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ABSTRACT 

 The broadband 3C-2D seismic survey was acquired in the Blackfoot Field in 

southern Alberta. The single-component 10 Hz geophone data were reprocessed to 

increase vertical resolution and provide a better seismic image of the incised valley 

channel fill deposits in the Glauconitic Formation. The amplitude-preserved seismic 

processing of the data was followed by the Kirchhoff prestack time migration. The 

processing parameters and algorithms used were based on parameter optimization 

approach. Elevation statics and surface consistent residual statics were utilized to remove 

near surface delays in the data. Seismic noise, such as ground roll and air blast, were 

attenuated effectively by various algorithms. Amplitude and phase distortions due to near 

surface conditions were corrected by processing of the surface consistent deconvolution 

and amplitude balancing. The Kirchhoff prestack time migration was applied to the data 

to obtain a migrated section that adequately characterizes the subsurface structure. The 

final stacked seismic section shows a better image of the incised valley of the Glauconitic 

Formation than the legacy seismic section. Log data from Well 14-09 were utilized to 

generate synthetic seismogram, establish seismic-to-well tying, and interpret key seismic 

horizons.   
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1. INTRODUCTION 

 

The broadband 3C-2D seismic datasets utilized in this research were acquired in 

the summer of 1995 by the Consortium for Research in Elastic Wave Exploration 

Seismology (CREWES) in the Blackfoot Field in southern Alberta. The survey area is 

positioned 15 km southeast of Strathmore, which is situated east of Calgary (Figure 1.1). 

Encana Petroleum Ltd. owns and develops the Blackfoot Field (Lu and Maier, 2009).  

The main objectives of the project were to 1) examine and analyze the application 

of 3C geophones in broadband seismic exploration, 2) acquire broadband seismic data 

from 0.5 Hz to 100 Hz, 3) compare the arrays of vertical geophones with the 10 Hz 

strings, and 4) seismically differentiate between sand and shale lithology at the target 

zone.   

 

 

 

 
Figure 1.1. Map showing the location of the study area (Gallant et al., 1995). 
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The survey was acquired using four different geophones which include 3C 2 Hz, 

3C 4.5 Hz, 3C 10 Hz, and single-component 10 Hz, resulting in four lines of 2D vertical 

and 3C seismic datasets. Each seismic profile is deployed one meter apart from the 

others. The total length of the profile is about 4 km with SSE-NNW orientation. Each line 

has a total of 200 receiver and shot stations with a 20 m spacing interval. The seismic 

shooting was carried out using 6 kg dynamite for each shot buried at a depth of 18 m. The 

amount of explosive was higher than a typical acquisition in order to broaden the 

frequency spectrum of the signal.  All receiver stations were active for the shots in a fixed 

receiver spread. The area contains 16 drilled wells, which include both density and sonic 

logs. Well 14-09 intersects the survey profile at CMP 312, and will be used in the 

seismic-to-well tying and seismic data interpretation in this study (Figure 1.2). 

 

 

 

 

Figure 1.2. Location map of the 2D seismic line 950278 and Well 14-09. The outline 

indicates the extent of the incised valley.  
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Previous processing results of the Blackfoot 3C-2D seismic data indicate that the 

10 Hz vertical string data has a better imaging of the subsurface than the 3C geophones 

data (Lu and Maier, 2009). The primary objective of this study is to utilize the most 

recent processing algorithms to better image the Glauconitic Sandstone of the Lower 

Cretaceous. The target reservoir at a depth of 1500 m is between 1100 ms and 1200 ms 

(Stewart, 1995), and is characterized as an incised valley channel fill deposit that 

truncates underlying regional markers of the Ostracod Formation (Mawdsley et al., 1996) 

(Figure 1.3). Hence, imaging of the target reservoir is limited by the thickness of the 

channel and the seismic resolution. Reprocessing of the data in this study focuses on 

increasing the seismic resolution and enhancing the signal-to-noise ratio for the target 

formation.   

 

 

 

 

Figure 1.3. Internal stratigraphy of the Mannville Group in the Blackfoot Field, southern 

Alberta (Hopkins and Mayer, 2001). 
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1.1. GEOLOGICAL BACKGROUND 

The Blackfoot Field is located in the Alberta Basin, a part of the western 

Canadian sedimentary basin (Wright et al., 1994). The Alberta Basin extends in a 

northwest direction and is bounded by the thrust belt of the Rocky Mountain to the west, 

the Williston Basin to the southeast, and the Precambrian Shield to the northeast (Figure 

1.4). The basin consists of Mesozoic and Paleozoic sedimentary rocks that dip westward 

and unconformably overlay the Precambrian Canadian Shield rocks (Connolly et al., 

1990). 

 

 

 

 

Figure 1.4. Map showing the location of the Alberta Basin (Machel et al., 2012). 
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The Mannville Group, which is part of the Lower Cretaceous sedimentary rock, is 

comprised of the Upper, Middle, and Lower Mannville units (Hopkins and Meyer, 2001) 

(Figure 1.3). The Glauconitic Formation in the area, a part of the Middle Mannville unit, 

is characterized by high porosity, permeable quartz, and chert-rich sandstone. The 

formation was deposited during the maximum transgression of the Boreal Sea forming a 

low-sinuosity incised-valley system (Zailtlin et al., 1995). This incised-valley system has 

truncated the underlying regional Glauconitic, Ostracod, and Detrital Formations (Dufour 

et al., 2002). 

The Glauconitic Sandstone contains productive reservoirs. The cumulative 

production in the target zone has reached more than 200 MMbbls of oil and 400 BCF of 

gas (Miller et al., 1995). The target zone can reach up to 45 m in thickness and is 

encountered at a depth of 1500 m (Dufour et al., 2002).  

1.2. SURVEY ACQUISITION 

The Blackfoot 3C-2D survey was conducted using four types of geophones (3C 2 

Hz, 3C 4.5 Hz, 3C 10 Hz, and single-component 10 Hz) with dynamite as a source 

charge. The main objectives of the survey are to differentiate between sand and shale 

channel fills at the target zone and to compare the geophone ability for recording 

broadband seismic data. 

The seismic profile used in this study was obtained by utilizing six Oyo GS-30CT 

10 Hz vertical geophones in each string as a receiver station (Figure 1.5). The spacing of 

geophones within receiver array is 4 meters. The recorded seismic traces are stacked 

within each receiver station to suppress ground roll and random noises and attain a better 
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signal-to-noise ratio. The receiver and shot stations were evenly positioned with 20 m 

spacing interval. The geophones were attached to planting poles to improve ground 

coupling (Gallant et al., 1995). 

 

 

 

 

Figure 1.5. Field layout of vertical 10 Hz geophones and cable at each receiver station 

(Gallant et al., 1995). 

 

 

 

The ARAM-24 seismic recording system was used to deliver maximum recording 

range. The 24-bit dynamic range instrument was necessary to be able to extract the signal 

given the presence of significant ground roll noise and the single configuration of the 3C 

geophones (Gallant et al.,1995). 

The seismic profile used in this study comprises 200 shot records. In each shot 

record, all 200 receiver stations were alive and recording. The shooting direction is from 
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southeast to northwest starting at shot point #101 and ending at shot point #300. The 

station interval is 20 m for both source and receiver. The maximum offset reaches 3980 

m (Table 1.1). The fixed spread of the receiver stations in the survey resulted in a unique 

fold profile that is equal to one at the edge of the profile and increases towards the middle 

of the line. The first and last shot records exhibit end-on spread geometries, while shot 

records in the middle of the profile have symmetrical split-spread geometries. Similarly, 

the maximum offset varies from 4 km at the edges of the profile to 2 km towards the 

center.  

 

 

 

Table 1.1. The acquisition parameters for the seismic profile used in this study. 

Line length 4 km 

Source type Dynamite 

Source interval 20 m 

Source depth 18 m 

Number of shots 200 

Receiver type Oyo GS-30CT 10 Hz 

Receiver interval 20 m 

Number of receivers 200 

Number of channels 200 

Recording length 6 s 

Maximum Offset 3980 m 

Sampling interval 1 ms 

 

 

1.3. SURVEY CONDITIONS AND DATA QUALITY  

The acquisition of the survey was conducted in a rolling steppe area. The seismic 

profile crosses over several croplands and cattle pastures as well as two small roads with 
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insignificant traffic. Wind and rain were moderate during the acquisition of the survey, 

causing most of the recorded noise (Gallant et al., 1995). 

Representative field records including first, middle, and last shot gathers from the 

vertical 10 Hz array seismic profile illustrate the quality of the field recording (Figure 

1.6). The raw data exhibit strong-amplitude ground roll noise with distinctive dispersion 

patterns. At near offsets, the seismic traces are contaminated by source generated noise 

that masks seismic reflections. In addition, 60 Hz noise, DC component noise, and 

ambient noise are present. Automatic Gain Control (AGC) was applied as a display 

function on raw data of the same field records to reveal obscure seismic amplitudes at 

later arrival times (Figure 1.7). The seismic reflections are displayed clearly on the 

resulting shot gathers. 

 The spectral analysis of shot gathers 105, 198, and 262 provides a preliminary 

evaluation of the frequency content of the signal (Figure 1.8). The frequency bandwidth 

extends from 5 Hz to approximately 75 Hz at a given threshold of -20 dB. The seismic 

data have a dominant frequency of 20 Hz and a roll-off trend of -10 dB per octave at 

higher frequencies. Furthermore, a slight increase in the amplitude values is detected 

below the geophone natural frequency of 10 Hz. 

The processing of the seismic data in this study followed the approach of 

parameter optimization. First, different processing parameters were applied and analyzed 

on a selected subset of the prestack data. Subsequently, the same analyses were applied to 

all of the data to examine the stacked seismic section. The combined analyses of the 

prestack and poststack domains provided a better assessment for parameter optimization.   
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Figure 1.6. Raw seismic data from shot gathers 105, 198, and 262. The strong amplitude ground roll, guided waves, 

and power line noises are indicated.  
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Figure 1.7. Shot gathers 105, 198, and 262 after applying AGC. Seismic reflection events are observable after the 

AGC processing. 

Reflection events 

waves 
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Figure 1.8. The average amplitude spectrum of shots 105, 198, and 262. 

 

 

1.4. OBJECTIVES 

The single-component 10 Hz geophone is less sensitive to noise than the 

corresponding 3C geophones and showed a better resolution of the target zone in 

previous processing (Lu and Maier, 2009). Different types of noise in the data, such as 

ground roll and source-generated noises, present challenges and require various 

algorithms to reduce noise. The primary objective of this study is to reprocess the single-

component 10 Hz geophone data to increase vertical resolution and provide a better 

seismic image of the incised valley channel fill of the Glauconitic Formation. The 

reprocessing of the data implements amplitude-preserved seismic processing followed by 

prestack time migration. The resulting common image gathers and the computed seismic 

velocity field provide the foundation for further steps such as AVO analysis, acoustic 
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impedance prestack inversion, and lithology discrimination. The focus of the 

reprocessing is targeted at a time interval from 1000 ms to 1500 ms. 

Another objective is to utilize the available log data from Well 14-09 to establish 

seismic-to-well tie by the generation of synthetic seismogram. Seismic interpretations are 

conducted using the calibrated seismic and well data. 
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2. METHODOLOGY 

 

The seismic data in this study were processed using Echos, an interactive seismic 

data processing software provided by Paradigm. Different processing algorithms and 

parameters were tested and optimized on a selected subset of the prestack data. In 

addition, these parameters were tested on the entire data to analyze the stacked seismic 

section. The resulting seismic section from each processing step is considered a 

byproduct. The combination of prestack and poststack analyses for each processing step 

is found to be beneficial in optimizing the parameters.    

 The data were processed using the workflow outlined in Figure 2.1. Ground roll 

and source-generated noises strongly contaminate the signal at near offsets and introduce 

a challenge to achieve high signal-to-noise ratios. Different types of noise attenuation 

algorithms were tested on the data to retain signal in near-offset traces. The surface 

consistent deconvolution improved temporal resolution by removing the undesirable 

source and receiver effects and whitening the frequency spectrum. The iterations of 

velocity analysis and normal moveout  (NMO) correction and residual static correction 

improved the stacking of reflection events. Prestack Kirchhoff migration was applied to 

the data to obtain a migrated seismic section that adequately characterizes the subsurface 

structures.  

The established workflow in this study aims to preserve relative trace-to-trace 

amplitudes for further amplitude variations with offset  (AVO) analysis, which provides 

valuable information for lithology discrimination and fluid modeling to differentiate 

between shale and sand valley-fills in the target reservoir. The noise attenuation applied 
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to the data was performed with caution to prevent any distortion in the lateral variations 

of reflection amplitudes and yet improve signal-to-noise ratios.  

 

 

 

 

Figure 2.1. 2D seismic data processing workflow used in this study.  
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2.1. DATA IMPORTING 

The data were stored as IBM floating point numbers in a SEGY standard rev. 0 

format (Barry et al., 1975). Most of the trace headers follow this standard with few 

exceptions. For instance, first breaks and station number information adhere to ProMAX 

standards (Maier et al., 2009). The SEGY text header contains information about non-

standard header words. Consequently, the software headers were amended based on the 

seismic trace headers. The data were converted from SEGY to internal disco format 

during the loading process.  

2.2. GEOMETRY DEFINITION 

The survey geometry information was retrieved from the seismic trace headers, 

which include the coordinates, elevation, and other information of each seismic trace 

(Figure 2.2). Elevation profiles of source and receiver stations are shown in Figure 2.3. 

Numerous multi-trace processes such as frequency-wavenumber (F-K) rely on the 

defined geometry. Hence, geometry information plays a crucial role in the processing of 

seismic data. 

Since the survey was acquired in a fixed receiver layout, the fold coverage is 

reduced to one at the edges of the seismic profile and increases gradually towards the 

center to reach the maximum fold of 82. The fixed receiver layout provides a challenge 

when stacking CMP gathers to obtain a balanced seismic section. For instance, signal-to-

noise ratios are reduced laterally towards the edges of the profile due to fewer traces 

being summed in a single CMP gather. 
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Figure 2.2. Basemap of the survey geometry. A, B, and C are the shot, receiver, and CMP 

stations, respectively.  

 

 

 

The geometry definitions were further validated by examining the offset header of 

each trace. The horizontal distance from the source to the receiver defines the offset of 

the seismic trace. Figure 2.4 shows the resulting offset pattern of the traces in selected 

shot gathers.  

A 

B 

C 
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Figure 2.3. Elevation profile of source (top) and receiver (bottom) stations.  
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Figure 2.4. Displayed offset header for shot gathers 101, 150, 205, 250, and 300. The offset pattern indicates the 

source-receiver distance for each trace.  
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2.3. TRACE EDITING 

One of the preprocessing steps of the Blackfoot seismic data is trace editing. 

Seismic data often include traces that are contaminated by unpredictable high-amplitude 

noises. These traces degrade seismic data quality and need to be removed before other 

processing steps such as noise attenuation and residual static correction. The editing 

process includes omission of test shots, noisy, and dead traces from the data. 

The observer logs were used to identify test shots and bad field records. Shots 

166, 167, 199, 240, 253, and 288 were skipped during the survey acquisition due to land 

access restrictions. The first and last three shots were test shots and were removed from 

the data.  

Some noisy traces were not omitted during trace editing stage, such as traces with 

DC component noise (Figure 2.5). These noisy traces were processed by the noise 

attenuation algorithms in the next processing step. However, some traces are dominated 

by unpredictable high-amplitude noise, which overwhelms the stacked section (Figure 

2.6). These noise bursts lie in the same frequency bandwidth of the signal. Therefore, 

frequency filtering of the noise leads to signal loss. Consequently, bad traces dominated 

by strong noise bursts were omitted.  

The manual editing of bad traces can be a time-consuming process and, therefore, 

an automated trace editing technique was used. The root-mean-square (RMS) amplitude 

was calculated for each input trace within a specified time gate. The design of the time 

gate is from 2000 ms to 3000 ms, where reflection amplitudes are considerably weaker 

than the noise burst amplitudes (Figure 2.6). Then, traces that contain noise bursts were 
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flagged using an amplitude threshold. Subsequently, flagged traces were omitted from the 

data (Figure 2.7). 

2.4. SPHERICAL DIVERGENCE CORRECTION 

Seismic wave field spreads out spherically from a source point which causes the 

divergence of wavefront and amplitudes decay. Hence, spherical divergence correction is 

required to restore reflection amplitudes. Geometrical spreading of reflection waves 

depends mainly on the two-way traveltime  (TWT) and the source-receiver distance 

(Wang et al., 1989). As velocity increases with depth, seismic amplitudes decay further 

due to the effect of refraction (Newman, 1973). Therefore, offset-dependent spherical 

divergence correction, defined by (Ursin, 1990), was applied to the data (Figure 2.8). The 

resulting amplitudes are balanced in the time and offset axes. Reflection amplitudes at 

later traveltime are restored. Recovered amplitudes from shot gather 205 were examined 

using gain analysis function in the processing software (Figure 2.9). The obtained gain 

curves reflect amplitudes recovery of the data.  

2.5. FIELD STATIC CORRECTION 

Elevation differences of source and receiver stations and variations in weathering 

thickness and velocity affect the arrival time of seismic reflection waves by introducing 

irregular time delays (Figure 2.10). These time delays alter reflection alignment within a 

CMP gather to be out of phase. As a result, the stacking of seismic traces becomes a 

destructive summing of reflection amplitudes and diminishes the reflection events of the 
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Figure 2.5. Traces dominated by DC component noise in shot gather 299.   
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Figure 2.6. Traces contaminated by strong noise bursts from shot gather 277. 
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Figure 2.7. CMP gathers 242, 272, and 562. A) Before automatic trace editing. B) After automatic trace editing. 

The noisy traces were removed.  
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Figure 2.8. Shot gathers 101, 176, 205, and 300. A) Before spherical divergence correction. B) After spherical divergence 

correction. Decayed amplitudes were restored.  
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Figure 2.9. Gain analysis of shot gather 205. The RMS amplitudes are displayed in dB. A) Before spherical 

divergence correction. B) After spherical divergence correction.   



 

 

26 

produced stacked section. Hence, static corrections are applied to each seismic trace to 

improve the seismic imaging of the subsurface.  

 

 

 

 

Figure 2.10. Diagram showing the raypath of reflection waves through weathered layer 

and the bedrock below (Hatherly et al., 1994).  

 

 

 

Static corrections consist of elevation correction, i.e., datum statics, which counts 

for the variations in elevation of the source and receiver stations, and the weathering 

correction. The elevation correction is given by Equation (1): 

𝑡𝑒 =  
    𝐸 −   𝐸𝑑     

𝑉𝑠𝑢𝑏𝑊
 , 

(1) 

where E and Ed are the station and datum elevations, respectively, and VsubW is the 

subweathering velocity. The datum elevation was set to 900 m above sea level for the 

processing of this dataset. The refraction velocity moveout application (RVMO) module 

was used to test a set of refraction velocities on shot gather 101 (Figure 2.11). The 
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resulting horizontal first arrivals determine the correct subweathering velocity. Due to 

limited knowledge of the thickness and velocity variations of the weathering zone, the 

weathering velocity and thickness are assumed to be constant along the seismic profile. 

The weathering correction was calculated by estimating a 10 m thickness and velocity of 

1600 m/s.  Figures 2.12 and 2.13 shows the calculated static corrections for source and 

receiver stations, respectively.   

2.6. NOISE SUPPRESSION  

Noise attenuation is a key step in the seismic data processing workflow. The data 

used in this study are contaminated by noises such as guided waves, ground roll, and 

source-generated noises. The removal of noise is essential for several factors. Processing 

steps such as deconvolution and prestack time migration algorithms are sensitive to noise. 

Furthermore, the imaging quality of the subsurface depends on the signal-to-noise ratios, 

which are significantly reduced by the presence of noise. In addition, future studies, such 

as AVO inversions and lithology discrimination, rely on effective noise attenuation. 

The first step in noise suppression is to analyze noise in the field records. Noise 

sources are categorized as coherent and incoherent (random) noise (Yilmaz, 2001). Three 

types of coherent noise are present in the data, which include ground roll, guided waves, 

and air blast. 

Ground roll, i.e., Rayleigh wave, is characterized by high amplitudes, low 

frequencies, and frequency dispersion. Ground roll noise in the study area is associated 

with a velocity close to 900 m/s (Figure 2.14).  In the F-K domain, ground roll noise is 
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Figure 2.11. Velocity test results for shot gather 101. The direct arrivals are horizontal at a refraction velocity of 3000 m/s. 
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Figure 2.12. Elevation profile (top) and calculated static correction (bottom) for the source stations. Few source stations are 

associated with positive value statics as they are placed below the seismic datum.  
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Figure 2.13. Elevation profile (top) and calculated static correction (bottom) for the receiver stations. 
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separated from seismic reflection events because of its distinctive linear moveout and 

dispersive character.  

Guided waves, which are less frequent in land data than ground roll, propagate 

horizontally in a low-velocity shallow bed. The first arrivals are dominated by these 

dispersive waves. In this study, guided waves were removed from the data simply by 

muting.  

Air blast heavily contaminates the near-offset traces and are associated with a low 

velocity of 340 m/s. Since air blast noise lies in the same frequency range as the signal, 

frequency bandpass filtering is not effective in removing this type of noise. In order to 

retain reflection amplitudes, a filter was designed in the F-K domain and applied to the 

data. 

The low frequency array filtering (LFAF) module was used to attenuate ground 

roll and air blast noise (Oppenheim and Schafer, 1989; Robinson and Treitel, 1980). This 

filter is designed in the F-K domain by specifying a range of frequencies from 1 Hz to 25 

Hz and maximum surface velocity of 1500 m/s. While the LFAF module greatly 

eliminated ground roll and air blast noise, near-offset traces contain residual noise 

characterized by low-frequency amplitudes (Figure 2.15). These remaining amplitudes 

were not filtered due to the lack of separation in the F-K domain between reflection 

events and linear noise at lower frequencies. Figure 2.16 shows the F-K analysis of the 

obtained results. Reflection amplitudes in the F-K domain were obscured by the linear 

noise of guided waves and ground roll before applying LFAF module. Subsequently, the 

removal of linear noise revealed reflection amplitudes near zero wavenumber. 
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Figure 2.14. Shot gathers 171 and 205 with AGC applied. Guided waves, ground roll, and air blast noises are indicated by 

the green, blue, and red outlines, respectively.   
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Figure 2.15. Shot gather 171. A) Before LFAF application. B) After LFAF application. C) The difference between A and B. 

Ground roll and air blast noise were significantly suppressed. 
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Figure 2.16. F-K analysis of shot gather 171. A) Before LFAF application. B) After LFAF application. Reflection 

events, ground roll, and residual noise are outlines in black, red, and yellow, respectively.  
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Bandpass filters operate in the frequency domain by passing only the desired 

range of frequencies. Hence, seismic noise that has a frequency range different from that 

of the signal can be filtered by rejecting the amplitudes of those frequencies. A band-pass 

filter from 10 Hz to 72 Hz was applied to the data (Figure 2.17). By rejecting the 

amplitudes of frequencies below 10 Hz, the residual low-frequency noise was notably 

suppressed (Figure 2.18). In addition, noise that is associated with frequencies above 72 

Hz was removed from the data. As a result, reflection amplitudes are more visible and, 

the signal-to-noise ratio has been improved.   

The time-frequency noise suppression (TFCLEAN) module was applied to the 

data to attenuate noise bursts in the seismic records (Goupillaud et al., 1983; Taner et al., 

1979). Each seismic shot gather is transformed into the time-frequency domain using fast 

Fourier transform (FFT). The transformed data are decomposed into different frequency 

sub-bands. Next, a noise threshold is defined to detect noise bursts, where any amplitude 

sample above the threshold is scaled to the computed median value and amplitudes below 

the threshold are passed unaltered. Subsequently, the unchanged phase information and 

the balanced amplitude information for all frequency bands are combined and 

transformed into the spacetime domain using inverse FFT. The obtained results from 

TFCLEAN are shown in Figure 2.19. The difference before and after applying 

TFCLEAN shows the removed random noise. The coherency of reflection events is 

improved in the resulting shot gathers.   

Various noise attenuation algorithms were tested on the data. Parameters were 

optimized to attain higher signal-to-noise ratios and remove noise effectively. Guided  
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Figure 2.17. Shot gather 171. A) Before band-pass filtering. B) After band-pass filtering. C) The difference between A and B.  
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Figure 2.18. The average power spectrum of shot gather 171. A) Before band-pass filtering. B) After band-pass filtering.  
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Figure 2.19. Shot gather 171. A) Before TFCLEAN application. B) After TFCLEAN application. C) The difference between 

A and B. 
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waves, ground roll, and air blast noises were analyzed and attenuated by different 

applications. The final results from the noise attenuation processing are shown in Figures 

2.20 and 2.21. Reflection events are more observable and coherent.  

2.7. DECONVOLUTION 

The seismic trace is commonly modeled as a result of the convolution of the 

seismic wavelet and the reflectivity function of the earth (Arya and Holden, 1978). 

Deconvolution, an essential step in prestack seismic data processing, compresses the 

seismic wavelet and removes short-period multiples from the data. Therefore, it increases 

temporal resolution and improves the seismic section.  

Deconvolution is generally attained by applying an inverse filter to remove 

undesirable effects on the seismic records. Types of deconvolution include spiking, 

predictive (gap), and surface-consistent deconvolutions. Each type is based on certain 

assumptions and has a different objective.  Since the aims of the study are to improve 

vertical resolution and preserve relative amplitudes, spiking deconvolution and surface-

consistent deconvolution were performed in this study.    

The basic convolutional model of the seismic trace in the frequency domain is 

given by Equation (2):  

𝑆(𝑓) =   𝑅(𝑓)  𝑥  𝑊(𝑓), (2) 

where S(f) is the seismic trace, R(f) is the reflectivity function of the earth, and W(f) is 

the seismic wavelet. 
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Figure 2.20. Shot gathers 107, 171, 205, 258, and 297. A) Before the noise attenuation processing. B) After the noise 

attenuation processing. 
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Figure 2.21. The stacked seismic section. A) Before the noise attenuation processing. B) After the noise attenuation 

processing. The outlined areas indicate the significant improvements.  
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The reflectivity coefficient series is assumed to be random and stationary and has 

a constant amplitude spectrum in the frequency domain. The seismic wavelet, on the 

other hand, is assumed to have an amplitude spectrum that changes slowly and smoothly 

within the frequency range. Therefore, the amplitude spectrum can be estimated by 

smoothing the spectrum of the input trace. The phase information of the seismic wavelet 

is used to design the minimum phase operator for the deconvolution filter.    

The surface consistent convolutional model of the seismic trace (Taner and 

Koehler, 1981) is given by Equation (3): 

𝑥𝑖𝑗(𝑡) =   𝑠𝑖(𝑡)  ∗  𝑟𝑗(𝑡)  ∗ ℎ𝑘(𝑡) ∗ 𝑒𝑙(𝑡) , (3) 

where xij(t) is the seismic trace at source location i and receiver location j, si(t) is the 

source response at location i, rj(t) is the receiver response at location j, hk(t) is the offset 

response at position k, and el(t) is the reflectivity function at common midpoint l. Hence, 

the log of the Fourier transform is given by Equation (4): 

ln 𝑋𝑖𝑗(𝑓) =  ln 𝑆𝑖(𝑓) + ln 𝑅𝑗(𝑓) +  ln 𝐻𝑘(𝑓) +  ln 𝐸𝑙(𝑓) , (4) 

The convolutional components are determined by least-square error minimization. 

Subsequently, a designed inverse filter based on undesirable components is applied to the 

data. The surface consistent components (i.e., source and receiver) capture the effect of 

acquisition variations and near surface effects. Nonetheless, the offset and common 

midpoint terms are required in the decomposition of the input signal to separate the effect 

of residual noise and nonwhite reflectivity from the source and receiver components 

(Cary and Lorentz, 1993).   

The frequency domain deconvolution (DECONF) module was used to apply a 

bandlimited spiking deconvolution to the data. The deconvolution operator was designed 
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and applied to each seismic trace as a trace-by-trace filter. The results obtained from 

DECONF application are shown in Figure 2.22. The vertical resolution and clarity of the 

reflection events are improved significantly at the target zone.  

The surface consistent deconvolution was applied to the data in two steps. First, 

the surface consistent autocorrelation analysis (SURFAN) module was used to compute 

the log power spectra of the seismic traces, reduce the accumulated log spectra to surface 

consistent components, and store the autocorrelation information. Second, the surface 

consistent deconvolution (SURFDEC) module was utilized to design convolution 

operators and apply them to the seismic data. The operators were designed based on the 

autocorrelations computed by SURFAN. The data was decomposed into four components 

(i.e., source, receiver, offset, and CMP) and then deconvolved by the source and receiver 

operators (Figure 2.23). As a result, the source and receiver variations due to the 

acquisition and near surface effects were removed from the data, and reflection events 

were sharpened.   

 The surface consistent deconvolution contributed more to removing the seismic 

wavelet, increasing temporal resolution, and enhancing the reflection events continuity 

than the spiking deconvolution (Figure 2.24). 

 The comparison of both convolution methods was performed on the stacked 

seismic section (Figures 2.25 and 2.26). Several improvements in the stacked section 

obtained from the surface consistent deconvolution are highlighted. The stacked seismic 

section shows better short-term multiples suppression, higher signal-to-noise ratio, and 

sharper reflection events. 
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Figure 2.22. Shot gather 107. A) Before the application of the spiking deconvolution. B) After the application of the 

spiking deconvolution. The outlined areas emphasize the significant improvements obtained from the spiking 

deconvolution.  
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Figure 2.23. Shot gather 107. A) Before the application of the surface consistent deconvolution. B) After the 

application of the surface consistent deconvolution. The outlined areas underline the enhanced reflections obtained 

from the surface consistent deconvolution.  
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Figure 2.24. Shot gather 107. A) After the spiking deconvolution. B) After the surface consistent deconvolution. The 

outlined areas indicate relative improvements of the surface consistent deconvolution over the spiking deconvolution.  
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Figure 2.25. The stacked seismic section after applying trace-by-trace spiking deconvolution. The outlined areas 

highlight the significant changes obtained from the spiking deconvolution.  
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Figure 2.26. The stacked seismic section after applying four-component surface consistent deconvolution. The vertical 

resolution and continuity of the reflections increased considerably after the surface consistent deconvolution.   
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The spectral analyses of the deconvolution methods were performed on the 

prestack and poststack data to investigate the frequency bandwidth recovery (Figures 

2.27 and 2.28). The data obtained from surface consistent deconvolution has a wider 

amplitude spectrum. Nonetheless, high-frequency random noise can affect the spectral 

analysis of the prestack data. Therefore, the spectral analysis performed on the stacked 

section, which contains less random noise, is more reliable and diagnostic. The spectral 

analysis was also applied to the stacked sections for both convolution methods and, the 

obtained amplitude spectra are shown in Figures 2.29 and 2.30.  

 The surface consistent deconvolution method provided better results than the 

trace-by-trace spiking deconvolution. The main advantages of this method are noise 

reduction, preserved relative amplitudes, and increased temporal resolution. Therefore, 

the data obtained from the surface consistent deconvolution were chosen for further 

processing steps.    

 

 

 

 

Figure 2.27. The average amplitude spectrum of shot gather 107 after the spiking 

deconvolution. Amplitudes at higher frequencies were slightly recovered.  
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Figure 2.28. The average amplitude spectrum of shot gather 107 after the surface 

consistent deconvolution. High-frequency amplitudes were recovered considerably.  

 

 

 

 

Figure 2.29. The average amplitude spectrum of the stacked section obtained from the 

spiking deconvolution. The dominant frequency of the stacked seismic data is around 22 

Hz. 
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Figure 2.30. The average amplitude spectrum of the stacked section obtained from the 

surface consistent deconvolution. The stacked section has a broader frequency bandwidth 

and a higher dominant frequency of 28 Hz. 

 

 

2.8. SURFACE CONSISTENT AMPLITUDE BALANCING 

Surface consistent amplitude balancing is a crucial processing step to prepare 

prestack land data for AVO analysis and seismic lithology discrimination. This method is 

commonly used after the application of surface consistent deconvolution (Cary and 

Nagarajappa, 2013). Since amplitude spectra of the data were corrected for the 

acquisition and near surface variations, the remaining surface consistent effects are 

characterized as amplitude scalars in the time domain. The objective of this processing 

step is to apply the inverse of the computed scalars.  

The surface consistent amplitude balancing analysis (BALAN) module was used 

to compute the root-mean-square (RMS) amplitudes of each seismic trace within an 

analysis window. A basic assumption of BALAN is that the computed amplitudes in the 

designed gate represent the true character of the seismic trace. Therefore, the analysis 

window was designed on high signal-to-noise ratio zone that includes the target reflector. 
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The log of the computed RMS amplitudes of each seismic trace was stored for the 

following application.  

The surface consistent amplitude balancing solution (BALSOL) module was used 

to reduce the computed RMS amplitudes to surface consistency. BALSOL decompose 

the trace amplitude information by least-squares error minimization into four 

components, i.e., source, receiver, offset, and CMP. The surface consistent solution 

obtained from BALSOL was written in the seismic database. Figure 2.31 shows the 

source and receiver amplitude scalars obtained from BALSOL. 

The surface consistent amplitude balancing application (BALAPP) module was 

used to apply the amplitude scalars to the data. The source and receiver corresponding 

scalars (i.e., surface consistent scalars) were used to balance each seismic trace. The 

obtained results from BALAPP were examined and validated (Figure 2.32). The spatial 

amplitude variations associated with different source and receiver stations were removed. 

The comparison of the stacked sections before and after the application of BALAN, 

BALSOL, and BALAPP are shown in Figures 2.33 and 2.34. The observed amplitude 

vertical banding of the data is corrected, and the coherency of the reflections is improved.   

2.9. VELOCITY ANALYSIS AND NORMAL MOVEOUT CORRECTION 

Velocity analysis is a vital step in seismic data processing. Seismic velocities 

greatly influence subsequent processing steps such as NMO correction and stacking, 

interval-velocity estimation, prestack time migration, and time-to-depth conversion. 

Therefore, determining the correct seismic velocity requires profound examination of the 

data. 
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Figure 2.31. Amplitude scalars obtained from applying BALAN, BALSOL and BALAPP. The top and bottom profiles 

display scalars associated with source and receiver stations, respectively. 
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Figure 2.32. Shot gathers 107, 155, and 274. A) Before applying the surface consistent amplitude correction. B) After 

applying the surface consistent amplitude correction.  
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Figure 2.33. The stacked seismic section before applying the surface consistent amplitude correction. The vertical 

banding of high and low amplitudes is indicated.  
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Figure 2.34. The stacked seismic section obtained from applying the surface consistent amplitude correction. The 

previously detected vertical amplitude banding is removed. 
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Seismic velocity types include interval, average, RMS, and stacking velocity.  

The interval velocity (i.e., the velocity in a single layer) is used for time-to-depth 

conversions. The stacking velocity, on the other hand, corrects for the normal moveout of 

seismic reflections.  

The seismic velocity varies based on the density and elastic moduli of the rocks. 

In sedimentary rocks, porosity can greatly affect the elastic moduli and, hence, alters the 

rock velocity. Velocity generally increases with depth because of the increased 

overburden pressure. 

The quality and effectiveness of velocity analysis depend on several factors. The 

maximum offset, signal-to-noise ratios, recording time, static correction, frequency 

bandwidth, and the structure of the subsurface contribute to the result obtained from 

velocity analysis. 

The resulting velocities from the analysis consist of time and rms velocity pairs 

called vertical velocity functions. The number of velocity functions from the analysis is 

decided based on the complexity of the subsurface structure and the lateral velocity 

variations. Furthermore, the velocity field is generated by the spatial and temporal 

interpolation of the vertical velocity functions.    

The velocity analysis of seismic data includes different techniques such as vertical 

velocity semblance, constant velocity stacks (CVS), function velocity stacks (FVS). The 

vertical velocity semblance method calculates amplitude coherency along hyperbolic 

trajectory within CMP gathers using different values of zero-offset time and velocity 

(Neidell and Taner, 1971). The amplitude coherency is maximized at the correct zero-

offset time and velocity for each seismic reflection. In addition, this technique helps in 
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identifying seismic multiples that are associated with relatively low velocities. On the 

other hand, the CVS technique is based on stacking a group of CMP gathers using a 

range of constant velocities. The resulting stacks are examined to find the best stack 

response based on reflection continuity.  

The velocity analysis implemented in this study was done by integrating both 

vertical velocity semblance and CVS techniques (Figures 2.35 and 2.36). The correct 

NMO velocities of the seismic reflections were determined from the vertical velocity 

semblance. Subsequently, CVS technique was used to refine the selected NMO velocities 

to improve the continuity of reflection events. The resulting NMO velocities were 

interpolated to obtain the stacking velocity field (i.e., velocity model) (Figure 2.37). The 

velocity model has a higher uncertainty at the very beginning and end of the seismic line. 

Nonetheless, the stacking velocity field is relatively smooth, and velocity anomalies were 

not observed. 

The obtained velocity field was used to apply NMO correction to all CMP gathers 

(Figures 2.38 and 2.39). The primary reflection events were flattened by applying the 

correct stacking velocity. Subsequently, a stretch mute was performed to remove the 

undesirable effect of NMO correction on shallower reflections at far offsets (Figure 2.40). 

The separation between primary and multiple reflections is a function of velocity 

difference and offset. The area under 1.5 seconds exhibits multiples that have an 

undercorrected NMO pattern due to their relatively high moveout. Multiples recorded in 

CMP gathers with high-fold coverage and relatively large offset are discriminated by 

velocity and, therefore, attenuated by the process of CMP stacking. On the other hand,  
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Figure 2.35. The velocity navigator tool used for velocity analysis in this study. 
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Figure 2.36. The interactive velocity analysis tool (VELDEF) used to refine the determined velocities.  
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Figure 2.37.  The obtained velocity field showing computed stacking velocity of the seismic profile. 
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the CMP stacking is less effective in attenuating multiples recorded near the beginning 

and end of the seismic line due to low-fold coverage.   

2.10. RESIDUAL STATIC CORRECTION 

Seismic traces are affected by the near surface layers in terms of relative time 

delay, amplitude distortion, and phase change (Taner et al., 1974). The estimation and 

correction of these effects are essential in processing land seismic data. The final seismic 

imaging of the subsurface is directly influenced by the process of correcting near surface 

effects. 

The seismic wave propagation through near surface anomalies results in 

misalignment of individual traces within CMP gathers. These misalignments persist 

throughout the stacking process and adversely affect the quality of stacked seismic 

sections (Moser and Jovanovich, 1984). Therefore, residual static corrections are 

computed and applied to the CMP gathers before the stacking process. 

The lateral velocity variations and thickness of the near surface layers are best 

approximated by the surface-consistent approach. In this approach, each source and 

receiver position has a consistent near surface effect on seismic traces associated with 

that source or receiver (Ronen and Claerbout, 1985). The effective removal of near 

surface effects increases the coherency of reflections after stacking. 

Surface consistent residual statics, however, are computed based on assumptions 

that may not be entirely true (Henley, 2012). The first assumption is surface-consistency 

where a specified surface location is associated with one constant time delay, irrespective 

of the wave path. The first assumption is valid for most seismic data as the weathering  
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Figure 2.38. CMP gathers 396 to 404 before applying the NMO correction.  
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Figure 2.39. CMP gathers 396 to 404 after applying the NMO correction.  
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Figure 2.40. CMP gathers 396 to 404 after applying the stretch mute. 
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layer is commonly associated with low velocity which bends the wave almost vertically 

based on Snell’s law. Nonetheless, the first assumption is violated when the weathered 

layer has a higher velocity than that of the underlying layer. As a result, reflections are 

traveling through different ray paths within the weathering layer, as illustrated in Figure 

2.41. 

The second assumption is the stationarity of the residual statics (i.e., waves 

reflecting from deep subsurface interfaces travel along the same path within the 

weathering layer with respect to shallow reflections). In other words, residual static 

correction is constant in time where all reflections recorded in a seismic trace are affected 

by the same time delay. 

Two types of surface consistent residual statics algorithms were tested in this 

study. Both techniques compute residual statics based on the cross-correlation of each 

input trace and a reference pilot trace. The resulting lag values from the cross-correlation 

are subsequently reduced to surface consistency and applied to seismic traces. 

 

 

 

 

Figure 2.41. The ray path of reflected seismic waves. a) The velocity of the shallower 

layer is much smaller than the underlying velocity. b) The velocity of the shallower layer 

is greater than the underlying velocity, where surface consistency assumption is violated 

(Henley, 2012).   
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The surface consistent residual statics generation (EPSTX) module was used to 

compute residual statics. Within the designed analysis gate, the cross-correlation of input 

traces and their CMP pilot trace are computed and accumulated for all source and 

receiver stations. The EPSTX application selects the largest lag of each accumulated 

correlation to generate the surface consistent residual statics. The stacked seismic 

sections before and after the application of the EPSTX module are shown in Figures 2.42 

and 2.43. The surface consistent residual statics applied to the data improved the 

continuity of the seismic reflections and increased the vertical resolution. Significant 

improvements in certain areas of the stacked seismic section were highlighted.  

The second approach in computing surface consistent residual statics was used 

and compared to the EPSTX module. This approach was performed in two stages. First, 

the automatic residual statics analysis (STATPIK) module was applied to the data. This 

application computes a large number of correlations for each group of input traces (i.e., 

CMP gather). The resulting lag values are checked for consistency. The pilot trace is 

constructed for each group using the time lag values that pass the consistency check. 

Then, each trace in the group is correlated with its associated pilot to obtain relative time-

shifts. Second, the resulting time-shift values are reduced to surface consistency by the 

automatic residual statics generation (STATANL) module. In this application, there are 

two methods for reducing time-shift values to surface consistency (i.e., median-based 

reduction and standard least-squares reduction). The median-based reduction method is 

more suitable for low signal-to-noise ratio and, hence, was selected. Figure 2.44 shows 

the stacked seismic section after applying the surface consistent residual statics obtained 

from the STATANL module. The second approach provides better imaging of the target 
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zone at a depth of 1100 ms. Furthermore, the outlined areas indicate further 

improvements over the EPSTX module. Therefore, this approach was selected to 

compute the surface consistent residual statics. 

The surface consistent residual statics were applied to the data in two passes 

(Figures 2.45 and 2.46). The velocity analysis and NMO correction were applied before 

each residual statics to improve the obtained results. Each residual statics pass contains 

ten iterations to ensure the convergence of the solution.  

2.11. MIGRATION  

Migration is the last step in the seismic data processing workflow. The 

importance of this step lies within its ability to move recorded reflections to their true 

locations. In addition, migration eliminates diffractions and increases both temporal and 

spatial resolution. The algorithms of migration are implemented in various methods and 

operated in different domains. For instance, the prestack and poststack migration 

algorithms are developed for CMP gathers and stacked data, respectively. The prestack 

algorithm is relatively more accurate as it uses prestack information. Migration can be 

performed in the depth domain to image complex geological structures. However, this 

technique is sensitive to the velocity model of the subsurface and requires the integration 

of stacking velocities, well logs, and tomography modeling.  

The migration algorithms used in this study require a flat reference datum. Hence, 

the seismic data and the velocity model were moved from the floating datum to the final 

flat datum at elevation 900 m above sea level. The stacked seismic section referenced to 

the flat datum is shown in Figure 2.47.  
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Figure 2.42. The stacked seismic section before applying the surface consistent residual statics. 
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Figure 2.43. The stacked seismic section after applying the surface consistent residual statics obtained from the 

EPSTX module. The outlined areas indicate the significant improvements.  
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Figure 2.44. The stacked seismic section after applying the surface consistent residual statics obtained from the 

second approach. The outlined areas highlight the relative improvements of this approach over the first one. 
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Figure 2.45. The first pass computed residual static correction for the source (top) and receiver (bottom) stations.  
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Figure 2.46. The second pass computed residual static correction for the source (top) and receiver (bottom) stations.  
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Figure 2.47. The unmigrated stacked seismic section referenced to the flat datum at the elevation 900 m above sea level. 
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In this study, prestack and poststack time migration methods were tested to obtain 

the migrated section that best image the subsurface. Two techniques were selected based 

on computational resources, geological complexity, and velocity field accuracy.  

The space-time Kirchhoff migration (MIGTX) module was used to obtain 

prestack and poststack time migrated seismic sections. The imaging operator of this 

technique is based on the Kirchhoff migration algorithm described in Stolt and Benson 

(1986).  

The poststack time migrated section was obtained after optimizing the maximum 

dip limit (Figure 2.48). The input data for this method are the stacked seismic traces and 

the velocity field. The changes in structure due to migration were small since most of the 

reflection events in the stacked section are considerably flat. At the target zone, a better 

seismic imaging of the channel fill deposits was obtained. The base of the channel is 

more interpretable and located near CMP 350. 

On the other hand, prestack time migration algorithm has more requirements and 

restrictions on the data. The algorithm requires regularized offsets and CMP gathers to 

have the same number of traces. Therefore, the uniform geometry grouping (UNIFORM) 

module was used to regularize offsets and add dead traces to CMP gathers that have less 

than 200 traces. The added traces were removed after the migration process. The 

resulting CMP gathers were migrated and corrected for NMO simultaneously by the 

MIGTX module. Subsequently, the data were stacked to obtain the migrated seismic 

section (Figure 2.49). The obtained seismic section is similar to the poststack migrated 

section in terms of structure and the imaging of the incised valley at the target reservoir. 
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Nonetheless, prestack time migration provided higher signal-to-noise ratios and better 

reflection coherency (Figure 2.50).  

The legacy prestack time migrated section provided by CREWES was imported in 

order to assess the quality of the processing in this study. The obtained stack from the 

Kirchhoff prestack time migration and the legacy stack were compared and analyzed 

(Figures 2.51 and 2.52). The legacy stack provides an overall better vertical resolution 

than the prestack time migrated section processed in this study. However, reflection 

continuity and signal-to-noise ratios are better in the seismic section obtained in this 

study. The spectral analyses of both seismic sections indicate that the legacy stack has a 

wider frequency bandwidth. The computed average amplitude spectrum of the legacy 

data extends to 120 Hz at a given threshold of -20 dB (Figure 2.53). Most of the higher 

frequency amplitudes represent random noise. On the other hand, the amplitude spectrum 

of the seismic section obtained in this study extends only to 78 Hz at the same given 

threshold (Figure 2.54). At the target zone, both sections provide good imaging of the 

subsurface strata. However, the seismic section obtained in this study provides a better 

image of the incised valley channel fill deposits (Figure 2.55). The resulting stacked 

section was exported in SEGY format to conduct seismic interpretation.  
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Figure 2.48. The stacked seismic section after the Kirchhoff poststack time migration. 
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Figure 2.49. The stacked seismic section after the Kirchhoff prestack time migration. 
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Figure 2.50. Enlarged target zone. A) After prestack time migration. B) After poststack time migration. The circle outlines the 

incised valley. 
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Figure 2.51. The stacked seismic section after the Kirchhoff prestack time migration. 
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Figure 2.52. The stacked seismic section of the legacy data.  
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Figure 2.53. The average amplitude spectrum of the stacked section obtained from the 

legacy data. 

 

 

 

 

Figure 2.54. The average amplitude spectrum of the stacked section obtained from the 

Kirchhoff prestack time migration. 
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Figure 2.55. Enlarged target zone. A) Prestack time migrated section from the legacy data. B) Prestack time migrated section 

obtained in this study. The outlined area indicates the incised valley. 
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3. SEISMIC INTERPRETATION 

 

This research is focused on seismic processing. A simple seismic interpretation 

was performed using the interpretation software of the IHS Markit Kingdom. The SEGY 

file of the final stacked seismic section was loaded into the interpretation software. Log 

data from Well 14-09, including gamma ray, density, porosity, sonic, and resistivity, were 

utilized to generate synthetic seismogram and establish seismic-to-well tie. Four key 

seismic horizons were selected based on their strong reflection amplitudes and coherency. 

The key horizons were identified and picked on the stacked seismic section.   

Well 14-09, which intersects the seismic profile at CMP 312, provides valuable 

information of the subsurface. The surface elevation of the well is 927 m above sea level. 

All available logs start from 200 m measure depth (MD) to 1600 m which are equivalent 

to 727 m above sea level to 673 below sea level. The imported formation tops include 

Viking, Blairmore, Glauconitic, and Mississippian markers (Figure 3.1).    

Sonic and density logs from Well 14-09 were used to computed the acoustic 

impedance and the reflection coefficients. The Walden-white deterministic wavelet 

extraction algorithm was used to obtain the extracted seismic wavelet from seismic traces 

within 50 ft of the well (Walden and White, 1984). The dominant frequency of the 

wavelet is around 25 Hz (Figure 3.2.). By convolving reflection coefficients with the 

extracted wavelet, the synthetic seismogram was obtained (Figure 3.3). All seismic traces 

within a radius of 100 meters were extracted. The computed coefficient from the 

correlation of the extracted traces and synthetic seismogram is 0.944, which indicates an 

excellent correlation. The obtained T/D chart is shown in Figure 3.4.  The four key 

seismic horizons were identified and picked on the seismic section using the synthetic 
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seismogram (Figure 3.5). At the target zone, edges of the incised valley channel fill 

deposits were mapped clearly (Figure 3.6).  

 

 

 

 

Figure 3.1. Log data and formation tops from Well 14-09.  

 

 

 

 

Figure 3.2. Extracted seismic wavelet from seismic traces within 50 ft of Well 14-09.  



 

 

86 

 

 

F
ig

u
re

 3
.3

. 
S

y
n
th

et
ic

 s
ei

sm
o
g
ra

m
 o

f 
W

el
l 

1
4
-0

9
. 
A

 G
o
o
d
 c

o
rr

el
at

io
n
 i

s 
in

d
ic

at
ed

 b
et

w
ee

n
 t

h
e 

sy
n
th

et
ic

 s
ei

sm
o
g
ra

m
 

an
d
 t

h
e 

ex
tr

ac
te

d
 s

ei
sm

ic
 t

ra
ce

s.
 

 



 

 

87 

 

Figure 3.4. The obtained T/D chart from the seismic-to-well tie.  
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Figure 3.5. Well 14-09 superimposed on the stacked seismic section. 
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Figure 3.6. Interpreted seismic section at the target zone. 
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4. CONCLUSIONS 

 

The single-component 10 Hz geophone data were reprocessed to increase vertical 

resolution and provide a better seismic image of the incised valley channel fill deposits of 

the Glauconitic Formation. The reprocessing of the data implements amplitude-preserved 

seismic processing followed by the Kirchhoff prestack time migration. The resulting 

common image gathers obtained from the Kirchhoff prestack time migration can be used 

in further AVO analysis and lithology discrimination of the target zone. The focus of the 

reprocessing is targeted at a time interval from 1000 ms to 1500 ms. Log data from Well 

14-09 were used to conduct seismic interpretation to assess the quality of the final 

stacked seismic section. In addition, results from the legacy data were compared to the 

data in this study.   

The offset-dependent spherical divergence correction was applied to the data in 

order to compensate for amplitudes decay in the time and offset domains. The effects of 

the source and receiver elevation variations were efficiently removed by applying the 

elevation statics. 

Noise attenuation processing was performed by applying the LFAF module, 

bandpass filtering, and TFCLEAN module. Linear noise such as ground roll and air blast 

noise were filtered using the LFAF module. Bandpass filtering significantly removed 

residual noise below 10 Hz and the high-frequency random noise. The TFCLEAN 

module suppressed random noise that lies in the same frequency range as the signal. As a 

result, higher signal-to-noise ratios were obtained and the coherency of reflection events 

was improved. 
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Bandlimited spiking (trace-by-trace) and surface consistent deconvolutions were 

applied to the data to increase the vertical resolution of the data. The surface consistent 

deconvolution showed better results on the seismic section. The surface consistent 

deconvolution increased the dominant frequency of the stacked seismic section from 22 

Hz to 28 Hz. 

Surface consistent amplitude balancing algorithm was used to compensate for 

amplitude variations in the time domain due to the data acquisition. The application of 

the computed surface consistent amplitude scalars significantly reduced the amplitude 

vertical banding observed in the stacked seismic section. 

Velocity analysis in this study was performed by integrating vertical velocity 

semblance and CVS techniques. The resulting stacking velocities were used to apply 

NMO correction to the CMP gathers. As a result, primary reflection events were flattened 

to maximize the CMP stacking power. On the other hand, multiples at later traveltime 

were attenuated in the stacking processes by velocity discrimination.   

Two surface consistent residual statics algorithms (i.e., EPSTX and STATANL) 

were tested on the data to compute the short-wavelength statics. The STATANL 

approach provided better imaging of the target zone and was applied to the data in two 

passes. In order to achieve better results, velocity analysis and NMO correction were 

applied before each residual static correction.  

The Kirchhoff prestack and poststack time migration methods were tested to 

obtain the migrated section that best image the subsurface. The results from both 

migration algorithms were similar in terms of structure and the imaging of the incised 
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valley at the target reservoir. However, prestack time migration provided higher signal-

to-noise ratios and better reflections coherency.  

The obtained stacked seismic section after the Kirchhoff prestack time migration 

processing and the legacy poststack seismic data provided by CREWES were compared 

in order to assess the quality of the processing of this study. While the legacy stack 

provides an overall better temporal resolution and wider frequency bandwidth, the 

prestack time migrated processed in this study has better reflection continuity and higher 

signal-to-noise ratios. At the target zone, the incised valley of the Glauconitic Formation 

is better imaged by the prestack time migrated section obtain in this study.  

A simple seismic interpretation was conducted using the interpretation software of 

the IHS Markit Kingdom. In order to generate synthetic seismogram and establish 

seismic-to-well tie, log data from Well 14-09 were utilized. Four key seismic horizons, 

including the target reservoir, were identified and picked on the seismic section to assess 

the quality of the processed seismic data.  
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