 mil.  A detailed top view of the 

landing geometry is shown in Figure 3.4. (a).  The four guide pins holes remain to 

facilitate precise and repeatable probe landing.  A side view of the transition is shown in 

Figure 3.4. (b). The differential impedance of the differential stripline pair is controlled 

for 85 Ω with strong coupling, and the length of the differential pair is 230mil. 
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(a)                                          (b) 

Figure 3.4. (a) Top view of the unified probe launch pattern and (b) side view of the 

transition model and dimensions.  

 

The differential pair modeled is at Layer 10. The S-parameters and calculated 

TDR from the S-parameters are shown in Figure 3.5. From the simulation results, the 

insertion loss of the 0.5 mm unified probe launch pattern transition model is less than 1.2 

dB and the return loss is approximately 13 dB at 40GHz, which is very close to the 

simulation results of 1 mm pitch probe launch pattern transition model at 20 GHz. In 

other words, based on the previous experience, the simulation transition performance of 

the 0.5 mm pitch probe landing fixture should work up to 40 GHz.  

In the TDR results, the differential impedance variation at the probe tips, from 2.2 

ns to 2.25 ns, is less than 105 Ω on an impedance scale, and then with the via impedance 

change the characteristic impedance smoothly transitions to the 85 Ω, which is the 

differential stripline pair impedance.   
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(a)                                                                 (b) 

 

 (c) 

Figure 3.5. (a) Full wave transition model |Sdd21|and (b) |Sdd11|, and (c) the calculation 

differential TDR.    

3.2. DIFFERENT PROBE LANDING STUDY  

Different probe grounding strategies were simulated based on the new 0.5 mm 

GSSG probe design.  Four different grounding strategies were investigated. The 

differences among the four cases are the length of the probe tips, different ground probe 

patterns, and the different angles, 60º and 45º of probe landing. 

The simulated results for the four probes are shown in Figure 3.6.  The first probe 

with the two ground pins and 30 mil length signal tip lands on the probe launch pattern 

with a 60º angle. Based on the first probe, the probe tip length is reduced to 20 mil and  
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(a)                              (b)                                (c)                             (d) 

Figure 3.6. (a) 60º landing angle and 30 mil tip probe, (b) 45º landing angle and 30 mil 

tip probe, (c) 60º landing angle 20 mil tip length probe and (d) 45º landing angle and 

blade ground probe. 

 

the landing angle is kept. For the third probe, the tip length is kept as 30mil but the probe 

landing angle is changed to 45º.  The fourth probe is the one which is used in the final 

transition model, the 45º probe with blade ground pin.  

 

 

Figure 3.7. |Sdd21| for the four different 0.5 mm pitch probes. 
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In the TDR curve in the Figure 3.8, the differential impedance from the 2.23ns to 

2.25ns correspond to the probe tips and landing portion. For the 20 mil tip case, the short 

tip decreases the inductance between the probe and launch pattern. 

 

 

Figure 3.8. Differential TDR for the four different 0.5 mm pitch probes. 

 

Even the worst case, the probe with 30 mil tip length and 60º landing angle, the 

performance of the transition part is still such that the insertion loss is less than 2 dB up 

to 38 GHz as shown in the Figure 3.7.   

3.3. TEST VEHICLE DESIGN  

In the last test vehicle, only the probe portion is considered and designed. For the 

0.5 mm unified probe launch pattern, for increasing measurement accuracy, a 2.92 mm 

connector differential S-parameters measurement is also needed as a golden standard to 

verify the SFD and DK, DF extraction results from the probe measurement as shown in 

the Figure 3.9.  
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In this test vehicle design, the same 16 layer stack-up is used as described in 

Section 2. Three trace routing lengths of 2 inches 5 inches and 10 inches are used in the 

test vehicle for probe and connector measurement. Layers 1, 10, 12 and 14 are used for 

routing traces in the same way as the previous test board.   

 

 

Figure 3.9. 0.5 mm probe launch pattern test vehicle layout.  

 

For the DK and DF extraction algorithm, several algorithms are used to extract 

the printed circuit board material properties. The most common way uses the |Sdd21| of the 

differential pair after de-embedding to do the extraction.  However, these algorithms 

inherently include the surface roughness losses in the extraction results, and effects the 

assessment of DF.   

In this design, a new algorithm is used that includes measurement of |Sdd21| and 

|Scc21| of the differential pair after de-embedding. Using both, the surface roughness loss 

can be separated from the dielectric losses and excluded DF results.  To achieve this 

objective, the 85 Ω differential pair is strongly coupled so that the differences between 

the |Sdd21| and |Scc21| can be used to do the extraction.  
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The board stack-up table will be attached in the appendix. The working layers are 

same as the 1mm pitch probe testing board, layer 10, layer 12 and layer 14. The 

transmission line at layer 10 has asymmetry stack-up design. The above material 

thickness is 10mil and the below material thickness is 3mil. The transmission lines at 

layer 12 and layer 14 have symmetry design but different thickness. The material 

thickness of layer 12 is 5mil and the material thickness of layer 14 is 4mil. In this way, 

the differential characterize impedance of different layer are not identical. 

3.4. TESTING VEHICLE BOARD MEASUREMENT RESULTS 

Based on the design of the testing vehicle, several testing PCB boards are 

manufactured as shown in the Figure 3.10. . Two sets of testing methods are measured, 

the 0.5 mm probe launch pattern and the 2.4 mm top mount connectors to verify the 

accuracy of probing measurement.  

 

 

Figure 3.10. 0.5 mm pitch probe lunch pattern testing board. 

 



 

 

23 

From the measurement |Sdd21| as shown in the figures, the curve are smooth and 

linear up to 30 GHz, then an unexpected dip occurred due to the angel of glass wave 

which will be discussed later. 

3.4.1. 0.5 mm Probe Measurement Results. From the Figures 3.11 to 3.13, the  

measurement results reveal the similar tendency in different trace lengths. At the layer 

10, the differential characterize impedance is 90 Ohm and the differential characterize 

impedance is dropped down to 80 Ohm at the layer 12 and layer 14 which is due to the 

different stack up design as shown in the previous testing fixture design. 

 

 

Figure 3.11. Differential probe measurement results of 10 inch traces at different layer. 

 

 

Figure 3.12. Differential probe measurement results of 5 inch traces at different layer. 
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Figure 3.13. Differential probe measurement results of 2 inch traces at different layer. 

 

From above Figures, 3.11 - 3.13, the measurement results reveal the similar 

tendency in different trace lengths. At the layer 10, the differential characterize 

impedance is 90 Ohm and the differential characterize impedance is dropped down to 80 

Ohm at the layer 12 and layer 14 which is due to the different stack up design as shown 

in the previous testing fixture design.  

 

 

Figure 3.14. Probe landing pattern and transition modification. 
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Except the variance of differential characterize impedance, the consistency is 

shown as well. All the results regardless of the layers and length show that a unexpected 

dip of insertion loss after 30GHz. The dip is considered as a glass fiber effect due to the 

manufacturing which would be further discussed later.  

 

 

Figure 3.15. The |Sdd21| and |Sdd11| comparison between the two versions of probing 

landing testing PCB boards.  

 

There are two versions of PCB board are manufactured based on the original 

testing board design as shown in the Figure 3.14. The landing pad and transition portion 

are improved in the second version and the above results is from the second version of 

board manufacturing. In the version 2, more ground vias are added to reduce the length of 

return path. Then the differential vias of transition is re-designed for getting better 

impedance control as shown in the Figure 3.15. The spacing between the transmission 
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line and same layer ground is enlarged as well for getting better DK and DF extraction 

results.   

According to the IEEE p370 de-embedding standard, the de-embedding frequency 

range is decided by the loss cross point between the insertion loss and the return loss. As 

shown in the S-parameters plot. In Figure 3.15., the above figure is the old version, the 

cross point is at 15GHz, and the below figure shows the cross point is pushed to 30GHz 

with the new design. 

3.4.2. Top Mount Connector Measurement Results. Besides the probing  

measurement, the same length traces with the 2.4 mm connector are add. Those portion is 

used to verify the results of probing measurement. The de-embedding results between the 

probing and connector should be identical due to the similarity of trace design.   

From the Figure 3.16-3.18, the insertion loss and return loss works smoothly up to 

30GHz. Then an unexpected dip of insertion loss show up which is corresponded to the 

probing measurement results. According to the previous paper, the dip is highly possible 

from the issue of glass wave bundle.  

 

 

Figure 3.16. 2.4 mm connector measurement results of 2 inch traces at different layer. 
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Figure 3.17. 2.4 mm connector measurement results of 5 inch traces at different layer. 

 

 

Figure 3.18. 2.4 mm connector measurement results of 10 inch traces at different layer. 

 

From the Figure 3.19, it prove the hypothesis that the dips aren’t from the design 

but from the manufacturing is proved. The dip occurs at the different length of trace at 

the same layer no matter what measurement method is used. Therefore, in the future 

version, the angle between the trace and the glass wave bundle should be carefully 

considered. Several degrees rotation of design are necessary for avoiding the dip issue at 

high frequency. 
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(a)                                                                    (b) 

Figure 3.19. (a) Measurement results of different length at same layer 10 with 2.4 mm 

connector, (b) measurement results of different method at same layer 10 and same PCB 

board. 

3.4.3. De-embedding Results with Smart Fixture De-embedding Tool. In this  

portion, the de-embedding method is from the previous studying. In this method, two S-

parameters are needed for de-embedding, the 2X thru and the DUT with fixture. In this 

case, the 10inch trace plus the connector or differential probe is the DUT with Fixture. 

And the 5inch or 2inch traces with fixtures are the 2X thru.  

The fixture includes differential probe or 2.4mm top mounting connector and the 

transition portion like the landing pad and signal vias. Figure 3.20 is the probing 

measurement results. It shows that the de-embedding results are good at three layers up 

to30 GHz, then an unfriendly dip occur after 30 GHz. Regardless of the dip, three layers 

are consistent and smooth.  
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Figure 3.20. Probe de-embedding S-parameters at different layers. 

 

 

(a)                                                               (b)  

Figure 3.21. (a) De-embedding TDR impedances at different layers, (b) TDR impedance 

comparison within measurement results, the 10 inch trace at layer 10 and de-embedding 

results of 8 inch transmission line.  

 

The de-embedding results of 2.4mm connector, Figure 3.21 and Figure 3.22 show 

the same behavior as the probing measurement due to glass wave bundle. The dip shows 
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at the same frequency point as the probing measurement, which means the dip isn’t from 

the probe and connector measurement. It should be from the manufacturing.  

 

 

Figure 3.22. 2.4mm connector de-embedding S-parameters at different layers. 

 

The Figure 3.23 shows that the same features between the two measurement 

methods after de-embedding. The differential impedance is around 85Ohm and the 

insertion loss and return loss are correlated to each other. The de-embedding results will 

be used as the input data for PCB measurement characterization. 

 

 

Figure 3.23. The comparison between the probing and connector de-embedding results. 
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3.5. DK AND DF EXTRACTION RESULTS  

As mentioned DK and DF extraction method before, a PCB cross-section 

extraction is done in Figure 3.24 for getting the accuracy trace and stack-up dimension. 

Table 3.1 is one of the board dimensions from the PCB board cross-section. The 

material extraction tool use the dimension and the de-embedding S-parameter to extract 

the DK and DF results. 

 

 

Figure 3.24. The essential factors of PCB cross-section. 

 

Table 3.1. Testing board stack up at layer 10. 

Input stack-up Dimensions(mil) Input stack-up Dimensions(mil) 

Trace-width(W
l
) 5.39 Trace spacing(S) 6.99 

Trace-width(W
s
) 4.41 Above height(H1) 10.75 

Etch factor(E) 0.49 Below height(H2) 2.81 

Trace Thickness(T) 1.26   
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3.6. EXTRACTION RESULTS ANALYSIS 

The Table 3.2 shows extracted DK Df and surface roughness results. From the 

table, the DK and Df with different measurement method have the closely results. The 

DK difference is less than 2% and the difference of Df is less than 5%. The roughness 

level is defined in the reference. The lower number means the smooth surface. Usually, 

the -2 roughness level and -1 roughness level means the same surface roughness like VLP 

(Very Low Profile).  In this way, the results prove that the probing measurement at high 

frequency still can be used for doing PCB material characterization. 

 In the future, a new version will be released for fixing the glass wave bundle 

issue. At that time, the probing method should work up to 40GHz or higher depends on 

the probe quality.  

 

Table 3.2. The DK Df extraction results and surface roughness level. 

 DK at 1GHz Df at 1GHz Surface roughness 

level 

L10 D-probe 3.77 0.0082 -1.02 

L12 D-probe 3.99 0.0081 -2.31 

L14 D-probe 3.85 0.0078 -2.29 

L10 Connector 3.72 0.0086 -0.91 

L12 Connector 4.1 0.0081 -1.78 

L14 Connector 3.82 0.0077 -1.08 
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3.7. RESULTS SUMMARY AND ANALYSIS  

In this section, the 0.5mm probe unified probe launch pattern design and testing 

fixture design is addressed. The design of 0.5mm pitch unified probe launch pattern is 

inherited from the 1mm pitch unified probe launch pattern with higher working frequency 

range and better utility. The testing board design improved the 1mm pitch testing board 

and the push the frequency range to 40GHz or higher. Nevertheless, the unexpected 

boarding manufacturing issue stop the achievement. Even the dip appears frequently and 

hard to remove, the de-embedding results still smoothly work up to 30GHz. And the DK 

and Df and surface roughness extraction has good identity with different measurement 

method. 
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4. PROBING S-PARAMETER AND MODELS EXTRACTION  

4.1. METHOD INTRODUCTION 

In this section, a new method for extracting S-parameter block of probe and 

landing pattern is proposed and a testing coupon is designed for verify the method. Then 

a full wave model and a circuit model[15-17] based on the measurement and de-

embedding results[11-12] are extracted as well.   

4.2. DE-EMBEDDING METHOD APPLICATION 

In this part, a probe s-parameter de-embedding method is presented. According to 

the previous work[], the de-embedding method named SFD(smart fixture de-embedding) 

not only de-embed the fixture from the transmission line, but can de-embedding the 

transmission line from fixture. In this case, the DUT is the probe instead of the 

transmission like the part 2-3 of the thesis.  

In this de-embedding method, the 2X thru will be divided by two from the center 

of the 2inch microstrip, then the 1x DUT, the probe plus the landing pattern and the 1 

inch microstrip will be de-embedded with the half 2x thru S-parameter block. Finally, 

only the probe and probe launch pattern and a very short traces would left after complete 

processing. Ideally, the output of the de-embedding is the S-parameter block of the probe. 

The users or probe vendor could use it to qualify their probe behavior. In the future, the 

S-parameter block could be used as a black box when develop more probing applications. 

The performance of the S-parameter block should be stable and trustable.  
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4.3. TESTING BOARD DESIGN 

There are two sets of fixture designs on the board. Each set includes two part, one 

is the 2 inch differential microstrip pair as known as the 2X thru, another part is the 1 

inch differential microstrip pair with the probe launch pattern. Two different pitch sizes 

are on the board, 1mm pitch and 0.5mm pitch for two kinds of differential probe.  

 

 

Figure 4.1. The previous design layout. 

 

According to previous design, Figure 4.1, the length of trace (2x thru) is 4 inch 

which is proper for 1mm pitch probe landing. However, due to the high loss material of 

PCB board, the working frequency of the testing fixture is only up to 18GHz. The 

frequency range of 0.5mm probe is from 0Hz to 40GHz. In the new design, the maximum 

length of the trace is reduced to 2inch from the simulation and analysis as shown below 

as shown in the Figure 4.2. The board layout has the same strategy as the 4 inch case 

except the length of trace. 
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Figure 4.2. The new probe testing board layout. 

4.3.1. Testing Fixture Design and Analysis. Because the measurements serve  

the de-embedding of probe, the quality of the 2x thru would directly effects the accuracy 

of the probe S-parameter extraction. In terms of the standard, IEEE P370 de-embedding 

standard. The low loss of testing fixture including the insertion loss and return loss would 

has higher de-embedding frequency range as shown in the Figure 4.3.  

 

 

Figure 4.3. Insertion loss comparison between the previous design and new design. 
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From the measurement results, Figure 4.4, the cross point of |Sdd21| and |Sdd11| is 

push to 40GHz. The insertion loss is much better than the previous results. 

 

 

Figure 4.4. The |Sdd21| and |Sdd11| comparison of the new design. 

4.3.2. Board Landing Pad Design. The design of probe landing pattern in this  

Case is shown in the Figure 4.5. In this case, the material of board is FR-4 which has 

higher loss but reduces the cost dramatically comparing with the testing board of unified 

probe launch pattern. In this way, the board could be manufactured easily and reusable.  

 

 

(a)                                                                             (b) 

Figure 4.5. (a) The pad size is enlarged to 12 mil width, (b) the slots below pad.  
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For achieving the acceptable behavior as the previous low loss design of the probe 

landing pattern, two ground slots are applied for compensating the probe effect and the 

mismatch between the microstrip and probe landing pad. Especially the 0.5 mm pitch 

probe, if the impedance from the landing pad to testing fixture has to be unified without 

further design, the size of landing pad would be very small which makes the landing 

hardly and the pad more venerable.  

 

 

Figure 4.6. |Sdd21| Comparison between the two designs.  

 

Therefore, the ground slots not only improve the performance as the results 

shows, but make the probe landing easier. Another modification is the 4 guiding pin holes 

which are removed for reducing the effect from the mechanical holes to guarantee the 

quality of measurement as shown in the Figure 4.6.   
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4.4. MEASUREMENT AND DE-EMBEDDING RESULTS  

The photo of differential probe, Figure 4.7, is the probe we used in the coming 

measurement and model extraction. The method could be used for any probe which fit 

with the unified probe launch pattern. As the Figure 4.8 showing, the performance of 2x 

Thru is good up to roughly 40GHz. It helps to de-embed the fixture at high frequency. 

And the results of 1x DUT shows the good impedance control plus probe effect. Hence, 

the material of de-embedding looks acceptable.   

 

 

Figure 4.7. Differential probe (D-probe). 

 

The raw data point out that the differential probe has some variation due to the 

landing and minor manufacturing difference. The pick at around 2.4ns from the TDR 

impedance has 10 Ohm difference due to the landing position error. Therefore, the de-

embedding results will have the same behavior as well.  
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Figure 4.8. 1x DUT with different probes measurement results.  

 

The de-embedding results, Figure 4.9, show the similar trend as the raw 

measurement results. From the |Sdd21| and |Sdd11|, the three probes are located to the 

narrow range among the complete frequency band.  The TDR impedance shows that the 

probe effects are captured successfully which agrees with the expectation. The huge 

bump at 2.4ps represent the touching point of probe. The inductance behavior is from the 

pair of probe tips. After the touching point, the previous transmission line is removed 

which means that the extracted S-parameters is only the probe itself.  

 

 

Figure 4.9. De-embedding results of different probes. 
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Another phenomenon should be pointed out from the results is that the variation 

of probe. The impedance of probe tip is from 112Ohm to 120Ohm. The variation of the 

probe makes the probe high accuracy model extraction very hard. Therefore, a general 

probe model would be more unify for the probe characterization.  

4.5. FULL WAVE MODEL CONSTRUCTION  

In this section a complete full wave model, Figure 4.10, is proposed to 

characterize the mentioned D-probe. The full wave model is built with a commercial full 

wave simulation tool with FDTD method. For getting a high accuracy model, several full 

wave model is designed based the physical dimensions of the probe and the designed 

testing board. 

 

 

Figure 4.10. (a) The full wave model of 1X and DUT (b) 2X thru model. 
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Figure 4.11. Full wave simulation raw data. 

 

The two full models are shown in the Figure 4.11 and the raw data are shown 

below. Because the connector model isn’t validated, and will be de-embedded. The raw 

data don’t compare with the measurement data for avoiding misunderstanding. Applied 

the same de-embedding method, the de-embedded S-parameter of the full-model could be 

extracted. At the meantime, the cutting full wave model is created as well to prove the de-

embedding method. The 1X&DUT model is cut. 60mil transmission line is remain to 

keep the output of the PCB is TEM mode.  

 

 

Figure 4.12. De-embedding results comparisons between the full wave model and the 

measurement de-embedding results. 
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Figure 4.13. Full wave model of probe and the 60 mil microstrip. 

  

From the Figure 4.12, the results shows that the measurement de-embedding 

results have same behavior as the raw data. The probes have different behavior at high 

frequency depends on the probe manufacturing. Therefore the probe model is designed to 

capture the major behavior of the probe as the Figure 4.13 shown. The |Sdd21| and |Sdd11| 

are at the same range comparing with the measurement results.   

 

 

Figure 4.14. |Sdd21| of probe and the only probe comparing with the de-embedding results. 
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For better understanding of the differential probe full wave model, a cutting 

model is built as well to demonstrate the de-embedding idea. The simulation results is 

shown in the Figure 4.14. The DUT with 60mil trace has more smooth |Sdd21| comparing 

with the de-embedding results. The resason of the situation is from the impedance 

difference as show in the previous TDR comparison. Minor impedance mismatch of the 

DUT&1X and 2X thru lead to the not pure de-embedding. 

Unfrindly ripple display after the probe effect. Regardless of the flatness of 

insertion loss, the two |Sdd21| results have good agreement from the low frequency to high 

frequency which means the de-embedding method is working well and the real S-

parameter of the DUT will be more smooth if the impedance mismatch could be 

overcomed. 

4.6. CIRCUIT MODEL CONSTRUCTION 

The circuit model [19] is propose to analysis the probe behavior in physical based 

on the current path as shown in the Figure 4.15.  

 

 

Figure 4.15. Current path analysis. 
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Because only differential signal run on the trace, the conductive current is from 

the one probe coaxial cable to the probe tip, then transmit to one of the differential 

microstrip. After going through all the conductor, the signal will return from the other 

microstrip then back to the probe. And the tips couple to the testing board as well which 

is treated as displacement current. 

 

 

Figure 4.16. Circuit model of the probe tip. 

 

Table 4.1. Lumped element. 

C1 0.063pF L1 0.49nH 

C2 0.031pF L2 0.23nH 

Mutual L1&L1 0.081nH L3 0.15nH 

Mutual L1&L2 0.1nH   

  

Because the current distribution at the tip portion is complex and hard to be 

represent with sample transmission line. The circuit model is shown in the Figure 4.16. 

As the circuit diagram, the probe is represented with several lumped elements. The circuit 
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model is built in ADS (Advanced design system) to do the simulation. The circuit 

schematic is shown in the Figure 4.17.  

The circuit model is composed with three portions, the connector and 

transmission line part, the lumped elements part which is probe tip and another a pair of 

microstrip which represents the extra 60mil differential pair.  The each lumped elements 

are listed in the Table 4.1. The lumped element is tuned from the software which means 

the combination may not be unique. 

 

 

Figure 4.17. Circuit schematic in ADS. 

 

 As the results shown in the Figure 4.18, the TDR impedance shows that the circuit 

model reproduces the probe effects at the certain position. And the insertion loss and 

return loss are located in the range of the probe variation. But the circuit model is hard to 
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represent the wave of high frequency because of the lack of non-de-embedding 

information as previous discussed.  

Therefore, the circuit model could be used to study the certain component 

behavior of the probe tip and has good relation in the TDR comparison. The frequency 

domain results is good to show the loss at different frequency range.  

 

 

Figure 4.18. The results comparison between the circuit model and measurement.  

4.7. SECTION SUMMARY  

From the series of study of probe, the methodology of the probe S-parameter 

block extraction is workable.   In this method,   differential probe behavior could be 

captured easily even the probe manufacturing differences could be demonstrated. The full 

wave model is built to represent the probe behavior in the commercial 3D simulation tool 

and the circuit model is used to analysis the probe behavior based on the physical current 

path. Some improvable points are exposed as well. Because of the variation of the probes, 

the high accuracy of probe model is hardly to be extracted. The testing board could be 

remanufactured with better technics to overcome the mismatch problem. The method 

could be extend to more kinds of probe in the future.  
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5. CONCLUSION 

In this thesis, two probing related topic are discussed. In the first topic, the unified 

probe landing pattern is designed based on 2 probe pitch and 3 kinds of differential 

probes. From the full wave simulation and testing board measurement, the landing pattern 

design is fixed and is proved with the good utilization. With the multiple probes 

supporting, the testing couple is designed for several purposes. Firstly, the accuracy 

probe de-embedding is applied by the design. Then the de-embedded results is used to 

characterize the PCB material which is confirmed by the connector measurement. In the 

second topic, the methodology of probe characterization, the probe is treated as a DUT 

instead of a fixture. With the high accuracy testing coupon design, the S-parameter block 

of block is extracted according to the design guideline. Then a general full wave model 

and a physical based circuit model are proposed and tested. The full wave model can be 

used as an accuracy reference to predict the probe behavior in the future probe 

application studying. And the circuit model is used to evaluate each component of the 

probe with the lumped element. In this way, the probe could be improved with the 

physical idea instead of the rule of thumb. 

From the two topics, a serial of study is done related to the probe design and 

application design. Those experience is not only the recent study, but also can be extend 

to many new probe applications and also will be helpful in the real industrial for mass 

PCB production.  
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