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ABSTRACT 

Time-varying structural systems are often encountered in civil engineering. As 

extreme events occur more frequently and severely in recent years, more structures are 

loaded beyond their elastic conditions and may thus experience damage in the years to 

come. Even if structures remain elastic, energy dissipation devices installed on structures 

often reveal hysteretic behaviors under earthquake loads. Therefore, it is imperative to 

develop and implement novel technologies that enable the identification and damage 

detection of time-varying systems. In this dissertation, adaptive wavelet transform (AWT) 

and multiple analytical mode decomposition (M-AMD) are proposed and applied to 

identify system properties and detect damage in structures. AWT is an optimized time-

frequency representation of dynamic responses for the extraction of features. It is defined 

as an average of overlapped short-time wavelet transforms with time-varying wavelet 

parameters in order to extract time-dependent frequencies. The effectiveness of AWT is 

demonstrated by various analytical signals, acoustic emission and impact echo responses. 

M-AMD is a response decomposition method for the identification of weakly to 

moderately nonlinear oscillators based on vibration responses. It can be used to accurately 

separate the low and high frequency components of time-varying stiffness and damping 

coefficients in dynamic systems. The efficiency and accuracy of the proposed M-AMD are 

evaluated with three characteristic nonlinear oscillators and a ¼-scale 3-story building 

model with frictional damping under seismic excitations. Finally, AWT-based M-AMD is 

applied to decompose the measured dynamic responses of a 1/20-scale cable-stayed bridge 

model tested on four shake tables and evaluate the progression of damage under increasing 

earthquake loads. 
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1. INTRODUCTION 

1.1. STRUCTURAL HEALTH MONITORING 

Structural health monitoring (SHM) is the process of implementing a damage 

detection and characterization strategy for engineering structures. As a popular research 

subject for decades, SHM aims to provide a prognosis and diagnosis tool for structural 

condition at any moment during the service life of an engineering structure. It includes four 

stages: (1) detecting the existence of damage in the structure, (2) locating the damage, (3) 

identifying the types of damage, and (4) quantifying the severity of the damage. All the 

stages revolve around the advanced knowledge of sensor deployment, data acquisition, 

signal feature extraction, and condition evaluation.  

Techniques in SHM can be classified into two categories: local and global. For the 

local approach, it is often referred to as nondestructive evaluation, which includes acoustic 

emission, impact echo, and infrared thermography inspection. These methods require that 

the portion of a structure being inspected must be accessible. Due to these limitations, they 

are often limited to the damage detection on or near the surface of the structure. The global 

approach, however, is to assess the system condition of complex structures, and it generally 

observes the changes in the vibration features of these structures. 

For both local and global approaches, the identification of application specific data 

features that allows the damage to be identified is the most important process and receives 

the most attention from the researchers. This is due to the reason that all the four stages of 

the SHM process rely on a robust data interpretation method. Common features can be 

extracted from measured system responses with signal processing techniques in time 

domain, frequency domain or time-frequency domain.  



 

 

2 

1.2. SIGNAL PROCESSING TECHNIQUES 

Extracting components and associated features from a measured dynamic signal is 

one of the critical steps in SHM. Stationary signals with time-invariant features can be 

decomposed using simple filtering techniques. However, signals such as wind-induced 

vibration and earthquake responses may not be stationary. In such a case, time-varying 

parameters must be identified in order to capture instantaneous characteristics. The 

techniques that are used for nonstationary signal analysis can generally be divided into two 

categories: representation and decomposition.  

Representation is a method to show the variation of a parameter over time from a 

signal. The time-frequency representation of a signal is a typical example. Whereas, 

decomposition is to separate a signal into individual components for further analysis. The 

empirical mode decomposition (EMD) [1] and analytical modal decomposition (AMD) [2] 

are typical examples. The two categories are sometimes combined to achieve a complete 

signal analysis. Daubechies et al. [3] developed the synchro-squeezed wavelet transform 

(SSWT) and combined it with EMD to extract time-varying features, and Chen and Wang 

[2] developed and utilized AMD together with wavelet transform for signal decomposition. 

To better understand a signal, signal representation and decomposition are both important 

in acquiring the crucial characteristics hidden in an original signal.  

1.2.1. Signal Representation. For time-frequency representation, many signal 

processing techniques have recently been proposed and used in practical applications. They 

include short time Fourier transform (STFT) [4], Wigner-Ville distribution (WVD) [5], 

Hilbert transform [1, 6, 7] and continuous wavelet transform (CWT) [8-10]. These 

techniques have their own advantages and disadvantages. STFT can capture the basic time-
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frequency features of a signal with different window lengths for better time or frequency 

resolution, but fail to yield both resolutions simultaneously due to the Uncertainty Principle 

and fixed window length at each transform. WVD has the highest energy concentration, 

but is relatively difficult to yield instantaneous frequency characteristics. By introducing a 

scaling factor and a shifting factor, CWT can introduce high time resolution with a low 

scaling factor, and high frequency resolution with a high scaling factor at any given time. 

However, the time and frequency resolutions are often compromised for a desirable 

representation in time-frequency domain.  

Adaptive wavelet concepts are widely used in signal processing techniques. Zhang 

and Benveniste proposed the Wavelet Neural Network (WNN) by combining the wavelet 

and neural network to adaptively capture desired features [11]. Genetic Algorithm (GA) 

has also been utilized to optimize the mother wavelet in some applications [12]. More 

recently, Nazimov et al. tried to optimize the central frequency and other coefficients of 

Morlet mother wavelet to gain better representation [13]. AMD analysis for time-variant 

features relies heavily on time-frequency representation techniques, particularly wavelet 

transform, and various optimization means of traditional wavelet transform are done by 

researchers. A wavelet ridge extraction method was proposed for instantaneous frequency 

identification [14]. SSWT was developed for more accurate time-frequency representation 

[3]. A further step was taken to propose a generalized synchro-squeezed transform to detect 

gear box faults [15].  

1.2.2. Signal Decomposition. For signal decomposition, the Hilbert Transform 

method has received increasing attention in the field of system identification and damage 

detection [16-19] in the past two decades. Huang et al. developed the well-known Hilbert-
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Huang Transform (HHT) method [1, 6, 20]. The HHT method was then applied into the 

detection of faults in mechanical systems [21, 22]. In combination with the random 

decrement technique, the natural frequencies and damping ratios of linear structures under 

ambient vibration were successfully identified [23, 24]. Based on the EMD, The time and 

location of damage were further determined by identifying the damage-induced response 

pulses due to a sudden change of structural stiffness [25]. A few investigators have 

attempted to address the mixed mode problem associated with the EMD. The minimum 

cutoff frequency criterion was established in the EMD sifting process to ensure that the 

frequency bandwidths of intrinsic mode functions are separated [26]. The subjective 

intervention to the EMD process may unintentionally distort the intrinsic mode functions. 

The wavelet packet transform was utilized to decompose a signal into a set of narrowband 

components [27]. A band-pass filter was applied on the measured free vibration time 

histories for the modal parameter identification of a multi-degree-of-freedom (MDOF) 

system [23, 24]. The waves’ beating phenomena was taken advantage of to facilitate the 

EMD process [78]. A small intermittent fluctuation was decomposed from a large ocean 

wave by injecting a known time function into the original signal [29]. The wave-group 

method may not be applicable to flexible structures since their natural frequencies are 

already low. More recently, the singular value decomposition and band pass filtering 

techniques can be used to extract the parameters of closely-spaced modes [30]. As the space 

between two modal frequencies becomes small, the challenge of consistently and reliably 

identifying the properties of linear structures remains.  

The EMD [1], Hilbert Vibration Decomposition (HVD) [7], and the AMD [2] allow 

the inclusion of both main and super harmonics. However, the HVD faces serious 
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challenges when applied to separate low amplitude harmonics from noises [31]. It is more 

suited to dealing with the free vibration of a SDOF system due to complications in 

mathematical formulation [32] while the EMD has the mode mixed problem in engineering 

applications with closely-spaced frequencies. Only the AMD is applicable to both cases. 

 

1.3. NONDESTRUCTIVE EVALUATION APPROACHES 

Nondestructive testing can be divided into various methods (e.g. acoustic emission, 

impact echo, Eddy-current, infrared and thermal testing) based on different scientific 

principles. These techniques, due to the unique principles, may find themselves well suited 

to certain applications. Thus, choosing the right method and technique is an important part 

of the performance of evaluation. Here, acoustic emission (AE) and impact echo (IE) 

methods are reviewed in detail, as they are of direct relevance to this study. 

1.3.1. Acoustic Emission. For elevated structures, visual inspection as current 

practice in bridge maintenance can be subjective, difficult, expensive, dangerous, and 

disruptive. An attempt was thus made in early 1970s to apply AE into the detection, 

localization, and assessment of damage in highway structures [33]. Since then, further 

attempts have been made to understand damage mechanisms [34], detect fatigue-induced 

cracks in steel and concrete structures [35-37], evaluate reinforcement corrosion in 

reinforced concrete (RC) structures, and detect corrosion-induced cracks in RC structures 

[38-40].   

As a nondestructive detection method, AE has been used for bridge cable 

monitoring due to its simplicity in sensor attachment and low attenuation [41-47]. In 

particular, Physical Acoustics Corporation tested the Anthony Wayne Bridge to 
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demonstrate the potential of AE technology in cable monitoring [48].  Most of these 

researchers analyzed AE waveform in time domain for the detection and identification of 

wire fracture [49-51], impact source [52], and inter-wire friction [53]. AE waveforms were 

also analyzed in frequency domain with the change in Fourier spectra [54]. To preserve 

key time-varying features in frequency domain, STFT and wavelet-based techniques were 

applied to verify modeling techniques [45], accuracy improvement of source localization 

algorithms [55], damage assessment of deteriorated RC structures [56], and denoising 

effect of filtering techniques [57]. Most, if not all, of these time-frequency analyses were 

applied to the AE signals of fiber reinforced polymer composite materials [58-60], and 

glass fiber reinforced polymer bridge cables [61]. Little has been done to understand the 

full potential of time-frequency analysis of AE signals for the extraction of pre-fracture 

features in damage prediction of steel cables and distinguish pre-fracture and fracture 

signals from fracture-induced echoes and noises so that false prediction and detection cases 

of wire fracture can be prevented. 

1.3.2. Impact Echo. Corrosion, stress, or a combination of both can cause defects 

in concrete slabs such as delamination, voids, and cracks. If not treated in time, these 

defects would expand, influencing structural durability. Thus, the effectiveness of defect 

detection is of vital importance for maintenance strategy optimization. Among many 

techniques such as IE, short-wavelength penetrating radiation (x-rays and gamma rays), 

ground penetrating radar, microwave, and infrared thermography, IE proposed by Carino 

et al. [62] has been widely used and proven effective in structural geometry identification, 

flaw detection, and acoustic behavior of interfaces [63]. Its effectiveness was validated 

through testing of concrete slabs with artificial defects placed at predetermined locations 
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[64]. The IE method was applied to detect delamination [65, 66] and flaws in concrete slabs 

in combination with ultrasonic surface waves [67-69]. 

STFT, Gabor transform, and wavelet transform have recently been applied to 

analyze ultrasonic signals [70-72]. Among these time-frequency analysis methods, wavelet 

transform appears to be the most powerful and widely used [73]. Chiang and Cheng used 

the wavelet transform of IE signals to inspect steel and PVC tubes [74].  Shokouhi et al. 

showed that wavelet transform is more efficient than STFT for the extraction of time-

frequency information from test data [72]. The marginal spectrum of wavelet transform 

was used together with Fourier transform to extract more accurate results in the frequency 

domain [75]. Epasto et al. also used the wavelet transform of IE signals for fire-damaged 

concrete evaluation [75]. Celaya et al. used a Portable Seismic Property Analyzer (PSPA) 

to assess debonding in concrete slabs with the aid of wavelet transform [77]. 

 

1.4. OBJECTIVES OF STUDY 

The overall goal of this research work is to develop adaptive wavelet transform 

(AWT) and multiple analytical mode decomposition (M-AMD), and to enable the proper 

and wide application of these methods in various science and engineering disciplines. The 

main focus of this project are non-parametric identification of numerical signals and 

damage detection of time-varying systems including both linear structures with time-

dependent properties and nonlinear structures without bifurcations, jumps, and chaotic 

behaviors.  

To date, the AMD is a mathematically proven adaptive data analysis method for 

continuous time series. In engineering applications, however, structural responses are often 
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sampled at certain rate over a finite length of time. Their time-frequency characteristics are 

unknown before the AMD is applied, making it a challenge to select bisecting frequencies. 

These frequencies are key to the successful application of the AMD. However, how the 

sampling rate and finite length affect the decomposition accuracy has yet to be understood, 

quantified, and validated with experimental data from realistic structures.  

A hypothesis is made to apply the AMD into the non-parametric identification and 

damage detection of a general structure. That is, AMD can accurately decompose each of 

the measured dynamic responses of a structure into many components that are mutually 

exclusive in frequency domain. For responses with time-dependent frequency 

characteristics, the frequency domain must be divided by time-varying bisecting 

frequencies. As the divided frequency ranges become so narrow that only one 

instantaneous mode of vibration is included in each range, a small perturbation of structural 

properties over time will be amplified in some of the narrowband components. As such, 

instantaneous system properties can be identified from the “zoom-in” components with 

high accuracy and high sensitivity to the causative perturbation, and their difference from 

those of a corresponding undamaged system can be used as an indicator for damage 

detection. 

The specific objectives of this project include: 

(1) Develop and characterize AWT for the determination of time-dependent 

frequencies so that optimal time-frequency resolution can be applied into every area of 

interest. Thus, AWT can be either used solely for time-frequency signal analysis or in 

combination with AMD for bisecting frequency extraction. 
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(2) Establish and evaluate a sampling rate and finite length criterion that guarantees 

an accurate decomposition of discrete time series, namely Optimized AMD. 

(3) Derive the M-AMD algorithm based on the optimized algorithm, which gives a 

computationally efficient and accurate solution of the stiffness and damping coefficients 

of weakly-to-moderately nonlinear systems from free and forced vibration. 

(4) Test the hypothesis and validate the robustness, accuracy, and efficiency of the 

AWT and M-AMD in system identification and damage detection of complex structures 

with different nonlinear mechanisms using shake table test data. 

 

1.5. RESEARCH SIGNIFICANCE 

Time-varying structural systems are commonly encountered in civil engineering. 

For example, long-span (flexible) bridges vibrate in complex mode shapes with closely-

spaced natural frequencies that vary over time as vehicles or trains move across them. As 

extreme events such as earthquakes, hurricanes, tornados, and floods have occurred more 

frequently and severely in recent years, more buildings and bridges will be loaded beyond 

their in-service conditions and thus may experience structural damage such as concrete 

cracks, steel yielding and buckling in the years to come. Even if structures remain elastic 

under extreme events, due to the installation of more energy dissipation devices for 

protection from dynamic effects, the structure-device systems often reveal hysteretic 

behaviors. Therefore, it is imperative to develop and implement novel technologies that 

enable the identification and damage detection of such time-varying systems. 

CWT is an advanced signal processing tool that gives a varying frequency 

resolution at each give time. It preserves accurate low frequency components and captures 
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transient high frequency features. However, there still exists the limitation of signal 

distortion for time-varying structural systems, when the wavelet parameters are optimized 

in the global sense in the current practice. Therefore, AWT is developed with time-varying 

mother wavelet parameters, which results in non-uniform time-dependent frequency 

characteristics. By taking advantage of the fully automatic parametric optimization 

algorithm based on CWT, an overlapping and averaging short-time wavelet transform or 

AWT with time-varying scaling factors and center frequencies in a complex Morlet 

wavelet is proposed for time series with strongly time-dependent frequencies.  

AMD is a mathematically proven data analysis method for continuous time series. 

In engineering applications, signals obtained from sensors that monitor structural responses 

are often time-dependent and sampled over a finite time length. This poses a challenge for 

AMD: the finite discretized signals often distort AMD results to certain degree. Thus, how 

the bisecting frequency is selected and affects the decomposition accuracy together with 

sampling rate and finite length needs to be understood, quantified, and validated with 

experimental data from practical applications. 

Identifying instantaneous modal parameters is crucial to observe structural 

abnormalities for nonlinear systems. However, how to correctly and accurately implement 

a robust algorithm to identify these parameters remains a challenge. Current methods are 

suffering from issues such as mode mix, noise contamination and parametric interference. 

M-AMD takes advantage of the repetitive applications of optimized AMDs to tackle the 

challenge of the identification of fast-varying stiffness and damping coefficient in 

nonlinear structures. It acts as the denoising filter, mode decomposition window and 

parameter separator, which simultaneously solve the existing issues with existing methods. 
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For damage detection and non-parametric identification, AWT and M-AMD are 

assumed to be able to identify and decompose each signal component from the measured 

dynamic responses of a structure. These components are mutually exclusive in frequency 

domain, including time-invariant and time-variant responses that are filtered with 

corresponding bisecting frequencies. Abnormality that is extracted especially from the 

time-varying bisecting frequencies for certain components can thus be identified from the 

amplified filtered results with high accuracy and high sensitivity to the causative 

perturbation.  

 

1.6. DISSERTATION ORGANIZATION 

This dissertation consists of seven sections. These sections are organized and 

briefly discussed as follows. 

In Section 1, the concepts of structural health monitoring are introduced. The state-

of-the-art development in signal processing techniques and two nondestructive evaluation 

approaches utilized in this dissertation (AE and IE) is reviewed. The objectives and 

significance of this study are presented. 

In Section 2, the time-frequency resolution limitation in CWT is first reviewed. 

AWT is then defined as an average of short-time CWT segments that are staggered over 

time. Two algorithms are proposed to determine the optimal time-varying wavelet 

parameters from an arbitrary dynamic response with no prior knowledge. The 

characteristics and performance of the proposed AWT are then evaluated using an 

analytical signal of two closely-spaced frequency-modulated sinusoids and two delta 

functions over time. Synchro-squeezed adaptive wavelet transform (SSAWT) is then 
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proposed by integrating the synchro-squeezing technique to AWT, to achieve sharper and 

more accurate time-frequency results.  Next, the characteristics and performance of the 

proposed SSAWT are evaluated using an analytical signal of two closely-spaced 

frequency-modulated sinusoids.  

In Section 3, two seven-wire steel strands were axially loaded and unloaded in 

displacement control, each with the cross section of one wire reduced up to 90% in 10% 

increment and instrumented with one AE sensor at each end of the strand. AE parameters 

(hits, energy, and counts) were used to detect and locate two wire fracture cases. Pre-

fracture signals were identified and differentiated from fracture signals, fracture-induced 

echo responses, and artificial tapping noises by analyzing them with AWT and comparing 

their features in time-frequency domain for the early detection of wire fracture in bridge 

cables. 

In Section 4, the proposed AWT is applied into the impact echo responses 

experimentally recorded from a concrete slab, providing a more accurate and efficient way 

of delamination detection than the CWT. SSAWT is also applied to the IE responses 

experimentally recorded from a concrete slab to identify its thickness or detect embedded 

delamination defects. The identified results are compared with those by the conventional 

CWT, SSWT and the recently developed AWT, which gives more accurate identification 

results. 

In Section 5, M-AMD are proposed and developed to identify the stiffness and 

damping coefficients of a weakly to moderately nonlinear systems from vibration 

responses. Based on free vibration, the efficiency and accuracy of the proposed M-AMD 

are evaluated with three characteristic nonlinear oscillators: Duffing, Bouc-Wen, and 
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spherical bearing models. Their dependence on the degree of nonlinearity is investigated 

with the Duffing system. Under forced vibration, the M-AMD is evaluated with the 

nonlinear Duffing oscillator under harmonic loads and a ¼-scale 3-story building model 

with frictional damping under seismic excitations. 

In Section 6, the optimized AMD is developed for more robust and consistent signal 

decomposition with the AWT acting as the preprocessing technique. Numerical examples 

including the Duffing oscillator are used to demonstrate the proposed algorithm’s 

feasibility to successfully decompose the nonlinear responses. The shake table test of a 

1/20 scale cable-stayed bridge model was then performed for the identification of nonlinear 

behaviors. 

In Section 7, the main findings and conclusions of this study are summarized and 

further researches are recommended. 
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2. ADAPTIVE WAVELET TRANSFORM 

2.1. LIMITATION OF CWT 

Due to non-selectivity in time-frequency resolution over time, the scalogram 

obtained from CWT is often distorted to certain degree.  Specifically, the Heisenberg’s 

uncertainty principle constrains the product of time and frequency resolutions equal to 2 

rad. For the scaled wavelet in CWT, the following limitation is applicable to any type of 

mother wavelet. Without any loss of generality, a continuous complex Morlet wavelet is 

taken as an illustrative example. When the center frequency 𝜔𝑐 > 5 rad/s, the simplified 

Morlet wavelet 𝜓(𝑡) as a function of time, 𝑡, can be approximated by: 

𝜓(𝑡) =
1

√𝜋𝑡𝑏
𝑒

𝑡2

𝑡𝑏𝑒𝑖𝜔𝑐𝑡,                (1) 

and its Fourier transform,  �̂�(𝜔), as a function of frequency, 𝜔, is: 

�̂�(𝜔) = 𝑒−(2𝜋)2(𝜔−𝜔𝑐)
2
.                                               (2) 

The resolution of the simplified mother wavelet in time and frequency domains can 

be obtained respectively from: 

𝛥𝜓 = [
∫ (𝑡−𝑡∗)2
+∞
−∞

|𝜓(𝑡)|2𝑑𝑡

∫ |𝜓(𝑡)|2𝑑𝑡
+∞
−∞

]

1

2

,                                           (3) 

𝛥�̂� = [
∫ (𝜔−𝜔∗)2
∞
0

|�̂�(𝜔)|
2
𝑑𝜔

∫ |�̂�(𝜔)|
2∞

0
𝑑𝜔

]

1

2

.                                        (4) 

where𝑖 = √−1 is an imaginary unit; 𝑡𝑏(= 2sinthisstudy)and𝜔𝑐 in Equations (1) and 

(2) represent the time-domain bandwidth and the center frequency of the mother wavelet, 

respectively; 𝛥𝜓  and 𝛥�̂�  are the radii of 𝜓(𝑡) and �̂�(𝜔), respectively; 𝑡∗ = 0 and 𝜔∗ =

𝜔𝑐 , and ǀ.ǀ denotes the modulus of a complex function. As shown in Figure 2.1, each 

rectangle represents how well two close peaks can be separated in various parts of the time-
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frequency domain. The short and long sides of the rectangle symbolize high and low 

resolution, respectively. For the simplified Morlet wavelet, ∆𝜓= 1/√2 s and ∆�̂�= 1/√2 

rad/s are calculated. The product of time and frequency resolution corresponding to any 

rectangle is (2𝑎∆𝜓)(2∆�̂�/𝑎) =2 rad, a constraint on time and frequency resolution that is 

referred to as the Heisenberg’s uncertainty principle. Here, 𝑎 ∈ [𝑎ℎ, 𝑎𝑙]  represents the 

scaling factor in CWT in which 𝑎𝑙  and 𝑎ℎ  correspond to low and high frequency 

components, respectively. The time and frequency resolution of the CWT with a fixed 

scaling factor remain unchanged over time, as illustrated in Figure 2.1. Note that 𝑏 and 𝑏′ 

represent the two values of shifting factor in the CWT. 

 

 

Figure 2.1. Time and frequency resolution of CWT 

 

The frequency resolution, 
2

𝑎
∆�̂�,  as indicated in Figure 2.1, represents a minimum 

frequency difference of two signals that can be separated apart at the specified time and 

frequency. To illustrate this point, a cosine function of time with a single frequency 

component is taken as an example: 𝑓(𝑡) = 𝑐𝑜𝑠(2𝜋2000𝑡). After the function is discretized 

at a sampling rate of 𝐹𝑠 = 8000 Hz, its wavelet transform with a fixed center frequency of 
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2 Hz is presented in Figure 2.2(a) in the form of scalogram. At the frequency of the signal, 

2000 Hz, the scaling factor is 𝑎 = 8. Thus, the thickness of a ridgeline of the scalogram or 

the frequency resolution of two such ridgelines is 𝐹𝑠∆�̂�/𝑎 = 8000/8√2 = 707.  For two 

cosine functions with frequencies of 2000±353.5 Hz, the scalogram from their wavelet 

transform barely shows a separation of the two signals as indicated in Figure 2.2(b). 

 

 

(a) One frequency component   (b) Two frequency components 

Figure 2.2. Scalograms from the wavelet analysis of cosine functions 

 

2.2. ADAPTIVE WAVELET TRANSFORM ALGORITHM 

To enable the selectivity of time and frequency resolution over time, time-varying 

center frequency and scaling factor are introduced in the Morlet wavelet so that a desirable 

time-frequency representation of a signal can be achieved in a time-frequency window of 

interest. This concept is realized in two steps. 

2.2.1. Definition and Formulation. The first step is to introduce a short-time CWT 

or STCWT. Like the STFT, a rectangular window function 𝑤𝜏,𝑇𝜏(𝑡) over [𝜏, 𝜏 + 𝑇𝜏 ] is 

selected and a CWT is performed for the segment of an original signal 𝑥(𝑡) over [𝜏, 𝜏 +

𝑇𝜏]. Here, 𝑇𝜏 represents the window length at time 𝜏. The STCWT can then be defined as:  
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𝑆𝑇𝐶𝑊𝑇(𝑎, 𝑏; 𝜏, 𝑇𝜏) = ∫ 𝑥(𝑡)𝑤𝜏,𝑇𝜏
(𝑡)

∞

−∞
𝜓𝑎,𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑡.                        (5) 

where 𝜓𝑎,𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the complex conjugate of the wavelet function 𝜓 with scaling 

and shifting factors of 𝑎 and 𝑏, respectively.  Due to low 𝑡𝑏 (=2) of the simplified Morlet 

wavelet, the STCWT segment in Equation (5) is negligible unless the shifting factor 𝑏 falls 

into the time window [τ+𝛥𝜓/2, τ+𝑇𝜏−𝛥𝜓/2]. As a result, simply stitching STCWT 

segments together over non-overlapping time windows leads to a discontinuous and locally 

distorted time-frequency representation of the signal, similar to the recently published 

multi-bandwidth wavelet transform [79].  

The second step is to remove the STCWT discontinuity at any transition time 

instants between two non-overlapping windows by staggering selected windows over time, 

as shown in Figure 2.3. At any time instant, all the STCWT segments overlapped in time 

are averaged based on the number of overlapped segments. Let a signal 𝑥(𝑡) of duration 𝑇 

start at time 𝜏0, end at time 𝜏0 + 𝑇, and be sampled at time step∆𝑡. Over the entire duration 

𝑇 of the signal, 𝑛 + 1 windows of length 𝑇𝜏 are introduced as illustrated in Figure 2.3 with 

starting times of 𝜏0, 𝜏1, …, 𝜏𝑘, 𝜏𝑘+1, …, and 𝜏𝑛. Any two consecutive starting times, 𝜏𝑘 

and 𝜏𝑘+1 (𝑘 = 0, 1, … , 𝑛 − 1), are spaced by a sampling period ∆𝑡. In general, 𝜏𝑛 = 𝜏0 +

𝑇 − 𝑇𝜏𝑛 and ∆𝑡 < 𝑇𝜏𝑛 < 𝑇.  

Mathematically, the proposed AWT can be expressed into: 

              𝐴𝑊𝑇(𝜔, 𝑏) = ∑
𝑞𝑘

𝑝𝑘
𝑆𝑇𝐶𝑊𝑇[𝑎(𝜏𝑘), 𝑏; 𝜏𝑘, 𝑇𝜏𝑘]

𝑛
𝑘=0  

             = ∑
𝑞𝑘

𝑝𝑘
∫ 𝑥(𝑡)𝑤𝜏𝑘,𝑇𝜏𝑘

(𝑡)
1

√2𝜋𝑎(𝜏𝑘)
𝑒
−

(𝑡−𝑏)2

2𝑎2(𝜏𝑘)𝑒
−𝑖𝜔𝑐(𝜏𝑘)(𝑡−𝑏)

𝑎(𝜏𝑘)
∞

−∞
𝑑𝑡𝑛

𝑘=0  

= ∑
𝑞𝑘

𝑝𝑘

1

√2𝜋𝜔𝑐(𝜏𝑘)/𝜔
∫ 𝑥(𝑡)𝑒

−
(𝑡−𝑏)2𝜔2

2𝜔𝑐
2(𝜏𝑘) 𝑒−𝑖𝜔(𝑡−𝑏)𝜏𝑘+𝑇𝜏𝑘

𝜏𝑘
𝑑𝑡𝑛

𝑘=0 .            (6) 
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Figure 2.3. Windows overlapped in time 

 

where 𝑛 = (𝑇 − 𝑇𝜏𝑛)/∆𝑡 , 𝑝𝑘  represents the number of significant STCWT segments 

spanning each time (1 ≤ 𝑝𝑘 ≤ 𝑘 at 𝜏𝑘), 𝑞𝑘 is an amplitude normalization factor to ensure 

that energy is appropriately distributed over time, and the center frequency 𝜔𝑐(𝜏𝑘) and the 

scaling factor 𝑎(𝜏𝑘)  are constant within the 𝑘𝑡ℎ  window length 𝑇𝜏𝑘  but change 

proportionally over time 𝜏𝑘. For example, Equation (6) includes one significant STCWT 

segment at time 𝜏0, two segments at time 𝜏1, …, and 𝑝𝑘 = 𝑠𝑢𝑚{𝑙𝑖|𝑙𝑖 = 1𝑓𝑜𝑟𝜏𝑖 + 𝑇𝜏𝑖 ≥

𝜏𝑘, 𝑙𝑖 = 0oth  wis ; 𝑖 ∈ [1, 𝑘]} segments up to time 𝜏𝑘. In Equation (6), 𝜔𝑐(𝜏𝑘)/𝑎(𝜏𝑘) =

𝜔, which is independent of time 𝜏𝑘. By keeping the ratio between the center frequency and 

the scale factor unchanged over time, the phase of the proposed STCWT for various 

segments of a signal remains the same at each frequency of interest as that of the CWT. 

The amplitude of the STCWT, however, differs from that of the CWT due to the time-

varying center frequency. To preserve energy over time, the energy of various segments is 

normalized to follow the distribution of the CWT. That is, the “root-mean-square” 

amplitude of the STCWT for the 𝑇𝜏𝑘 segment associated with 𝑎(𝜏𝑘) is normalized by the 

“root-mean-square” amplitude of the corresponding segment in the CWT of the overall 

signal. In other words, a normalization factor 𝑞𝑘 is defined by: 

𝜏0 𝜏𝑘+1 𝜏𝑛 

𝑇𝜏𝑛  

𝜏0 + 𝑇𝑇𝑖𝑚𝑒 𝜏𝑘 

∆𝑡 
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𝑞𝑘 = √
∫ ∫ |𝐶𝑊𝑇(𝑎,𝑏)|

𝑎𝑙
𝑎ℎ

𝜏𝑘+𝑇𝜏𝑘
𝜏𝑘

2
𝑑𝑎𝑑𝑏

∫ ∫ |𝑆𝑇𝐶𝑊𝑇[𝑎(𝜏𝑘),𝑏;𝜏𝑘,𝑇𝜏𝑘]|
𝑎𝑙
𝑎ℎ

𝜏𝑘+𝑇𝜏𝑘
𝜏𝑘

2
𝑑𝑎(𝜏𝑘)𝑑𝑏

   (7) 

in which |∙| represents the modulus of a complex transform function and 𝐶𝑊𝑇(𝑎, 𝑏) =

∫ 𝑥(𝑡)
∞

−∞
𝜓𝑎,𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑡 denotes the CWT of the signal 𝑥(𝑡) with scaling and shifting factors 

of 𝑎 and 𝑏, respectively. In Equation (7), the double integrations in the domain of 𝑎 and 𝑏 

or 𝑎(𝜏𝑘)and 𝑏 for each segment represent the total energy of the 𝑘𝑡ℎ segment of the CWT 

and STCWT in a frequency range of interest. 

Unlike the STFT, AWT includes the information through two time parameters: 

shifting factor as used in the CWT and duration of the window function. The introduction 

of two time parameters allows a modification of time and frequency resolution over time 

for a desirable time-frequency representation of a signal as schematically illustrated in 

Figure 2.4. Like the CWT, the time and frequency resolution of the AWT can be changed 

at any time. Unlike the CWT, the scaling factor and the center frequency introduced in the 

AWT are time-dependent, resulting in selectable time and frequency resolution over time, 

as clearly indicated in Figure 2.4. Note that 𝜔𝑐/𝑎𝑙 = 𝜔𝑐
′/𝑎𝑙

′ and 𝜔𝑐/𝑎ℎ = 𝜔𝑐
′/𝑎ℎ

′ . Here, 𝜔𝑐
′ , 

𝑎𝑙
′, and 𝑎ℎ

′  are proportional to 𝜔𝑐, 𝑎𝑙, and 𝑎ℎ, respectively, at a different time as alluded in 

the following section.  

2.2.2. Optimization of Time-varying Parameters. Figure 2.4 also shows the 

required frequency resolution of a signal at low and high frequencies, 𝜔𝑟𝑙and𝜔𝑟ℎ, the 

required time resolution at low and high frequencies, 𝑡𝑟𝑙 and 𝑡𝑟ℎ, and their corresponding 

scaling factors, 𝑎𝑙  and 𝑎ℎ . At any time, the required frequency and time resolution are 

locally limited by the resolution of CWT. In terms of scaling factors, this limit yields 
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2𝛥�̂�

𝜔𝑟𝑙
< 𝑎𝑙 <

𝑡𝑟𝑙

2𝛥𝜓
  and  

2𝛥�̂�

𝜔𝑟ℎ
< 𝑎ℎ <

𝑡𝑟ℎ

2𝛥𝜓
.   (8) 

After the scaling factor bounds, 𝑎𝑙 and 𝑎ℎ, are selected from Equation (8), the range 

of the scaling factor is equally divided with a step of ∆𝑎. At any particular scaling factor 

𝑎𝑗, the frequency of interest 𝜔𝑗 can be related to the center frequency of the Morlet wavelet 

𝜔𝑐𝑗 by: 

𝜔𝑗 =
𝜔𝑐𝑗

𝑎𝑗
    (𝜔𝑟𝑙 < 𝜔𝑗 < 𝜔𝑟ℎ, 𝑎ℎ < 𝑎𝑗 < 𝑎𝑙).  (9) 

As discussed previously, 𝜔𝑐𝑗 is proportional to the scaling factor 𝑎𝑗 to facilitate the 

averaging of STCWT segments. For example, when the center frequency is 𝜔𝑐, the scaling 

factor ranges from 𝑎𝑙 to 𝑎ℎ with a step size of ∆𝑎. When the center frequency is increased 

to 𝜆𝜔𝑐 , the scaling factor ranges from 𝜆𝑎𝑙 to 𝜆𝑎ℎ with a step size of 𝜆∆𝑎. Here, 𝜆 (≥1) is a 

positive number and 𝜔𝑐 = 𝑎𝑙𝜔𝑟𝑙 represents the lowest center frequency selected. 

 

 

Figure 2.4. Required time and frequency resolution for a desirable time-frequency 

representation of a signal 

 

For an unknown signal, the time-varying parameters in STCWT are determined 

following a flow chart of two optimization algorithms for time and frequency resolution 
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updating as summarized in Figure 2.5. First, the signal is analyzed with CWT with 

parameters (𝑎,𝜔𝑐 ) that are based on the general signal characteristics. If the signal 

characteristics are unknown, 𝜔𝑐  is preferably set to 2𝜋 , which is close to the lower 

boundary for the simplified Morelet mother wavelet so that the best time resolution is 

guaranteed in the optimization procedure. At each time 𝜏𝑘 , an instantaneous frequency 

spectrum of the signal can be obtained from the CWT, giving a total of 𝑀  dominant 

frequency bands at a predetermined threshold amplitude. When 𝑀 > 0, each frequency 

bandwidth centered at frequency 𝐹𝑖 (𝑖 = 1,2, … ,𝑀) is referred to as the thickness (𝐶𝑇
𝑖 ) of a 

ridgeline of the spectrum at the threshold value. The corresponding scaling factor is 

represented by 𝑎𝑖. The time-dependent center frequency 𝐹(𝜏𝑘) = 0 is initialized at time 𝜏𝑘. 

 

  

Figure 2.5. AWT algorithm for time-varying center frequency and window length 
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If all the ridgelines are relatively thin or  ax(𝐶𝑇
𝑖 − 𝐹𝑠 𝑎𝑖⁄ √2) ≤ 0, 𝑖 = 1,2, … ,𝑀, 

𝐹(𝜏𝑘) = 𝐹𝑐  when 𝑀 = 1 and 𝐹(𝜏𝑘) =  ax{𝐹(𝜏𝑘), 𝐹𝑐
𝑚} is determined recursively when 

𝑀 ≥ 2. In the later case, the frequency resolution is reduced as much as possible so long 

as two individual ridgelines remain separable. In doing so, the corresponding time 

resolution is locally improved to its maximum. The new scaling factor 𝑎𝑚
′  and thus the new 

center frequency 𝐹𝑐
𝑚 are inversely proportional to the difference in two adjacent dominant 

frequencies (𝐹𝑚 − 𝐹𝑚−1), where 𝑚 = 2,3,… ,𝑀.  

When one or more of the ridgelines are relatively thick or  ax{ 𝐶𝑇
𝑖 − 𝐹𝑠 𝑎𝑖⁄ √2} >

0, 𝑖 = 1,2, … ,𝑀,  all the thicker ridgelines are reduced to the required frequency resolution 

𝐹𝑠 𝑎𝑚⁄ √2 to enable the separation of potentially two frequency components that have been 

lumped into one ridgeline. In this case, the new scaling factor 𝑎𝑚
′  is determined from 

𝐹𝑠

𝑎𝑚
′ √2

= 𝐶𝑇
𝑚 −

𝐹𝑠

𝑎𝑚√2
. Accordingly, the new center frequency 𝐹𝑐

𝑚  and the final time-

dependent center frequency can be determined as above. To satisfy the required frequency 

resolution at all ridgelines, the final center frequency is selected as the maximum value of 

the candidate(s). That is, 𝐹(𝜏𝑘) =  ax{𝐹(𝜏𝑘), 𝐹𝑐
𝑚} recursively. The final scaling factor 

range is determined to ensure that the frequency range of interest remains unchanged. 

Correspondingly, the time-dependent window length can be determined from 𝑇𝜏𝑘 =

2𝐹(𝜏𝑘)

𝐹𝑙
∆𝜓. The above procedure is repeated until all the time instants in the range of interest 

have been considered. 

In practical applications, the ridgeline thickness of a weak signal tends to disperse 

significantly. It is thus necessary to determine a triggering threshold of frequency bands, 

which corresponds to the required ridgeline thickness. The peak of an instantaneous 
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spectrum is first normalized to one as shown in Figure 2.6 in the case of a single frequency 

component signal. A threshold value is then determined when its horizontal line (green in 

Figure 2.6) intercepts the spectrum at two points (red dots in Figure 2.6) around the peak 

with a frequency spacing or bandwidth equal to the required ridgeline thickness calculated 

at the dominant frequency with given wavelet parameters. 

 

 

Figure 2.6. Threshold value determination 
 

To understand the threshold sensitivity to the dominant frequency and sampling 

frequency of signals, a cosine function with its frequency ranging from 1 kHz to 4 kHz at 

100 Hz increment was analyzed using the CWT with 𝐹𝑐 = 2 Hz when the theoretical 

ridgeline frequency ranges from 353 Hz to 1414 Hz. Figure 2.7(a) shows the variation of 

the threshold value with the increasing frequency of the cosine function when sampled at 

𝐹𝑠 = 10 Hz. The threshold value fluctuates between 0.08 and 0.11 of the peak value. 

Similarly, for a cosine function with a frequency change of 100 Hz to 400 Hz, which was 

sampled at 𝐹𝑠 = 1 kHz and analyzed with the CWT with 𝐹𝑐 = 1 Hz, the threshold value 

fluctuates between 0.11 and 0.13 of the peak as shown in Figure 2.7(b).  
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The second study is to understand the influence of sampling frequency. For a cosine 

function with a frequency of 500 Hz and a wavelet transform with a center frequency of 1 

Hz, the sampling rate was changed from 2 kHz to 5 kHz. As shown in Figure 2.8, the 

change of sampling frequency does not influence the threshold value significantly so long 

as the Shannon-Nyquist sampling theory is satisfied. 

 

 

(a) 𝐹𝑐 = 2 Hz, 𝐹𝑠 = 10 kHz    (b) 𝐹𝑐 = 1 Hz, 𝐹𝑠 = 1000 Hz 

Figure 2.7. Threshold value variation with signal frequency changing 

 

 

Figure 2.8. Threshold variation with sampling frequency increase 

 

Based on the above parametric studies, the threshold value ranges from 8% to 13% 

of the peak value with any change in center frequency, signal frequency and sampling 
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frequency. This small fluctuation is likely associated with numerical errors introduced 

when the wavelet function is truncated in integration as shown in Equation (5). To 

guarantee reliable identification, the threshold is set to be 15% of the corresponding peak. 

 

2.3. CHARACTERISTICS AND PERFORMANCE OF AWT 

To better illustrate limitations with the CWT and the advantages with the proposed 

AWT, an analytical signal is considered. It is a combination of two closely-spaced 

frequency-modulated sinusoidal functions and two closely-spaced delta functions, which 

represents the most demanding signal on both time and frequency resolution. The example 

signal 𝑥(𝑡) can be mathematically expressed into: 

𝑥(𝑡) = 𝑐𝑜𝑠[2𝜋2000𝑡 + 100 𝑠𝑖𝑛(2𝜋10𝑡)] 

+𝑐𝑜𝑠[2𝜋2600𝑡 + 100 𝑠𝑖𝑛(2𝜋10𝑡)] + 𝐾[𝛿(𝑡 − 0.145) + 𝛿(𝑡 − 0.15)]     (10) 

in which 𝐾 = 10 is a gain factor, representing the relative significance on the delta and 

sinusoidal functions. The signal is sampled at 10 kHz in data analysis or ∆𝑡 = 10−4 s. Its 

theoretical scalogram in time-frequency domain is presented in Figure 2.9. 

 

 

Figure 2.9. Theoretical scalogram of the combined sinusoidal and delta signal 
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The signal was analyzed with CWT (𝐹𝑐 = 2 Hz). The obtained scalogram is shown 

in Figure 2.10. It can be seen form Fig. 10 that the lowest and worst frequency resolution 

is achieved at time instants 0, 0.1 and 0.2 s, while the highest and best frequency resolution 

is at 0.05 and 0.15 s. The algorithm as described in Figure 2.5 is thus applied to improve 

the frequency and time resolution in the range as shown in Figure 2.10.  

 

 

Figure 2.10. CWT representation of the signal 

 

At time 0 s, the two frequency components are actually mixed together with a 

frequency range of 2590 Hz to 4170 Hz, resulting in a frequency bandwidth or ridgeline 

thickness of 1580 Hz, centered at 3380 Hz as shown in Figure 2.11(a). In this case, the 

scaling factor is 𝑎1 =
𝐹𝑐𝐹𝑠

𝐹1
= 2 ×

10000

3380
= 5.92  and the ridgeline thickness of a single 

frequency component is 
𝐹𝑠∆�̂�

𝑎1
=

𝐹1∆�̂�

𝐹𝑐
=

3380

2√2
= 1195  Hz. Since the actual ridgeline 

thickness exceeds the thickness of single component, the scaling factor must be updated as 

𝑎1
′ =

𝐹𝑠

(1580−
𝐹𝑠∆�̂�

𝑎1
)√2

= 18.37 . The center frequency can thus be updated as 𝐹𝑐 =
𝐹1𝑎1

′

𝐹𝑠
=
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3380×18.37

10000
= 6.2 Hz, which is larger than 0. Therefore, 𝐹(0) = 6.2 Hz. The final step is to 

determine the window length, 𝑇0 =
2𝐹(0)

𝐹𝑙
∆𝜓=

2×6.2

1000√2
= 0.0088 s, where 𝐹𝑙 = 1000 Hz. 

 

   

(a) 0 s     (b) 0.05 s 

Figure 2.11. Two instantaneous spectra without the effect of delta functions 

 

At time 0.05 s, the instantaneous spectrum as presented in Figure 2.11(b) indicates 

a clear separation of two frequency components with a ridgeline thickness of 350 Hz and 

550 Hz at peak frequencies of 1,000 and 1,600 Hz, respectively. The calculated scaling 

factors at the two peak frequencies are 20 and 12.5, and their corresponding ridgeline 

thicknesses are 354 Hz and 566 Hz, respectively. Since both identified ridgeline 

thicknesses are smaller than the calculated, the two frequency components are well 

separable in frequency domain. In this case, the time resolution can be improved with a 

new scaling factor at the second peak: 𝑎2
′ =

𝐹𝑠(𝐹2+𝐹1)

2√2𝐹2(𝐹2−𝐹1)
=

10000(1600+1000)

2√2×1600(1600−1000)
= 9.58, 

which is less than the original scaling factors at the two peaks. The center frequency at this 

time is then calculated as 𝐹(0.5) = 𝐹𝑐 =
𝐹2𝑎2

′

𝐹𝑠
=

1600×9.58

10000
= 1.53  Hz, and the window 

length is updated to 𝑇0.5 =
2𝐹(0.5)

𝐹𝑙
∆𝜓=

2×1.53

1000√2
= 0.0022 s. 
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In addition to the above two extreme cases for the cosine functions, two special 

conditions must be discussed: energy leakage and delta functions. It can be seen from 

Figure 2.11 that energy leakage due to signal discretization and integration truncation is 

present at a frequency range of 500 Hz - 1000 Hz. The low-frequency peaks can be directly 

filtered out when their amplitudes are below 10%. Otherwise, they can be separated from 

other signal peaks by verifying that the frequency bandwidth of each peak at 5% remains 

significantly less than the theoretical thickness calculated from 𝐹𝑠/𝑎√2. It can be seen from 

Figure 2.9 that the two delta functions occur at 0.145 s and 0.15 s.  Figure 2.12 shows the 

instantaneous spectrum at 0.15 s when energy is distributed over a broadband of frequency 

with local concentrations at the frequencies of cosine functions. In this case, the signal 

threshold must be determined to be above the stationary component by identifying the 

baseline of the frequency distribution as indicated in Figure 2.12. 

 

 

Figure 2.12. The instantaneous spectrum at 0.15 s with the effect of delta functions 

 

Once the instantaneous spectra at all times have been analyzed by following the 

procedure given in Figure 2.5, the time-varying center frequency of the AWT can be 

determined and presented in Figure 2.13(a) as a function of time that is defined by the 

beginning of each window. The time-varying window length is proportional to the center 
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frequency as indicated in Figure 2.5. The variation of 𝑞𝑘 over time is presented in Figure 

2.13(b), which ensures that the energy distribution in the time and frequency plane is 

consistent with that of the CWT. It can be observed from Figure 2.13(b) that the 

normalization factor significantly fluctuates around the two delta functions due to their 

locally added energy. Using the obtained center frequency and window length, the AWT 

of the signal in Equation (10) results in the scalogram as shown in Figure 2.13(c). The 

AWT reveals a smooth transition at time instances of the discretized signal and exhibits 

higher resolution than the CWT as shown in Figure 2.10 in the high frequency range where 

improved frequency resolutions are used. Figure 2.13(c) is a high fidelity representation of 

Figure 2.9 in the time-frequency domain of interest. 

 

 

(a) Time-varying center frequency    (b) Time-varying normalization factor 

 

(c) Scalogram of the signal by AWT 

Figure 2.13. Characteristic AWT parameters and results 
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To demonstrate the advantages of AWT over STCWT, the signal represented by 

Equation (10) was divided into 9 segments, each assigned an optimized center frequency 

of the Morlet mother wavelet. The STCWT scalogram of the signal is presented in Figure 

2.14 by stitching together those of the non-overlapping segments. It can be clearly observed 

from Figure 2.14 that the overall scalogram is discontinuous and not smooth, leaving 

behind the stitching traces or sudden frequency jumps at transition times between the center 

frequencies due to end effects. Although direct, simply stitching the STCWTs would thus 

be unsatisfactory. 

 

 

Figure 2.14. The STCWT scalogram by segmental stitching 

 

To quantify the dispersion of ridgelines in scalogram, each instantaneous spectrum 

(wavelet coefficient) as shown in Figures 2.10 and 2.13(c) at any time, excluding the two 

delta functions for simplicity, was normalized by its total area and then treated as a 

probability density function so that the standard deviation of the spectral distribution over 

frequency can be evaluated. For comparison, two theoretic frequency curves as shown in 

Figure 2.9 excluding the delta functions were considered as two zero-thickness ridgelines 

in a spectrum of two pulses. The standard deviation of the theoretic spectrum can be 
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determined to be 300 Hz. Figure 2.15 shows the standard deviation (Std. Dev.) of spectral 

distributions as a function of time with the solid (blue) and dotted (red) lines representing 

the CWT and AWT, respectively. Figure 2.15 also includes a constant deviation of the two 

theoretic frequency lines in dashed line (green).  

 

 

Figure 2.15. Standard deviations of CWT and AWT over time and its comparison with 

theoretic value 

 

It can be seen from Figure 2.15 that the deviation of AWT is less fluctuating and 

smoother than that of CWT. This is because the frequency resolution has been improved 

by the AWT in most part of the time-frequency domain. At 0.05 s and 0.15 s, the deviation 

of CWT, 305  Hz, is slightly smaller than that of AWT, 309  Hz since the frequency 

resolution in the AWT was locally sacrificed for improved time resolution as discussed in 

the previous section, both exceeding the theoretic value, 300 Hz. At 0, 0.1, and 0.2 s, where 

CWT has the lowest frequency resolution, the deviation of CWT spectra reaches a 

maximum of 406 Hz in comparison with 315 Hz for the proposed AWT or approximately 

22% reduction from the deviation of CWT. The variation range of the AWT, 309 Hz to 

322 Hz, is only 4.3% of its lowest deviation while the range of the CWT, 305 Hz to 406 

Hz, is 33.1% of its lowest deviation. The reduction in variation will significantly improve 
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the detectability of delamination as demonstrated in the following application example. 

Note that the end effect was not taken into account during the comparison. 

 

2.4. SYNCHRO-SQUEEZED ADAPTIVE WAVELET TRANSFORM  

Synchro-squeezing is a special case of reallocation methods. When integrated into 

the reversible SSWT, it can help sharpen the scalogram/ridgelines obtained from the CWT 

[78]. Before SSAWT is developed, the SSWT is briefly reviewed. The CWT represents the 

convolution of a signal, 𝑥(𝑡), and the conjugate of an appropriately chosen scaled mother 

wavelet, 𝜓: 

𝑊𝑥(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓𝑎,𝑏(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑡
∞

−∞
,                                              (11) 

where 𝑊𝑥(𝑎, 𝑏) is the wavelet coefficient as illustrated in Figure 2.16(a) (module of the 

wavelet coefficient if it is a complex function) when 𝑥(𝑡) = 𝑐𝑜𝑠(2𝜋8𝑡). It represents how 

similar the signal is to the mother wavelet when shifted by a certain time 𝑏 and scaled by 

a factor of 𝑎. The wavelet coefficient is synchro-squeezed and transferred from the time-

scale plane to a time-frequency plane by: 

𝑆𝑆𝑊𝑇{𝑥(𝑡)}(𝜔, 𝑏) = ∫ 𝑊𝑥(𝑎, 𝑏)𝑎
−3/2𝛿(𝜔𝑥(𝑎, 𝑏) − 𝜔)𝑑𝑎

𝐴(𝑏)
,                (12) 

where 𝐴(𝑏) = {𝑎:𝑊𝑥(𝑎, 𝑏) ≠ 0} , and 𝜔𝑥(𝑎, 𝑏) = −𝑖
1

𝑊𝑥(𝑎,𝑏)

𝜕[𝑊𝑥(𝑎,𝑏)]

𝜕𝑏
. The synchro-

squeezed transform corresponding to Figure 2.16(a) is presented in Figure 2.16(b) 

(coefficient module). It is clearly seen from Figure 2.16(b) that the frequency of the signal 

is 8 Hz. 

The AWT is based on the conventional CWT, both having line dispersions in each 

scalogram. This dispersive representation leads to inaccurate, distorted or even smeared 

results that often hinder readability. To overcome the shortfalls of AWT and SSWT, a 
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synchro-squeezing step is integrated into the AWT to develop a new method called 

SSAWT. According to Equations (6) and (12), SSAWT is defined as: 

𝑆𝑆𝐴𝑊𝑇{𝑥(𝑡)}(𝜔, 𝑏) = ∫ 𝐴𝑊𝑇{𝑥(𝑡)}(𝑎, 𝑏)𝑎−3/2𝛿(𝜔𝑥(𝑎, 𝑏) − 𝜔)𝑑𝑎
𝐴(𝑏)

  (13) 

SSAWT can yield a more accurate time-frequency representation without 

dispersion and adaptively vary the center frequency and bandwidth over time to optimize 

the signal representation at each time instant. 

 

      

(a) CWT                      (b) SSWT 

Figure 2.16. SSWT illustration of 𝑥(𝑡) = 𝑐𝑜𝑠(2𝜋8𝑡) 
 

2.5. EFFECTIVENESS OF SSAWT 

To test the effectiveness of SSAWT to its full extent, a special signal is designed 

as expressed into Equation (14) to cover changing frequency combinations over time. It 

includes four time segments of 0.1 s each: two closely-spaced frequency-modulated 

sinusoidal functions, two closely-spaced high frequencies and a low frequency, two 

closely-spaced low frequencies and a high frequency, and one frequency. The signal 

function is sampled at 10 kHz and expressed into: 

𝑥(𝑡) = {

 os(2𝜋2000𝑡 + 100 sin(2𝜋10𝑡)) +  os(2𝜋2500𝑡 + 100sin(2𝜋10𝑡))

 os(2𝜋3000𝑡) +  os(2𝜋3500𝑡) +  os(2𝜋1250𝑡)

 os(2𝜋1000𝑡) +  os(2𝜋1500𝑡) +  os(2𝜋3250𝑡)

 os(2𝜋2000𝑡)



0s < 𝑡 ≤ 0.1s
0.1s < 𝑡 ≤ 0.2s
0.2s < 𝑡 ≤ 0.3s
0.3s < 𝑡 ≤ 0.4s

  (14) 
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Figure 2.17(a) shows the module of the CWT coefficient referred to as scalogram 

of the signal. The top portion of the scalogram smears due to low frequency resolution. 

Such an issue could be resolved by simply increasing the center frequency of the mother 

wavelet if the signal had constant frequency components only. When the signal contains 

time-varying frequency components prior to 0.1 s as shown in Equation (14), the increase 

in center frequency can reduce time resolution, which could make two closed-spaced 

ridgelines difficult to resolve as well. On the other hand, the SSAWT of the signal as 

presented in Figure 2.17(b) shows thinner and separable ridgelines with a significantly 

improved identification accuracy. In fact, the identified ridgelines from the SSAWT 

coincide with the theoretic lines.  

 

 

(a) CWT (𝐹𝑐 = 1Hz)         (b) SSAWT 

Figure 2.17. Time-frequency representation of the numerical signal 

 

The proposed SSAWT was performed by following the flow diagram in Figure 2.5 

with the lowest frequency of interest 𝐹𝑙 = 500 Hz and then by synchro-squeezing the 

ridgelines in scalogram. Based on the CWT given in Figure 2.17(a), several time instants 

were considered to illustrate how the proposed optimization algorithm works under 

different conditions. At 0.01 s as shown in Figure 2.18(a), two frequency components are 

mixed together and centered at 3,140 Hz between the two red dots (2,430 Hz and 3,850 Hz) 
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where the 15% threshold line crosses the ridgeline. In theory, the thickness of a ridgeline 

at 3,140 Hz is 𝐹1/(√2𝐹𝑐)  =3140/2√2=1110 Hz, which is smaller than the identified 

thickness (1,420 Hz). This comparison indicates that more than one components are 

included in the frequency range. The center frequency at this time is thus updated to 

𝐹(0.01) = 𝐹1/(√2𝐶𝑇
1 − 𝐹1/𝐹𝑐)=3140/(1420√2-3140/2)=7.2 Hz.  

 

 

(a) 0.01s    (b) 0.03 s    (c) 0.05 s 

 

(d) 0.15 s    (e) 0.25 s    (f) 0.35 s 

Figure 2.18. Instantaneous frequency spectra at various time instants 

 

The two peaks appear at 0.02 s as shown in Figure 2.18(b) and are completely 

separated at 0.05 s as shown in Figure 2.18(c). In the latter case, the low frequency 

component spans from 865 Hz to 1,180 Hz (centered at 1,022 Hz) and the high component 

is from 1,290 Hz to 1,770 Hz (centered at 1,530 Hz). They correspond to the required 

ridgeline thicknesses of 𝐹1/(√2𝐹𝑐)  =1022/2√2=361 Hz (>315 Hz=1180-865 Hz) and 

𝐹2/(√2𝐹𝑐)= 1530/2√2=541 Hz (>480 Hz=1770-1290 Hz), respectively. Therefore, time 
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resolution can be improved at 0.05 s by using an updated center frequency of 𝐹(0.05) =

(𝐹2 + 𝐹1)/(𝐹2 − 𝐹1)/2√2 = (1530 + 1022)/(1530 − 1022)/2√2 = 1.8 Hz. The trend 

in spectral change between 0.05 s and 0.1 s is generally a mirror image of that between 

0.05 s and 0 s. 

At 0.15 s, two peaks are also observed as shown in Figure 2.18(d). The low 

frequency peak corresponds to a single frequency component while the high frequency 

peak actually contains two frequency components. The latter peak controls the updated 

center frequency as 𝐹(0.1 − 0.2)=3320/(1470√2 − 3320/2) = 8.0 Hz. At 0.25 s and 

0.35 s, each peak represents one frequency component. At 0.25 s, the center frequency is 

updated to 𝐹(0.2 − 0.3) = 1.8 Hz similar to Figure 2.18(c) with multiple components. At 

0.35 s, the center frequency remains unchanged since there is one peak only. The 

automatically optimized center frequency and its corresponding window length over time 

are presented in Figure 2.19.  

 

   

(a) Center frequency    (b) Window length 

Figure 2.19. Optimized time-varying STCWT parameters 

 

The resulted SSAWT in Figure 2.17(b) are compared with the AWT and SSWT 

(with three center frequencies) of the signal as shown in Figure 2.20. The synchro-

squeezing in SSAWT significantly reduces the ridgeline dispersion in AWT as observed 
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in Figure 2.20(a). Although the AWT results in a better time-frequency representation than 

the CWT, a sudden change in resolution occurs between 0.2 s and 0.3 s due to the time lag 

induced by a time-varying window function of STCWT.  

 

 

        (a) AWT              (b) SSWT (𝐹𝑐 = 1Hz) 

 
(c) SSWT (𝐹𝑐 = 3 Hz)     (d) SSWT (𝐹𝑐 = 6 Hz) 

Figure 2.20. AWT and SSWT with various center frequencies 

 

To compare with the proposed SSAWT in Figure 2.17(b), the SSWT is taken with 

three different center frequencies as shown in Figure 2.20(b-d). For 𝐹𝑐 = 1 Hz, two high 

frequency components significantly fluctuate from 0.08 s to 0.2 s and cannot be separated 

completely. As the center frequency increases from 1 Hz to 6 Hz, the low frequency 

components are truncated partially due to poor time resolution as shown in Figure 2.20(d). 

When the low and high frequency components are balanced with 𝐹𝑐 = 3 Hz in SSWT as 

shown in Figure 2.20(c), the two extreme ends are still not well represented in the time-

frequency domain. In general, the drawback of SSWT is similar to CWT, which a fixed 

variation of resolution is present for every time instant. 
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To quantify the accuracy in identifying the ridgelines in scalogram, the overall error 

between the identified ridgelines, 𝑆(𝑓, 𝑡), and the theoretic values, 𝑆𝑇(𝑓, 𝑡), in the time (𝑡) 

- frequency (𝑓) domain of interest is determined by: 

𝐸𝑟𝑟𝑜𝑟 = √
∬[𝑆2(𝑓,𝑡)−𝑆𝑇

2(𝑓,𝑡)]𝑑𝑓𝑑𝑡

∬𝑆𝑇
2(𝑓,𝑡)𝑑𝑓𝑑𝑡

× 100%    (15) 

The calculated error of SSAWT is 1.1%, which is mainly caused by the transition 

region between adjacent time segments. The errors of SSWT with a center frequency of 1 

Hz, 3 Hz and 6 Hz are 8.3%, 5.7% and 6.2%, respectively. Thus, the proposed SSAWT is 

at least 5 times more accurate than the SSWT in this example.  

 

2.6. SUMMARY 

In this section, an adaptive wavelet transform with optimized time-varying 

resolution in a time-frequency domain of interest has been defined for a desirable time-

frequency representation of signals. A robust flowchart of two optimization algorithms for 

time and frequency resolution updating has been developed to identify center frequencies, 

scaling factors, and window lengths over time. Synchro-squeezing technique is then 

introduced to formulate the SSAWT, which has been proposed for an accurate time-

frequency representation of signals.  

For the example signal with two closely-spaced sinusoidal functions, the 

instantaneous spectra (wavelet coefficients) over frequency from AWT have a dispersion 

range of 309 Hz to 322 Hz by the proposed wavelet transform, which is only 4.3% of its 

lowest deviation, in contrast to a range of 305 Hz to 406 Hz or 33.1% of the lowest 

deviation of conventional wavelet transform. The discernibility for frequency features over 

time has been improved for approximately 7.7 times. 
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SSAWT resulted in 1.1% error in time-frequency representation of an illustrative 

signal with four time segments covering various frequency distributions, which is at least 

5 times more accurate than the conventional SSWT. The synchro-squeezing process made 

the recently developed AWT capable of distinguishing ridgelines in scalogram and thus 

detecting defects in engineering applications more accurately. 
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3. EARLY DETECTION OF WIRE FRACTURE IN 7-WIRE STRANDS 

THROUGH ADAPTIVE WAVELET TRANSFORM OF ACOUSTIC SIGNALS 

3.1. TEST SETUP OF SEVEN-WIRE STRANDS 

Ronald Wilson Reagan Memorial Bridge was open to traffic on February 9, 2014. 

As part of the four-lane I-70 highway improvement project, the bridge spanning across the 

Mississippi River connects St. Louis, MO, to East St. Louis, IL. It is a two-tower cable-

stayed structure with a total length of 2,803 ft (854 m), including a main span of 1,500 ft 

(457 m). The bridge is a critical infrastructure near downtown, St. Louis, MO. Therefore, 

developing a non-destructive evaluation technique for the early detection of potential wire 

fracture in steel strands is critically important to ensure safety of the public.  

The stay cables of the I-70 Mississippi River Bridge consist of a number of steel 

strands, each with seven twisted high strength wires. In this study, two 21-foot-long (6.4 

m) strands that were from the bridge construction were tested under axial loading with one 

outer wire notched at center and near support, respectively, to simulate a damage-induced 

reduction of cross section area. Their properties and manufacture specifications are 

included in Table 3.1. Each twist completes over a distance of 7.5 in (19.05 cm), which is 

referred to as the cable lay length in engineering practice. 

 

Table 3.1. Specifications and properties of a high strength steel strand (270 ksi) 

Strand Parameter Value 

Nominal diameter 0.6 in. (1.52 cm) 

Minimum breaking strength 58,600 lbf (260.7 kN) 

Nominal modulus of elasticity 28.5×106 psi (196.5×103 MPa) 

Nominal cross sectional area 0.217 in2 (1.4 cm2) 

Nominal weight 740 lbs/1,000 ft (110 kg/100 m) 
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Figure 3.1(a) shows the overall test setup of a strand of seven twisted wires under 

axial loading. At each end of the strand, a composite beam (red) of two back-to-back 

channels with a gap in between was side laid down next to two anchorage holes on the 

strong floor. Additional two double-channel beams (black) were spanned in right angle 

over the two ends of the red beam, and anchored to the strong floor with four Dywidag 

rods. To prevent the red beam from moving and rotating during tests, each Dywidag rod 

was post-tensioned to 60 kips (266.9 kN), which is significantly less than the 100 kips 

(444.8 kN) load capacity that each hole on the strong floor can take. Once the anchorage 

support is in place, as shown in Figure 3.1(b), a strand was passed through the gap between 

two channels of the red beam, a load-distribution steel platen, a hydraulic jack, another 

steel platen, and a three-piece anchor wedge. At the other end of the strand, as shown in 

Figure 3.1(c), the anchorage support is identical to Figure 3.1(b) except that the hydraulic 

jack was replaced by a load cell. The test setup was completed by covering the strand with 

a longitudinally slotted, transparent, plastic tube, as shown in Figure 3.1(a), to address a 

safety concern of the potential sudden release of a broken steel wire during tests. Other 

than the load cell as shown in Figure 3.1(b), two linear variable differential tranformers 

(LVDTs) as shown in Figure 3.1(b, c) were installed at two ends of the test strand to 

measure axial displacements. In addition, one narrowband AE sensor (Model R1.5I) with 

a resonant frequency of 14 kHz and another wideband AE sensor (Model F15I-AST) with 

a nearly constant frequency response between 100 kHz and 400 kHz were deployed at each 

end of the test strand for comparison. As shown in Figure 3.1(c), the two AE sensors were 

attached in orthognal directions with silicon compound on the surface of the three-piece 

anchor wedge. 
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(a) Strand placement 

    

 (b)  Anchorage detail (hydraulic jack)    (c) Anchorage detail (load cell) 

Figure 3.1. Test setup of a seven-wire strand 

 

AE signals were recorded from a 32-channel Micro-II system while the load and 

displacement data were recorded through a 128-channel acquisition system at a sample rate 

of 500 kHz. The time window length was set to 8 ms to ensure that the dominant features 

of pre-fracture, fracture, and fracture-induced echo signals can be captured properly. Each 

intact strand of seven wires was first loaded and unloaded for three times up to a tension 

force of 20 kips (89.0 kN), corresponding to 34% of the minimum breaking strength of the 

strand. Then, one outer wire was cut off by 10% of the cross section area, and the strand 

was loaded to 20 kips (89.0 kN) and unloaded. Next, the cross section of the cut wire was 
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further reduced by 10%, and the strand was loaded to 20 kips and unloaded again. This test 

process repeated up to 80% of the area reduction with 10% increment, as shown in Figure 

3.2. Finally, with 90% of the cross section area reduced, the strand was tested to failure. 

The cut locations of the two strands (600 cm clear span length) are 300 cm and 550 cm 

from their left supports, respectively. 

 

  

Figure 3.2. Cross section reduction of the partially cut wire 

 

Axial loads were applied up to 20 kips (89.0 kN) in about 3 min. and manually 

controlled by monitoring the force reading from the load cell installed at one end of the test 

strand. In addition to external loading, four types of artificial noises were generated by 

dropping four different types of foreign objects on the test strand at the height of 1 ft (0.3 

m). The four objects were a steel bar, a marker, a steel washer, and a penny as shown in 

Figure 3.3. 

 

    

Figure 3.3. Four objects tapped on the test strand to create different acoustic noises 
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3.2. DETECTION AND LOCALIZATION OF WIRE FRACTURE 

The data taken from the LVDTs indicated that there was no sudden change in 

displacement at each end of the test strand and no slip at the two anchorage supports 

throughout the tests except the moment of fracturing. When the outer wire fractured, the 

bearing and frictional forces among wires were suddenly changed. Therefore, the reaction 

force by the strong floor was changed, resulting in a sudden alternation of displacement. 

3.2.1. AE Parameter Change during Wire Fracture. An acoustic event is the 

occurrence of a phenomenon when elastic energy is released into a material and propagates 

through it in the form of elastic wave. As presented in Figure 3.4, a representative acoustic 

signal can be characterized by hit, energy, and count.  

 

  

Figure 3.4. Parameters of a typical AE signal from a single hit 

 

A hit is used to describe a single waveform recorded by one sensor (e.g., Figure 

3.4), so that multiple hits can be acquired by a suite of distributed AE sensors during a 

single event. The energy is defined as the area between envelope of the waveform and a 

threshold value (shaded area in Figure 3.4). Each upcrossing of the waveform at the 

threshold represents one count. Unless noted otherwise, the threshold value in this study 
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was set to 30 dB based on two tests. First, the pencil-lead test yielded 38 dB, which are 

close to 40 dB identified by other researchers [9, 12, 13]. Second, 30 dB was sufficient to 

filter out environmental noises during the loading process of an intact strand. However, as 

indicated later, further test results indicate that a threshold of 60 dB can be used without 

losing any captured acoustic events. A series of pencil-lead tests at multiple locations 1 m 

apart also determined a wave velocity of 197,000 in/s (5010 m/s) in the first cable specimen. 

When the reduced cross section area of the cut wire was up to 80%, the recorded 

AE signals changed little, indicating no acoustic event. When the cross section area of the 

cut wire was reduced by 90%, acoustic events were detected until the cut wire was broken 

at a load of approximately 16.5 kips (73.4 kN). Figures 3.5 and 3.6 present the AE 

parameters accumulated over time at the stage of 90% reduced cross section area, which 

were recorded from the first strand with the left F15I-AST and R1.5I sensors, respectively. 

The hits, energy and counts of AE signals suddenly increase, indicating fracture of the cut 

wire at 163.2 s. Thus, based on the test results, it can be seen that both types of AE sensor 

pairs are effective in fracture detection for the continuous tension test, in terms of different 

cumulative parameters.. 
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Figure 3.5. Accumulated AE parameters from the left F15I-AST sensor of the 1st strand 
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Figure 3.6. Accumulated AE parameters from the left R1.5I sensor of the 1st strand 

 

Although fracture is detectable from AE signals from one AE sensor, the source of 

a fracture event must be determined from occurrence time instants of the signals recorded 

by at least two AE sensors. Figures 3.7 and 3.8 present the number of events from various 

locations based on the measurements of two AE sensors (Model F15I-AST or R1.5I) on 

the first and second strands tested, respectively.  
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(a) A pair of F15I-AST sensors                                          (b) A pair of R1.5I sensors 

Figure 3.7. Number of events from various locations of the 1st strand (30 dB threshold) 

 

All occurrence time instants of the captured acoustic events are marked in Figures 

3.7 and 3.8, and further explained in Tables 3.2 and 3.3. The low frequency R1.5I sensors 
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recorded more events than the high frequency F15I-AST sensors. Note that the occurrence 

time instants for each event are given in Figures 3.7 and 3.8 with reference to the moment 

of fracture. Since fracture represents a dramatic event and suddenly generates significant 

energy, it is readily separable from pre- and post-fracture events such as inter-wire slippage, 

fracture initiation and fracture-induced echo by raising the threshold level of AE sensors. 

For example, with an increasing threshold of 80 dB, each fracture event can be singled out 

of other events as indicated in Figures 3.9 and 3.10.  
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(a) A pair of F15I-AST sensors                                            (b) A pair of R1.5I sensors 

Figure 3.8. Number of events from various locations of the 2nd strand (30 dB threshold) 
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(a) A pair of F15I-AST sensors                      (b) A pair of R1.5I sensors 

Figure 3.9. Fracture location in the 1st strand (80 dB threshold)  
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To quantify the accuracy of location detection from both types of the sensors, the 

identified sources of fracture events are compared with their ground truth data. For the first 

strand, the notch was physically located at 118.1 in. (300 cm) from the left support while 

the highest AE events from both pairs of sensors occurred from 117.7 in. (299 cm). The 

difference in the measured and predicted locations is about 0.4%. Similarly, the actual 

fracture location of the second strand was 216.5 in. (550 cm) from the left end, and the 

identified locations are 547 and 556, respectively, from the two types of AE sensors. The 

errors in location prediction are approximately 0.5% and 1.1%, which are both small and 

demonstrate the feasibility of fracture localization using the AE. Overall, both types of AE 

sensors can record signals that lead to the successful localization of fracture points with 

good accuracy as indicated by the highest number of events in Figures 3.7-3.10. 
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(a) A pair of F15I-AST sensors                      (b) A pair of R1.5I sensors 

Figure 3.10. Fracture location in the 2nd strand (80 dB threshold) 

 

The accumulated energy and counts of the AE signals as shown in Figure 3.5(b, c) 

or Figure 3.6(b, c) both indicate the onset of fracture at 145.61 s. The accumulated hits as 

shown in Figure 3.5(a) and Figure 3.6(a) indicate that slippage likely occurs between the 
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wires in contact at the early stage of tests setup. The significant hits, energy and counts at 

50.97 s and their rapid increase at 145.61 s appear good indicators of the fracture event, 

which are likely associated with the effects of inter-wire slippage and fracture initiation. 

To understand the sequence of various events, the occurrence time instants of 

acoustic events captured by a pair of F15I-AST sensors as shown in Figures 3.7(a) and 

3.8(a) are presented in Tables 3.2 and 3.3 for the first and second strands, respectively. 

Tables 3.2 and 3.3 also include the relative occurrence time with respect to the fracture 

event, which are the same as those included in Figures 3.7(a) and 3.8(a). For the first strand 

as indicated in Table 3.2, the first event corresponded to an inter-wire slippage away from 

the mid-span, which occurred at 112.23 s prior to the fracture. The next five events 

represented the fracture initiation activities starting at 17.59 s prior to the fracture. Finally, 

four fracture-induced echo responses were observed up to 0.37 s after the fracture event. 

For the second strand as indicated in Table 3.3, the earliest single event represented the 

effect of an inter-wire slippage in the middle of the strand. Two fracture-initiation events 

were then captured at the fracture location before a fracture event actually took place. Next, 

three closely-spaced echoes at the fracture location were detected immediately. 

Tables 3.2 and 3.3 indicate that the inter-wire slippage and the fracture initiation 

respectively occurred 112.23 s and 17.59 s before the cut wire of the first strand completely 

fractured, and 23.27 s and 0.73 s before the cut wire in the second strand was broken. The 

short alerting time for the fracture event is because of continuous loading in this study. For 

example, the first strand was subjected to additional 2 kips between the fracture initiation 

at 17.59 s and the fracture event. In practical applications, after wires experience the 

initiation of fracture likely at the location of the highest stress under maximum loading, the 
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stress is likely relieved immediately after the application of the maximum loading due to 

moving vehicles, thus making the time between the fracture initiation and the actual 

fracture substantially longer than over 20 s. 

 

Table 3.2. Occurrence of various events on the 1st strand recorded from the  

F15I-AST sensor pair 

Event Category Occurrence Time (s) Relative Time (s) 

Inter-wire Slippage 50.97 -112.23 

Fracture Initiation 145.61 -17.59 

Fracture Initiation 151.94 -11.26 

Fracture Initiation 159.99 -3.21 

Fracture Initiation 162.13 -1.07 

Fracture Initiation 162.33 -0.87 

Fracture 163.20 0.00 

Fracture-induced Echo 163.36 +0.16 

Fracture-induced Echo 163.39 +0.19 

Fracture-induced Echo 163.48 +0.28 

Fracture-induced Echo 163.57 +0.37 

 

Table 3.3. Occurrence of various events on the 2nd strand recorded from the  

F15I-AST sensor pair 

Event Category Occurance Time (s) Relative Time (s) 

Inter-wire Slippage 129.82 -23.27 

Fracture Initiation 152.36 -0.73 

Fracture Initiation 152.89 -0.20 

Fracture 153.09 0.00 

Fractue-induced Echo 153.44 +0.35 

Fracture-induced Echo 153.44 +0.35 

Fracture-induced Echo 153.50 +0.41 

 

3.2.2. Simplified AWT Analysis of AE Signals. For wire fracture prediction, the 

fracture signal as indicated by the strongest AE event is not available. Therefore, the pre-
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fracture signals, such as inter-wire slippage and fracture initiation, must thus be uniquely 

identified over time as precursors of the wire fracture. Due to low amplitude of the pre-

fracture signals, noises are characterized in order to remove their effect in the early 

detection of wire fracture. In addition, the echo effect of surrounding objects and strand 

boundary conditions, associated with wire fracture, is comparable in amplitude with the 

pre-fracture signals and thus characterized to prevent a false positive identification of the 

following fracture event. 

Since the pre- and post-fracture signals are as strong as noises of the foreign objects, 

raising the signal threshold would not allow a separation of them and advanced signal 

process is required to understand the different characteristics of various signals in order to 

separate the signals from noises. Due to its computational efficiency and effectiveness both 

in frequency and time identification, the simplified AWT is applied into the inter-wire 

slippage, fracture initiation, fracture, fracture-induced echo, and four types of artificial 

tapping noises. As shown later, the inter-wire slippage and fracture initiation signals stop 

within 0.002 s while others tend to last much longer. Therefore, high frequency resolution 

is selected for the first 0.002 s signal and high time resolution is used beyond 0.002 s to 

preserve time information. As such, a time-dependent center frequency 𝜔𝑐 is selected to be 

2𝜋(11 − 5000𝑡) rad/s for 𝑡 < 0.002 s and 2𝜋 rad/s for 𝑡 > 0.002 s.  

Following is a presentation of the multiband wavelet analysis of various acoustic 

signals in chronic order in terms of relative time with respect to the fracture moment (inter-

wire slippage, fracture initiation, fracture, and fracture-induced echo) and four types of 

noises. All signals were captured by the AE sensors without any artificial manipulation, 

each representing an individual waveform from an acoustic event instead of the 
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accumulated time function from the very beginning of the test. The hit definition time 

(HDT) was set to 600 µs, which triggered a sudden termination of the two types of pre-

fracture signals as shown in Figures 3.11-3.14. Moreover, because of high sampling rate 

of the AE signal, the edge effect of wavelet transform is negligible. Figure 3.11 shows the 

inter-wire slippage signals and their time-frequency scalograms of the first strand recorded 

from a pair of R15I-AST sensors at -112.23 s and a pair of R1.5I sensors at -74.45 s. 

Similarly, figure 3.12 shows the inter-wire slippage signals and their scalograms of the 

second strand from a pair of R15I-AST sensors at -23.27 s and a pair of R1.5I sensors at -

35.14 s. These events occurred much earlier than the fracture event at different locations 

as sparsely distributed in Figures 3.7 and 3.8. These short events are rich in low frequency 

components. The inter-wire slippage from the two types of AE sensors are consistent since 

their dominant frequency is lower than the characteristic frequency of the AE sensors. 

 

 

 

 (a) F15I-AST (Left)           (b) F15I-AST (Right)           (c) R1.5I (Left)                   (d) R1.5I (Right) 

Figure 3.11. Inter-wire slippage signals from the 1st strand 

 

Without loss of any generality, two pairs of fracture initiation signals were 

randomly selected from a large number of data sets recorded from each strand. Figures 
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3.13 and 3.14 show the fracture initiation signals and their time-frequency scalograms of 

the first and second strands, respectively. These signals are short in time. Their energy is 

distributed over a wide range of frequency. All the recorded signals are consistent and 

repeatable in application. For the first strand, the two pairs of signals respectively occurred 

at -1.07 s (from the F15I-AST sensors) and -0.87 s (from the R1.5I sensors). For the second 

strand, the two pairs of signals occurred at -0.73 s and -0.94 s correspondingly. 

 

 

 

(a) F15I-AST (Left)              (b) F15I-AST (Right)                 (c) R1.5I (Left)                  (d) R1.5I (Right) 

Figure 3.12. Inter-wire slippage signals from the 2nd strand 

 

 

 

(a) F15I-AST (Left)              (b) F15I-AST (Right)                 (c) R1.5I (Left)                  (d) R1.5I (Right) 

Figure 3.13. Fracture initiation signals from the 1st strand 
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(a) F15I-AST (Left)               (b) F15I-AST (Right)               (c) R1.5I (Left)                   (d) R1.5I (Right) 

Figure 3.14. Fracture initiation signals from the 2nd strand 

 

Unlike the multiple inter-wire slippage and fracture initiation signals, only a single 

event recorded from two pairs of sensors was associated with the wire fracture as shown in 

Figures 3.15 and 3.16 for the first and second strands, respectively. Its time-frequency 

scalograms are also included in Figures 3.15 and 3.16. Due to an excessive amount of 

energy released from the fracture, all the time functions last long over time. Such energy 

release may also reach beyond the measurement range of the sensors (9.5 V), causing signal 

saturation in time domain (Figures 3.15 and 3.16) or approximation in the time-frequency 

scalograms. This leads to a clear separation of fracture event from others by solely 

considering the signal amplitude in time domain. This distinction is not changed by the 

signal saturation. The signals captured by the F15I-AST sensors have a wider frequency 

band than those by the R1.5I sensors, corresponding to the frequency characteristics of the 

two types of AE sensors. 

Two pairs of fracture-induced echoes captured by the AE sensors were randomly 

selected from several data sets from each strand. Figures 3.17 and 3.18 show the echo 

responses and their time-frequency scalograms at +0.16 s (F15I-AST sensors) and +0.19 s 
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(R1.5I sensors) taken from the first strand and those at +0.35 s and +0.25 s from the second 

strand. All the acoustic signals attenuate over time likely because the echo responses result 

from multiple wave reflections at surrounding objects and strand boundaries. 

 

 

 

(a) F15I-AST (Left)              (b) F15I-AST (Right)              (c) R1.5I (Left)              (d) R1.5I (Right) 

Figure 3.15. Fracture signals from the 1st strand 

 

 

 

(a) F15I-AST (Left)              (b) F15I-AST (Right)            (c) R1.5I (Left)                (d) R1.5I (Right) 

Figure 3.16. Fracture signals from the 2nd strand 

 

Traffic alarms, rain drops, and accidental impact by foreign objects such as sand 

particles and small gravels can potentially affect the identification results of wire fracture 

from AE signals. Traffic-induced noises may be filtered out with guard sensors as they are 
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generated from outside the sensing range. However, the rain drops on steel cables and the 

accidental impact of foreign objects can be difficult to remove. Artificial tapping noises as 

indicated in Figure 3.3 were thus generated during the tension test.  

 

 

 

(a) F15I-AST (Left)             (b) F15I-AST (Right)              (c) R1.5I (Left)               (d) R1.5I (Right) 

Figure 3.17. Fracture-induced echo signals from the 1st strand 

 

 

 

 (a) F15I-AST (Left)             (b) F15I-AST (Right)                (c) R1.5I (Left)                     (d) R1.5I (Right) 

Figure 3.18. Fracture-induced echo signals from the 2nd strand 

 

Figure 3.19 presents the AE signals of artificial tappings with four types of objects 

(steel bar, plastic marker, steel washer, and penny) when the first strand was subjected to 

a load of 20 kips (~89 kN). As the characteristics of the tapping signals recorded by two 
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types of AE sensors are similar, only one signal from the left F15I-AST sensor of an intact 

strand is presented for each type of tapping noise. The noises decay rapidly over time since 

tapping represents an impact loading. The noise induced by the steel bar includes more 

high frequency components than the noise by the plastic marker. The noises induced by 

the steel washer and the penny are similar in frequency characteristics, in terms of 

amplitude and overall frequency trend. 

 

 

 

(a) Steel bar                        (b) Marker                     (c) Steel washer                     (d) Penny 

Figure 3.19. Artificial tapping noises 

 

3.2.3. Characteristics and Comparisons of Various Acoustic Signals. Figures 

3.11-3.19 indicate that the amplitudes of the recorded AE signals are up to 10 mV due to 

inter-wire slippage, fracture initiation and artificial tapping, up to 50 mV due to fracture-

induced echo, and up to 10 V due to wire fracture. Thus, distinguishing the inter-wire 

slippage and fracture initiation signals from the tapping noises is critically important for 

the early detection of wire fracture in steel strands and cables. The inter-wire slippage and 

fracture initiation signals are short in time. The fracture-induced echo responses and noises 

attenuate significantly over time. 
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For comparison purposes in time and frequency domains, the average time and the 

average frequency of each MBWT scalogram in Figures 3.11-3.19 were calculated. The 

average time ranges from 0.0006 to 0.0010 s for the inter-wire slippage signals, 0.0005 to 

0.0009 s for the fracture initiation signals, 0.0037 to 0.0054 s for the fracture signals, 

0.0012 to 0.0020 s for the fracture-induced echo responses, and 0.0017 to 0.0022 s for the 

noises. The average time ranges of the inter-wire slippage and fracture initiation signals or 

the fracture-induced echo responses and noises are overlapped significantly. The average 

time is the shortest for the inter-wire and fracture initiation signals, moderate for the 

fracture-induced echo responses and noises, and the longest for the fracture signals. The 

average frequency ranges from 2,777 to 3,905 Hz for the inter-wire slippage signals, 38,720 

to 45,820 Hz for the fracture initiation signals, 50,520 to 65,420 Hz for the fracture signals, 

31,290 to 41,720 Hz for the fracture-induced echo responses, and 33,370 to 39,040 Hz for 

the noises. The average frequency of the inter-wire slippage signals is the lowest while that 

of the fracture signals is the highest. The average frequencies of the fracture-induced echo 

responses and noises are completely overlapped. The average frequency of the fracture-

initiation signals is partially overlapped with those of the fracture-induced echoes and 

noises. 

To quantify the characteristic features of various signals, the average (Avg.) and 

the coefficient of variation (C.O.V.) of all the average time instants for the inter-wire 

slippage signals, fracture initiation signals, fracture signals, fracture-induced echo 

responses or noises are evaluated and summarized in Table 3.4. Similarly, the average and 

the C.O.V. of the average frequencies for each type of signals are calculated and included 

in Table 3.4. It is clearly seen from Table 3.4 that the C.O.V. values in time and frequency 
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are all small (< 0.23), indicating consistent measurements of each type of signals using two 

AE sensors from two strands. Overall, the average times or the average frequencies are 

well separated among the five types of signals listed in Table 3.4. In particular, they are 

the largest for the fracture signals. While the average frequency of the inter-wire slippage 

signals is the lowest, the average time instants of the slippage and fracture initiation signals 

are close. Both the average time and the average frequency are relatively high, which 

differentiate such case from others. 

 

Table 3.4. Summary and comparison of features extracted from various types of  

AE signals 

Signal Type Avg. Time (×10-3 s) C.O.V in Time Avg. Frequency (Hz) C.O.V. in Frequency 

Slippage 0.74 0.22 3,472 0.10 

Initiation 0.67 0.21 41,400 0.07 

Fracture 4.39 0.11 59,500 0.11 

Echo 1.48 0.19 39,130 0.11 

Noise 2.00 0.09 36,680 0.06 

 

Based on the distinct features of various signals, the following four-step procedure 

is proposed to predict any incipient wire fracture in steel strands and cables associated with 

steel corrosion: (1) Distinguish the fracture initiation signal from noises in time domain. In 

comparison with the fracture initiation signal, noises are long in duration with significant 

amplitude decay over time. (2) Distinguish the fracture initiation signal from fracture-

induced echo responses in time domain. In comparison with the fracture initiation signal, 

fracture-induced echo responses are at least three times larger in amplitude. In addition, the 

echo responses must immediately follow a fracture event that is identifiable in time domain 

from a sudden energy release. (3) Distinguish the fracture initiation signal from inter-wire 
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slippage signals in frequency domain. In comparison with the fracture initiation signal, 

inter-wire slippage signals have lower frequency components. (4) Conduct a statistical 

analysis on the prediction results from multiple sets of acoustic signals. 

By using the above procedure, the fracture initiation events can be identified from 

all acoustic events recorded from the two strands as displayed in Figures 3.7 and 3.8. 

Figures 3.20 and 3.21 summarize the identified fracture initiation events for the first and 

second strands, respectively. For the first strand, both pairs of sensors detect the fracture 

initiation events at virtually the same area. For the second strand, however, two events were 

detected away from the fracture location, which is likely due to the contamination from 

other signals. The false positive identification for the fracture initiation events occurs only 

from the R1.5I sensors. This is likely because the fracture initiation and inter-wire slippage 

signals are similar in many aspects and, more importantly, their frequencies fall into two 

sides of the resonant frequency (14 kHz) of R1.5I sensors so that the MBWT can be 

amplified locally around the resonant frequency. On the other hand, the characteristic 

frequencies of F15I-AST sensors are much higher than that of the fracture initiation signal, 

which is in turn higher than that of the inter-wire slippage signal. 
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(a) A pair of F15I-AST sensors                                    (b) A pair of R1.5I sensors 

Figure 3.20. Number of fracture-initiation events from the 1st strand 
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(a) A pair of F15I-AST sensors                               (b) A pair of R1.5I sensors 

Figure 3.21. Number of fracture-initiation events from the 2nd strand 

 

3.3. SUMMARY 

In this section, AE features to predict and detect wire fracture in seven-wire strands 

were characterized with multiband wavelet analysis, a simplified version of AWT. Two 

steel strands were tested up to 20 kips (89 kN) with each instrumented with a pair of AE 

sensors at two ends. The cross section of one wire was locally reduced up to 90% in 10% 

increment at center and support of the two strands, respectively. For both strands, the AE 

parameters (hits, energy, and counts) changed little up to 80% reduction in cross section of 

the partially cut wire, and suddenly jumped at the fracture (under 16.4 kips or 73 kN) of 

the notched wire with 90% reduction in cross section.  

Prior to wire fracture, acoustic events of inter-wire slippage and fracture initiation 

were observed from a steel strand of seven wires. In comparison with the fracture initiation 

signals, the inter-wire slippage signals have substantially lower frequency components and 

similar time duration. Wire fracture can be detected with any of hit, energy, and count 

parameters calculated from a recorded acoustic emission signal. It can be located from a 

distribution of events over the length of a test strand, which are registered by at least two 

acoustic emission sensors. The frequency bandwidth of wire fracture signals is much wider 



 

 

62 

than that of fracture-induced echo responses or artificial tapping noises. Both the fracture 

signals and the noises are long in time duration. Acoustic signals of fracture initiation 

possess unique time-frequency characteristics such as wide frequency bandwidth and short 

time duration. These characteristics can be used as fracture warning in application. For 

wire fracture prediction, the high frequency acoustic sensors result in less number of false 

positive identifications. 

 



 

 

63 

4. TIME-FREQUENCY FEATURE EXTRACTION OF IMPACT ECHO 

SIGNALS FOR DELAMINATION DETECTION 

4.1. CONCRETE SLAB SPECIMEN AND IMPACT ECHO TESTS 

Impact Echo (IE) technique has been demonstrated to be an effective tool for 

delamination detection in thin concrete structures [62]. In this study, a 60"×36"×7.25" 

concrete slab with pre-embedded defects is used as an application example of the proposed 

AWT. Figure 4.1(a) shows the overall dimensions, steel reinforcement, and six artificial 

defects of the slab specimen. The defects made of foams and cardboards, as detailed in 

Table 4.1, are used to simulate three conditions: shallow, deep, and no delamination. 

Shallow delamination is associated either with long-duration flexural vibration of plate-

like structures or long-duration surface wave reflection from the boundaries of finite-

dimension structures under impact loads. Deep and no delamination are associated with the 

direct reflection of impact-induced wave at the delamination depth and at the bottom of the 

slab, respectively. As shown in Figure 4.1(b), a Portable Seismic Property Analyzer (PSPA) 

was used to generate and record IE signals from the concrete slab while in formwork [79]. 

A total of 40 measurements were taken as detailed in Figure 4.1(c). 

Deep and no delamination are associated with the body wave reflection at 

delamination or at the bottom edge of the slab. The corresponding resonant frequency can 

be related to the delamination depth or slab thickness, 𝑑, in Equation (16):  

𝑓 =
𝛽1𝑉

2𝑑
      (16) 

where 𝛽1 = 0.96 for plate-like structures, and 𝑉=126,000 in./s is the P-wave velocity in 

concrete. For no delamination of the 7.25-in thick slab, the resonant frequency is 

approximately 8,340 Hz. Thus, frequency components that are higher than 8,340 Hz are 



 

 

64 

expected of the deep delamination, corresponding to a certain delamination depth. This 

allows the differentiation of frequency components of all three cases. 

 

 
(a) Simulated delamination with foams and cardboards 

 

(b) IE intrumentation       

 

           (c) Distribution of 40 measurement points 

Figure 4.1. IE test setup 

 

During IE tests, data were recorded at a sampling rate of 390 kHz. The natural 

frequencies of the flexural mode of vibration are often lower than the resonant frequency 

associated with wave reflection at the delamination depth but likely close to the resonant 

frequency associated with wave reflection at the bottom face of the slab. As a result, the 
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ranges of resonant frequencies related to various delamination conditions are generally 

overlapped and time-frequency analysis is necessary in discriminating their conditions. 

The fundamental frequency of the flexural mode vibration can be related to the 

depth and width of delamination, 𝑑 and 𝑐, by the semi-analytical equation developed for 

rectangular defects [81]: 

𝑓 = 휀𝛽1
𝑉

𝑑
(
𝑑

𝑐
)2       (17) 

in which 𝛽1 = 𝜋√1 − 2𝜈/√12(1 − 𝜈)2 is a function of the Poisson’s ratio of concrete, 

𝜈(= 0.3), and 휀 = 1.64𝑒0.0014𝑐/𝑑 − 1.812𝑒−0.22𝑐/𝑑 is a correction factor of Equation (17). 

The theoretical frequencies associated with the embedded defects are calculated from 

Equations (16) and (17), as given in Table 4.1. 

 

Table 4.1. Artificial defect properties 

Defect 
Plan Dimension 

(in. × in.) 
Thickness 

(in.) 
Embedment 

Depth (in.) 
Material 

Frequency (Hz)  

Eq. (16) Eq. (17) 

A 12.0×11.5 -- 6.250 Cardboard   

B 12.0×11.5 -- 1.875 Cardboard -- 9677 

C 6.0×5.0 1.000 5.250 Foam 1732 -- 

D 6.0×5.0 1.000 2.500 Foam -- 11520 

E 10.0×6.5 -- 6.250 Cardboard 4928 -- 

F 10.0×6.5 -- 1.875 Cardboard -- 9677 

     3676 -- 

 

4.2. APPLICATION OF AWT TO IMPACT ECHO SIGNALS 

Figure 4.2 shows three representative IE signals and their corresponding CWTs (ωc 

= 2π rad/s) at three measurement points (#9, #28, and #11) with deep delamination (> 4 in), 

no delamination, and shallow delamination (< 4 in), respectively. The frequency bandwidth 

of the CWT scalogram at Point #9 with deep delamination was higher than that at Point 
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#28 with no delamination since the impact-induced stress (sound) waves travelled inside 

the concrete slab were reflected from the embedded object and the bottom surface, 

respectively. At Point #28 with no delamination, the CWT scalogram resulted in a 

concentration of time (< 0.0015 s) and frequency (< 8,340 Hz). At Point #11 with shallow 

delamination, the CWT scalogram appeared quite different from those at Points #9 and #28 

because the IE response at Point #11 was dominated by the propagation of surface stress 

waves with the frequency information related to the shallow delamination depth less or not 

detectable. Specifically, the CWT scalogram at Point #11 is long in time duration (>0.0015 

s) and narrow in frequency bandwidth (<8,340 Hz). 

 

 

(a) Point #9  (b) Point #28  (c) Point #11 

Figure 4.2. IE signals and their CWT scalograms at three points (𝜔𝑐 = 2𝜋 rad/s) 

 

Even if the center frequency is increased to ωc = 10π rad/s, the CWT with fixed 

wavelet parameters cannot provide satisfactory time and frequency resolution for the 

accurate identification of resonant frequencies. Figure 4.3 presents the new CWT 

scalograms of the IE signals at Points #28 and #11. Although the frequency components at 

Point #28 are relatively easier to discern in comparison with Figure 4.2(b), distinction 
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between no delamination in Figure 4.3(a) and shallow delamination in Figure 4.3(b) 

remains a challenge particularly when their time resolution becomes comparable. 

 

 

(a) Point #28                                  (b) Point #11 

Figure 4.3. CWT scalograms of the IE responses (𝜔𝑐 = 10𝜋 rad/s) 

 

For deep delamination at Point #9, the IE signal as indicated in Figure 4.2(a) is 

concentrated before 0.001 s. Take the instantaneous spectrum at 0.00035 s as an example. 

As shown in Figure 4.4, one of the two peaks is centered at 12,750 Hz and ranges from 

6,980 Hz to 18,510 Hz. It has a frequency bandwidth or ridgeline thickness of 11,530 Hz, 

which exceeds the calculated ridgeline thickness of 8,150 Hz corresponding to the current 

frequency resolution. Therefore, the local frequency resolution needs to be refined by 

increasing the center frequency to 16 Hz, following the AWT algorithm. The signal after 

0.001 s attenuates dramatically and becomes less important. The center frequency is thus 

kept as 1 Hz afterwards, as indicated in Figure 4.5 for the overall center frequency as a 

function of time determined from the optimization algorithm at each time. The 

corresponding scalogram from the AWT is shown in Figure 4.6 with a clear separation of 

all frequency components for delamination depth identification. It is also observed from 

Figure 4.6 that the identified frequencies are nearly unchanged over time, at least prior to 

0.001 s. The highest frequency component (9,750 Hz) corresponds to a delamination depth 
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of 6.2 in. (= 𝛽𝑉/2/𝑓 = 0.96 × 126000/2/9750). Though only the highest frequency 

component is needed, other components are explained here for completeness. The second 

highest frequency component represents the wave reflection from the bottom of the slab. 

The lowest two frequencies come from the surface wave reflections at the short and long 

edges of the slab. The other components in between defects likely result from the wave 

reflection from the adjacent defects. The improvement in frequency identification is 

critically important since deep delamination often occurs near the bottom face of bridge 

decks with prestressed tendons. 

 

 

Figure 4.4. Instantaneous spectrum at 0.00035 s 

 

 

Figure 4.5. Time-varying center frequency 
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Figure 4.6. AWT of the IE signal for deep delamination at location #6 

 

To demonstrate the robustness of the proposed AWT, additional three points (#10, 

#22, and #34) with deep delamination are considered. Whenever an instantaneous CWT 

spectrum with ωc = 2π rad/s, similar to Figure 4.2, has one or more peaks at a frequency of 

above 8,340 Hz, the same AWT procedure is followed. Figures 4.7 and 4.8 compare the 

CWT and AWT scalograms at Points #10, #22 and #34. The comparison clearly indicates 

that the frequency components are significantly easier to identify with the proposed AWT. 

Together with Figure 4.6, the highest resonant frequencies identified with the AWT are 

9,750 Hz, 9,750 Hz, 11,850 Hz and 9,700 Hz at Points #9, #10, #22, and #34, respectively. 

With Equation (16), the resonant frequencies are converted to a delamination depth of 6.20 

in, 6.20 in, 5.10 in and 6.24 in, which are in excellent agreement with the actual 

delamination depths (6.25 in, 6.25 in, 5.25 in, and 6.25 in) as given in Table 4.2. 

  

 

     (a) Point #10                                    (b) Point #22                                  (c) Point #34 

Figure 4.7. CWT scalograms at locations with deep delamination (𝜔𝑐 = 2𝜋 rad/s) 
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    (a) Point #10                       (b) Point #22                       (c) Point #34 

Figure 4.8. AWT scalograms at locations with deep delamination 

 

In the case of no delamination, the frequency components higher than 8,340 Hz are 

negligible. Therefore, after going through the optimization algorithm of AWT, the center 

frequency is still kept at 1 Hz. Thus, the AWT gives the same results as the CWT in this 

case. Figure 4.9 shows the AWT scalograms at additional three locations with no 

delamination (Points #1, #30 and #40). The scalograms in Figures 4.2(b) and 4.9 share the 

same time-frequency characteristics, all corresponding to the thickness of the tested 

concrete slab. 

 

 

      (a) Point #1                            (b) Point #30                        (d) Point #40 

Figure 4.9. AWT scalograms at locations with no delamination 

 

When shallow delamination is concerned, the signal is dominated by the flexural 

modes with much longer time duration for the concrete slab with finite dimensions, and 

frequency components higher than 8,340 Hz are not present. As shown in Figure 4.10 for 
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the instantaneous spectrum at 0.003 s, the ridgeline thickness of the surface wave is 2,580 

Hz from the wavelet transform with a center frequency of 1 Hz. However, the single peak 

is centered at 3,710 Hz and the calculated ridgeline thickness corresponding to the current 

frequency resolution is 2,630 Hz. Thus, shallow delamination can be treated in the same 

way as no delamination as far as the AWT analysis is concerned. The AWT scalograms at 

additional three points (#12, #23, and #35) with shallow delamination are presented in 

Figure 4.11. It can be seen from Figures 4.2(c) and 11 that all the scalograms retain the 

time duration of larger than 0.002 s. 

 

 

Figure 4.10. Instantaneous spectrum of the IE signal at 0.003 s with shallow delamination 

at Point #35 

 

 

(a) Point #12                                 (b) Point #23                         (c) Point #35 

Figure 4.11. AWT scalograms at locations with shallow delamination 
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The identified results of delamination with the AWT at 40 points are summarized 

in Table 4.2. Deep delamination (D), no delamination (N), and shallow delamination (S) 

were correctly detected at all but 2 points, which indicates the effectiveness of the proposed 

AWT in practical application. The depths of deep delamination are all determined with 

high accuracy (< 3% in error). The two exceptions at Points #7 and #13 give false negative 

detections. These two points are located near the top corners of Defects A and B with 

flexible cardboards. The corners of such cardboards could be easily bent at the time of 

concrete casting, thus creating a no-delamination condition that coincides with the 

identified result. In addition, a small deviation of the two PSPA deployments towards 

nearby no-delamination zones is quite possible. 

In contrast, the dominant frequencies corresponding to deep delamination cannot 

be identified from the CWT scalograms when 𝜔𝑐 = 2𝜋 rad/s, thus giving no delamination 

depth. If 𝜔𝑐 = 10𝜋  rad/s is used for resonant frequency identification, shallow 

delamination cannot be differentiated from no delamination with the CWT. 

 

Table 4.2. Identified delamination results at all 40 locations with the proposed AWT 

Location Type Location Type Location Type Location Type 

1 N 11 S 21 N 31 N 

2 N 12 S 22 D (5.10 in) 32 N 

3 N 13 N (false) 23 S 33 N 

4 N 14 D (6.24 in) 24 N 34 D (6.24 in) 

5 D (6.17 in) 15 S 25 N 35 S 

6 D (6.24 in) 16 S 26 N 36 N 

7 N (false) 17 N 27 N 37 N 

8 S 18 N 28 N 38 N 

9 D (6.20 in) 19 N 29 N 39 N 

10 D (6.20 in) 20 N 30 N 40 N 

Note: the delamination depth is given in parenthesis in the case of deep delamination. 



 

 

73 

4.3. APPLICATION OF SSAWT TO IMPACT ECHO SIGNALS 

The proposed SSAWT is also applied to the impact echo (IE) signals of the same 

concrete slab as summarized in Table 4.1. The defects are introduced to simulate conditions 

of shallow and deep delamination. Based on the previous studies on the same or similar 

structures [79, 80], shallow delamination is associated with the long time duration flexural 

vibration of plate-like structures (either the entire concrete slab or the small segment right 

above the shallow delamination) or long-duration surface wave reflection from the 

boundaries of finite-dimension structures under impact loads. In total, there are three cases: 

no, shallow, and deep delamination. 

Figure 4.12 shows two representative IE signals and their corresponding CWTs (ωc 

= 2π rad/s and 10π rad/s) at measurement points #18 and #12 with no delamination and 

shallow delamination, respectively. It can be clearly seen from Figure 4.12 that the time-

frequency representations from the CWT are limited by the Heisenberg uncertainty 

principle. With the lower center frequency, time resolution is higher but the characteristic 

frequencies cannot be identified. As a result, it remains a challenge to distinguish no 

delamination from shallow delamination. With the higher center frequency, frequency 

resolution is much higher but the time duration becomes skewed. Similarly, the CWTs of 

signals with ω𝑐 = 2𝜋 rad/s are ineffective in identifying deep delamination as illustrated 

in Figure 4.13 at four measurement points (#9, #10, #22 and #34). Therefore, the flow 

diagram in Figure 2.15 was applied to determine the optimum center frequencies over time 

as presented in Figure 4.14. With the time-varying center frequencies in AWT, frequency 

components in the signals can be well separated with short time duration, as shown in 

Figure 4.15.  
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(a) Point #18     (b) Point #12 

Figure 4.12. CWT scalograms of IE signals at two locations: no delamination versus 

shallow delamination 

 

 

(a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.13. CWT scalograms of deep delamination signals (𝜔𝑐 = 2𝜋 rad/s) 

 

 

(a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.14. Optimum center frequencies over time 

 

 

(a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.15. AWT scalograms of deep delamination signals 

 

AWTs with the optimum center frequencies in Figure 4.16 were further synchro-

squeezed to accurately identify the deep delamination from the measured signals at points 
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#9, #10, #22 and #34. As shown in Figure 4.17, the time-frequency representations with 

the proposed SSAWT have clearly separable frequency components. Considering the 

nearly consistent frequency components in a short time period as shown in Figure 4.16, the 

instantaneous frequency spectra from the SSAWT were accumulated over time, leading to 

the so-called enhanced frequency spectrum as detailed in Figure 4.17. Since the enhanced 

frequency spectrum includes many low peaks, the largest peak above 7,500 Hz 

corresponding to a slab thickness of 8 in., which exceeds the actual slab depth, is selected 

to identify the characteristic frequency at the delamination/slab depth. These resonant 

frequencies are 9,600 Hz, 9,700 Hz, 11,600 Hz and 9,700 Hz, and converted through 

Equation (16) to delamination depths of 6.30 in., 6.24 in., 5.21 in. and 6.24 in. for points 

#9, #10, #22 and #34, respectively. The identified deep delamination depths are within a 

maximum error of 1.5% in comparison with their theoretical values. Compared with the 

FT results as shown in Figure 4.18, which are commonly used in current practices, the 

enhanced frequency spectra in SSAWT are sharper with well-separated frequency 

components.  

 

 

(a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.16. SSAWT scalograms of IE signals with deep delamination 

 

Note that several low-frequency significant peaks (generally below 5 kHz) are 

observed in Figure 4.17. In particular, the peaks observed at Points #10, #22, and #34 are 
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mainly associated with the flexural vibration modes of their adjacent shallow defects (B, 

D, F). As given in Table 4.1, the theoretical fundamental flexural modes of the shallow 

defects range from 1.5 to 5 kHz. Since the shallow defects are embedded in close distance 

with the deep defects, their flexural mode responses may be generated and captured by the 

PSPA at the measurement points close to the deep defects. The presence of even higher 

frequency components (5-8 kHz) could result from the flexural modes higher than the 

fundamental modes [80-83]. Although a finite concrete slab could generate reflected 

surface waves from its side edges, the reflection effect in this study is likely negligible. The 

frequency of side-reflected surface waves mainly ranges from 100,000 (in./s)/[2×60 

(in.)]/1000 = 0.83 kHz to 100,000 (in./s)/[2×36 (in.)]/1000 = 1.39 kHz, corresponding to 

the long and short side dimension, when a surface wave velocity of 100,000 in./s is used 

[84]. This reflection frequency is below the lower bound of the PSPA bandwidth (2 kHz). 

 

 

(a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.17. Enhanced frequency spectrum of deep delamination signals  

 

 

 (a) Point #9   (b) Point #10   (c) Point #22   (d) Point #34 

Figure 4.18. FTs of deep delamination signals 
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The SSAWTs at four locations (#2, #18, #20 and #27) with no delamination are 

presented in Figure 4.19. Since the duration of signals at these locations is short, the 

instantaneous frequency spectra in each scalogram are accumulated into an enhanced 

frequency spectrum as presented in Figure 4.20. The frequencies identified in these cases 

are lower than those for deep delamination. They are 8,400 Hz, 8,000 Hz, 8,500 Hz and 

8,400 Hz, corresponding to a slab thickness of 7.20 in., 7.28 in., 7.56 in. and 7.20 in. at the 

four locations, respectively. The error of the identified slab thickness is less than 5%. 

 

 

(a) Point #2   (b) Point #18   (c) Point #20   (d) Point #27 

Figure 4.19. SSAWT scalograms of IE signals with no delamination 

 

 

(a) Point #2   (b) Point #18   (c) Point #20   (d) Point #27 

Figure 4.20. Enhanced frequency spectrum of no delamination signals 

 

Similarly, the AWT and SSAWT of signals at four locations (#11, #12, #23 and 

#35) with shallow delamination are presented in Figures 4.21 and 4.22, respectively. 

Although Equation (16) is not applicable to the shallow delaminated area [81, 82], the low-

frequency dominant, long-duration PSPA signal makes the shallow delamination 

differentiable from other delamination cases. The flexural mode responses are vibratory 
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over relatively long time with concentrated low frequency components [83]. The so-called 

enhanced frequency spectra are thus not evaluated as the long time duration is a character 

to preserve in order to differentiate shallow delamination from others. A single low 

frequency component dominates each scalogram in the time-frequency plane, representing 

the fundamental flexural mode of the slab. Frequency components that are approximately 

twice the dominant frequency are present in some cases as the higher frequency mode 

frequencies are approximately proportional to the number of mode. There are also weak 

indications of slab bottom reflections in the signals of Points #23 and #35 as defects D and 

F are smaller in dimension, which may cause energy leaks of the body waves. 

 

 

(a) Point #11   (b) Point #12   (c) Point #23  (d) Point #35 

Figure 4.21. AWT scalograms of IE signals with shallow delamination 

 

 

a) Point #11   (b) Point #12   (c) Point #23  (d) Point #35 

Figure 4.22. SSAWT scalograms of IE signals with shallow delamination 

 

The identified delamination conditions with the proposed SSAWT at all 40 points 

are summarized in Table 4.3. Deep delamination (D), no delamination (N), and shallow 

delamination (S) are successfully detected at all but two points. As such, the proposed 
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SSAWT proved robust in applications. The two exceptions at Points #7 and #13 give false 

negative detections. These two points are located near the edge of cardboards, which could 

be moved during the pouring process of mortar. Moreover, the depths of both deep and no 

delamination are all determined with high accuracy (<1.5% and <5% in error, respectively). 

The average of all detected slab thicknesses is 7.21 in. (0.55% in error) with a standard 

deviation of 0.15 in. 

 

Table 4.3. Identified delamination results at all 40 locations with the proposed SSAWT 

Location Type Location Type Location Type Location Type 

1 N (7.29 in) 11 S 21 N (7.47 in) 31 N (7.17 in) 

2 N (7.20 in) 12 S 22 D (5.21 in) 32 N (7.20 in) 

3 N (7.24 in) 13 N (false) 23 S 33 N (7.29 in) 

4 N (7.12 in) 14 D (6.24 in) 24 N (7.20 in) 34 D (6.34 in) 

5 D (6.17 in) 15 S 25 N (7.51 in) 35 S 

6 D (6.24 in) 16 S 26 N (7.24 in) 36 N (7.07 in) 

7 N (false) 17 N (7.03 in) 27 N (7.16 in) 37 N (6.99 in) 

8 S 18 N (7.56 in) 28 N (6.95 in) 38 N (7.20 in) 

9 D (6.30 in) 19 N (7.20 in) 29 N (7.03 in) 39 N (7.24 in) 

10 D (6.24 in) 20 N (7.33 in) 30 N (7.29 in) 40 N (7.07 in) 

Note: the delamination depth and slab thickness are given in parenthesis in the case of deep and 

no delamination. 

 

In comparison with Table 4.2, the proposed SSAWT shown in Table 4.3 enables 

the determination of slab thickness and the increased accuracy in identification of the deep 

delamination. This is because the SSAWT gives no-dispersion ridgelines in a time-

frequency scalogram so that the key features can be extracted more accurately from the 

scalogram. 
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4.4. SUMMARY 

In this section, both the proposed AWT and SSAWT are applied to the impact echo 

responses experimentally recorded from a 60"×36"×7.25" concrete slab. Improvement in 

time and frequency resolution leads to more successful detections of deep or shallow 

delamination out of 40 sets of analyzed test data. The selection process of time-varying 

central frequencies, scaling factors, and window lengths proves robust.  

The proposed AWT are robust in the detection of defects (delamination) embedded 

in a concrete slab from impact echo responses. It can clearly distinguish the unique time 

and frequency features associated with no delamination, shallow delamination, and deep 

delamination. Due to mixed frequency characteristics of the three delamination conditions, 

high time resolution is needed to exclude shallow delamination from the other two, while 

high frequency resolution is necessary for resonant frequency identification (deep versus 

no delamination). Out of 40 measurement IE responses, 7 more responses can be used to 

accurately detect the embedded defects in comparison with conventional wavelet transform. 

The determined/predicted depth of deep delamination can be determined with an error of 

less than 3%. 

SSAWT showed required robustness and accuracy in the detection of defects 

(delamination) embedded in a concrete slab from IE responses. For deep and no 

delamination cases with short time duration, instantaneous frequency spectra were 

accumulated over time to further improve the identification accuracy. Only two out of 40 

measured IE responses led to falsely identified delamination conditions. The two exception 

locations were on the edge of pre-embedded defects. The detection error was less than 1.5% 

in deep delamination depth and 5% in slab thickness.  
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5. MULTIPLE ANALYTICAL MODE DECOMPOSITION 

5.1. THE PROPOSED M-AMD ALGORITHM 

Consider a weakly nonlinear structural system represented by a SDOF oscillator. 

Let the mass-normalized time-varying damping coefficient, stiffness coefficient and 

external force be 2ℎ(𝑡) , 𝜔2(𝑡)and 𝑝(𝑡), respectively. The equation of motion for the 

forced vibration of the nonlinear system can be expressed into: 

�̈�(𝑡) + 2ℎ(𝑡)�̇�(𝑡) + 𝜔2(𝑡)𝑥(𝑡) = 𝑝(𝑡),   (18) 

in which 𝑥(𝑡), �̇�(𝑡) and �̈�(𝑡) represent the displacement, velocity, and acceleration of the 

nonlinear system. Let 2ℎ(𝑡) = 2ℎ𝑠(𝑡) + 2ℎ𝑓(𝑡) and 𝜔2(𝑡) = 𝜔𝑠
2(𝑡) + 𝜔𝑓

2(𝑡), where the 

subscripts 𝑠 and 𝑓 indicate slow- and fast-varying components of the normalized damping 

(or stiffness) coefficient with its frequency lower and higher than the narrow frequency 

band of velocity (or displacement). Equation (18) can then be rewritten as: 

�̈�(𝑡) + 2ℎ𝑠(𝑡)�̇�(𝑡) + 2ℎ𝑓(𝑡)�̇�(𝑡) + 𝜔𝑠
2(𝑡)𝑥(𝑡) + 𝜔𝑓

2(𝑡)𝑥(𝑡) = 𝑝(𝑡). (19) 

By applying the Bedrosian theorem [85], the Hilbert transform of Equation (19) 

gives: 

𝐻[�̈�(𝑡)] + 2ℎ𝑠(𝑡)𝐻[�̇�(𝑡)] + 𝐻[2ℎ𝑓(𝑡)]�̇�(𝑡) + 𝜔𝑠
2(𝑡)𝐻[𝑥(𝑡)] + 𝐻[𝜔𝑓

2(𝑡)]𝑥(𝑡) = 𝐻[𝑝(𝑡)],  (20) 

where 𝐻[∙] stands for the Hilbert transform of a function inside the bracket. If the fast-

varying components, 2ℎ𝑓(𝑡)  and 𝜔𝑓
2(𝑡) , are neglected [18], Equations (18) and (19) 

become a pair of simplified equations with new parameters 2ℎ0 and 𝜔0
2 as follows: 

{
�̈� + 2ℎ0�̇� + 𝜔0

2𝑥 = 𝑝

𝐻[�̈�] + 2ℎ0𝐻[�̇�] + 𝜔0
2𝐻[𝑥] = 𝐻[𝑝]

 .   (21) 

Note that Equation (21) represents an abbreviated form of time functions without 

explicitly showing the time variable. When displacement, velocity, and acceleration 
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responses are all or partially known, the solution of Equation (21) for 2ℎ0 and 𝜔0
2 can be 

expressed into: 

{
𝜔0

2 =
𝑝𝐻[�̇�]−𝐻[𝑝]�̇�

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
−

�̈�𝐻[�̇�]−𝐻[�̈�]�̇�

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
= 𝜔0𝑝

2 + 𝜔0𝑥
2

2ℎ0 =
𝑝𝐻[𝑥]−𝐻[𝑝]𝑥

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
−

�̈�𝐻[𝑥]−𝐻[�̈�]𝑥

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
= 2ℎ0𝑝 + 2ℎ0𝑥

.    (22) 

They are referred to as the initial instantaneous stiffness and damping coefficients, 

respectively. The subscript 𝑝 indicates the stiffness/damping coefficient part that is directly 

associated with the load function, while the subscript 𝑥 indicates the coefficient from the 

system responses only. 

5.1.1. Slow-varying Components. When 𝜔𝑓
2 = 0 and ℎ𝑓 = 0, 𝜔𝑠

2 = 𝜔0
2 and ℎ𝑠 =

ℎ0 are true. Otherwise, 𝜔𝑠
2 and ℎ𝑠 are associated with 𝜔𝑓

2 and ℎ𝑓 based on Equations (19) 

and (20): 

𝜔𝑠
2 =

𝑝𝐻[�̇�]−𝐻[𝑝]�̇�

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
−

�̈�𝐻[�̇�]−𝐻[�̈�]�̇�

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
−

(2ℎ𝑓𝐻[�̇�]−𝐻[2ℎ𝑓]�̇�)�̇�

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
−

(𝜔𝑓
2𝐻[�̇�]−𝐻[𝜔𝑓

2]�̇�)𝑥

𝑥𝐻[�̇�]−𝐻[𝑥]�̇�
   

= 𝜔0
2 − 𝑓1(ℎ𝑓) − 𝑓2(𝜔𝑓

2),        (23) 

2ℎ𝑠 =
𝑝𝐻[𝑥]−𝐻[𝑝]𝑥

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
−

�̈�𝐻[𝑥]−𝐻[�̈�]𝑥

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
−

(2ℎ𝑓𝐻[𝑥]−𝐻[2ℎ𝑓]𝑥)�̇�

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
−

(𝜔𝑓
2𝐻[𝑥]−𝐻[𝜔𝑓

2]𝑥)𝑥

𝐻[𝑥]�̇�−𝑥𝐻[�̇�]
    

= 2ℎ0 − 𝑓3(ℎ𝑓) − 𝑓4(𝜔𝑓
2).          (24) 

Equations (23) and (24) can be rewritten as 𝜔0
2 = 𝜔𝑠

2 + 𝑓1(ℎ𝑓) + 𝑓2(𝜔𝑓
2)  and 

2ℎ0 = 2ℎ𝑠 + 𝑓3(ℎ𝑓) + 𝑓4(𝜔𝑓
2). These relationships indicate that the fast-varying damping 

and stiffness coefficients both affect 𝜔0
2 or 2ℎ0, and both of them are essentially distorted 

with mixed from part of the fast-varying components. Therefore, the initial instantaneous 

parameters in Equation (22) are distorted from a mechanical/physical point of view, and 

AMDs have to be implemented. The effect of 𝜔0𝑝
2  and 2ℎ0𝑝 can be lumped into the slow-

varying stiffness and damping coefficients as follows: 
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{
𝜔0𝑥

2 = 𝜔0
2 − 𝜔0𝑝

2 = 𝜔𝑠
2 − 𝜔0𝑝

2 + 𝑓1(ℎ𝑓) + 𝑓2(𝜔𝑓
2) = 𝜔𝑠′

2 + 𝑓1(ℎ𝑓) + 𝑓2(𝜔𝑓
2)

2ℎ0𝑥 = 2ℎ0 − 2ℎ0𝑝 = 2ℎ𝑠 − 2ℎ0𝑝 + 𝑓3(ℎ𝑓) + 𝑓4(𝜔𝑓
2) = 2ℎ𝑠′ + 𝑓3(ℎ𝑓) + 𝑓4(𝜔𝑓

2)
.  (25) 

Let the remaining low-frequency and the removed high-frequency components of 

a general signal 𝑠(𝑡) with a time-varying bisecting frequency of 𝜔𝑏(𝑡) be 𝐴𝑀𝐷𝜔𝑏(𝑡){𝑠(𝑡)} 

and 𝐴𝑀𝐷̅̅ ̅̅ ̅̅ ̅
𝜔𝑏(𝑡){𝑠(𝑡)}, respectively [2]. The bisecting frequencies between the slow- and 

fast-varying stiffness components can be determined by the wavelet analysis of 𝜔0𝑥
2  as 

denoted by 𝜔𝑥1(𝑡)  between 𝜔𝑠′
2  and 𝑓1(ℎ𝑓)  and 𝜔𝑥2(𝑡)  between 𝜔𝑠′

2  and 𝑓2(𝜔𝑓
2) , 

respectively. Similarly, the bisecting frequencies 𝜔�̇�1(𝑡)  between 2ℎ𝑠′  and 𝑓3(ℎ𝑓)  and 

𝜔�̇�2(𝑡)  between 2ℎ𝑠′  and 𝑓4(𝜔𝑓
2)  are determined from the wavelet analysis of 2ℎ0𝑥 . 

Therefore, AMDs are applied for the first time to determine the modified slow-varying 

components of stiffness and damping coefficients: 

𝜔𝑠′
2 = 𝐴𝑀𝐷min[𝜔𝑥1(𝑡),𝜔𝑥2(𝑡)]

{𝜔0𝑥
2 (𝑡)},   (26) 

2ℎ𝑠′ = 𝐴𝑀𝐷min[𝜔�̇�1(𝑡),𝜔�̇�2(𝑡)]
{2ℎ0𝑥(𝑡)}.   (27) 

The actual slow-varying components can thus be obtained as 𝜔𝑠
2 = 𝜔𝑠′

2 + 𝜔0𝑝
2  and 

2ℎ𝑠 = 2ℎ𝑠′ + 2ℎ0𝑝. 

5.1.2. Fast-varying Components. When the dominant frequency band of the fast-

varying component of damping coefficient is lower than that of stiffness coefficient and 

they are separated by a bisecting frequency, 𝜔𝑏
′ (𝑡), the fast-varying damping coefficient 

can be identified first. In this case, AMDs can be applied for the second time to determine: 

 2ℎ𝑓 = 𝐴𝑀𝐷𝜔𝑏
′ (𝑡){2ℎ̃𝑓},    (28) 

in which ℎ̃𝑓 is obtained from: 

2ℎ̃𝑓 = {

𝑝−(�̈�+2ℎ𝑠�̇�+𝜔2𝑥)

�̇�
,wh n�̇� ≠ 0

�̇�−(𝑥+2ℎ𝑠�̈�+�̇�2𝑥)

�̈�
, wh n�̇� = 0

.   (29) 
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Then, the total damping coefficient is 2ℎ = 2ℎ𝑠 + 2ℎ𝑓 , and the fast-varying 

component of stiffness coefficient can be determined by: 

 𝜔𝑓
2 = {

𝑝−(�̈�+2ℎ�̇�+𝜔𝑠
2𝑥)

𝑥
, wh n𝑥 ≠ 0

�̇�−(𝑥+2ℎ�̈�+2ℎ̇�̇�+𝜔𝑠
2�̇�)

�̇�
, wh n𝑥 = 0

 .   (30) 

In Equation (29), ℎ̃𝑓  is directly derived from Equation (18) when �̇� ≠ 0 , and 

derived from the differentiation of both sides of Equation (18) when �̇� = 0. Since 2ℎ̃𝑓 is 

associated with 𝜔𝑓
2 in Equation (29), AMD is applied in Equation (28). 

When the dominant frequency band of the fast-varying component of stiffness 

coefficient is lower than that of damping coefficient, and they are separated by a bisecting 

frequency, 𝜔𝑏
′ (𝑡), the fast-varying stiffness coefficient can be identified first from: 

𝜔𝑓
2 = 𝐴𝑀𝐷𝜔𝑏

′ (𝑡){�̃�𝑓
2},     (31) 

in which �̃�𝑓
2 is determined by: 

�̃�𝑓
2 = {

𝑝−(�̈�+2ℎ�̇�+𝜔𝑠
2𝑥)

𝑥
,wh n𝑥 ≠ 0

�̇�−(𝑥+2ℎ�̈�+2ℎ̇�̇�+𝜔𝑠
2�̇�)

�̇�
, wh n𝑥 = 0

.   (32) 

With a total stiffness coefficient of 𝜔2 = 𝜔𝑠
2 + 𝜔𝑓

2 , the fast-varying damping 

coefficient can be determined by:  

2ℎ𝑓 = {

𝑝−(�̈�+2ℎ𝑠�̇�+𝜔2𝑥)

�̇�
, wh n�̇� ≠ 0

�̇�−(𝑥+2ℎ𝑠�̈�+�̇�2𝑥)

�̈�
, wh n�̇� = 0

.   (33) 

As a special case, most nonlinear systems in engineering applications include either 

fast-varying stiffness or damping coefficient only. In this case, 2ℎ(𝑡) = 2ℎ𝑠(𝑡) + 2ℎ𝑓(𝑡) 

when the fast-varying damping coefficient is present, and 𝜔2(𝑡) = 𝜔𝑠
2(𝑡) + 𝜔𝑓

2(𝑡) when 

the fast-varying stiffness coefficient is present. The fast-varying components, 𝜔𝑓
2(𝑡) and 

2ℎ𝑓(𝑡), are obtained from Equations (30) and (33), respectively.  
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5.2.  PARAMETRIC IDENTIFICATION BASED ON FREE VIBRATION 

In order to demonstrate the effectiveness of the proposed M-AMD algorithm, three 

numerical examples based on free vibration are presented in this section. 

5.2.1. Duffing Oscillator. To illustrate how significant the fast-varying component 

of stiffness coefficient can be in dynamic characteristics, the free vibration of a classical 

Duffing oscillator with a unit mass was analyzed. The equation of motion was expressed 

into: �̈�(𝑡) + 2ℎ�̇�(𝑡) + 𝑥(𝑡) + α𝑥3(𝑡) = 0 . Let 2ℎ = 0.05s−1  and α = 0.02  −2s−2 . 

Under an initial displacement 𝑥(0) = 10 mm and an initial velocity �̇�(0) = 0 mm/s, the 

displacement response sampled at 5 Hz is presented in Figure 5.1(a). The theoretic time-

varying stiffness coefficient can be written as 𝜔2(𝑡) = (1 + 0.02𝑥2) as shown in Figure 

5.1(b).  

 

  

                (a) Displacement time history                                           (b) Theoretic stiffness coefficient  

Figure 5.1. Responses of a Duffing oscillator 

 

In this example, the damping coefficient is constant or the fast-varying damping 

component is equal to zero. To estimate the bisecting frequency 𝜔𝑥2(𝑡), the wavelet 

scalograms of 𝜔0
2(𝑡) and 𝑥(𝑡) are presented in Figure 5.2. The wavelet scalogram of 𝑥(𝑡) 

is in general agreement with the instantaneous frequency directly extracted by Hilbert 

transform but unable to identify the fast-varying details over time. The identified stiffness 
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using Equation (22), 𝜔0
2(𝑡), has slow- and fast-varying components. The frequency of the 

slow-varying component or constant stiffness in this example is not shown in Figure 5.2 

for clarity. The frequency of the fast-varying component is higher than the instantaneous 

frequency extracted from the Hilbert spectrum. In this case, the bisecting frequency 𝜔𝑥2(𝑡) 

can be determined along the centerline of the instantaneous frequency of 𝑥(𝑡) in order to 

identify 𝜔𝑠
2(𝑡) and 𝜔𝑓

2(𝑡). 

 

 

Figure 5.2. Wavelet scalogram of the fast-varying component of 𝜔0
2(𝑡) and 𝑥(𝑡) 

 

With the AMD of 𝜔0
2(t) using the bisecting frequency 𝜔𝑥2(𝑡), the slow-varying 

stiffness of the oscillator is presented in green dashed line as shown in Figure 5.3, 

representing the filtered 𝜔0
2(𝑡) . As clearly indicated in Figure 5.3, the slow-varying 

stiffness is quite different from its theoretic value. Therefore, the fast-varying stiffness 

component must be taken into account in the identification of stiffness. 

The stiffness coefficient determined from Equations (25) and (29) is presented in 

red dot-dashed line in Figure 5.4(a) and compared with the theoretic stiffness coefficient. 

The proposed solution has accurately incorporated the high frequency components of 

stiffness coefficient, resulting in an excellent agreement with the theoretic value. Note that 

the high fluctuation of the identified stiffness is closely related to the displacement 
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amplitude as shown in Figure 5.1(a). The smaller the response amplitude is, the less the 

stiffness fluctuates, since the oscillator behaves more like a linear system with a constant 

stiffness coefficient.  

 

 

Figure 5.3. Filtered 𝜔0
2(𝑡) for the slow-varying component of stiffness coefficient 

 

  

          (a) Theoretic vs. proposed method                          (b) Theoretic vs. instantaneous stiffness coefficient 

 

    (c) Theoretic vs. FREEVIB stiffness coefficient 

Figure 5.4. Time-varying stiffness coefficients 

 

To demonstrate the advantage of the proposed method over other methods, the 

instantaneous stiffness coefficient of displacement response, 𝑥(𝑡), was determined from its 

Hilbert spectrum and compared with the theoretic stiffness coefficient as shown in Figure 

5.4(b). It can be clearly seen from Figure 5.4(b) that the extracted peak instantaneous 
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stiffness was underestimated prior to 60 s and overestimated after 60 s. Due to numerical 

instability, the instantaneous stiffness diverged from the asymptotic stiffness of the 

corresponding linear system at low response amplitudes (< 2.5 mm) after 60 s. The stiffness 

of the oscillator was also identified using the FREEVIB method as presented in Figure 

5.4(c). Although improving over the Hilbert spectral analysis by taking part of the fast-

varying component into account, the FREEVIB method gave results that remained quite 

different from the theoretic stiffness. In comparison with the instantaneous stiffness and 

the FREEVIB solution, the proposed solution can accurately identify the stiffness of the 

Duffing system. 

To quantify the advantage of the proposed method over the Hilbert spectral analysis 

and the FREEVIB method, the overall error between the identified value (𝐼𝐷) and its 

corresponding theoretic value (𝑇𝐻) over a time duration [0, 𝑇] is defined by: 

 𝐸𝑟𝑟𝑜𝑟 =
√∫ (𝐼𝐷−𝑇𝐻)2𝑑𝑡

𝑇
0

√∫ (𝑇𝐻)2𝑑𝑡
𝑇
0

× 100%.     (34) 

In this example, the error in Equation (34) is calculated for the estimation of 

stiffness coefficient. Figures 5.5(a)-5.5(c) present and compare the errors of three methods 

as a function of α when the initial displacement is set to 10 mm, 7.5 mm, and 5.0 mm, 

respectively. Since the changes of the errors with 𝛼 in Figures 5.5(a)-5.5(c) are similar, 

Figure 5.5(a) is taken as an example for analysis. When 𝛼 = 0.02  −2s−2 as discussed 

in Figure 5.4, the overall error in estimation of the stiffness coefficient within the 120 s is 

20.0% with the Hilbert spectral analysis, 16.4% with the FREEVIB method, and 1.2% with 

the proposed M-AMD method. As 𝛼 increases, the proposed method continues to give 

significantly more accurate results than the other two methods and approaches to a 
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consistent accuracy at low displacement responses. When 𝛼 > 2.5  −2s−2, the errors of 

the Hilbert spectral analysis and the FREEVIB method change with 𝛼 and is thus less 

predictable in applications. 

 

 

(a) 10 mm initial displacement 

 

(b) 7.5 mm initial displacement 

 

(c) 5 mm initial displacement 

Figure 5.5. Overall errors as a function of system nonlinearity 

 

Figures 5.5(a)-5.5(c) clearly indicate a characteristic 𝛼 value where the error of the 

FREEVIB method suddenly increases for all three initial conditions. Correspondingly, the 

error of the proposed method increases at 𝛼 = 0.26, 0.44, and1.08  −2s−2  when 

𝑥(0) = 10, 7.5, and5.0  , respectively. The three sets of characteristic parameters 
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correspond to 𝜆 = 𝛼𝑥2(0)/1.0 = 26, 25, and27,  respectively. Note that the 1.0s−2 

represents the coefficient of 𝑥(𝑡) term in the equation of motion. Here, 𝜆 represents the 

ratio between the nonlinear and linear terms of the restoring force in the Duffing oscillator, 

which is referred to as the degree of nonlinearity. Therefore, the error of the proposed 

method is below 2% when the degree of nonlinear is less than approximately 25. 

5.2.2. Bouc-Wen Hysteretic Model. The Bouc-Wen model has been widely used 

in civil engineering to model the response and behavior of various structural components. 

The free vibration of a SDOF Bouc-Wen model can be determined from Equation (35): 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝛼𝑘0𝑢(𝑡) + (1 − 𝛼)𝑘0𝑧(𝑡) = 0   (35) 

where 𝑚 and 𝑐 denote the mass and damping coefficient of the model; 𝑢(𝑡), �̇�(𝑡), and 

�̈�(𝑡) are the displacement, velocity, and acceleration of the model; 𝑘0 represents the pre-

yield stiffness; 𝛼 = 𝑘𝑦/𝑘0 represents the ratio of post-yield to pre-yield stiffness; and 𝑧(𝑡) 

is a non-observable hysteretic displacement with an initial condition of  𝑧(0) = 0. The 

hysteretic displacement satisfies the following relation: 

�̇�(𝑡) = �̇�{𝐴 − [𝛽𝑠𝑖𝑔𝑛(�̇�𝑧) + 𝛾]|𝑧|𝑛}    (36) 

where 𝐴,𝛽, 𝛾, and 𝑛 are dimensionless parameters controlling the behavior of the model, 

and 𝑠𝑖𝑔𝑛(∙) is a sign function. These parameters are functionally redundant. To remove 

the redundancy, 𝐴 and 𝛽 + 𝛾 are best fixed to unity for lead-rubber bearings [86, 87]. 

To facilitate the identification process of model parameters with the proposed 

method, a derivative is taken of Equation (35), �̇�(𝑡) is replaced with 𝑥1(𝑡), and Equation 

(36) is introduced so that Equation (35) becomes: 

𝑚�̈�1(𝑡) + 𝑐�̇�1(𝑡) + 𝛼𝑘0𝑥1(𝑡) + (1 − 𝛼)𝑘0{𝐴 − [𝛽𝑠𝑖𝑔𝑛(𝑥1𝑧) + 𝛾]|𝑧|𝑛}𝑥1(𝑡) = 0.  (37) 

When 𝐴 = 1 [86], Equation (37) can be normalized by mass and further simplified 

into: 
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�̈�1(𝑡) + 2ℎ�̇�1(𝑡) + 𝜔2(𝑡)𝑥1(𝑡) = 0.    (38) 

Equation (38) is very similar to the Duffing oscillator studied above. The proposed 

method can now be applied into parametric identification of the new system in terms of 

𝑥1(𝑡) . Here, 2ℎ = 𝑐/𝑚  and 𝜔𝑠
2 = 𝑘0/𝑚  are constant while 𝜔2(𝑡) = 𝜔𝑠

2{1 − (1 −

𝛼)[𝛽𝑠𝑖𝑔𝑛(𝑥1𝑧) + 𝛾]|𝑧|𝑛} changes with time. In this case, the fast-varying component of 

stiffness comes from the time-varying term (1 − 𝛼)[𝛽𝑠𝑖𝑔𝑛(𝑥1𝑧) + 𝛾]|𝑧|𝑛. After 2ℎ0 and 

𝜔0
2 have been determined using Equation (22), AMD is utilized to filter out the fast-varying 

component of 𝜔0
2 so that the remaining slow-varying component is identified to be 𝜔𝑠

2. 

When 2ℎ = 2ℎ0 = 𝑐/𝑚 and 𝜔𝑠
2 are known, the restoring force can be obtained as 

𝐹(𝑡) = 𝑚[𝛼𝜔𝑠
2𝑢(𝑡) + (1 − 𝛼)𝜔𝑠

2𝑧(𝑡)] = 𝑚[−�̇�1(𝑡) − 2ℎ𝑥1(𝑡)]  from which (hysteresis 

loop) 𝛼 can be identified and calculated as the ratio of post-yield and pre-yield stiffness. 

Then, �̇�(𝑡) can be determined from 𝑥1(𝑡) and its derivatives by: 

�̇�(𝑡) =
�̈�1(𝑡)+2ℎ�̇�1(𝑡)+αω𝑠

2𝑥1(𝑡)

(1−𝛼)𝜔𝑠
2

.    (39) 

With the initial condition of 𝑧(0) = 0, 𝑧(𝑡) can be obtained from integration. With 

known 𝑧(𝑡) and �̇�(𝑡), the parameters 𝛽 and 𝑛 can be determined as follows. When 𝑥1𝑧 is 

positive, Equation (36) is simplified into �̇�(𝑡) = 𝑥1(1 − |𝑧|𝑛)  from which 𝑛  can be 

determined at each segment corresponding to 𝑠𝑖𝑔𝑛(𝑥1𝑧) = 1. The final n value can be 

obtained by averaging the identified values at all the segments. When 𝑥1𝑧 is negative, 

�̇�(𝑡) = 𝑥1[1 − (1 − 2𝛽)|𝑧|𝑛]  from which 𝛽  can be solved with all other known 

parameters in the same way as for the identification of 𝑛. 

To illustrate the above parameter identification process, an example Bouc-Wen 

model of lead-rubber bearing is considered with its theoretic parameters chosen as: 𝑚 =

7,000 kg, 𝑐 = 3.5 kN∙s/m, 𝑘0 = 210 kN/m, 𝛼 = 0.1, 𝛽 = 0.5, 𝛾 = 1 − 𝛽 = 0.5, 𝑛 = 2, 
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and a yielding displacement (𝑢𝑦) of 50 mm. The theoretic hysteresis is shown in Figure 5.6 

with the initial conditions of 𝑢(0) = −0.5 m and �̇�(0) = 2 m/s. The displacement time 

history 𝑢(𝑡) is considered to be given. Its first derivative 𝑥1(𝑡) and high-order derivatives 

are calculated numerically. 

 

 

Figure 5.6. Theoretic hysteresis loop of the Bouc-Wen system 

 

By applying the proposed method, the damping coefficient 2ℎ = 𝑐/𝑚 = 0.496 −

0.522s−1 with an average of 0.505 s−1 and the stiffness coefficient 𝜔𝑠
2 = 𝑘0/𝑚 = 29.8 −

30.1s−2 with an average of 30.0 s−2 were obtained as shown in Figure 5.7 after the fast-

varying component of 𝜔0
2 had been filtered out with AMD. Their corresponding errors 

were evaluated from Equation (34) to be 0.18% and 0.29%, respectively. It can be clearly 

seen from Figure 5.7 that the proposed method resulted in two accurate identifications over 

time, while the FREEVIB method led to erroneous results and was thus no longer 

considered in the following analysis, which is caused by the accumulated error from the 

previous step. At this stage, M-AMD is still able to continue the analysis, and the advantage 

has already been demonstrated over FREEVIB. 

Let 2ℎ = 0.50𝑠−1 . The hysteresis loop can be evaluated from 𝐹(𝑡) =

−𝑚[�̇�1(𝑡) + 0.50𝑥1(𝑡)] in which 𝑘0 and 𝑘𝑦 were identified to be 210 kN/m and 21 kN/m 

as illustrated from the red tangential lines in Figure 5.8. Therefore, 𝛼 = 𝑘𝑦/𝑘0 = 0.1, 
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which agrees well with its theoretic value. At this stage, the hysteretic behavior of the 

Bouc-Wen system is identified with good accuracy, and the following procedure is able to 

proceed with enough confidence. 

 

 

 

Figure 5.7. Identified 2ℎ and 𝜔𝑠
2 with the proposed and FREEVIB methods 

 

 

Figure 5.8. Identification of parameter 𝛼 
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Prior to the determination of last three parameters, Equation (39) was used to obtain 

�̇�(𝑡), which was further integrated over time to obtain 𝑧(𝑡) with an initial condition of 

𝑧(0) = 0. The calculated �̇�(𝑡) and 𝑧(𝑡) are plotted in Figure 5.9 as a function of time, 

which are in excellent agreement with their theoretic values. 

 

   

Figure 5.9. Calculated �̇�(𝑡) and 𝑧(𝑡) 

 

The parameter 𝑛 = 1.95 − 2.01 as shown in Figure 5.10(a) was calculated at each 

time instant when the product of 𝑥1𝑧 was positive. The average of all the n values over 

time was 𝑛 = 1.99. Similarly, 𝛽 = 0.48 − 0.52 with an average of 0.50 was obtained from 

the time when 𝑥1𝑧 was negative as shown in Figure 5.10(b). Finally, 𝛾 = 1 − 𝛽 = 0.5. 

 

  

(a) 𝑛 estimation     (b) 𝛽 estimation 

Figure 5.10. Identification of parameters 𝑛 and 𝛽 

 

5.2.3. Spherical Bearing. When a block slides along a spherical bearing surface, 

the equation of motion can be expressed into: 
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𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘1𝑥(𝑡) + 𝑘2𝑠𝑔𝑛[�̇�(𝑡)] = 0   (40) 

where stiffness 𝑘1 = 𝑚𝑔/𝑅 represents the ratio between the weight (𝑚𝑔) and the radius 

(𝑅) of bearing, 𝑘2 = 𝜇𝑚𝑔 is the friction force that is the product of the coefficient of 

friction (𝜇 ) and the weight, and 𝑔  is the gravitational acceleration. When �̇�(𝑡) ≠ 0 , 

Equation (40) can be rewritten as: 

�̈�(𝑡) + [
𝑐

𝑚
+

𝜇𝑔

|�̇�(𝑡)|
] �̇�(𝑡) +

𝑔

𝑅
𝑥(𝑡) = 0.   (41) 

In this case, there exists a fast-varying component |�̇�(𝑡)| that includes frequencies 

higher than those of the velocity due to the imposed operation of modulus. Therefore, 

Equation (21) alone does not lead to accurate (correct) identification of all the parameters 

of spherical bearing. The proposed method must be used to determine the parameters of 

the bearing with high accuracy. 

Consider a block system with spherical bearing: 𝑔 = 10 /s2 , 𝑅 = 0.5 m, 𝜇 =

0.01,  𝑐 = 15  kg/s, and 𝑚 = 100  kg. The system was subjected to initial conditions: 

�̇�(0) = 0.3 /s and 𝑥(0) = −0.2 m. Following the proposed method, the slow-varying 

stiffness coefficient is directly related to 𝑅 . The slow- and fast-varying damping 

coefficients are related to 𝑐/𝑚 and 𝜇, respectively. Figure 5.11(a) shows the slow-varying 

stiffness coefficient from which 𝑔/𝑅 = 19.96 − 20.08 s−2 with an average of 20.01 s−2 

was identified with high accuracy. The average 𝑅 value over the time duration was 𝑅 =

0.5 m. Similarly, 𝑐/𝑚 = 0.142 − 0.159s−1 with an average of 0.150 s−1 was identified 

as shown in Figure 5.11(b). The system parameters were also identified from the FREEVIB 

method as shown in Figure 5.10. The FREEVIB method introduced a substantially higher 

error than the proposed method, and therefore the proposed M-AMD is again proved to be 

advantageous. 
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(a) 𝑔/𝑅                                                                           (b) 𝑐/𝑚 

Figure 5.11. Identified slow-varying parameters 

 

Equation (33) was utilized to obtain the last unknown parameter 𝜇. As shown in 

Figure 5.12(a), the identified value of 𝑔𝜇 is 0.095-0.102  /s2 with an average of 0.099 

 /s2, which differs from its theoretic value (0.1  /s2) by 0.2%. The error of identified 

𝑔𝜇  was evaluated and presented in Figure 5.12(b) when �̇�(0) = 0.3and0.6 /s. The 

errors with both initial conditions are below 10% over a practical range of 𝜇. The errors 

are less than 1.2% when 𝜇 < 0.017. In this case, the FREEVIB method fails to identify 𝜇 

because it involves the fast-varying component of damping coefficient. The errors of𝑔/𝑅 

and 𝑐/𝑚 were also obtained for the proposed method. They are 1.2% and 2.3%. 

 

  

(a) Identified 𝑔𝜇 given in the example   (b) Error develop with different 𝜇 

Figure 5.12. Identified parameter of 𝑔𝜇 from the proposed method 

 

5.2.4. Robustness of the Proposed Method to Deal with Noise. With the 

introduction of multiple adaptive low-pass filters (AMDs), the proposed method inherently 
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contains a noise-reduction ability with noise components above the bisecting frequency 

filtered out clearly. Without any loss of generality, the effect of noises on the effectiveness 

and accuracy of the proposed method is demonstrated without and with filtering of the raw 

displacement data. 

Consider the Duffing oscillator with 2ℎ = 0.05s−1 and 𝛼 = 0.02(  −2s−2) at 

rest under an initial displacement of 𝑥0 = 10 mm.  The displacement response as presented 

in Figure 5.1(a) was contaminated with a Gaussian white noise with a root-mean-squared 

(RMS) displacement of 0.01 mm. Figure 5.13(a, b) compares the two stiffness coefficients 

obtained from the FREEVIB and the proposed method. It can be seen from Figure 5.13(a, 

b) that the accuracy of stiffness coefficients identified from both methods is reduced as the 

displacement decreases. However, the error associated with the proposed method is 

significantly smaller than that with the FREEVIB at all times. The improved accuracy in 

parameter identification with the proposed method is mainly due to the noise-reduction 

filtering ability in AMDs. Furthermore, the identified stiffness coefficient from the 

proposed method is actually very accurate within 45 s. If AMD is also employed to cleanse 

the raw displacement data prior to the application of the proposed method, the 

identification results expect to be more accurate due to less accumulative noise effects [2]. 

Equation (34) was used again to evaluate the errors of the FREEVIB method and the 

proposed method without the pre-filtering of AMD. As shown in Figure 5.13(c), the 

proposed method is still much more accurate than the FREEVIB method as the noise level 

increases although the low signal-to-noise ratio introduced a significant distortion to the 

identified results at low displacement amplitudes as demonstrated in Figure 5.13(b) in the 

case of RMS=0.01 mm. 



 

 

98 

  

          (a) FREEVIB method (RMS=0.01 mm)                        (b) The proposed method (RMS=0.01 mm) 

 

(c) Error development with RMS 

Figure 5.13. Effect of noise on the identified stiffness coefficient 

 

Figure 5.14 shows the identified 𝑐/𝑚 and 𝑘0/𝑚of the Bouc-Wen model when the 

Gaussian white noise is added into the displacement data. Due to the adaptive filtering 

ability of AMD, the noise had little effect on the identified parameters. For example, 𝑐/𝑚 

remains in the range of 0.44-0.55 s−1 averaged at 0.51 s−1. and 𝑘0/𝑚 is between 29.4 and 

31.6 s−2 with an average value of 30.5 s−2. The calculated errors of the two identified 

parameters are 4.8% and 6.1%, respectively. In fact, the solutions with the proposed 

method were stable and accurate in comparison with their theoretic values. However, the 

solutions with the FREEVIB identification were distorted as expected and became unstable 

over time as the displacement decreased. In general, the implementation of AMD has 

overcome such drawback to certain extent. 

However, the noise contaminated data makes the identification of 𝛼 uncertain and 

nearly impossible since no filter has been utilized up to this point and the noise 

contaminated displacement data are involved in calculation of the hysteresis loop as 
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illustrated in Figure 5.15(a). In this case, AMD is required to cleanse the response data, as 

shown in Figure 5.15(b), from which the cleansed hysteresis loop agrees well with the 

theoretic loop and 𝛼 = 0.091 is calculated with 9% in error. 

 

   

Figure 5.14. Identification of 𝑐/𝑚 and 𝑘0/𝑚 (RMS=0.005 m) 

 

  

(a) Identification without AMD   (b) Identification with AMD 

Figure 5.15. Hysteresis loop of Bouc-Wen model (RMS=0.005 m) 

 

The parameters 𝑔/𝑅 and 𝑐/𝑚 of the spherical bearing model can also be identified 

with the proposed method from noise contaminated data. As shown in Figure 5.16, 𝑔/𝑅 =

18.8 − 21.8s−2 with an average of 20.2 s−2 was obtained over the entire time duration. 

The𝑅 value was 0.46 − 0.53 m with an average over time of 0.495 m, which differs from 

its theoretic value by 7.9% according to Equation (34). Similarly, 𝑐/𝑚 was identified to be 

0.146-0.155 s−1 with an average value of 0.149 s−1, which differs from its theoretic value 

by 4.7% over the time duration. The difference is with 10%, which indicates that the 

identified results is in good agreement 
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(a) 𝑔/𝑅                                                                       (b) 𝑐/𝑚 

Figure 5.16. Identification of 𝑅 and 𝑐/𝑚 in the spherical bearing model 

 

However, the presence of noise significantly reduces the ability to identify 𝜇 in the 

spherical bearing model, as indicated in Figure 5.17. In this case, AMD can be utilized to 

filter out the noise before the proposed method is applied. With the introduction of the 

AMD, 𝑔𝜇 was identified to be 0.092-0.109 s2 with an overall error of 8.7% over the time 

duration. 

 

Figure 5.17. Comparison of identified 𝑔𝜇 with and without AMD (RMS=0.0001 m) 

 

5.3. PARAMETRIC IDENTIFICATION UNDER FORCED VIBRATION 

In this section, parametric identification of a numerical duffing oscillator model and 

1/4-scale building model is performed under forced vibration, in order to complete the M-

AMD algorithm.  

5.3.1. Duffing Oscillator. The forced vibration of a Duffing oscillator with a unit 

mass is presented to demonstrate the nonlinear system response with a fast-varying 

component of stiffness coefficient under a harmonic load. The equation of motion is 
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expressed into: �̈�(𝑡) + 2ℎ�̇�(𝑡) + 𝛼𝑥(𝑡) + 𝛽𝑥3(𝑡) = 𝑝(𝑡) , with 2ℎ = 1s−1 , 𝛼 = 𝜋2 

s−2and 𝛽 = 1000   −2s−2. From the initial displacement and velocity of 𝑥0 = 0mm and 

�̇�0 = 0  mm/s, the displacement response under an excitation of 3𝑐𝑜𝑠(𝜋𝑡)  mm/ s2  is 

sampled at 10 Hz as shown in Figure 5.18.  

 

 

Figure 5.18. Displacement responses of a Duffing oscillator 

 

The initial stiffness coefficient 𝜔0
2(t)  and the theoretic time-varying stiffness 

coefficient, 𝜔2(𝑡) = (𝜋2 + 1000𝑥2), are compared in Figure 5.19. Due to the distribution 

of the fast-varying component of 𝜔2(𝑡)  into 𝜔0
2(t)  and 2ℎ0 , 𝜔0

2(t)  is distorted and 

significantly different from the theoretic value.  

 

 

Figure 5.19. Comparison of 𝜔0
2(𝑡) and the theoretic stiffness coefficient 

 

After the AMD of 𝜔0
2(t) and 2ℎ0 have been performed, the slow-varying features 

of the oscillator are presented in Figure 5.20. The filtered 𝜔0
2(t) gives the slow-varying 
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stiffness coefficient, which totally differs from the theoretic value as presented in Figure 

5.19. The filtered 2ℎ0 is in excellent agreement with the theoretic value of 1.0 except at 

the beginning of time history due to the effect of transient vibration. This is true even 

though the initial damping coefficient is oscillating around the theoretic value substantially. 

Since the theoretic value of 2ℎ(𝑡) is constant, 2ℎ𝑠(𝑡) = 1s−1 is the actual value of 2ℎ and 

there is no fast-varying component of damping coefficient. 

 

 

Figure 5.20. Initial 𝜔0
2(t) and 2ℎ0(t) versus slow-varying 𝜔𝑠

2(𝑡) and 2ℎ𝑠(𝑡) stiffness and 

damping coefficients 

 

Since no fast-varying component of damping coefficient is present, Equation (30) 

was used to determine the fast-varying component of stiffness coefficient. The obtained 

fast-varying component and the slow-varying component were combined as shown in red 

dot-dashed line in Figure 5.21(a). It can be clearly observed from Figure 5.21(a) that the 

proposed solution has successfully incorporated the high frequency component and is in 

nearly perfect match with the theoretic value after 2 s with an error of 3%. To demonstrate 

the effectiveness of the proposed method over Hilbert spectral analysis, the instantaneous 

stiffness coefficient was also determined from the Hilbert spectrum of displacement 

response, 𝑥(𝑡) and compared with the theoretic stiffness coefficient as shown in Figure 

5.21(b). It can be clearly seen from Figure 5.21(b) that the extracted instantaneous stiffness 
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from the Hilbert spectral analysis is quite different from the theoretic value, which is 

generally true for nonlinear systems [17, 18]. 

 

 

(a) Proposed vs. theoretic solution 

 

(b) Instantaneous vs. theoretic solution 

 Figure 5.21. The proposed, instantaneous, and theoretic stiffness coefficients 

 

In damage detection, the alteration of a system in material and geometry is reflected 

in the change of system parameters. Such an alteration is relatively easy to identify when 

the system parameter such as 𝛼  or 2ℎ  changes slowly. However, the fast-varying 

component is usually difficult to observe. To further demonstrate the effectiveness of the 

proposed method in damage detection, 𝛽/𝛼 is reduced from 1000/𝜋2 to 600/𝜋2 and the 

identified stiffness coefficients are compared in Figure 5.22. It can be seen from Figure 

5.22(a) that the valleys in two cases are comparable when the smallest stiffness is achieved 

when the displacement of the oscillator is equal to zero. The difference in peak value as 

observed throughout the time duration indicates the change in 𝛽/𝛼 ratio or the occurrence 

of damage. These observations can be seen more clearly in Figure 5.22(b) as the steady-
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state response and the identified stiffness coefficient become stabilized over time. As such, 

the minor differences can be successfully identified with M-AMD. 

 

 

(a) Complete solution          (b) Steady-state solution  

Figure 5.22. Comparison of identified stiffness coefficients of the Duffing oscillator with 

different 𝛽 values 

 

5.3.2. ¼-scale Three-story Building Model under Earthquake Excitations. The 

structure used for this experimental study is a 1/4-scale, 3-story building model with one 

piezoelectric friction damper (PFD) installed in the 1st story. The building model is 1.22 m 

long, 0.61 m wide and 2.54 m tall, as shown in Figure 5.23. It is a moment-resisting steel 

frame structure in longitudinal (earthquake excitation) direction, and an X-braced structure 

in transverse direction. Each floor built with a grid of structural tees is considered to be 

rigid. Four accelerometers were attached on three floors and the shake table to measure the 

structural accelerations and the earthquake input. Three LVDTs were installed between the 

structure and a stand-alone rigid frame to measure the absolute displacements at each floor. 

The internal LVDT of the shake table was used to measure the shake table displacement. 

The clamping force of the friction damper was measured with four pancake load cells.  

The steel plates added on the 1st, 2nd, and 3rd (top) floor weigh 480, 446 and 432 kg, 

respectively. Before the installation of the damper, the 1st, 2nd and 3rd natural frequencies 

were identified with several swept-sine tests as 2.66, 9.46 and 18.70 Hz, respectively [88]. 
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Since the natural frequencies of the test structure are well spaced, the influence of non-

resonant modes on the resonant response is negligible, provided that the structure is lightly 

damped. Therefore, the modal damping ratios of the structure can be determined from the 

transfer functions with the half-power method [89]. They are 0.56%, 0.39% and 0.32% for 

the 1st, 2nd, and 3rd modes, respectively. The mass, damping, and stiffness matrices of the 

building model can thus be expressed into: 

𝑴 = [
1058 0 0

0 983 0
0 0 954

] kg,  𝑪 = [
238.1 −87.5 −12.7
−87.5 240.0 −82.9
−12.7 −82.9 159.9

] N-s/m,     

𝑲 = [
2.865 −2.344 0.440
−2.344 3.776 −1.774
0.440 −1.774 1.381

] × 106 N/m.        (42) 

 

  

(a) Actual test setup  (b) Schematic diagram 

Figure 5.23. Shake table test of the 3-story building model 

 

The friction damper used in this study was designed and fabricated by Garrett et al. 

[90]. The prototype and its schematic representation are shown in Figure 5.24. The damper 

has a dimension of 0.254 m × 0.152 m × 0.102 m. It includes four piezoelectric stack 

actuators to modulate its clamping force. The damper was characterized under harmonic 

loading and then installed between a bracing support fixed on the shake table and the 1st 
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floor of the 3-story frame structure, as shown in Figure 5.23. The frictional sliding plate 

within the damper was connected to the bottom side of the 1st floor with a rigid assembly 

to ensure proper transferring of the friction force from the damper to the test structure. 

 

           

   (a) Prototype with four piezoelectric actuators      (b) Schematic diagram 

Figure 5.24. Piezoelectric friction damper 

 

The semi-active control strategy developed to drive the piezoelectric friction 

damper combined the Coulomb friction, viscous, and Reid’s damper mechanisms [88, 91]. 

The goal of the semi-active control was to suppress the vibration of a structure when the 

structural deformation and its derivative exceeded a threshold value. The control strategy 

can be expressed into a mathematical relation among the clamping force, 𝑁(𝑡) , the 

structural deformation (story drift of a building), 𝑥(𝑡), and the velocity, �̇�(𝑡):  

𝑁(𝑡) = {
𝑁𝑝𝑟𝑒

𝑎|𝑥(𝑡)| + 𝑏|�̇�(𝑡)|


𝑎|𝑥(𝑡)| + 𝑏|�̇�(𝑡)| ≤ 𝑁𝑝𝑟𝑒

𝑎|𝑥(𝑡)| + 𝑏|�̇�(𝑡)| > 𝑁𝑝𝑟𝑒
,   (43) 

in which a and 𝑏 are two positive gain factors. The 1st part of Equation (43) represents the 

passive Coulomb damper, while the 2nd part is its active counterpart. The active control 

strategy is engaged only when the structural responses, 𝑥(𝑡) and�̇�(𝑡), are excessive. The 

preload of the friction damper is set to be 𝑁𝑝𝑟𝑒 =89 N per actuator, amounting to 356 N in 

four actuators. Since the fundamental frequency of the test structure is 2.66 Hz, the optimal 

gain ratio, a/b, is approximately estimated to be 1.69 1/s [92]. A value of b= 7.01 kN-s/m 

is used for all tests.  
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In order to evaluate the proposed control strategy, the N-S component of the 1995 

Kobe earthquake was used to excite the building model. Since the shake table was limited 

to a maximum stroke of 2.54 cm, the earthquake records were compressed in time scale 

to make their dominant frequencies approximately equal to the fundamental frequency of 

the structure tested so that sufficiently large responses of the structure can be generated. A 

time scale of 1/1.825 was applied for Kobe earthquake, and the time history was also 

modified in magnitude with 0.177 g. Shake table tests were then conducted for the 

uncontrolled and controlled structure with the semi-active control strategy and the 

prototype damper. Fourier spectra of the uncontrolled and controlled 1st floor accelerations 

of the building model under the same scaled earthquake excitation are presented in Figures 

5.25(a) and 5.25(b), respectively. For the uncontrolled model, three frequency components 

are well separated with clearly identifiable peaks. For the controlled model, the 

implementation of the semi-active damper widens the frequency band around each peak, 

indicating the lumped effect of nonlinear damping into presence of fast-varying 

components around each main frequency component. 

 

   

(a) Uncontrolled     (b) Controlled 

Figure 5.25. Fourier spectra of the 1st floor accelerations 
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The accelerations recorded from the installed accelerometers are integrated twice 

over time and compared in Figure 5.26 with the measured displacements captured by the 

displacement sensors. It can be seen from Figure 5.26 that the integrated and measured 

displacements are in good agreement at all three floors. The largest difference in top 

displacement is found to be less than 1%.. 

 

 

Figure 5.26. Comparison of integrated and measured displacement time histories 

 

The equations of motion of the 3-story building model with one piezoelectric 

friction damper can be formulated as follows: 

{

𝑚1�̈�1 + 𝑐11�̇�1 + 𝑐12�̇�2 + 𝑐13�̇�3 + 𝑘11𝑥1 + 𝑘12𝑥2 + 𝑘13𝑥3 = −𝑚1�̈�𝑔 − 𝜇𝑁𝑠𝑔𝑛(�̇�1)

𝑚2�̈�2 + 𝑐21�̇�1 + 𝑐22�̇�2 + 𝑐23�̇�3 + 𝑘21𝑥1 + 𝑘22𝑥2 + 𝑘23𝑥3 = −𝑚2�̈�𝑔

𝑚3�̈�3 + 𝑐31�̇�1 + 𝑐32�̇�2 + 𝑐33�̇�3 + 𝑘31𝑥1 + 𝑘32𝑥2 + 𝑘33𝑥3 = −𝑚3�̈�𝑔

,   (44) 

where 𝑠𝑔𝑛(∙) is the sign function and the damping and stiffness coefficients are referred to 

the damping and stiffness matrix. After the deployment of the friction damper in the 1st 

story, the ground motion, �̈�𝑔, can be directly obtained from the 2nd or 3rd floor’s responses, 

as demonstrated in Figure 5.27. The two ground motions obtained from the 2nd and 3rd 

equations in Equation (44) are compared very well in Figure 5.27. 

After the ground motion is determined, the first part of Equation (44) will be 

analyzed to identify the characteristic damping coefficients of the friction damper. The 

equation of motion can be rewritten as: 

𝑚1�̈�1 + [𝑐11 + 𝜇𝑁(𝑡)/|�̇�|]�̇�1 + 𝑘11𝑥1 = 𝑓(𝑡)   (45) 
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in which 𝑓(𝑡) = −(𝑐12�̇�2 + 𝑐13�̇�3 + 𝑘12𝑥2 + 𝑘13𝑥3 + 𝑚1�̈�𝑔) is known. Equation (45) 

represents a SDOF nonlinear oscillator under an external excitation 𝑓(𝑡). Due to stick and 

sliding phase exchanges, 𝜇𝑁(𝑡)/|�̇�| expects to include frequency contents higher than 

those of �̇�1. Parameters 𝑐11 and 𝑘11 as slow-varying components can first be obtained from 

Equations (44) and (45) following the proposed forced M-AMD method. They are 

presented in Figure 5.28 and compared with the values ( 𝑐11/𝑚1 =0.225 1/𝑠 , 𝑘11/

𝑚1=2707.9 1/𝑠2) as shown in Equation (42), which were identified without the friction 

damper. The average values of the identified damping and stiffness coefficients over time 

are 0.222 1/𝑠 and 2708.5 1/𝑠2, respectively. The identified results include 1.3% and 0.02% 

in error only, indicating high accuracy of the proposed method. 

 

 

Figure 5.27. Comparison of the ground accelerations derived from the 2nd and 3rd floor 

responses 

 

 

Figure 5.28. Identified slow-varying parameters of the 1st floor 
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After the two slow-varying components have been identified, Equations. (41) and 

(45) can be used to determine the fast-varying component, 2ℎ𝑓 = 𝜇𝑁(𝑡)/|�̇�|: 

2ℎ𝑓 =
𝜇𝑁(𝑡)

|�̇�|
=

𝑓(𝑡)−𝑚1�̈�1−𝑐11�̇�1−𝑘11𝑥1

�̇�
, �̇� > 1𝑚𝑚/𝑠.   (46) 

A threshold value of 1 mm/s for �̇�1 is set to remove the singularity and numerical 

instability associated with the sign function at zero velocity. Although the friction force 

can now be identified from Equation (46), the two gain factors during the active control 

process must be further investigated. To enable a direct comparison with the clamping 

force that remains positive over time, the absolute value of the friction force is determined 

from Equation (46). That is, 

|𝜇𝑁(𝑡)| = |𝑓(𝑡) − 𝑚1�̈�1 − 𝑐11�̇�1 − 𝑘11𝑥1|.   (47) 

The friction force |𝜇𝑁(𝑡)| calculated from Equation (47) is compared in Figure 

5.29(a) to the measured total clamping force. It can be observed from Figure 5.29(a) that 

the friction force is generally proportional to the measured clamping force with the stable 

low values taken outside the duration of earthquake excitations (<4 s and >15 s). Therefore, 

an average friction force of 𝜇𝑁𝑝𝑟𝑒 = 285 N can be obtained from the stable values, which 

is basically the same as its exact value. The data in Figure 5.29(a) are reproduced in Figure 

5.29(b) in terms of the coefficient of friction. The results in Figure 5.29(b) indicate that the 

coefficient of static friction (<4 s and >15 s) is approximately 0.8 as used in the PFD design. 

The coefficient of kinetic friction is less than 0.8 as expected. The larger-than-0.8 

coefficient spikes at few instants correspond to the transition between sliding and stick 

phases of the PFD. 

When the active control strategy is effective between 4 s and 15 s, the following 

equation holds: 
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𝜇𝑎|𝑥(𝑡)| + 𝜇𝑏|�̇�(𝑡)| = |𝜇𝑁(𝑡)|.    (48) 

Similar to the procedure of the M-AMD algorithm, the two unknown gain factors 

(𝜇𝑎, 𝜇𝑏) in Equation (48) can be determined from Equation (48) and its Hilbert transform 

as written as: 

𝜇𝑏 =
|𝜇𝑁(𝑡)|𝐻[|𝑥|]−𝐻[|𝜇𝑁(𝑡)|]|𝑥|

|�̇�|𝐻[|𝑥|]−𝐻[|�̇�|]|𝑥|
,     (49) 

𝜇𝑎 =
|𝜇𝑁(𝑡)|𝐻[|�̇�|]−𝐻[|𝜇𝑁(𝑡)|]|�̇�|

|𝑥|𝐻[|�̇�|]−𝐻[|𝑥|]|�̇�|
.     (50) 

 

 

(a) Comparison of the identified friction to measured clamping force 

 

(b) Identified friction coefficient 

Figure 5.29. The measured clamping force, identifiedfriction, and identified friction 

coefficient 

 

Figure 5.30 shows the identified results of 𝜇𝑎  and 𝜇𝑏  with a large variation 

between 4 s and 7.5 s when the building was subjected to strong excitations. After 7.5 s, 

the identified results vary slightly with their average values of 9.56 kN/m and 5.66 kN-s/m 
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and standard deviations of 0.196 kN/m and 0.326 kN-s/m, respectively. Considering a 

friction coefficient of 0.8 that was identified at the early stage of experiments [92], 𝑎 and 

𝑏 are 11.95 kN/m and 7.08 kN-s/m, respectively. In comparison with their design values 

of 11.85 kN/m and 7.01 kN-s/m, the errors for the identified 𝑎 and 𝑏 are 0.8% and 1%. 

The ratio of 𝑎 to 𝑏 is also calculated at various time instants as presented in Figure 

5.31. The average and standard deviation of 𝑎/𝑏 are 1.710 s-1 and 0.847 s-1, respectively. 

The average value of 𝑎/𝑏 has an error of 1% when compared with its theoretic value of 

1.693 s-1. 

 

 

Figure 5.30. Identification of gain factors during active control 

 

 

Figure 5.31. Identified 𝑎/𝑏 value over time 
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5.4. SUMMARY 

The instantaneous parameter identified from the dynamic response of a nonlinear 

system significantly differs in magnitude and trend from the corresponding parameter of 

the system. They are not exchangeable as mistakenly used in some literatures. In this 

section, multiple analytical mode decompositions (M-AMD) are proposed to identify the 

parameters of nonlinear oscillators and structures from both free and forced vibrations to 

address the issue. The time-varying damping (stiffness) coefficient of an oscillator is 

divided into slow- and fast-varying components by a bisecting frequency in reference to 

velocity (displacement). The slow-varying damping and stiffness components are 

estimated from the oscillator’s responses and their Hilbert transforms, and filtered with the 

adaptive low-pass filter AMD. Each fast-varying component is estimated from the 

oscillator’s responses and the determined slow-varying components, and corrected with 

AMD using an approximate bisecting frequency of the two fast-varying components.  

The computational efficiency and accuracy of the proposed M-AMD are first 

illustrated with three characteristic oscillators described by Duffing, Bouc-Wen, and 

spherical bearing models from free vibration. The M-AMD method is considerably more 

accurate and robust than the FREEVIB method in the identification of system parameters. 

The errors with the M-AMD method are less than 3% in all three representative nonlinear 

oscillators when the system responses are not contaminated by noises. In the case of 

Duffing oscillator, the M-AMD is more accurate than the FREEVIB method by at least one 

order of magnitude. The overall error of the proposed method is less than 1.2% unless the 

ratio between the nonlinear and linear terms of the restoring force exceeds approximately 

26. Also, the instantaneous stiffness determined from Hilbert spectral analysis differs from 
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the system stiffness by an amount that rapidly increases with the degree of system 

nonlinearity. In the case of spherical bearing, the proposed method resulted in less than 8.4% 

errors in the entire practical range of friction coefficient. More specifically, the error of the 

proposed method is less than 1.2% when the coefficient of friction is less than 0.017. Noises 

in system responses have little effect on the evaluation of system parameters when AMD 

is involved in the process of system identification. Otherwise, AMD must be applied to the 

system responses. In both cases, the effect of noises on the identified parameters of all three 

oscillators is less than approximately 9% when the RMS displacement of noises is less than 

0.05% of the peak displacement of oscillators. The proposed method is significantly more 

accurate than the FREEVIB method in terms of noise effect. 

The effectiveness of the M-AMD is also demonstrated with a Duffing oscillator 

subjected to harmonic loading and a ¼-scale, 3-story building model installed with a semi-

active PFD under earthquake excitations. The instantaneous parameters identified in the 

FORCEVIB from the dynamic responses of a nonlinear system significantly differ in 

magnitude and trend from their exact values. The identified results from Hilbert spectral 

analysis as widely used in literature are even worse in accuracy. Only the proposed M-

AMD method yields results with high accuracy.  In the case of Duffing oscillator, the 

overall error of the proposed method without end effects is less than 3%. The slow-varying 

damping coefficient can be successfully identified with high accuracy. Both the slow- and 

fast-varying components of stiffness coefficient have been accurately taken into account in 

the proposed M-AMD.  In the case of 3-story building model, the passive control force 

related to Coulomb friction can be accurately determined from the identified friction force 

after the building ceases to vibrate at the end of earthquake excitations. Under the 
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scaled/strong Kobe earthquake excitations, the active control force can be extracted from 

the measured building responses. Based on the active control force, the two gain factors 

can be further identified with less than 1% in error. 
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6. SEISMIC TEST OF 1/20 SCALE BRIDGE MODEL 

6.1. OPTIMIZED ANALYTICAL MODE DECOMPOSITION ALGORITHM 

AMD as a powerful mode decomposition method [2] is introduced briefly in this 

Section. An optimization algorithm to take into account the digitization/discretization 

effect of analog signals is then proposed to overcome the shortcomings of AMD. 

Figure 6.1 shows the essence and schematic diagram of the AMD. A general time 

signal, 𝑥(𝑡) , consists of 𝑛  significant frequency components ( 𝜔1, 𝜔2, … , 𝜔𝑛 ). The 

decomposed time series, corresponding to each frequency component, are denoted by 

𝑥𝑑𝑖(𝑡), 𝑖 = 1, 2, … , 𝑛. They are related to the original signal by 

𝑥(𝑡) = ∑ 𝑥𝑑𝑖(𝑡)
𝑛
𝑖=1       (51) 

Let 𝜔𝑏𝑖  be the bisecting frequency between 𝜔𝑖  and 𝜔𝑖+1 , 𝑖 = 1, 2, … , 𝑛 . The 

decomposed time series can be determined from 

𝑥𝑑1(𝑡) = 𝑠1(𝑡), 𝑥𝑑2(𝑡) = 𝑠2(𝑡) − 𝑠1(𝑡), …,     

𝑥𝑑𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑖−1(𝑡), 𝑥𝑑𝑛(𝑡) = 𝑥(𝑡) − 𝑠𝑛(𝑡)    (52) 

Here, a low-frequency time series is defined by the signal decomposition theorem 

[2]: 

𝑠𝑖(𝑡) = sin(𝜔𝑏𝑖𝑡) 𝐻[𝑥(𝑡)  os(𝜔𝑏𝑖𝑡)] −  os(𝜔𝑏𝑖𝑡)𝐻[𝑥(𝑡)sin(𝜔𝑏𝑖𝑡)] (53) 

where 𝐻[∙] denotes the Hilbert Transform. 

For time-variant signals, it may not be feasible to extract the frequency 

characteristics using Fourier transform, as the frequency of each signal component changes 

over time, and two or more frequency components might have a common frequency range 

in certain circumstances. Thus, instead of the fixed values of each bisecting frequency, they 

are changed into the functions of time that could accommodate the time-variant feature of 
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the signal components. The bisecting frequency functions are based on the newly proposed 

AWA, which has a superior time-frequency representation of the original signal. 

 

 

Figure 6.1. AMD algorithm 

 

In this case, the frequencies of each decomposed signal are denoted as 

𝜔1(𝑡), 𝜔2(𝑡),… , 𝜔𝑛(𝑡).  Each decomposition of the original signal could be achieved if 

the bisecting frequency, 𝜔𝑏𝑖(𝑡), satisfies 𝜔𝑖−1(𝑡) < 𝜔𝑏𝑖(𝑡) < 𝜔𝑖(𝑡), 𝑖 = 2, 3, … , 𝑛. Two 

groups of time series, 𝑠𝑖(𝑡) and 𝑥𝑑𝑖(𝑡),  are defined in the same way as time-invariant 

signals. Thus, the decomposed signals can be obtained in phase domain by: 

𝑠𝑖(𝑡) = 𝑠𝑖𝑛(𝜃𝑏𝑖)𝐻[𝑥(𝑓−1(𝜃𝑏𝑖)) 𝑐𝑜𝑠(𝜃𝑏𝑖)] − 𝑐𝑜𝑠(𝜃𝑏𝑖)𝐻[𝑥(𝑓−1(𝜃𝑏𝑖))𝑠𝑖𝑛(𝜃𝑏𝑖)].  (54) 

where 𝑡 = 𝑓−1(𝜃𝑏𝑖) and 𝜃𝑏𝑖(𝑡) = 𝑓(𝑡) = ∫ 𝜔𝑏𝑖(𝜏)𝑑𝜏
𝑡

0
 are the phase angle of the bisecting 

frequency 𝜔𝑏𝑖(𝜏). 

In frequency domain, Equation (53) with a general bisecting frequency 𝜔𝑏 

corresponds to the frequency response function, G(ω), of an AMD low-pass filter as 

defined by: 

𝐺(𝜔) =
1

2
𝑠𝑔𝑛(𝜔 + 𝜔𝑏) −

1

2
𝑠𝑔𝑛(𝜔 − 𝜔𝑏).      (55) 
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Once the signal is discretized with a sampling frequency of 𝜔𝑠, as encountered in 

engineering applications, AMD introduces some distortions on the original signal with a 

modified frequency response function 𝐺𝑚(𝜔): 

𝐺𝑚(𝜔) =
1

2
𝑠𝑔𝑛 [

𝜔𝑠

2
− (𝜔 + 𝜔𝑏)] 𝑠𝑔𝑛(𝜔 + 𝜔𝑏) −

1

2
𝑠𝑔𝑛 [

𝜔𝑠

2
− (𝜔 − 𝜔𝑏)] 𝑠𝑔𝑛(𝜔 − 𝜔𝑏).  (56) 

To minimize the signal distortions, a recursive AMD is proposed to optimize the 

following frequency response function: 

𝐺𝑟(𝜔) = {

1

2
𝐺𝑚(𝜔) +

1

2
𝐺𝑚

2(𝜔) 0 < 𝜔𝑏 <
1

4
𝜔𝑠

1 +
1

2
𝐺𝑚(𝜔) −

1

2
𝐺𝑚

2(𝜔)
1

4
𝜔𝑠 < 𝜔𝑏 <

1

2
𝜔𝑠

.   (57) 

By further derivations, Equation (57) can be simplified into: 

𝐺𝑟(𝜔) = {
1 𝜔 < 𝜔𝑏

0 𝜔 > 𝜔𝑏
 ,    (58) 

which represents a non-distorted low-pass filter for the digital/discretized signal.  

In time domain, Equation (57) can be implemented for time-invariant signals such 

as given in Equation (53) by: 

𝑠𝑖(𝑡) = {

1

2
𝐴𝑀𝐷[𝑥(𝑡)] +

1

2
𝐴𝑀𝐷[𝐴𝑀𝐷[𝑥(𝑡)]] 0 < 𝜔𝑏𝑖 <

1

4
𝜔𝑠

𝑥(𝑡) +
1

2
𝐴𝑀𝐷[𝑥(𝑡)] −

1

2
𝐴𝑀𝐷[𝐴𝑀𝐷[𝑥(𝑡)]]

1

4
𝜔𝑠 < 𝜔𝑏𝑖 <

1

2
𝜔𝑠

    (59) 

Similarly, Equation (57) can be applied to time-variant signals in phase domain, 

such as given in Equation (54): 

𝑠𝑖(𝑡) = {

1

2
𝐴𝑀𝐷[𝑥(𝜃)] +

1

2
𝐴𝑀𝐷[𝐴𝑀𝐷[𝑥(𝜃)]] 0 < 𝜔𝑏𝑖(t) <

1

4
𝜔𝑠(𝑡)

𝑥(𝜃) +
1

2
𝐴𝑀𝐷[𝑥(𝜃)] −

1

2
𝐴𝑀𝐷[𝐴𝑀𝐷[𝑥(𝜃)]]

1

4
𝜔𝑠(t) < 𝜔𝑏𝑖(t) <

1

2
𝜔𝑠(𝑡)

(60) 

 

6.2. NUMERICAL EXAMPLES 

After the introduction of the optimization approach of AMD, numerical examples 

are given in this section for the illustration of its effectiveness. 
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6.2.1. Sinusoidal Signal with Large Frequency Variation. The signal considered 

as an example is composed of two time-varying cosine functions with a sampling rate of 

10,000 Hz, as illustrated in Figure 6.2(a): 

𝑓1(𝑡) =  os[2𝜋2000𝑡 + 100 sin(2𝜋10𝑡)]   (61) 

𝑓2(t) =  os[2𝜋2500𝑡 + 100 sin(2𝜋10𝑡)]    (62) 

In the time-frequency plane, the signal with the projected bisecting frequency 

variation function (a dashed red curve) is shown in Figure 6.2(b).  

 

   

(a) Signal in time domain   (b) Time-frequency representation 

Figure 6.2. Sinusoidal signal 

 

AWT of the signal is presented in Figure 6.3(a), which is better than any CWT as 

represented by Figure 6.3(b). The bisecting frequency corresponding to the dashed red 

curve in Figure 6.2(b) is thus obtained with a clear separation of two frequency components 

from the AWT. 

 

   

(a) AWT    (b) CWT 

Figure 6.3. Wavelet transforms of sinusoidal signal 
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Since the sampling rate of the signal, 10,000 Hz, is less than four times the higher 

frequency (2500 Hz - 3500 Hz), the signal may not be decomposed accurately with one 

application of AMD. As shown in Figure 6.4, the decomposed lower frequency part 

matches either the theoretic lower frequency component in the middle portion in Figure 

6.4(a) or the theoretic higher frequency component at the beginning and ending portions in 

Figure 6.4(b). Multiple applications of AMD are thus performed using Equation (60) by 

fitting the frequency range into the suited condition. The recursive low-frequency 

component as shown in Figure 6.5 and its comparison with theoretic values indicates a 

successful decomposition of the signal. 

 

 

(a) 0 < 𝜔𝑏(𝑡) <
1

4
𝜔𝑠(𝑡)    (b) 

1

4
𝜔𝑠(𝑡) < 𝜔𝑏(𝑡) <

1

2
𝜔𝑠(𝑡) 

Figure 6.4. Theoretic and decomposed low-frequency component of the sinusoidal 

signal from one AMD application 

 

 

Figure 6.5. Comparison of the theoretic and decomposed low-frequency component 

of the sinusoidal signal from the recursive AMD applications 
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The index of accuracy (𝐼𝐴) is proposed here to quantify the difference between the 

decomposed and original signal components.  For the quantification of accuracy of 

component 𝑥𝑖(𝑡), 𝐼𝐴 is defined by 

𝐼𝐴𝑖 =
√∫ [𝑥𝑑𝑖(𝑡)−𝑥𝑖(𝑡)]

2𝑑𝑡
𝑇
0

√∫ [𝑥𝑖(𝑡)]
2𝑑𝑡

𝑇
0

     (63) 

where 𝑥𝑑𝑖(𝑡)  is the 𝑖𝑡ℎ  decomposed signal component, and 𝑥𝑖(𝑡)  is the exact 𝑖𝑡ℎ 

component from the original signal. For the analytical signal as expressed in Equations (61) 

and (62), the 𝐼𝐴s pf the two components equal 4.59%, indicating a satisfactory agreement 

between the decomposed and the original components of the signal. 

6.2.2. Chirp Function. A two-chirp signal with two increasing frequencies over 

time is considered as a second example as shown in Figure 6.6. The bisecting frequency is 

chosen as the red dashed line between the two changing frequencies extracted by the AWA, 

as shown in Figure 6.7. 

 

 

(a) Signal in time domain   (b) Time-frequency representation 

Figure 6.6. Theoretical representation of a two-chirp signal 

 

The sampling rate of the signal is set to 3,000 Hz, which does not satisfy either 

conditions in Equation (60) and thus cannot accurately decompose the signal into 
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components in a single AMD application, as indicated in Figure 6.8 from the comparison 

between the decomposed and theoretic low frequency components. However, the recursive 

AMD applications provide a good agreement between the decomposed and theoretical low 

frequency components as shown in Figure 6.9. Based on Equation (62), IA is calculated to 

be 8.4% for both components. 

 

 

Figure 6.7. AWA of the two-chirp signal 
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Figure 6.8. Theoretic and decomposed low-frequency component of the chirp 

signal by a single AMD application 

 

 

Figure 6.9. Comparison of the decomposed and theoretic low frequency chirp 
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6.2.3. Two Closely-spaced Duffing Systems. The third example is a signal that 

consists of two closely-spaced Duffing systems, both with an initial displacements of 100. 

The two systems are described by: 

�̈� + 0.05�̇� + 𝑥 + 0.01𝑥3 = 0     (64) 

�̈� + 0.05�̇� + 3𝑥 + 0.02𝑥3 = 0     (65) 

The signal is sampled at a rate of 4 Hz. The time signal and its time-frequency 

representation are presented in Figures 6.10(a) and 6.10(b), respectively. AWT can give a 

satisfactory time-frequency representation as shown in Figure 6.11. The bisecting 

frequency can thus be selected as a dashed red parabolic curve, as shown in Figure 6.10(b), 

between the two signal frequencies. 

 

   

                  (a) Signal in time domain               (b) Extracted instantaneous frequencies 

Figure 6.10 Signal and time-frequency representation of two Duffing systems 

 

 

Figure 6.11. AWT of the two Duffing systems 
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Similarly, a single application of AMD gives an inaccurate decomposition of a 

portion of the Duffing signal as shown in Figure 6.12(a, b) for the two conditions in 

Equation (60). However, multiple applications of the AMD as required in the recursive 

AMD in Equation (60) results in an accurate decomposition of the low frequency 

component, as compared in Figure 6.13 with the theoretic value. Except for minor 

differences due to end effect, the extracted signal matches the theoretic signal very well 

with an 𝐼𝐴 value of 6.5%. 
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Figure 6.12. Theoretic and decomposed low-frequency component of the 

Duffing signal by one application of AMD 

 

 

Figure 6.13. Comparison of the theoretic and decomposed low-frequency component 

of the Duffing signal by the recursive AMD applications 

 

6.3. SHAKE TABLE TEST OF CABLE-STAYED BRIDGE MODEL 

As the final validation, AWT and M-AMD are combined to identify the damage 
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6.3.1. Test Setup. A typical cable-stayed bridge in China is considered as a 

benchmark in this study. As sketched in Figure 6.14, the bridge consists of a main span 

(380 m) of steel box girder and four side spans (60 m and 70 m) of concrete box girder. 

Both the steel and concrete box girders are 35.5 m wide and 3.5 m high. As shown in Figure 

6.15, the main towers of 100.35 m high and piers are made of reinforced concrete. The 

towers are made of concrete materials (C50), which have 32.4 MPa in uniaxial compressive 

strength and 3.45× 104 MPa in the modulus of elasticity, respectively. For bridge piers, 

concrete (C40) is used with 26.8 MPa in compressive strength and 3.25× 104 MPa in the 

modulus of elasticity. The steel box girder is made of the special D-grade steel plate with 

a nominal yield strength of 345 MPa designed for bridges (Q345qD), while the concrete 

girder is C55 concrete with 35.5 MPa in strength and 3.55× 104 MPa in the modulus of 

elasticity. Hot-rolled ribbed bars with a nominal yield strength of 400MPa (HRB400) and 

the modulus of elasticity of  2.1 × 105 MPa are used as longitudinal reinforcement for all 

reinforced concrete members. 

 

 

Figure 6.14. Elevation view of the cable-stayed bridge (unit: cm) 

 

A 1/20-scale bridge model, as shown in Figure 6.16, was designed and built to 

replicate the cable-stayed bridge in Figure 6.14 [93]. It was tested on the world’s largest 

multifunctional four-table facility at Tongji University to investigate and understand its 
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nonlinear behavior under extreme earthquake excitations. The bridge model sits on four 

shake tables that apply the same seismic excitation simultaneously. 

 

 

Figure 6.15 Design detail of the bridge tower (unit: cm) 

 

 

Figure 6.16. Test setup of the bridge model (unit: m) 

 

The similitudes of the model bridge design are given in Table 6.1 for RC and steel 

members. In order to meet the similitudes for the RC members, 6 mm-diameter HRB335 
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was used as longitudinal reinforcement, and lead wires were used as stirrups. At the same 

time, micro-concrete was introduced to the bridge model for the towers and piers, with a 

concrete cover of 10 mm. The bridge girder was simplified into rectangular hollow beams 

formed with 10 mm-thick steel plates. The cross-section dimension of the beams is 700 

mm × 65 mm in the main span and 900 mm × 65 mm in the side span, which strictly follows 

the similitude of bending stiffness with neglected torsional effect.  

 

Table 6.1. Similitudes of the bridge model to the actual bridge 

Parameter 
Reinforced  

Concrete Member 
Steel Member 

Length 0.05 0.05 

Elastic of Modulus 0.3 1 

Acceleration 1 1 

Density 6 20 

Mass 0.00075 0.0025 

Stiffness 0.015 0.05 

Period 0.2236 0.2236 

Force 0.00075 0.0025 

Moment 0.0000375 0.000125 

Moment of Inertia 0.00000625 0.00000625 

Stress 0.3 1 

Strain 1 1 

Damping Ratio 1 1 

 

To determine concrete properties of the bridge model, three 71 mm × 71 mm × 71 

mm and three 100 mm × 100 mm × 300 mm concrete cubes made from the same concrete 

material were prepared and standard-cured for 28 days. The first three coupons were for 

the measurement of compressive strength, which averages at 14.9 MPa, while the second 

three give an averaged modulus of elasticity of 1.17 × 104  MPa. The details of each 

coupon are listed in Table 6.2. The model-to-bridge similitudes in terms of compressive 

strength and the modulus of elasticity of the micro-concrete are 0.298 and 0.339 

respectively, which are in general agreement with the theoretical value (0.3). Based on the 
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tests of three coupons from the HRB335 steel, as detailed in Table 6.3, the average 

measured yield strength is 260 MPa, and the averaged ultimate strength is 432 MPa.  

 

Table 6.2. Coupon test of concrete specimens  

Coupon 
Compressive  

Strength (MPa) 

Modulus of  

Elasticity (MPa) 

1 14.8 1.02 × 104 

2 15.1 1.45 × 104 

3 14.8 1.04 × 104 

Average 14.9 1.17 × 104 

 

Table 6.3. Coupon test of steel rebars 

Coupon 
Yield Stress 

(MPa) 

Ultimate  

Strength (MPa) 

1 253 404 

2 263 429 

3 265 462 

Average 260 432 

 

The overall dimensions of the bridge towers are given in Figure 6.17, and the cross-

sectional designs of the bridge towers at key locations are shown in Figure 6.18. The wall 

thickness of the hollow section from the actual bridge tower is between 800 mm and 1000 

mm, which is scaled to 40 to 50 mm in the bridge model according to the similitude 

requirements. Thus, the wall thickness of the hollow section in the bridge model was taken 

as 50 mm to ease the fabrication process of the tower. RC footings were designed for the 

bridge towers and piers, and used to mount the entire model on the shake tables with 

threaded bars through reserved holes. One size of cross section was used for all the piers 

with 14 longitudinal rebars shown in Figure 6.19. Steel wires with 10 mm in diameter were 

used for cables of the bridge model, and anchored to the towers and main girder.  
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Figure 6.17. Tower design of the bridge model (unit: cm) 

 

 

Figure 6.18. Reinforcement design of the bridge tower (unit: mm) 

 

  

Figure 6.19. Reinforcement design of the bridge piers (unit: mm) 

 

Due to the fact that inertia force is the major concern under earthquake excitations, 

the difference in material density between the actual bridge and the model must be taken 

A-A 
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B-B 

D-D 
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into consideration. To simulate the actual seismic behavior, masses were added to the 

bridge towers, piers and girder, as illustrated in Figure 6.20 in the case of the bridge towers. 

Each additional mass cube is 320 mm×330 mm×170 mm in size. 

The fabrication process of the bridge model is illustrated in Figure 6.21. It began 

with the formation of reinforcement cage as shown in Figure 6.21(a). The concrete 

formwork was then built for the towers as shown in Figure 6.21(b). Next, concrete was cast 

and cured as shown in Figure 6.21(c), and the cured tower and pier were moved to and 

mounted on the shake tables, as shown in Figure 6.21(d-e). Extra weights were placed at 

the desired locations of these members as depicted in Figure 6.21(f), and the steel girder 

was hoisted into place as shown in Figure 6.21(g). Finally, the stay cables were mounted 

as detailed in Figure 6.21(h) and adjusted to desired forces (Figure 6.22). 

 

 

Figure 6.20. Added weights to the bridge towers 
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         (a) Reinforcement cage of a bridge tower    (b) Establishment of concrete formwork  

                           

               (c) Bridge towers and piers after curing      (d) Tower placement on shake table 

                                                    

                      (e) Pier placement on shake table                 (f) Attachment of additional weights  

                 

                              (g) Placement of the bridge girder                  (h) Installation of stay cables. 

Figure 6.21. Photographs of construction process 
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Figure 6.22. Adjusted stay cable forces 

 

The bridge model was tested under the Chi-Chi earthquake wave with a peak 

ground acceleration (PGA) of 0.1𝑔 to 1.2𝑔 with an increment of 0.1𝑔. Between any two 

PGA levels, the same white noise excitation of 0.1𝑔 in peak acceleration was also applied 

to the bridge model for parameter identification. Displacement sensors and accelerometers 

were mounted along the bridge girder, towers and piers. Load cells were integrated into the 

anchors of stay cables, and strain gages were attached to the longitudinal reinforcement 

bars at the bottom portions of the towers and piers. In this study, only the accelerations at 

the key locations (TAY accelerometers) of the bridge towers, as shown in Figure 6.23, are 

analyzed. Here, TAY stands for the tower acceleration in Y (transverse) direction. In Figure 

6.23, a designation, R (L), is also used, representing the right (left) tower of the model. 

 

 

Figure 6.23. Sensor deployment of the bridge towers 
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6.3.2. Loading Protocol. In this study, the seismic excitation chosen is a modified 

wave of the Chi-Chi earthquake, which originally has a PGA of 0.138𝑔 and a strong motion 

duration of 40.9 s. The time of the modified wave is compressed based on a similitude of 

𝑆𝑡=0.2236, and the PGA of the wave is adjusted to 0.1𝑔 to facilitate the incremental testing 

process. The modified earthquake wave is presented in Figure 6.24 with a strong motion 

of approximately 8 s and a peak of 0.1𝑔. All the four shake tables were synchronized and 

subjected to the same excitations in the transverse direction, and no input in the longitudinal 

and vertical directions. 
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Figure 6.24. Earthquake wave 

 

The incremental testing process is detailed in Table 6.4. For example, the process 

starts with a white noise of 0.1𝑔 in PGA over 30 s in a frequency bandwidth of 1-30 Hz. 

The modified wave with a PGA of 0.1𝑔 is then applied. Next, the white noise test at 0.1𝑔 

PGA is repeated, and the modified wave is increased to 0.2𝑔 in PGA and applied to the 

bridge model. This process continues till a PGA of 1.2𝑔 has been achieved. Finally, the 

white noise test is repeated again.  
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Table 6.4. Testing process 

Input PGA (g) Input PGA (g) 

White Noise 1 0.1 Earthquake 0.7 

Earthquake 0.1 White Noise 8 0.1 

White Noise 2 0.1 Earthquake 0.8 

Earthquake 0.2 White Noise 9 0.1 

White Noise 3 0.1 Earthquake 0.9 

Earthquake 0.3 White Noise 10  0.1 

White Noise 4 0.1 Earthquake 1.0 

Earthquake 0.4 White Noise 11 0.1 

White Noise 5 0.1 Earthquake 1.1 

Earthquake 0.5 White Noise 12 0.1 

White Noise 6 0.1 Earthquake 1.2 

Earthquake 0.6 White Noise 13 0.1 

White Noise 7 0.1 -- -- 

 

6.3.3. Test Data Interpretation. The frequency spectra of the white noise (WN) 

induced accelerations at TAY-R1 are presented in Figure 6.25. The first two transverse 

modes are successfully identified under the white noise excitations. Prior to the 0.8𝑔 

earthquake input, the identified frequency (2.5 Hz) of the first mode changes little. At 0.9𝑔 

PGA, the fundamental frequency starts to drop, corresponding to the cover concrete 

spalling at the lower end of the towers, and the exposure of transverse and longitudinal 

reinforcements. For the second mode, the frequency drop happens much earlier at 

approximately 0.4𝑔 in PGA, corresponding to concrete cracks. When the cracks are fully 

developed after a PGA of 0.8𝑔, the frequency value of the second mode becomes stable. 

Although effective in identifying the change of the first two natural frequencies 

over time, white noise excitations are difficult to generate for large-scale civil 

infrastructures. Therefore, the dynamic responses of the bridge model under the earthquake 

excitations were analyzed to identify the system parameters or detect damage by means of 

AWT and AMD. 
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Figure 6.25. White noise induced accelerations at different input steps 

 

Figure 6.26 shows the acceleration time history at the top of the tower (TAY-R1) 

and its time-frequency representation under the 0.6𝑔  earthquake excitation. The peak 
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acceleration occurs at approximately 4.1 s. Between 1 s and 4.1 s, both the first and second 

modes of vibration are significant due to the strong earthquake motion, as shown in Figure 

6.24, and their frequencies are unchanged over time. At 4.1 s when the PGA occurs, the 

frequency of the first mode is reduced from 3 Hz to 2.5 Hz, indicating initial cracking at 

the base of the tower as observed during the test. After 4.1 s, the second mode of vibration 

becomes less significant likely due to the decreasing earthquake input energy at high 

frequencies. 

 

 

(a) Time history – signal in time domain   (b) Time-frequency representation by AWT 

Figure 6.26. TAY-R1 acceleration under the 0.6 𝑔 earthquake excitation 

 

Based on the AWT of the acceleration response, as depicted in Figure 6.26(b), a 

bisecting frequency can be determined and AMD is applied to ensure success of the 

response decomposition. As demonstrated in Figures 6.27 and 6.28, the first and second 

vibration modes of the tower under the earthquake excitation are separated successfully. It 

is worth to note that the AMD also filters out the low-amplitude noise that is present in the 

AWT in Figure 6.26(b)). That is, Figures 6.27(b) and 6.28(b) show much cleaner time-

frequency representations of the dynamic response for the approximate first and second 

modes of vibration. The M-AMD algorithm can thus be performed with better accuracy 

with the help of  AWT and the denoising from AMD. 
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 (a) Approximate modal acceleration         (b) CWT 

Figure 6.27. Decomposed acceleration for the first mode of vibration 

under the 0.6 𝑔 earthquake excitation 

 

  

 (a) Approximate modal acceleration         (b) CWT 

Figure 6.28. Decomposed acceleration for the second mode of vibration 

under the 0.6 𝑔 earthquake excitation 

 

Figure 6.29 shows the acceleration response at the top of tower (TAY-R1) under 

the 1.2 𝑔 earthquake input. In comparison with the response under the 0.6 𝑔 earthquake 

excitation, as shown in Figure 6.26(a), the peak acceleration response in Figure 6.29(a) is 

more than twice, occurring at approximately 2.7 s, and the frequencies of the first and 

second modes are significantly lower. As shown in Figure 6.29(b), the frequency of the 

first mode changes little over time, while the frequency of the second mode drops from 3 

Hz before 2.7 s to 2.7 Hz after approximately 4.1 s, which can also be observed from Figure 

6.25 from WN12 to WN13. The frequency drop corresponds to the cover concrete spalling 

around the mid-height and bottom of the tower and partial separation of tower columns and 

beams due to core concrete crush and rebar fracture at each end of the tower beams. 
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Furthermore, the second mode of vibration appears more significant than that of the first 

mode, in terms of signal amplitude and energy. 

 

 

  (a) Time history          (b) Time-frequency representation by AWT 

Figure 6.29. TAY-R1 acceleration under the 1.2 𝑔 earthquake excitation 

 

Based on Figure 6.29(a), a bisecting frequency of 2 Hz between the first and second 

modes of vibration is selected in the AMD analysis. The decomposed and filtered signals 

are presented in Figures 6.30 and 6.31 for the first and second modes of vibration, 

respectively. With little or no mix of the vibration modes, the AMD successfully separates 

the two modes of vibration. By comparing Figure 6.31(a) with Figure 6.30(a), it can be 

seen that the second mode of vibration is significantly stronger than that of the first mode. 

 

  

 (a) Approximate modal acceleration          (b) CWT 

Figure 6.30. Decomposed acceleration for the first mode of vibration 

under the 1.2 𝑔 earthquake excitation 
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      (a) Approximate modal acceleration response          (b) CWT 

Figure 6.31. Decomposed acceleration for the second mode of vibration 

under the 1.2 𝑔 earthquake excitation 

 

M-AMD is also used to identify dynamic properties of the bridge model by 

considering the first mode of vibration of the tower to be a SDOF system. Following the 

same procedure as used in Section 5, the identified natural frequency and damping ratio 

under the 0.6g and 1.2g earthquake excitations are respectively presented in Figures 6.32 

and 6.33.  

 

  

(a) 0.6 𝑔 earthquake input    (b) 1.2 𝑔 earthquake input 

Figure 6.32. M-AMD identified natural frequency of the first mode 

 

The general trends of the frequency variations under the 0.6g and 1.2g earthquake 

excitations are similar to those seen from the AWT in Figures 6.27(b) and 6.30(b), as the 

frequency change over time does not contain fast-varying components. The damping ratio 

increases over time as the structural damage, such as concrete spalling and rebar yielding, 

is accumulated. 
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(a) 0.6 𝑔 earthquake input    (b) 1.2 𝑔 earthquake input 

Figure 6.33. M-AMD identified damping ratio of the first mode 

 

6.4. SUMMARY 

In this section, the optimized AMD has been developed to solve the mode mix issue 

when the original AMD is applied to a sampled/discretized data series. Its effectiveness 

has been demonstrated with sinusoidal, chirp and Duffing signals. By comparing the 

decomposed and theoretical signals, the errors in all three analytical examples are well 

below 10%, indicating satisfactory robustness and accuracy in the decomposition of 

frequency components.  

Together with the AWT, the optimized AMD is applied for the damage detection 

and system identification of the 1/20-scale bridge model under earthquake excitations of 

various intensities. Although pre- and post-earthquake white noise excitations can be 

successfully used to identify the change in dynamic properties such as natural frequency 

and damping ration, the white noise test process is difficult, if not impossible, to execute 

in applications. Thus, this study is focused on the processing of earthquake responses. 

During each application, AWT is first applied to specific seismic responses of the bridge 

tower in order to identify each dominant mode of vibration. The time-varying or constant 

bisecting frequency can thus be determined from the time-frequency scalogram given by 

AWT. The optimized AMD is then performed to separate different modes of vibration. For 
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the first mode, M-AMD is implemented to further identify the changes of natural frequency 

and damping ratio more accurately. For the 1/20-scale bridge model, both the optimized 

AMD and M-AMD can detect damage from the reduction of natural frequencies of the first 

and second modes since the natural frequencies fluctuate slowly. 
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7. CONCLUSIONS 

In this dissertation, the state-of-the-art signal processing techniques have been 

reviewed with an emphasis on the representation and decomposition. These techniques 

include Fourier transform, short-time Fourier transform, wavelet transform, Hilbert-Huang 

transform, Hilbert vibration decomposition, and analytical mode decomposition (AMD). 

In addition, nondestructive evaluation methods such as acoustic emission and impact echo 

have also been reviewed in detail as they are applied to detect structural damage. 

Challenges and critical issues identified with the previous methods include non-changeable 

time-frequency resolution over time, inaccurate identification of system parameters, and 

mode mix due to low sampling rate. 

To address the above challenges and critical issues in structural health monitoring, 

three new algorithms have been proposed. First, the adaptive wavelet transform (AWT) is 

formulated with a fully automatic optimization strategy for the determination of a desirable 

time-frequency representation of signals and thus the extraction of engineering features. A 

flowchart of two optimization algorithms for time and frequency resolution updating is 

developed to identify center frequencies, scaling factors, and window lengths over time. 

Synchro-squeezing is then applied to the algorithm of AWT for more accurate 

representation. Second, the multiple analytical mode decomposition (M-AMD) is 

developed and applied for the system identification from both free and forced vibrations. 

It can correctly identify both the slow- and fast-varying damping and stiffness coefficients 

for nonlinear systems, which represents a significant advancement of the current methods 

in the literature. Third and last, the optimized AMD is developed to reduce or eliminate 

potential errors associated with the discretization of measured signals, depending upon the 
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sampling rate of date. The decomposed components no longer retain the mode mix issue 

after the optimization process. 

AWT can provide an effective and efficient time-frequency representation of any 

signal as testified by the analytical, acoustic emission and impact echo signals analyzed in 

this study. The fully automatic optimization algorithm implemented as part of the transform 

improves the ability of identifying time-varying frequency components in nonstationary 

and nonlinear responses that occur in mechanical and structural systems. Due to the nature 

of wavelet transform, it can also capture the transient components (e.g. delta functions). 

For example, different types of acoustic emission signals from the cable tension tests are 

identified successfully for potential damage localization and classification. Impact echo 

signals obtained from the delaminated concrete slab are analyzed with high accuracy to 

detect the spatial distribution of delamination defects. By implementing the synchro-

squeezing approach, AWT is taken to the next level of clearness and sharpness, where the 

dispersive curves from the conventional wavelet transform become thin lines. The 

improvement of synchro-squeezing AWT is also demonstrated from the analysis of the 

impact echo signals of the same concrete slab test with less number of false detections.  

M-AMD involves the multiple applications of AMD for denoising and signal 

decomposition. M-AMD takes into account the high-frequency component of an 

instantaneous parameter identified from the dynamic response of a nonlinear system. The 

high-frequency component is often ignored in the literature, thus leading to an erroneous 

statement that the instantaneous parameter is equal to its corresponding parameter of the 

system. In fact, the two parameters differ in magnitude and trend over time. M-AMD also 

incorporates the Hilbert transform to formulate simultaneous equations for the explicit 
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solution of dynamic parameters. By taking advantage of the Hilbert transform and AMD, 

the time-varying damping (stiffness) coefficient of an oscillator is divided into slow- and 

fast-varying components by a bisecting frequency in reference to velocity (displacement). 

Both components can be successfully decomposed, and the system parameters can thus be 

correctly reconstructed. 

For discrete time series as commonly encountered in engineering application, the 

original AMD method tends to distort the decomposed components of a certain signal due 

to the mode mix issue. To overcome this drawback, the optimized AMD is developed to 

ensure the robustness in use of AMD. The effectiveness of the optimization process is 

demonstrated by several analytical examples. The combined AWT and AMD are then 

applied to the recent shake table test data with significant damage of the cable-stayed bridge 

model, which represents the nonlinear behavior of a complex engineering system under 

extreme earthquake excitations. Damage can be effectively observed over time from the 

signals analyzed with the combined algorithm. 

The slow-varying damping and stiffness components are estimated from the 

oscillator’s responses and their Hilbert transforms, and filtered with the adaptive low-pass 

filter AMD. Each fast-varying component is estimated from the oscillator’s responses and 

the determined slow-varying components, and corrected with AMD using an approximate 

bisecting frequency of the two fast-varying components.  

While this study has demonstrated the effectiveness of the proposed methods in 

both signal representation and decomposition, there are still several aspects that need to be 

addressed in future research work for both the mathematical formulation and robustness in 

potential applications. They include: 
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(1) To further understand the characteristics of the proposed AWT, the signal 

reconstruction must be achieved by incorporating the inverse transform of AWT. The time-

varying wavelet parameters (center frequency, scaling factor, and window length) give the 

challenge on the inverse transform, which needs to be further investigated. 

(2) The application of M-AMD has been limited to SDOF nonlinear systems or 

MDOF systems with one nonlinear component only. In practical applications, however, 

nonlinear MDOF systems are of greater value. In addition, to effectively identify the 

system properties from incomplete measurements (e.g. nodal accelerations) is a topic of 

interest in the earthquake engineering community. 

(3) The integration and validation of AWT and M-AMD in practical applications 

remains in infant stage. Although the analyzed data from the shake table test of a 1/20-

scale bridge model proved effective in damage detection, the potential of the combined 

AWT and M-AMD has not yet been exploited to full extent, since the natural frequency 

and damping ration change slowly. Further investigation and application of the AWT and 

M-AMD expect to be fruitful.   
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