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ABSTRACT 

An observer is a dynamic system that estimates the state variables of another system 

using noisy measurements, either to estimate unmeasurable states, or to improve the 

accuracy of the state measurements. The Modified State Observer (MSO) is a technique 

that uses a standard observer structure modified to include a neural network to estimate 

system states as well as system uncertainty. It has been used in orbit uncertainty estimation 

and atmospheric reentry uncertainty estimation problems to correctly estimate unmodeled 

system dynamics. A form of the MSO has been used to control a nonlinear electrohydraulic 

system with parameter uncertainty using a simplified linear model. In this paper an 

extension of the MSO into discrete-time is developed using Lyapunov stability theory. 

Discrete-time systems are found in all digital hardware implementations, such as that found 

in a Martian rover, a quadcopter UAV, or digital flight control systems, and have the added 

benefit of reduced computation time compared to continuous systems. The derived 

adaptive update law guarantees stability of the error dynamics and boundedness of the 

neural network weights.  

To prove the validity of the discrete-time MSO (DMSO) simulation studies are 

performed using a two wheeled inverted pendulum (TWIP) robot, an unstable nonlinear 

system with unmatched uncertainties. Using a linear model with parameter uncertainties, 

the DMSO is shown to correctly estimate the state of the system as well as the system 

uncertainty, providing state estimates orders of magnitude more accurate, and in periods of 

time up to 10 times faster than the Discrete Kalman Filter. The DMSO is implemented on 

an actual TWIP robot to further validate the performance and demonstrate the applicability 

to discrete-time systems found in many aerospace applications. Additionally, a new form 

of neural network control is developed to compensate for the unmatched uncertainties that 

exist in the TWIP system using a state variable as a virtual control input. It is shown that 

in all cases the neural network based control assists with the controller effectiveness, 

resulting in the most effective controller, performing on average 53.1% better than LQR 

control alone.  
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1. INTRODUCTION 

1.1. TWO WHEELED INVERTED PENDULUM 

The inverted pendulum on a cart is a standard problem for controls engineers to 

study found in many texts on control and nonlinear systems[1, 2]. The system consists of 

a pendulum at the end of a pole attached to a cart where the pendulum is allowed to move 

freely. The cart must move to control the momentum of the pendulum to keep it 

stabilized vertically, think of it like trying to balance a broom on your hand. The system 

is nonlinear and inherently unstable, and must be controlled properly to keep the 

pendulum stable, hence it’s inclusion in many textbooks. It is a well-rounded problem 

encompassing several important areas of both nonlinear systems and controls 

engineering. The two wheeled inverted pendulum (TWIP) robot is a slight modification 

of this system where the four wheeled cart is reduced to two wheels and the pendulum 

becomes the body of the robot which must be controlled to stabilize the body vertically. 

There is little difference in the derivation of the equations of motion, but the two wheeled 

inverted pendulum has many applications where the four wheeled cart has few.  

Two wheeled inverted pendulums gained much attention in 2001 with the 

announcement of the Segway, a personal transportation vehicle capable of speeds up to 

12.5 mph. Two wheeled systems are capable of zero radius turning, and are able to get 

into many spaces that conventional carts are unable due to their much smaller footprint. 

There are lesser known TWIP robots marketed towards the medical community. The 

iBOT is a two wheeled balancing wheelchair that gives the user a higher sitting point to 

raise them to eye level. The iBOT has a smaller footprint than a traditional wheelchair, 

and allows the user to enter spaces normally restrictive to wheelchair users. The VGo is a 

virtual telepresence device that uses the TWIP design incorporating a camera, 

microphone, and computer screen balanced by two wheels that allows a user to interact 

with a remote environment. The VGo is marketed to several markets. In healthcare it is 

marketed as a patient monitoring aid, allowing healthcare staff to interact with patients 

when not physically in their location. The VGo is marketed towards the education market 

as well, allowing students with disabilities, or extended illnesses, the ability to still attend 

school in a physical way. The business market is also considered, the VGo provides an 



 

 

2 

easy method for remote training, and allows employees and executives to still stay 

involved and interact with the employees from home, or while away on business trips. 

Applications in industry are also possible. By placing various tooling on a movable cart a 

manufacturer may be able to reduce the number of required machines, or reduce the size 

of the assembly line. Several patents are available in relation to this idea, however the 

accuracy of moving tooling does not match that of a stationary machine, and is a current 

open topic of research [3]. 

A two wheeled inverted pendulum robot is used in this work for several reasons. 

First is the low cost, a robot can be made for only a few hundred dollars. The simplicity is 

a part as well. With a controller board, two DC motors, sensors, and associated 

electronics, the system is not overly complex. As a comparison to a quadcopter, lower 

cost components can be used as weight is not a huge factor, and the number of controls is 

greatly reduced. The failure mode of the controller is not catastrophic, as it can be for a 

quadcopter. If the controller on a quadcopter fails the system will crash, potentially 

damaging the system. In the case of the TWIP robot, it will simply fall over without 

harm. While the number of controls is reduced, the problem is still a difficult controls 

problem. Two wheeled inverted pendulum robots are underactuated, that is to say that 

they have less controls available than states to control, unstable nonlinear system. Two 

wheeled inverted pendulums are restricted by nonholonomic constraints and include 

unmatched uncertainties. This represents a difficult problem to obtain highly accurate 

control of the system, and is representative of a larger class of systems. 

 

 

1.2. CONTRIBUTION OF THIS WORK 

This paper proposes an extension of the Modified State Observer (MSO) into 

discrete time, called the Discrete Modified State Observer (DMSO). Lyapunov stability 

analysis is used to ensure boundedness of the neural network weights and state estimation 

error. Simulation studies are performed using a two wheeled inverted pendulum (TWIP) 

robot that show under the presence of system uncertainty, the DMSO is capable of highly 

accurate state estimation, as well as accurate estimation of the system uncertainty. The 
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DMSO is implemented in a physical system to control a TWIP robot to further show the 

applicability and success of the technique.  

A new neural network based method of control is proposed for a class of systems 

with unmatched uncertainties, of which the TWIP is an example. Systems with 

unmatched uncertainties create problems for standard techniques as they cannot 

accurately compensate for the uncertainties. By using the tilt angle state as a virtual 

control and using two separate neural networks to estimate the uncertainties in the 

system, stability of the system is guaranteed in the presence of unmodeled dynamics, 

parameter uncertainty, and actuator nonlinearities. Lyapunov stability analysis is used to 

prove stability and boundedness of the tracking errors and neural network estimation 

errors. Simulation studies are performed to show that the control design is an accurate 

method of control for this class of systems. 
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2. LITERATURE REVIEW 

2.1. TWO WHEELED INVERTED PENDULUM 

Research on two wheeled inverted pendulums began in the 90’s, researchers Ha 

and Yuta at the University of Tsukuba created the Yamabico Kurara and used a linear 

quadratic regulator control design for trajectory tracking control [4]. Shiroma et al. 

created a wheeled inverted pendulum and analyzed the stability in the presence of applied 

forces, using an observer to estimate the unknown force [5]. Ozaki et al. created a 

wheeled inverted pendulum system and implemented decoupling control by adding an 

additional state variable, thereby creating a square system and proposed algorithms to 

cope with the singularity problem caused by the feedback control [6]. Grasser et al. at the 

Industrial Electronics Laboratory at the Swiss Federal Institute of Technology created 

JOE, a mobile inverted pendulum. The researchers decoupled the dynamics of the robot 

and pole placement control design was used along with a filter to eliminate backlash 

effects of the DC motor [7]. Ooi at the University of Western Australia built a balancing 

robot to investigate the use of the Kalman filter for sensor fusion, implementing both a 

pole placement controller and a linear quadratic regulator controller [8]. Various forms of 

PID control design has been investigated by a number of different researchers [9-12]. 

Kim and Kwon developed a feedforward controller based on the State Dependent Riccati 

Equation (SDRE) [13]. 

The previous work was all done through linearization of the equations of motion, 

nonlinear control of two wheeled inverted pendulums is a current topic of research. Kim 

et al. investigated the exact dynamics of a two wheeled inverted pendulum robot, looking 

at the stability of the nonlinear system in a situation involving an inclined plane, and in 

turning motion [14]. Pathak et al. utilized the full nonlinear equations of motion based on 

the Euler-Lagrange method and implemented partial feedback linearization to control the 

velocity and position of a wheeled inverted pendulum system [15]. Askari et al. 

implemented a version of model predictive control and studied the performance under the 

presence of input disturbances [16]. Shibayama et al. implemented an observer-based 

robust controller to counteract unknown disturbances, allowing the use of a simplified 

system model [17]. Ha and Lee implemented sliding-mode control, improving the control 
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of the inverted pendulum over linear controllers when far from equilibrium [18]. Tsai and 

Ju implemented a backstepping sliding-mode for trajectory tracking and stabilization by 

first decoupling the kinematics and dynamics [19]. Do and Seet used partial feedback 

linearization combined with p-times differentiable saturation and backstepping 

techniques. The proposed controller has a large domain of attraction and allows 

simplicity of tuning control gains and implementation [20]. Rudra and Darai developed a 

robust adaptive backstepping technique that estimates system parameters and allows for 

stable tracking control. The controller removes the need for any prior knowledge of the 

system parameters [21]. Durdevic and Yang proposed a hybrid switching controller to 

overcome the backlash nonlinearity of DC motors and showed the effectiveness in 

experimental tests [22]. Yue, Wei, and Li developed an adaptive sliding-mode technique 

based on zero-dynamics theory, allowing for parameter uncertainties to be estimated, and 

robust control in the presence of nonlinearities [23]. 

Neural networks have been used by a number of researchers to control the two 

wheeled inverted pendulum system. Noh, Lee and Jung used radial basis function neural 

networks to control the unstable system, using the back-propagation learning algorithm to 

derive an online training law for the neural network [24, 25]. Tsai, Juang, and Lin 

proposed an adaptive control technique using radial basis function neural networks, the 

researchers used a backstepping technique and Lyapunov stability analysis to synthesize 

stable adaptive control laws [26]. Li and Yang formulated an output feedback adaptive 

neural network controller with a linear dynamic compensator and compared the results to 

a model based controller, showing that it outperforms the model based control when 

parametric uncertainties are included [27]. Li, Yang, and Fan wrote a book on the topic of 

advanced nonlinear control of wheeled inverted pendulum systems, dedicating an entire 

chapter to the neural network control of the systems using radial basis function neural 

networks [28]. Optimal control is so far a small area of research for these systems, 

however Gomez developed an optimal control strategy based on Control Adjointing Cell 

Mapping Reinforcement Learning (CACM-RL) and used a robot built from LEGO NXT 

components to test the capabilities of the technique [29].  
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2.2. MODIFIED STATE OBSERVER 

Artificial neural networks have recently emerged as a highly capable area of 

adaptive control, gathering interest from researches across the globe. Modeled after the 

way neurons work in biological systems, they have proven to be a highly capable method 

of function approximation [30]. This function approximation capability has been 

manipulated into many unique methods of adaptive control by using neural networks to 

estimate nonlinear system uncertainty [31, 32]. Rajagopal et al. developed the Modified 

State Observer (MSO) concept as a new method for estimating nonlinear uncertainties by 

using a standard Leunberger observer structure in combination with a neural network 

[33]. The use of the MSO allows the designer to utilize large adaptive control gains 

without encountering the high frequency oscillations in the control signal that could 

excite unmodeled system dynamics. 

Where originally applied to control, the MSO has been used simply as a method 

of state estimation as well. Harl et al. applied the MSO to an orbit uncertainty estimation 

problem, and also extended the method to include a reduced order formulation, for when 

the full state cannot be measured [34]. Darling et al. used the MSO and the reduced order 

MSO in an atmospheric reentry uncertainty estimation problem to estimate the uncertain 

aerodynamic acceleration of a piece of falling debris entering the atmosphere [35]. 

Darling et al. then developed the Sigma Point MSO extension, which uses sigma point 

filtering, similar in idea to the Unscented Kalman Filter, and applied it to the same 

atmospheric reentry problem [36]. This extension allows the use of nonlinear 

measurements, and incorporates a variable Kalman observer gain. Yang et al. formulated 

a model reference adaptive control design based on the MSO to control a nonlinear 

electrohydraulic system with parameter uncertainty using a simplified linear model [31]. 

Pappu et al. formulated an adaptive control law design based on the MSO and applied it 

to the Black Kite micro air vehicle [37].  

All of this previous work on the MSO has been done in continuous time. In 

practice, implementation on digital systems requires extensive computations to integrate 

the dynamics over time. Discrete time implementations have the advantage of reduced 

computation time, in addition to being designed specifically for digital systems. Discrete 

time neural networks have also been a topic of study in adaptive control [32]. To a much 
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lesser extent they been used specifically as an observer. Salgado and Chairez [38] used 

recurrent neural networks and a method of offline training based on a least mean square 

method to create a discrete time neural observer. Alanis et al. [39] proposed a reduced 

order discrete time neural observer with a method of offline training using the Extended 

Kalman Filter (EKF) with high order recurrent neural networks. What these works lack is 

an online training law with guaranteed boundedness. Lewis et al. [40] developed a multi-

layer discrete-time neural network observer that utilized online training. This work differs 

in the weight update law, the structure of the observer, and also does not suffer from 

having a large number of tunable parameters. Reducing the number of necessary neural 

networks allows for a simpler observer design and reduced time in tuning the system for 

the desired performance. 
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3. DISCETE TIME MODIFIED STATE OBSERVER 

The Discrete Time Modified State Observer (DMSO) is an extension of the 

Modified State Observer as first described by Rajagopal et al. [33]. This section outlines 

the problem statement, the discrete time observer, and the Lyapunov proof of stability. 

 

 

3.1. PROBLEM STATEMENT 

Assume the dynamics of the system are given by 

 

 1
( )

k k k MSO k
F G B


  x x u f x  (1) 

 

where ( )f x  is an unknown nonlinear uncertainty vector of length p, where p is the 

number of states with uncertainty and k
x  is the state vector at time k, a column vector of 

length n, where n is the number of states of the system. F is the discretized system 

dynamics matrix, or state transition matrix, of dimension n×n. k
u  is the system control 

vector of length m, where m is the number of control inputs, and G is the control input 

matrix, of dimension n×m. M SO
B  is the uncertainty identification matrix of dimension 

n×p. This matrix contains only zeros and ones, with the ones placed appropriately to 

identify the uncertain states. Measurements are available of the form  

 

 k k
y x  (2) 

 

The discrete time observer for the system in Eqs. (1) and (2) is chosen as a 

modified Luenberger observer given by 

 

 
1

ˆˆ ) ( )ˆ ˆ(
k k k MSO k MSO k k

KF G B


   x x u f x y x   (3) 
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where ˆ
k

x  is the estimate of the system state, K is a user-selected constant gain matrix of 

dimension n×n, and ˆ ( )
k

f x  is the estimate of the nonlinear system uncertainty ( )
k

f x , 

calculated using the single layer online neural network 

 

 ˆ ˆ( ) ( )
T

k k k
W f x x   (4) 

 

ˆ
k

W  is the estimated neural network weight matrix of dimension l×p at timestep k 

and ( )
k

 x  is a basis vector of length l, where l is the number of basis functions in the 

basis vector, and the number of weights in the neural network weight matrix. The 

universal function approximation property of neural networks states that any smooth 

function ( )
k

f x  can be approximated to an accuracy of  using a two layer neural network 

[32]. Sadegh [30] extended this for a single layer neural network, with the added 

requirement that ( )
k

 x  is selected as a basis, this can be expressed as the functional link 

neural network 

 

 ) ( )(
T

k k k
Wf  x x  (5) 

 

where W is the set of ideal weights and  is a bounded positive constant that satisfies the 

condition k n
 .  

A weight update law is chosen to estimate the ideal weights as 

 

 
1 1

ˆ ˆ ( )
T

k k k k MSO
W W e B

 
   x   (6) 

  

where   is the neural network adaptation rate and 1k
e

  is the state estimation error at 

timestep k+1.  
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3.2. LYAPUNOV STABILITY PROOF 

In this section a Lyapunov stability proof is used to show boundedness and 

stability of the state estimate and the neural network weights. 

Define the estimation error as  

 

 ˆ
k k k
 e x x  (7) 

 

The estimation error dynamics are given by 

 

 1 1 1
ˆ

k k k  
 e x x  (8) 

 

Including the system dynamics from Eq. (3), Eq. (8) becomes 

 

 
1

ˆˆ ˆ( ) ( ( )) ( )
k k k MSO k k k k MSO k k

F G B F KG B

     e x u f x x u f x y x  (9) 

 

Rearranging, including k k
y x , and the definition of ( )

k
f x , Eq. (9) can be given by  

 

 
1

ˆˆ ˆ( ( ) ( )) ( )( )
T T

k k k MSO k k MSO k k k k
F K W WB  


     e x x y x x x   (10) 

 

Which can be expressed as  

 

 1
( )

T

k k MSO k k MSO k
W BA B 


 e e x  (11) 

 

where M SO
A F K  . If MSO

K  is chosen to stabilize A, along with the boundedness of the 

neural network weight estimation error, ˆ
k k

W W W  , and the boundedness of the error 

of the neural network approximation, n , the error dynamics are stable and bounded. 

This will be confirmed using Lyapunov stability analysis. 

Consider the neural network weight estimation error dynamics 
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1 1

ˆ
k k

W W W
 
    (12) 

 

Including the weight update law from Eq. (6) and the error dynamics from Eq. 

(11), Eq. (12) becomes  

 

     1
( ) ( ) ( ) ( )

T T T T T T

k k k k MSO k k k MSO MSO k k MSO MSO
A B B B BW W BW    


    x e x x x   (13) 

 

Use the fact that BMSO is a semi orthogonal matrix that can be expressed as 

T

MSO MSO
B B I  [41], and rearrange to simplify Eq. (13).  

 

 
1

( ( ( )() ) )
T T T T

k k k k k k MSO k
W WI A B  


      x x x e   (14) 

 

Now consider the Lyapunov function candidate: 

 

 
1

( )
T T

k k k k k
V T W Wr


 e e   (15) 

 

The first difference is given by  

 

 
1 1 1 1

1 1
( ) ( )

T T T T

k k k k k k k k
W WV T Tr Wr W

 
   

    e e e e   (16) 

 

Including the error dynamics in Eq. (11) and the weight update from Eq. (14), Eq. (16) 

becomes 
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 
 

( )( (

1
) ) )

)

) ( ) )

( ( ( )(

( ( ( )() )

1
( )

T T T T

k MSO k k MSO k k MSO k k MSO k k k

T
T T T T

k k k k k MSO k

T T T T

k k k k k MSO k

T

k k

V A B A B

Tr I A B

I A B

Tr

W B W B

W

W

W W

 

  


  



  

     

  

   

 

 

 





e x e x e e

x x x e

x x x e
  (17) 

By expanding a series of squared and cross product terms are obtained 

  

    

           

           

    

 
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1
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W W B B
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A B A B

Tr I I

Tr A B A B

W W

 

 

   


 




 

   

  

        






e e e e x x

e x e x

x x x x

x e x e 

    

)

2
) )( ( )

1
( )

( )(

T

SO k

T
T T T T

k k k k k MSO k

T

k k

Tr I A B

Tr

W

W W

  




 



    



x x x e

  (18) 

 

Expand further to obtain: 
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(
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2
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( ( ( )(
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T
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k k k k k MSO

T
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T
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Tr A B

Tr I A B

Tr I

T

W

W

Wr W

 


 


  


  






   

 





  





 

x x

x e x

x x x e

x x x

  

(19)

 

 

By using Young’s inequality [42], 2
T T T

a b a a b b  , on the cross product terms the 

following expression is obtained. 
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  

 

      
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











e e e e

x x
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  (20) 
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Using the solution to the discrete Lyapunov equation 
T

Q A A I   , the 

definition of the Frobenius norm [32], 
2

( )
T

Tr x x x , and applying norms to the rest of 

the terms Eq. (20) becomes 

 

                            

22 2 2

2
2 2

2
22

( ) 2 3 ) 3

3
) ) )

(

1

3
( ( ( )(

3
( )( )

min k k MSO k k MSO k
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k k k k k MSO

T

k k k

W

W

V Q A B B

I A B

W

 

  
 


 





    

  

 


e e x

x x x e

x

  (21) 

 

where ( )
min

Q  is the minimum eigenvalue of Q. Using the Triangle inequality [43], 

x y x y   , and the property of the Frobenius norm, AB A B  to simplify. 

  

                 
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 
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






    
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


e e x
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  (22) 

 

This can be further simplified by using 
2

MSO
B I , )(

k max
 x , k n

 , and 

( )
max

A A  where ( )
max

A  is the maximum eigenvalue of A 
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e e
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  (23) 

 

Rearrange to obtain the following. 
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2
22 2 2

2 2
2

2 4 2 2 2

( ) 2 ( ) 3 ( )

2
6 3 3 3 3

min max max max k

max max max k max n

V Q A A

W

   


   
   




  

 
    
 

   
        
   

e

  (24) 

 

With some bound on the estimation error, 0V   as long as the following two 

conditions are met. 

 

 

2

2 2 2
( ) 2 ( ) 3 ( ) 0

min max max max
Q A A   




      (25) 

 

and 

 

 

2

2 4 22
6 3 3 0

max max max
  

  






    (26) 

 

Choosing 
2

1

3
max




  , 0V  as long as  

 
2

1

max


    (27) 

 

and 

 

 
2 2 24

( ) 2 ( ) 9 ( )
min max max max

Q A A       (28) 

 

The first condition is easily met, the second is a little more troublesome, however, 

the eigenvalues of both A and Q are user-selectable, and so this condition is not 

impossible to meet.  This provides a bound on the estimation error as 
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 4

2 24

2 2

2

9 3

( ) 2 ( ) 9 ( )

max n

k

min max max max
Q A A



   









e   (29) 

  

With these conditions met it is shown that 0V   in a compact set. According to a 

standard Lyapunov extension theorem [32], this demonstrates that the estimation error is 

bounded for all 0k  . The neural network weights remain to be shown to be bounded. 

The following definitions will be used to prove stability and boundedness of the 

neural network weights. Consider the system  

 

 1
( ) ( )

k k k
F k x G ux k


   (30) 

 

Lemma 1: Define 1 0
)( ,k k  as the state-transition matrix corresponding to ( )F k  

for the system in Eq. (30). If 1 0 1 0
, ) 1 , 0( ,k k k k    , the system is stable. For the proof 

see Sadegh [30]. 

Lemma 2: If ( )( ) ) (
T

k k
F k I    x x where 0 2    and ( )

k
 x  is a vector of 

basis functions, then 1 0
( , ) 1kk   is guaranteed if there is an 0L   such that 

1

0

1

( ) ( ) 0

k L

k k

T

k k
 

 



 x x  for all k, then Lemma 1 guarantees stability of the system. For the 

proof see Sadegh [30]. Lemma 2 can be guaranteed with the Persistency Exciting (PE) 

condition [32, 40]. 

Definition 1: An input sequence ( )x k  is said to be persistently exciting if there are 

0   and an integer 1
1k   such that 
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 x x   (31) 

 

where ( )
min

P  represents the smallest eigenvalue of P. 



 

 

17 

Now, consider the neural network weight estimation error dynamics 

 

 
1

( )) )( )( (
T T T T

k k k k k k MSO
W WI A B  


      x x x e   (32) 

 

when the Persistency of Excitation condition is met considering that both the estimation 

error and the neural network approximation error are bounded, the neural network weight 

estimation error, k
W , and equivalently the neural network weight estimate, ˆ

k
W , are shown 

to be stable and bounded [32, 44]. A bound on the neural network weight estimation error 

can also be found using Eq. (24) as 
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4. TWO WHEELED INVERTED PENDULUM IMPLEMENTATION 

This section outlines the two wheeled inverted pendulum robot that was created to 

test the DMSO in a real system. Parameter uncertainty exists in a real system, as well as 

sensor noise and unmodeled nonlinearities, so the Modified State Observer is a good 

choice for state estimation. Limitations in hardware limit the number of available 

computations, which makes the continuous-time MSO a poor choice due to the 

integration necessary for the calculation of the system states and weights. The discrete-

time implementation is perfect for digital systems. 

 

 

4.1. PHYSICAL DESIGN 

Two wheeled inverted pendulum robots have two key aspects, independent 

motors control two wheels giving the robot a zero turning radius and high 

maneuverability, and it is designed in such a way that the center of gravity can be held 

above the wheels using proper control. The robot built for this implementation is shown 

in Figure 4.1. Two plastic mounting plates are held apart with steel threaded rod. The 

motors are mounted on the bottom of the bottom plate, with the majority of the 

electronics on the top of the bottom plate. To raise the center of gravity, the battery, a 

high discharge 11.1V 20C Lithium Polymer battery, is mounted on the top plate. Using 

steel threaded rods allows for easy adjustment of the center of gravity. Stiffening rods 

were added to the bottom mounting plate. The motors are heavy in comparison to the 

plastic plate’s stiffness which resulted in undesirable bending of the mounting plate 

before the stiffening rods were added. 

The mounting of the motors places the wheel axis 17.5mm below the bottom 

mounting plate. The wheels are plastic Pololu 90mm diameter wheels with silicone 

traction tires and steel washers attached for added weight to give the wheels a measured 

mass of .117kg. The two mounting plates are held 22cm apart, and the center of gravity is 

measured as 7.5cm above the wheel axis. The total mass of the robot is measured as 

1.657kg. The moment of inertia of the wheels are calculated by assuming the wheels are 

solid disks and using the standard formula for moment of inertia of a solid disk. 
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Figure 4.1. Two Wheeled Inverted Pendulum Robot 

 

 

 

 

The moment of inertia of the robot’s pendulum about the wheel axis is calculated by 

measuring the mass of the two plates separately, calculating the moment of inertia of two 

flat plates, and using the parallel axis theorem to get the moment of inertia of the 

pendulum about the wheel axis. The robot’s physical parameters are summarized in Table 

4.1. 
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Table 4.1. TWIP Robot Physical Parameters 

Parameter Value Units 

Pendulum Moment of Inertia 0.025 kgm2 

Wheel Moment of Inertia 1.441e-4 kgm2 

Distance to CG from Wheel Axis 0.075 m 

Mass of Pendulum 1.432 kg 

Mass of Wheels 0.1168 kg 

Wheel Radius 0.045 m 

 

 

 

 

4.2. ELECTRONIC DESIGN 

Electronics are a major component of any robot, and the two wheeled inverted 

pendulum robot is no exception. The robot consists of a main computer, two motors, 

various sensors, and power and communication devices. 

4.2.1. Computer. The robot is controlled using an Arduino Due microcontroller 

board based on the Atmel SAM3X9E ARM Cortex-M3, a 32-bit, 84MHz CPU. The Due 

has 96KB of onboard SRAM and 512KB available RAM for programming. The Due has 

54 digital input/output channels, 12 of which can be set to output pulse width modulation 

(PWM) signals, 12 analog inputs, and 2 analog outputs. The Arduino Due supports serial 

communication over USB. The microcontroller is programmed in C using the Arduino 

interface. The Arduino is a popular hobbyist electronics platform, and a large range 

integrated electronic shields can be purchased to work directly with the Arduino platform 

to expand the capabilities of the Arduino microcontroller. Helpful information can also 

be obtained online for interfacing most electronics with an Arduino. 

4.2.2. Motors. Two Pololu 12V 37mm DC motors are used to control the two  

wheeled inverted pendulum robot. Pololu is a Las Vegas located manufacturer and online 

retailer of robotic electronics founded by three students of the Massachusetts Institute of 

Technology. The motors have a 30:1 gear ratio gearbox and 64 counts per revolution 

(CPR) integrated Hall Effect quadrature encoders to measure the position of the output 

shaft. The motors are characterized by their free-run speed and current, and stall torque 
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and current. From these characteristics the torque motor constant and the back 

electromotive force constant can be obtained. The motor nominal resistance can also be 

measured by directly measuring the resistance of the output terminals across several 

positions of the output shaft and averaging the values. The physical motor constants are 

summarized in Table 4.2. The motors are controlled using a Pololu Dual VNH5019 

Motor Driver Arduino Shield. The VNH5019 motor driver chip allows DC motor 

operation between 5.5 and  24 V at currents up to 12 A. The chips provide current 

sensing capabilities, and PWM operation at ultrasonic speeds up to 20KHz to allow for 

quieter motor operation. The Pololu designed Arduino shield is designed specifically to 

work directly with the Arduino platform, and a provided library allows easy operation of 

two individual motors through several implemented functions. 

 

 

 

 

Table 4.2. DC Motor Physical Parameters 

Parameter Value Units 

Free-Run Speed 350 RPM 

Free-Run Current 300 mA 

Stall Torque 110 oz-in 

Stall Current 5000 mA 

Torque Motor Constant 0.11541 Nm/A 

Back EMF Constant 0.00361 Vs/rad 

Nominal Resistance 2.5 Ω 

 

 

 

 

4.2.3. Sensors. Sensors are necessary in any robot in order to measure the state  

of the system. The state must be known in order to properly control the system. There are 

many different ways that the states of the system can be obtained. In this system the 

measurements are obtained by three devices, an integrated inertial measurement unit 

(IMU), and Hall Effect digital encoders integrated on each motor. 
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4.2.3.1 Inertial measurement unit. Integrated System in Package (SiP)  

microchips are quickly gaining hold in many areas of consumer electronics due to their 

smaller size and lower cost of production. The InvenSense MPU-9150 is a low cost, low 

power SiP motion tracking device marketed for consumer electronics equipment such as 

smartphones and tablets. The SiP includes a 3-axis gyroscope, a 3-axis accelerometer, a 

3-axis magnetometer, and an onboard Digital Motion Processor. The Digital Motion 

Processor (DMP) is used to offload complex algorithms from the main processor, and is 

mainly geared towards typical uses of an IMU in consumer electronics. 

 In the two wheeled inverted pendulum robot the SparkFun MPU-9150 breakout 

board was used. The breakout board simply places the surface mount MPU-9150 on an 

easy to use circuit board with the communication pins available to solder directly to 

wires. The full capabilities of the MPU-9150 including the DMP were not utilized as they 

were not necessary. Only the direct readings from the accelerometer and gyroscope were 

used to obtain the necessary states of the robot.  

The gyroscope has a digital output of 16 bits and user-selectable ranges of output 

from ±250 °/s to ±2000 °/s. The lowest range of ±250 °/s is selected for use as it has the 

highest sensitivity of 131 LSB/°/s. This translates to an accuracy of exactly 1/131 °/s or 

approximately 0.00763°/s. Noise is given by two parameters, the total RMS noise at a 

rate of 92Hz is 0.06 °/s-rms, and the noise spectral density at 10Hz is 0.005 °/s/√Hz. The 

noise has been better characterized by a careful test and analysis of the actual sensor, to 

be described in Section 7.4. These parameters are summarized in Table 4.3. 

The accelerometer also has a digital output of 16 bits, and gives readings in 

multiples of gravity, or g’s. Calibration of the accelerometer was required to obtain a 1g 

reading at rest. At the highest accuracy, minimum range scale of ±2g, the sensor has a 

sensitivity of 16,384 LSB/g. This translates to an exact accuracy of 1/16384 g, or 

approximately 59.4 µg. Noise is given by the same two parameters, but this time at 

different rates, the total RMS noise at a rate of 100Hz is 4mg-rms, and the power spectral 

density at a rate of 10Hz is 400 µg/√Hz. These differences in rates and the parameters 

used for the noise tests necessitates a careful analysis of the actual noise from the sensor 

used in the implementation to ensure proper simulation. The accelerometer specifications 

are summarized in Table 4.4. 
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Table 4.3. Gyroscope Specifications 

 

 

 

 

Table 4.4. Accelerometer Specifications 

 

 

 

 

4.2.3.2 Digital encoders. Each Pololu metal DC motor has an integrated Hall  

Effect quadrature encoder used to measure the relative position of the motor output shaft. 

The motor output shaft is connected to a magnetic disk with 16 magnetic divisions. Two 

Hall Effect sensors sense the changing magnetic field as the output shaft rotates. By 

counting both the rising and falling edge of both signals a total resolution of 64 counts 

per revolution of the motor output shaft is obtained, this is where the term quadrature 

encoder originates. In combination with the 30:1 gearbox, the output of the gearbox has a 

measurable accuracy of 1920 counts per revolution. With 90mm diameter wheels, the 

encoder measures discrete steps equal to 0.000147m. 

Parameter Value Units 

Range ±250 °/s 

Sensitivity 131 LSB/°/s 

Accuracy 0.00763 °/s 

Total RMS Noise 0.06  °/s-rms 

Power Spectral Density 0.005  °/s/√Hz 

Parameter Value Units 

Range ±2 g 

Sensitivity 16384 LSB/g 

Accuracy 59.4 µg 

Total RMS Noise 4  mg-rms 

Power Spectral Density 400  µg/√Hz 
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4.2.4. Miscellaneous Electronics. Four potentiometers are connected to the 

Arduino Due to allow for easy adjustment of parameters, in this case the controller gains, 

and a switch is used to turn the robot controller on and off. Miscellaneous electronics 

necessary to convert voltages for communication with the Arduino Due are included, as 

well as a HC-05 Bluetooth module for wireless transmitting of serial output data. The 

robot is powered by a single high discharge 11.1V 20C Lithium Polymer battery. 

 

 

4.3. PROGRAMMING 

On initialization of the robot the various pins and connections are setup allowing 

for communication between the sensors, switches, Bluetooth module, and the 

microcontroller. The motor controller is initialized, and the IMU is enabled. On 

initialization of the IMU the constant bias is removed from the sensor measurements by 

averaging the first 100 measurements and removing the calculated value from the sensor 

reading. As a result the robot must be stationary while initializing or the constant bias 

value will be inaccurate. Until the on-switch is flipped, the robot sits in a loop that takes 

measurements and readings from the potentiometers to allow adjustment of the controller 

gains.  

When the on-switch is flipped the robot begins the control loop. First the 

measurements are obtained, a simple filter is used to correct the tilt angle measurement. 

Details are provided in the next section, and the DMSO is then used to estimate the full 

state of the robot. A C based matrix library was implemented to allow simplified matrix 

calculations on the robot, similar to how Matlab computes. Due to computational 

limitations, the estimates from the DMSO are used in a linear quadratic regulator (LQR) 

controller to calculate the output to the motor driver. Important data is then transmitted 

over serial Bluetooth for later analysis.  

4.3.1. Measurements. The inverted pendulum tilt angle can be obtained directly  

using a tiltometer, but this would require having an additional sensor on the robot. 

The tilt angle can also be obtained by integrating the gyroscope signal, but this suffers 

from two issues, first is that the initial angle must be known precisely or the integration 

will have a bias. This is an issue for the unstable inverted pendulum as even a very small 



 

 

25 

bias causes instability of the robot as it tries to stabilize at a statically stable point. The 

second issue is called gyroscope drift and describes the tendency of an integrated 

gyroscope signal to drift from the correct value over time. To overcome these issues the 

tilt angle is measured using the accelerometer and filtered in combination with the 

gyroscope measurements to obtain a more accurate measurement of the tilt angle. 

The orientation of an accelerometer can be defined by the roll,   , pitch,  , and 

yaw,  , rotations from an initial position. By defining the initial position of the Earth’s 

gravitational field vector in the positive z direction and applying rotation matrices, a set 

of equations can be obtained transforming the gravitational field vector into roll, pitch, 

and yaw angles. The aerospace rotation sequence, xyz
R , is commonly used in the 

aerospace industry and results in the following relationship [45] 
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When rewritten using an arbitrary gravitational field vector, p
G ,  Eq. (34) can be solved 

for the pitch and roll angles as follows. 
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The above relationship for the pitch angle is only one possible way to calculate 

the pitch from the accelerometer. Rotation matrices do not compute, but as only the pitch 

angle is of concern a different rotation sequence can be utilized to obtain the same pitch 

angle measurement. Computations on the microcontroller must be minimized wherever 

possible, so by using the rotation matrix yxz
R  in the same manner, an easier to compute 

relationship for the tilt angle is obtained. 

 

 
1

tan x

a

z

a

a


 
   (36) 

 

This calculation assumes two things, first is that the initial orientation of the 

accelerometer is aligned with the gravitation field vector in the z-axis and second is that 

there are no external accelerations. Clearly when moving the robot will have external 

accelerations, so filtering of this measurement is necessary. This is easily remedied by 

using a filter called the complementary filter [46]. The same task can be done with the 

Kalman filter, but due to the computational limitations on the microcontroller the 

complementary filter is a good choice. The filter combines measurements from the 

accelerometer and the gyroscope to obtain a more accurate estimate of the angle using a 

simplified high pass and low pass filter. The form implemented on the robot is 

 

 1
( ) (1 )

k k y a
tg    


     (37) 

  

where α is a design parameter set to 0.99, gy is the y-axis gyroscope reading, 
a

  is the 

accelerometer tilt angle measurement, and θk is the complementary filter angle estimate. 

The complementary filter is extremely easy to implement and is perfect for this 

implementation where computations are limited.  

The tilt angle is the only measurement that has to be pre-filtered before the 

DMSO or Kalman filter are used to estimate the full state. The gyroscope measurements 

are used directly to measure the tilt rate. The motor encoder outputs are processed using 

hardware interrupts in the code. Each time the Hall Effect sensor signal switches from 
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positive to negative the interrupt is activated to either add to or subtract from the motor 

encoder position. The velocity measurements are obtained by taking the derivative of the 

position readings.  

 

 

4.4. DIFFICULTIES 

During the assembly and programming of the robot many difficulties were 

encountered. Initially the motors were a huge problem, and were eventually replaced. The 

initial motors chosen were 6V DC motors with a lower torque output. The original 

motors had an enormous deadzone nonlinearity, and a correspondingly small range of 

controllable output levels. Simulation studies showed that the best control possible would 

be large stable oscillations. Noise in the sensors created instability that made this control 

impossible to achieve. It was during this time that the potentiometers were added in order 

to quickly adjust the controller gains in an attempt to stabilize the robot, rather than 

reprogramming the microcontroller each time the gains were to be adjusted.  

The motors were replaced with larger 12V motors that do not have the same large 

deadzone issue, and allowed a larger range of output to be used for control. This created a 

problem with the plastic mounting plates as the new motors were so heavy the plates 

twisted under the weight. Stiffening rods had to be added to the underside of the robot to 

compensate. This also pointed out an initial design flaw; plastic rods were used to 

separate the two mounting plates. There was a lot of flexibility in the system which 

allowed vibrations to create a problem in the sensor measurements. Steel threaded rods 

were used as a replacement, which worked nicely to stiffen the system.  

As mentioned previously, the robot is limited in the number of computations 

available, so wherever possible computations were limited on the robot. The serial output 

was found to be one of the largest uses of computation power. Serial data, essential for 

evaluation of the performance, had to be carefully selected and limited in order to keep 

the loop time at an acceptable level. The minimum loop execution time that could be 

obtained was 0.01s. 

The LQR gains had to be modified from the ideal values calculated from the 

parameters of the robot. This is indicative of inaccurately measured parameters. The 
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model is also not entirely accurate to the true robot system. The pendulum is modeled as 

a point mass attached by a thin beam to the motor axis, however the mounting plates 

create more complex interactions than this. Once tuned properly stability of the robot was 

obtained. 
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5. THE BALANCING ROBOT MODEL 

This section describes the two wheeled inverted pendulum robot model that is 

used as the motivating example to show the effectiveness of the Discrete Modified State 

Observer. There are many forms [7, 8, 13, 14] that these equations can take depending on 

the method used for derivation and the different models taken into consideration. The 

model below follows from Newton’s method when including a linear DC motor model 

[8]. 

 

 

5.1. MODEL OF A DIRECT CURRENT (DC) MOTOR 

The following section describes a DC motor in mathematical terms and places the 

system in a space-space form. The model derived describes a relationship between the 

output torque of the motor and the input voltage. Figure 5.1 shows the electromechanical 

diagram used to describe a linear DC motor when neglecting the higher dynamics 

associated with the stator, or field, circuit of a DC motor [47]. 

 

 

 

 

 

Figure 5.1. DC Motor Model 

 

 

 

 

When a voltage is applied to a DC motor the motor itself also induces a voltage 

called the back electromotive force (EMF), 
e

V , which can be described by a linear 

relationship between the voltage and the output speed of the motor, . The constant of 
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proportionality in this case is called the back EMF constant, 
e

k , with units of 
Vs

rad
. This 

relationship is described by the equation 

 

 
e e

V k   (38) 

 

Using Kirchoff’s Voltage Law, which states that the sum of all voltages in a 

circuit must equal zero, on the circuit in Figure 5.1 and using the relationship in Eq. (38) 

the following dynamic equation is found 

 

 0
a e

di
V Ri L V

dt
      (39) 

 

Substitute Eq. (38) into Eq. (39) and rearrange to obtain the first equation of motion. 

 

 a e

e

V kdi R
i

dt L L L
     (40) 

 

When a voltage, 
a

V , is applied to the DC motor a current, i , is induced in the 

armature, or rotor, circuit. DC motors produce a torque, 
m

 , proportional to the current in 

the circuit. The constant of proportionality is called the torque constant with units of  

Nm

A
, this relationship is defined as 

 

 
m m

k i   (41) 

 

The friction on the shaft of the DC motor can be approximated by a linear 

relationship between the output speed,  , and the frictional torque, f
 , by a frictional 

torque constant, f
k , with units of 

Nm

rad
. This is described by the relationship 
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 f f
k   (42) 

 

Using Newton’s second law and summing moments about the motor output shaft the 

following dynamic equation is found 

 

 
m f a m

M I        (43) 

 

where 
a

  is an applied load and 
m

I  is the moment of inertia of the applied load. 

Substituting Eqs. (41) and (42) into Eq. (43) and rearranging the second equation of 

motion is found. 
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Equations (40) and (44) describe the fundamental equations of a DC motor. They 

describe a set of first order differential equations between the circuit current, motor 

speed, and applied torque. In the case of a balancing robot, a simplified model provides 

acceptable performance. Assuming motor inductance, L , and friction, f
k ,are negligible, 

the model can be simplified to 
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and 
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Substituting Eq. (45) into Eq. (46) a model is obtained that does not include the circuit 

current. This is desirable as the current is not directly controllable in the physical system, 

and will add no benefit as an additional state in the equations of motion. 

 

 
m e m a

m m m
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V
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By neglecting the inductance of the motor circuit the current will reach a steady state 

value immediately, as compared to the motor speed which will take a period of time to 

reach steady state. Eq. (47) can be placed in state-space form as shown below. 
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  (48) 

 

 

5.2. TWO WHEELED INVERTED PENDULUM DYNAMIC MODEL 

The two wheeled inverted pendulum (TWIP) shares many similarities to the 

pendulum on a cart problem. The motion is very similar, but the dynamics are more 

complex. The two wheeled inverted pendulum analysis begins with the two wheels. The 

pendulum is analyzed separately, and the equations are combined to synthesize two 

dynamic equations describing the motion of the system. 

The free body diagram of the left wheel is shown in Figure 5.2. The reaction 

forces between the wheel and the pendulum are L
P  and L

H . The torque applied on the 

wheel by the DC motor is L
C , and the frictional force between the ground and the wheel 

is fL
H .  

The equations for the left and right wheel are completely analogous, so only the 

left wheel will be analyzed. The wheels are assumed to always stay in contact with the 

ground with no slip. Sum forces in the x direction to obtain the following. 
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Figure 5.2. Left Wheel Free Body Diagram 

 

 

 

 

 w fL L
M x H H   (49) 

 

Summing moments around the center of the wheel yields  

 

 w w L fL
I C H r     (50) 

 

where w
I  is the moment of inertia of the wheel and w

  is the angular acceleration of the 

wheel. Start with the DC motor dynamics Eq. (43) and substitute Eq. (47) to obtain 
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Use Eq. (51) in Eq. (50) and rearrange to obtain an expression for the friction reaction 

force. 
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Substitute Eq. (52) into Eq. (49) to obtain the equation of motion for the left wheel. 
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A similar equation can be derived for the right wheel. 
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A transformation is used to translate the rotational motion into linear motion. 
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Thus Eq. (53) for the left wheel becomes 
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and Eq. (54) for the right wheel becomes 
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Combine Eqs. (56) and (57) to obtain an equation of motion for the combined wheel 

system. 
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Figure 5.3 shows the free body diagram of the inverted pendulum. Two reference 

frames are used in the analysis. An inertial frame is connected to the base of the 

pendulum, and a translating reference frame at the center of gravity of the pendulum is 

used to simplify the analysis. l  is the distance between the base of the pendulum and the 

center of gravity, , ,    are the angular acceleration of the pendulum, the angular 

velocity of the pendulum, and the angular position of the pendulum respectively. ,,x x x  

are the position, velocity, and acceleration of the base of the pendulum, or the pendulum 

body, and , ,
p p p

xx x  are the position, velocity, and acceleration of the pendulum’s center 

of gravity.  

 

 

 

 

 

Figure 5.3. Inverted Pendulum Free Body Diagram 
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Begin by summing forces in the p
x  direction 

 

 
xp L R p p

F H H M x    (59) 

 

and the p
y  direction 
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The acceleration of a point in a translating coordinate frame can be found by  

relative motion analysis [48]. The acceleration vector of the pendulum’s center of gravity, 

here called B
a , can be found with 
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where the following definitions are used 
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 k̂α  (65) 

 

and the acceleration of the pendulum body is expressed as 
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Using Eqs. (63)-(66) in Eq. (61), the acceleration of the pendulum’s center of gravity can 

be found. 

 

    2 2ˆ ˆcos sin
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Use Eq. (67) in Eq. (59) and Eq. (60) to obtain 
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Now, sum moments about the pendulum’s center of gravity with the clockwise direction 

taken as positive. 
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Combine Eqs. (51), (68), (69), and (70) to obtain the following. 
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Cancel terms, rearrange, and use the trigonometric identity 2 2
cos 1sin     to obtain 

the first nonlinear equation of motion for the two wheeled inverted pendulum 
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Use Eq. (68) to remove the body forces from Eq. (58) to obtain the second nonlinear 

equation of motion 
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Equations (72) and (73) describe the full nonlinear equations of motion for the 

two wheeled inverted pendulum. The point    is the statically stable vertical point of 

the inverted pendulum. A set of linearized equations can be obtained by assuming 

    , where   represents a small angle from the vertical position. Using the small 

angle assumption 

 

 cos 1     (74) 

 

and 

 

 sin     (75) 

 

Also assume that the squared time derivative of the angular position is small. 
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Using these assumptions the linearized equations of motion can be obtained as 
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Rearranging the linearized model the following state-space model is obtained 
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where 
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and 
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5.3. MODEL SIMULATION STUDY 

The model should be checked for accuracy and for the expected motion of an 

inverted pendulum. This is easily done by examining the uncontrolled motion of the 

nonlinear equations of motion. Any values of the parameters can be used. To check the 

stability of the plant, choose the starting point 180  , the plant should not deviate from 

the statically stable point. Figure 5.4 shows the states with this starting point, and as 

shown the system is stable at this point.  

 

 

 



 

 

40 

 

Figure 5.4. Stability Test θ=180° 

 

 

 

 

The stable point 0   is examined by using the starting point 10  . The plant 

is expected to oscillate about 0  . With friction modeled the system should have 

damped oscillations. In this case, while there is not friction modeled, the motor dynamics 

creates an amount of resistance resulting in a frictional like effect. Looking at the free 

body diagram of the pendulum in Figure 5.3, with a small positive angle the body of the 

pendulum should initially move in the positive direction as the tilt angle returns to zero. 

Figure 5.5 shows the result of this test, and the system behaves as expected. It is 

interesting to note that the position does not stabilize at zero. This steady state value of 

the position is in proportion to the starting angle, and is reasonable if the dynamics are 

considered. The robot will first move in the positive direction, and as the oscillations are 

damped the pendulum will not return to the starting point on the return swing, resulting in 

a net positive position. These simple checks show that the nonlinear equations of motion 

behave as expected and can be trusted. 
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Figure 5.5. Stability Test θ=10° 



 

 

42 

6. CONTROL DESIGN 

The two wheeled inverted pendulum is an unstable system and must be actively 

controlled to stabilize the plant. Many different methods of control exist, and it is a 

current area of research in nonlinear control [13, 23, 28, 29]. Linear controllers are 

effective for this nonlinear system when near the operating point and the parameters are 

accurately known [7, 8]. In this case the linear quadratic regulator (LQR) control design 

is used as the base control. An extra control signal is formulated to compensate for the 

unmatched uncertainties present in the two acceleration terms of the nonlinear equations 

of motion using neural networks. 

 

 

6.1. LQR CONTROL DESIGN 

As this controller is meant to be implemented in a digital system, a discrete-time 

formation is used. The infinite horizon, discrete time linear quadratic regulator is a 

modern state-space technique for discrete optimal control, where the performance index 
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is optimized by solving the discrete-time algebraic Riccati equation 
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P Q F P PG R G PG G P A


     (83) 

 

where P is the solution to the Riccati equation, F  and G  come from the discrete-time 

state-space model, and Q   and R  are user-selected positive definite weighting matrices 

of dimension n×n and m×m respectively. They weight the regulator performance and the 

control effort to obtain the optimal control based on the performance index. The user can 

weight the matrices to tune the response of the system, or to reduce the level of control. 

 The linear control law is given by 
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( )

k LQR k des k
K  u x x  (84) 

 

where k
x  is the state vector at time k, ,des k

x is the desired state at time k, and  
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T T
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
   (85) 

 

 

6.2. EXTRA CONTROL DESIGN 

In systems where the uncertainty is present in the same states as the control, the 

system is said to have matched uncertainty. In systems with matched uncertainty an 

estimate of the uncertainty, for example that found using the DMSO, can be used directly 

in the control to cancel the uncertainty. Unfortunately in the system of the two wheeled 

inverted pendulum, unmatched uncertainties are present. This section will outline a 

continuous-time technique to derive an extra control signal using the tilt angle as a virtual 

control. This method is an extension of a method described by Huang [49] and is used to 

compensate for the unmatched uncertainties in the system. 

The two wheeled inverted pendulum equations of motion can be expressed by 
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When linearizing and including parameter uncertainty, the equations of motion take the 

following form 
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where  
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1
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  (88) 

 

and the coefficients, 
1 4 1 22 3
, , , , ,A A A A B B , come from Eq. (79). In this formulation the 

equations of motion contain two separate uncertainties, 
1
( )d x  and 

2
( )d x , with only one 

control. To be stated another way, the system has unmatched uncertainties. A new control 

signal is defined as 

 

 
nom e

u uu    (89) 

 

where 
nom

u  is a nominal control signal that is derived by other means, in this case LQR 

control design, and 
e

u  is an extra control signal that will be added to compensate for 

these uncertainties. 

The desired system is defined by the equations of motion with the desired state 

values, indicated with the subscript d, and a desired control signal 
d

u . 

 

 
4

4 3 4 2

1 2

2 1 2 2 3 1

3

2 3

d

d

d d

d d

d d d

d

d d

x

x

x

x

x

A x A x B u

x

A x A x B u



  



  

  (90) 

 

The goal is to be able to control the system’s position using 
1

x  and 
2

x  to track a 

desired trajectory. The errors are defined as deviation from the desired values. 
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It is assumed that the system is tracking a smooth trajectory and derivatives up to the 

second order of 
1d

x  are available. The error dynamics of the system are given by the 

following equations. 
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  (92) 

 

The state 
3

x  is used as a virtual control to compensate for the uncertainty in 
2

e . 

Therefore, a new state 
3

x  will be designed to make 
2

x   and 
1

x  close to the desired values. 

The following form of 
3

x  is used 
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
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where 
1

F̂  is a single layer neural network estimate. Using Eq. (93) in the equation for 
2

e  

the following is obtained. 
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Performing algebraic multiplication 
2

e  can be expressed by the following. 
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The neural network 
1

F̂  is used to estimate the uncertainty 
1
( )d x  and the other 

states in the error equation. Ideally the neural network will estimate the following 

quantity. 
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Using this definition in Eq. (95) the error dynamics can be expressed as: 
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A new error system is defined using the new state 
3

x . 
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As 
1

x   and 
2

x  have not been affected, 
1 1d

x x  and 
22 d

x x . As 
4

x  is the derivative of
3

x , 

the definition 4 3
x x  is used. The error bar dynamics are defined by the following 

equations. 
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Including the state dynamics from Eq. (87) in Eq. (99) the error bar dynamics are 

obtained. 
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The extra control signal, 
e

u , will be used to drive 
4

x  to 
4

x   and in turn drive 
3

x  to

3
x . The extra control 

e
u  is selected as  
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ˆ

e
u B e F ek


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where 
2

F̂  is a second single layer neural network. Using this extra control in the equation 

for 4
e  the following expression for 4

e  is obtained. 
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Performing algebraic multiplication the following expression can be obtained. 
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The neural network 
2

F̂  is used to estimate the uncertainty 
2
( )d x  and the other 

states in the error equation. Ideally the neural network will estimate the following 

quantity. 
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Using this definition in Eq. (103) the dynamics can be simplified to 
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The error bar dynamics are summarized by 
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For the two wheeled inverted pendulum problem a single-layer neural network 

was found to be incapable of estimating the nonlinear functions 
1

F   and 
2

F , so multi-

layer neural networks are used as they provide better approximation capabilities than 

single layer networks. The functions described by Eqs. (96) and (104) can be expressed 

by the two-layer neural networks 
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and  
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where 
11 12

,W W  and 
21 22

,W W  are the ideal neural network weights. 
1

V  and 
2

V  are randomly 

selected input layer neural network weights. 
11 12

),( ( ) x x  and 
21 22

( ), ( ) x x  are user 

selected activation functions and 
1

P   and 
2

P  are inputs to the neural networks. The neural 

networks provide estimates of the functions 
1

F   and 
2

F  where 
1
  and 

2
 are the bounded 

neural network estimation errors which satisfy the conditions 11 m
  and 22 m

 . 

Estimates of the neural network weights are used to calculate estimates of the functions 

1
F  and 

2
F , defined by 
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The weight update laws are chosen for the first neural network as 
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and 
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where 
11 12 11

, ,     and 
12

  are neural network adaptation or learning rates and 
1

B  is a 

coefficient matrix. For the second neural network the update laws are similar, defined as  

 

  21 21 2 2 4 211 21 21 21
ˆ ˆˆ ˆ ˆ

T
T

W W B e W    
 

     (113) 

 

and 
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Lyapunov stability analysis is used to show the boundedness of the state tracking 

errors and the neural network weights. Define the Lyapunov function as follows. 
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The derivative of the Lyapunov function is given by: 
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where ˆW W W  . The Lyapunov function is split into two parts, the first part consists of 

the error bar terms. 
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Including the error bar dynamics from Eq. (106) in Eq. (117) the first half of the 

Lyapunov function becomes 
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The neural network estimates 
1

F̂  and 
2

F̂  are subtracted from the ideal neural networks 

1
F   and 

2
F  as follows  
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for 1, 2i  . Eq. (119) can be expressed as  
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distributing the 
2

e  and 
4

e  terms the following expression is obtained. 
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Cancel the 1 2

T
e e  and 3 4

T
e e  terms to obtain 
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The second half of the Lyapunov function is the half consisting of the neural 

network estimation error terms, expressed by 
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For the neural network weight update laws to be used in the Lyapunov function, use the 

definition of W  and its derivative, expressed by 
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Using Eq. (124) the weight update laws can be expressed as 
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and 
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Using Eqs. (125) and (128) in Eq. (123) the following expression for the second half of 

the Lyapunov function is obtained. 
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Performing algebraic multiplication the following expression is obtained.  
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Combining the two parts of the Lyapunov function from Eqs. (122) and (130) the 

Lyapunov function becomes 
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Note that  12 12 2 1 22 1 2
ˆ ˆT T T T
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e T eW r W  . Using this, Eq. (131) 

becomes 
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Use Ŵ W W   and distribute terms to obtain the following.  
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The activation functions ij
  for 1, 2i   and 1, 2j   are bounded functions 

satisfying 
ij ijm

  . As long as the activation functions are selected as bounded 

functions, this same bound will apply to the estimates and the estimate error terms ˆ
ij

  
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and 
ij

 . Applying norms to the neural network weight terms and using the bounds on the 

neural network approximation errors 
1 1m
  and 

2 2 m
 , and the bounds on the 

neural network weights 
11 11m

W W  , 
12 12m

W W ,  
221 1m

W W , and 
222 2 m

W W  the 

following can be obtained. 
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Completing the square on the 
11 11 2 1

ˆT
BW e  and 

4 221 21
ˆT

BW e  terms yields 
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Combining terms and completing the square in a similar fashion on the 
11 11 11 11

ˆT

m m
W W   

and 
21 21 21 21

ˆT

m m
W W   terms leads to the expression 
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Finally, by completing the square one more time on the 
11 11 11m

W W , 
12 12 12 m

W W , 

21 21 21m
W W  and 

22 22 22 m
W W  terms and rearranging the following is obtained. 
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Now, if the following conditions are met, 

 



 

 

56 

 

2

1 1min

m

2

2 2in

( )

( )

k B

k B









  (138) 

 

and 
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or 
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the Lyapunov function is less than or equal to zero. That is to say that it is bounded. 

Using the expressions in Eqs. (139) and (140) bounds on the estimation errors can be 

found as 
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 

 
 

 

  

 

1

2
2

2 1222 22

22 22

2 22

12 122 2 22 2

4

min 2 min 2min 2
2 ( ) ( )4 ( )

m tm m m mm m m m
e WW W W

e

k B k Bk B

 

 

 
   

  
 

  
 

  (142) 

 

where 
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 In a similar way, bounds on the neural network weights can be found using Eq. 

(137). The bounds are found to be 
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and 
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 Using this proof it is shown that the state tracking errors 
2 4
,e e  are bounded, and 

since they are connected to the errors 
31

,e e , all errors are bounded, and the neural 

network weights estimation errors 11 12 21
, , ,W W W and 22

W  are bounded. This extra control 

can be computed online to estimate and compensate for the unmatched uncertainties in 

the TWIP system. 

 This method can easily be extended to the class of more general nonlinear 

systems with unmatched uncertainties 
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7. TWO WHEELED INVERTED PENDULUM SIMULATION 

This section outlines the simulation of a two wheeled inverted pendulum used to 

show the effectiveness of the Discrete Modified State Observer. This section describes 

the simulation preliminaries: discretization, control, system uncertainty, noise, 

nonlinearities, and the discrete-time Kalman filter. 

 

 

7.1. DISCRETIZATION  

The Discrete Modified State Observer works for a discrete-time system, so the 

continuous time equations of motion must first be discretized. This can be easily done 

using the matrix exponential [50]. To convert the continuous state-space system 

 

 A B x x u   (147) 

  

into the discrete system 

 

 , 1 ,dt k dt k k
F G


 x x u  (148) 

 

the matrix exponential is used where exp( )F A t   ,   1
exp( )G F I A A Bt


    , and 

t  is the discretization time step. 

 

 

7.2. CONTROL  

 The linear control law used in all simulations is given by 

 

 ,
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k LQR k des k
K  u x x   (149) 

 

where  
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1

( )
T T

LQR
K R G PG G PF


    (150) 

 

Since the majority of the system uncertainty comes from the linearization errors, the 

uncertainty is greatest when the tilt angle is farthest from zero. Therefore, values used in 

the weighting matrices are chosen to not drive the system to a stable solution as fast as 

possible, but to give the system small oscillations so that the system uncertainty to be 

measured by the DMSO will have some dynamics to it. The control effort is also 

weighted to limit the maximum control in an effort to simulate the real system, where 

there is control saturation at a point. The parameters used in all simulations are 
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7.3. UNCERTAINTY  

In the following cases the uncertainty that the DMSO is estimating is the error 

between the true state from the nonlinear equations of motion with the true parameter 

values, 
true

x , and the discrete linear system output with possibly incorrect values,
dt

x . 

This is defined as  

 

 , ,
( )

k true k dt k
f x x x  (153) 

 

 

7.4. SIMULATED NOISE 

Three sensors are simulated, replicating the physical system: an accelerometer, 

gyroscope, and motor encoder. Accelerometers and gyroscopes have many sources of 
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error, but can be modeled with three main sources of error [51, 52]. Both sensors are 

modeled by  

 

 r r rr
m m c b w     (154) 

 

where m  is the sensor reading, 
r

m is the true measurement, r
c  is a constant bias that 

changes on each initialization of the sensor, r
b  is called the walking bias, and r

w  is a 

white noise process with variance 
2

r
 . The constant bias is easily remedied and can be 

removed on initialization of the sensor with digital logic. The other two remain, and must 

be considered when simulating the sensors. White noise is the main source of noise in 

low cost sensors, and can easily be characterized by finding the variance of a long run of 

data with the sensor stationary. The walking bias is a little more complex, but can be 

modeled as a first order Markov process with the dynamics 
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rr r b
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b b w


     (155) 

 

where r
  is the time constant of the Markov process and br

w  is white noise with 

variance
2

br
 . The walking bias captures the tendency of the sensor bias to walk, or drift 

over time. The parameters of the walking bias can be obtained by performing an 

autocorrelation analysis of a long run of filtered data, for more details the reader is 

referred to Flenniken [52]. Allan variance plots are a typical method of analyzing the 

accuracy of gyroscopes and accelerometers. Figure 7.1 shows an Allan variance plot of 

measured gyroscope data to simulated data. The results are not perfect, clearly other 

sources of error are present, but the results are much more accurate and representative 

than simply adding white noise to the measurements. 
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Figure 7.1. Gyroscope Allan Variance Analysis 

 

 

 

 

The motor encoders have a different model of error. They are not plagued with 

noise, but they are plagued with discretization error. Hall Effect encoders output discrete 

counts as the motors turn. In combination with a 30:1 gear box, a 64 count per revolution 

encoder, and 90mm diameter wheels, the motor encoders output discrete steps 

corresponding to 0.000147m movements. The velocity is obtained by taking a derivative 

of the position measurements, and is such limited by both the encoder step and the 

discretization time step. The minimum velocity step is then 0.000147m/∆t. This 

discretization error is a problem for the DMSO, as the universal approximation theorem 

states that it can only estimate a smooth function, because of this the state estimate can do 

no better than the discretization error of these sensors. 

The gyroscope gives directly the tilt rate measurement, but the tilt angle is not 

directly measureable without a tiltometer. This is remedied by using the accelerometer. 

The tilt angle can be determined from the direction of the gravity vector by  
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This is a highly inaccurate measurement as all accelerations are measured which corrupt 

the true measurement of the tilt angle. This is a problem in the physical system, but can 

easily be remedied as described in Section 4.3.1. This combination of measurements is 

used to simplify the sensor noise simulation, instead of directly simulating two 

accelerometers, only the tilt angle is simulated. Parameters used in the noise calculation 

are summarized in Table 7.1. The values were measured from the sensors used in the 

TWIP robot implementation.  

 

 

 

 

Table 7.1. Noise Simulation Parameters 

Parameter Tilt Angle Gyroscope 

2

r
  4.0397e-6 rad 0.0012 deg/s 

2

br
  1.8929e-7 rad/s 1.0986e-4 deg/s2 

r
  2160s 1610s 

Encoder Measurement Discretization Error 

Position 0.000147 m 

Velocity 0.000147/∆t m/s 

 

 

 

 

7.5. NONLINEARITIES 

The Pololu DC motors exhibit several obvious nonlinearities that can be 

accounted for in simulation. Friction is an important nonlinearity to consider, but due to 

the difficulties of evaluating the forces and obtaining an accurate model, friction was left 

out of the simulation. The following sections describe the various nonlinearities 

encountered and simulated. 
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7.5.1. Saturation. DC motors exhibit saturation at the limit of the magnetization  

of the motor core [47]. Saturation is a standard nonlinearity handled in controls, it is a 

hard limit on the output after a certain level of input. The input output relationship is 

shown in Figure 7.2. 

Saturation is formally defined as 
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  (157) 

 

 

 

 

 

Figure 7.2. Saturation Nonlinearity 

 

 

 

 

In this case, since the motor is a 12V motor, it is limited by the available power. 

The robot is powered by a single high discharge 11.1V 20C Lithium Polymer battery. 

This sets the nominal saturation value at 11.1V. This value will change with use as over 

time the battery will discharge and the output voltage will change. Measured values of 

the battery give a fully charged voltage of up to 12.3V, and the battery should not be used 

when the output is less than 10V to avoid permanent damage to the lithium polymer 
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battery. In the simulations the nominal value of 11.1V is used as the saturation limit. The 

DC motor saturation can easily be handled in a simulation by asserting a maximum 

control signal value. Saturation is important, and actually helpful, in the case of an 

overzealous control signal. In the optimal sense the best controller would be an infinitely 

large spike to stabilize the robot in a minimal time. In practice this is not obtainable due 

to saturation of the control signal and other possible instabilities caused by such a large 

control effort. In the implemented LQR controller the control signal is weighted heavily 

to prevent the control signal from reaching the saturation value.  

7.5.2. Deadzone. Deadzone is another standard nonlinearity and is described by 

a range of small inputs that do not have an effect on the output signal. The standard 

deadzone nonlinearity is shown in Figure 7.3, where when the input signal is between d
  

and d
  the output is zero. 

The deadzone nonlinearity is formally defined by 

 

 

( ( ) ), ( )

( ( )) 0, ( )

( ( ) ), ( )

u k d u k d

u k d u k d

m u k d u k d

m



  

 

  

 


  
  

  (158) 

 

The output does not necessarily have to have a linear relationship outside of the 

deadzone, but in the case of the linear DC motor model, the output is considered linear 

and this is an accurate model. In testing of the DC motors, a slightly different model of 

the deadzone is necessary to fully describe the nonlinearity. The nonlinearity experienced 

is a deadzone in combination with jump discontinuities at the edge of the deadzone. This 

is shown in Figure 7.4. 



 

 

65 

 

Figure 7.3. Standard Deadzone Nonlinearity 

 

 

  

 

 

Figure 7.4. Deadzone with Jump Discontinuities 
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This jump discontinuity deadzone nonlinearity is defined by 
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The slope of the deadzone output is equal to the torque motor constant, and is 

worked into the equations of motion. The simplified deadzone model implemented in 

simulation is applied directly to the control signal and is defined as 
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where d
  and d

  are the initial voltages where the DC motor begins to move. The values 

used are 0.5d V

   and 0.5d V


 . 

7.5.3. Backlash. Backlash is a common phenomenon found in situations where 

gears are used. Backlash stems from the spacing of teeth in mechanical gearing 

systems. If the teeth were machined to mesh completely, the gears would lock up and be 

unable to move. The amount of play in the gears is called the backlash. In the DC motors 

a gearbox is attached to the motor output shaft in order to provide a larger torque and 

slower speed output. These gearboxes give the wheels a small amount of backlash. Figure 

7.5 shows the input output relationship for the backlash nonlinearity. Backlash results in 

a delay in the system motion and it is a first-order velocity-driven dynamical system. 

Backlash is formally defined by  
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Figure 7.5. Backlash Nonlinearity 

 

 

 

 

Backlash is applied to the system output of the tilt angle in simulation, and the 

values used are 
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where ( )k  is the tilt angle of the system without backlash. 

 

 

7.6. DISCRETE KALMAN FILTER  

The Discrete Kalman Filter is used for comparison of the results of the Discrete 

Modified State Observer. This section provides an outline of the equations and 

methodology used.  

The Kalman filter developed by R. E. Kalman in 1960 provides the statistically 

optimal state estimate when given a linear system and measurements corrupted by 

Gaussian, zero-mean, uncorrelated, and white noise [53]. The filter processes 
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measurements in combination with knowledge of the system dynamics to provide a more 

accurate estimate of the state. Many versions and extensions of the Kalman filter have 

been developed since the original theory was described. The version used in this 

simulation is the discrete-time Kalman filter, derived for optimal state estimation of a 

discrete-time linear system, and follows from Simon [50]. 

Assume the dynamic system is given by 

 

 1k k k k
x Fx Gu w


    (163) 

 

with measurements defined by 

 

 k k k
y Hx v   (164) 

 

where k
w  and k

v  are zero-mean, uncorrelated, white Gaussian noise with the statistical 

properties  

 

 ~ (0, )
k

w Q  (165) 

 

and 

 

 ~ (0, )
k

v R  (166) 

 

Q  is the process noise covariance matrix, and R  is the measurement noise covariance 

matrix. Q  and R  can be adjusted for optimal performance. States with greater 

uncertainty in the dynamics can be assigned large values in the process noise covariance 

matrix which will cause the Kalman filter to trust the measurements more. The 

measurement noise covariance matrix can be accurately obtained by careful statistical 

analysis of the available measurements. 

The discrete-time Kalman filter is given by the following update equations 
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where the – and + superscripts represent a priori and a posteriori quantities. P  is the 

covariance of the estimation error, K  is the Kalman gain, and x̂  is the Kalman filter state 

estimate. The update equations are processed sequentially from Eq. (167) to Eq. (171). 

One thing to note is that the measurements do not have to be obtained at the same rate as 

the system dynamics, Eq. (170) can be processed at only the time intervals that have 

available measurements. However, in the simulations the measurements are assumed to 

be available at the same rate as the system dynamics are processed. 



 

 

70 

8. RESULTS 

This section outlines the results of the Discrete Modified State Observer and the 

neural network controller for unmatched uncertainties. The first section displays the 

results of several simulation test cases when using LQR control alone. The second section 

provides simulation results for the extra control formulation described in Section 6.2. The 

final section displays the experimental results from the two wheeled inverted pendulum 

robot implementation.  

 

 

8.1. SIMULATION RESULTS 

8.1.1. No Noise, No Parameter Uncertainty. In this case study there is zero  

noise in the measurements, and all parameters are known perfectly. Parameter values 

used are shown in Table 8.1. The saturation nonlinearity was used on the control signal 

output. 

 

 

 

 

Table 8.1. TWIP Robot Parameters 

Parameter Value Units 

Ip 0.025 kgm2 

Iw 1.183e-4 kgm2 

ke 0.00361 Vs/rad 

km 0.11541 Nm/A 

l 0.075 m 

Mp 1.432 kg 

Mw 0.1168 kg 

r 0.045 m 

R 2.5 Ω 
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The DMSO is used as shown in Eq. (3), repeated here for clarity. 
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F  and G  come from the discretized equations of motion, as described in Section 7.1. 

The uncertainty is placed in the acceleration terms of the continuous equations of motion, 

shown in Eq. (79), this is expressed in the M SO
B  term as  
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It is noted that the uncertainty as defined in Eq. (153) has a dimension of 4×1, but only 

the second and fourth terms are assigned uncertainty in the DMSO. The first and third 

terms correspond to states without uncertain dynamics as they are time derivatives. The 

errors between the nonlinear system and the discrete linearized system are orders of 

magnitude smaller than the terms with linearized dynamics. 

The other selected parameters used in the DMSO are  

 

 4 4M SO
K I


  (174) 

 

 0.1    (175) 

 

Choosing a larger K  matrix will help the decrease the error of the DMSO state estimate 

while the uncertainty is being estimated. Increasing the adaptation rate,  , will increase 

the speed of the uncertainty estimation at the expense of state estimation accuracy. The 

gain values were chosen to replicate the steady state gains of the Kalman filter as a better 

comparison of the two filters. The adaptation rate was chosen as a balance between speed 

of uncertainty estimation and accuracy. The basis functions are chosen as 
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where tansig( )  represents the hyperbolic tangent sigmoid function, a standard choice 

used in neural network basis functions [32]. 

The discrete Kalman filter is used for comparison. The following parameters were 

used in the calculations 
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 40 4
0.01P I


  (178) 

 

where Q  is the process noise covariance matrix, R is the measurement noise covariance 

matrix, and 0
P  is the state estimate covariance matrix. The values of Q were chosen to 

weight the uncertainty in the acceleration terms, placing larger values in the second and 

fourth terms in comparison to the first and third terms. The values of R  come from the 

statistical analysis of the available measurements for the tilt angle and tilt rate. The 

position and velocity covariance were estimated from the discretization error of the motor 

encoders, giving a larger covariance to the velocity measurement as the discretization 

error is greater. While in this simulation there is no noise, there was minimal change by 

reducing the measurement covariance values, so these values were kept. 

The discretization time step is chosen as 0.01t s  , this time step was chosen to 

match the time step on the physical robot system. The initial estimates for the Kalman 

filter and MSO are set to zero, and the true initial system states are set as 
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  ,0
1 0.3 / 10 deg 1deg/ s

T

true
m m sx   (179) 

 

The state estimates are shown alongside the true state values in Figure 8.1. Both 

the DMSO and the Kalman filter are able to accurately estimate the system states. The 

linear controller is shown to be effective in driving the system states to zero after a period 

of time, reaching the desired states in 15 seconds. To better compare the state estimates, 

the first second of the state estimation errors are shown in Figure 8.2. In all cases the 

DMSO is able to capture the true system state to a higher degree of accuracy in a shorter 

time period. It is noted that the Kalman filter does very well, but that is to be expected for 

this case where there is little system uncertainty. What is interesting to see, shown in 

Figure 8.3 in an error logarithmic plot, is that after the initial DMSO convergence to the 

true tilt rate, the Kalman filter converges to obtain a better estimate of the state. Finally, 

the system uncertainties, given by Eq. (153) are shown in Figure 8.4. The uncertainty 

estimate accurately captures the error between the true nonlinear system and the 

linearized discrete system. The uncertainty is shown to not entirely accurately obtain the 

system uncertainty with errors up to 25%. This is attributed to the bound on the 

estimation error, as there is a bound on the accuracy of the DMSO. Even with this slight 

inaccuracy, the DMSO is shown to be an effective state estimator in this system. 
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Figure 8.1. No Noise, No Uncertainty TWIP States 

 

 

 

 

 

Figure 8.2. No Noise, No Uncertainty TWIP State Estimate Error 
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Figure 8.3. No Noise, No Uncertainty TWIP State Estimate Error Logplot 

 

 

 

 

 

Figure 8.4. No Noise, No Uncertainty DMSO Uncertainty Estimates 
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8.1.2. Parameter Uncertainty, No Noise. In this study all parameters are kept 

equal from the previous section, with the exception of the robot system parameters, 

which are varied to create additional system uncertainty. The estimated system 

parameters, used in calculating the Kalman filter estimate and the DMSO estimates, are 

the same as in the previous section, shown in Table 8.1. The parameters for the true 

system, calculated from the nonlinear equations of motion, are adjusted and given in 

Table 8.2. Figure 8.5 shows the system states where it is shown that the controller is no 

longer as effective as the first simulation study due to the parameter uncertainty; the LQR 

controller is now tuned for an incorrect system. The tilt angle overshoots the desired 

value by 5 degrees and causes oscillations to be present that take longer to stabilize in this 

case. However, the Kalman filter still does a decent job at estimation, the error is small 

enough to not be shown in this figure. Figure 8.6 shows the state estimation error, where 

it is shown again that the DMSO provides better estimates than the Kalman filter in all 

states, obtaining on average a state estimate that is an order of magnitude more accurate. 

However, as before, Figure 8.7 shows the error logarithmic plot over a longer time where 

it is shown that the Kalman filter does obtain a better estimate of the tilt rate after five 

seconds. Finally, Figure 8.8 shows the system uncertainties. Even with the issue in the tilt 

angle rate estimate, the system uncertainties are accurately estimated. One thing to note 

here is the small anomaly on the tilt acceleration uncertainty estimate at 1.5 seconds. This 

is attributed to the large time step used, as will be shown. 

Figure 8.8 shows a good example of the adaptation rate set too low for high 

accuracy of the uncertainty estimates. Figure 8.9 shows the same simulation run with the 

adaptation rate set to 0.5  . As shown, the error in the uncertainty estimates are 

decreased, and the estimate converges to the true uncertainty in .1 seconds as compared 

to .25 seconds previously. The issue with the tilt acceleration uncertainty estimate at 1.5 

seconds is still present. There is a small period of time where the uncertainty estimate 

diverges from the true value before returning. However, when decreasing the time step 

size to 0.001t s  , the results shown in Figure 8.10 are obtained. The system response is 

similar, but the estimation errors are much smaller for both the Kalman filter and the 

DMSO, on average one order of magnitude smaller. The uncertainty estimates in Figure 

8.11 are much more accurate, on average two orders of magnitude more accurate, and 
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now without the unwanted errors seen in Figure 8.8 and Figure 8.9. Clearly a smaller 

time step is beneficial for discrete time systems. A trade study must be done between 

accuracy and computational expense when selecting the discrete time step and parameters 

for the DMSO. 

 

 

 

 

Table 8.2. Modified TWIP Robot Parameters 

Parameter Value Units 

Ip 0.025 kgm2 

Iw 1.774e-4 kgm2 

ke 0.0034 Vs/rad 

km 0.2885 Nm/A 

l 0.075 m 

Mp 1.5752 kg 

Mw 0.1752 kg 

r 0.045 m 

R 3 Ω 
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Figure 8.5. No Noise with Uncertainty TWIP States 

 

 

 

 

 

Figure 8.6. No Noise with Uncertainty TWIP State Estimate Error 



 

 

79 

 

Figure 8.7. No Noise with Uncertainty TWIP State Estimate Error Logplot 

 

 

 

 

 

Figure 8.8. No Noise with Uncertainty DMSO Uncertainty Estimates 



 

 

80 

 

Figure 8.9. No Noise with Uncertainty DMSO Uncertainty Estimates, Γ = .5 

 

 

 

 

 

Figure 8.10. No Noise with Uncertainty TWIP State Estimate Error, ∆t = .001s 



 

 

81 

 

Figure 8.11. No Noise with Uncertainty DMSO Uncertainty Estimates, ∆t = .001s 

 

 

 

 

8.1.3. Noisy Measurements with Parameter Uncertainty. In this final case 

study noise is introduced into the simulation. The simulation includes this noise, along 

with the same parameter uncertainty that was present in the previous section. The time 

step is set to 0.01t s  , in this case decreasing the time step amplifies the effect of the 

noise in the error of the state estimates and the system uncertainty. The adaptation rate is 

set to 0.1   this is a balance between the effects of the noise and the errors in the 

estimation. Just as the Kalman filter must be tuned for each system, the DMSO also 

needs to be lightly tuned, the benefit here is that there are fewer parameters to tune, and 

no detailed stochastic analysis has to be performed to obtain accurate parameters, such as 

that needed for the Kalman filter measurement covariance values. The DMSO has gain 

values that can be adjusted, but they are less sensitive. Values just need to be found to 

stabilize the state estimate error while the neural network is adjusting to the uncertainty, 

as shown in these stimulation the same gain values were used while only the adaptation 

rate was adjusted. 
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Figure 8.12 displays the system states, once again the oscillations are present that 

stem from the LQR controller tuned for an inaccurate system. Noise is also visible in the 

tilt angle and tilt rate states. The discretization error is present in the position and 

velocity, but the steps are too small to be seen in this figure. Figure 8.13 shows the state 

estimation error. The state estimate errors of the DMSO are shown to converge to the true 

values in a shorter period of time as compared to the Kalman filter, for example in the tilt 

rate the Kalman filter takes 1.3 seconds to converge to within the bounds of the 

measurement noise, where the DMSO takes .15 seconds. Both filters do end up with 

equal accuracy after 4 seconds in all states except the position, where the DMSO 

provides an estimate error two orders of magnitude smaller than the Kalman filter. What 

is important to remember is that in addition to these state estimates, the DMSO also 

estimates the system uncertainty, shown in Figure 8.14. Once again the DMSO is capable 

of accurately estimating the system uncertainty, even in the presence of measurement 

noise. The error is on the order of the measurement noise, but the dynamics are still 

captured. It could be possible to use this uncertainty estimate to back out unmodeled 

dynamics in the system model, with a proper analysis one may even be able to determine 

the incorrect parameters. The uncertainty estimate could also be used cancel uncertainty 

with the controller, this is what was done by Yang et al. [31] in the control of an 

uncertain nonlinear electrohydraulic system using a simplified uncertain linear model. 

The main difference here is the extension into discrete-time, which allows simplified and 

more accurate execution in digital systems. 
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Figure 8.12. Noise and Uncertainty TWIP States 

 

 

 

 

 

Figure 8.13. Noise and Uncertainty State Estimation Error 
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Figure 8.14. Noise and Uncertainty DMSO Uncertainty Estimation 

 

 

 

 

8.2. EXTRA CONTROL RESULTS 

The controller designed in Section 6.2 is simulated using the TWIP system to 

show the effectiveness of it in the presence of parameter uncertainty, unmodeled 

dynamics, and actuator nonlinearities. Several simulations are performed including each 

of these forms of uncertainties. The base controller used is the same LQR control as in 

the previous simulations, however the weighting matrices were modified to the following 

values. These values allow for higher performance of the controller, driving the states to 

the desired values in a shorter period of time. 
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The system is commanded to track a desired trajectory. The system is given a 

desired constant velocity of 0.1 /m s , and the position is derived from this constant 

value. The desired tilt angle is calculated from the linear system assuming it is of the 

form 
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where the coefficients
1 4 1 22 3
, , , , ,A A A A B B , come from the linear system in Eq. (79). This 

allows the desired tilt angle to be calculated using 
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 The extra control is calculated according to the method in Section 6.2 using two-

layer neural networks with 10 hidden neurons. The first neural network is given the 

inputs 
2 3 41 1 2 1 2

1, , , , , , , , x ,
d d

x x x x e e x  and u . The second neural network is given the inputs 

2 3 4 11 2 3 4 1 2
1, , , , , , , , x ,, ,

d d
e e xe ex x x x  and 

nom
u . The parameters used are 

1 2
2.5,k k   and 

1 2 10 1
[1]

x
B B  . The learning rates are selected as 

11 12 21 22
.1         and 

11 12 21 22
.01       . Tangent sigmoid activation functions are used as in the 

DMSO with randomly selected input layer weights 
1

V  and  
2

V . 

8.2.1.  Extra Control with Parameter Uncertainty. In the first simulation case  

parameter uncertainty is used to create uncertainty, along with linearization errors. The 

initial state is selected as 
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Parameters are varied as they were in the DMSO simulations, values used are 

shown in Table 8.1 and Table 8.2. The true parameters used in the linear system of 

equations are hereby called the nominal system. LQR control is used to calculate the 

optimal control for the nominal system. The modified parameters are used in the 

nonlinear equations of motion, which will be called the perturbed system. To compare the 

effectiveness of the extra control signal, the nominal system is compared to the perturbed 

system, both with, and without the extra control added. Desired state values are plotted 

along with the states. Control saturation is used on all control signals. 

Figure 8.15 shows the states of the simulation in the case with only parameter 

uncertainty. All controllers work effectively to drive the state to the desired trajectory. It 

is shown that the extra control results in a more effective controller for the system, shown 

in the trajectory labeled ‘Perturbed system with ue.’ The states are driven to the desired 

values in a shorter period of time, even in the presence of parameter uncertainty, as 

compared to the optimal control calculated for the linear system. This is in part due to the 

added control gains 
1

k  and 
2

k , but is also assisted by the neural network estimates used 

in the extra control calculation. Figure 8.16 shows the calculated control values for the 

system. The optimal control is the LQR based control for the linear system with the true 

parameters. The nominal control is the LQR based control signal calculated for the 

perturbed system, and the extra control signal is the calculated extra control. The total 

control signal is the control used in the perturbed system with extra control, labaled 

‘Perturbed system with ue’ in Figure 8.15. 
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Figure 8.15. Extra Control States with Parameter Uncertainty 

 

 

 

 

 

Figure 8.16. Extra Control with Parameter Uncertainty 
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8.2.2. Parameter Uncertainty with Unmodeled Dynamics. This simulation is 

the same as the previous section with one difference. Unmodeled dynamics are included 

in the nonlinear equations of motion. The unmodeled dynamics are defined as  
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 The states shown in Figure 8.17 are labeled the same as the previous section. In 

this case the perturbed system is not nearly as effective in driving the system to the 

desired trajectory. The perturbed system controlled with the extra control tends towards 

the nominal system, showing that the extra control is accurately estimating the 

uncertainties in the system and removing them from the dynamics. Due to the unmodeled 

dynamics, the LQR controller is much less capable of effective control. In fact, it is easy 

to create a system that is unstable using only LQR control. By increasing the gains on the 

unmodeled dynamics in Eq. (185) from 
1

2
 to 

3

4
  and from 

1

4
 to 

2

5
 the results in Figure 

8.18 are obtained. It is shown that while the LQR controller is unstable when attempting 

to control the perturbed system, the neural network controller is capable of estimating and 

compensating for the unmodeled dynamics. The control values are shown in Figure 8.19. 

It is shown that the control signals are stable, and that over time the extra control signal 

for the perturbed system tends towards the nominal control value, indicating that the 

unmodeled dynamics have been compensated for and removed from the system 

dynamics. 

8.2.3. Deadzone Nonlinearity. This simulation study removes the unmodeled  

dynamics and parameter uncertainty, and instead includes control deadzone as defined in 

Section 7.5.2. Control saturation is also included, but is of little effect. Figure 8.20 shows 

the states of the system. It is shown that with control deadzone highly accurate control of 

the system is impossible. The optimal controller is no longer optimal due to the 

unaccounted for nonlinearity. However, it is shown that the neural network controller 

proposed is capable of partially eliminating the effects of the control deadzone. The extra  
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Figure 8.17. Extra Control States with Unmodeled Dynamics 

 

 

 

 

 

Figure 8.18. Extra Control States with Unmodeled Dynamics - Unstable 
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Figure 8.19. Extra Control with Unmodeled Dynamics 

 

 

 

 

control drives the system closer to the desired trajectory than the optimal control 

for the nominal system. The control signals shown in Figure 8.21 display some 

interesting dynamics. The deadzone prevents any control under 0.5 from having an effect 

on the system, this is done by zeroing the control signal in the simulation. This causes the 

control graph to have the high frequency spikes shown. The control signal is above 0.5 

for single time steps. At these steps the control drives the system closer to the desired 

trajectory, which on the next time step reduces the control signal to below 0.5. This 

occurs until the combination of state errors causes the LQR controller to switch 

directions. The end result are small stable oscillations about the desired trajectory. The 

extra control signal adds an additional signal to the LQR control, which assists with 

overcoming the controller deadzone. 
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Figure 8.20. Extra Control States with Deadzone 

 

 

 

 

 

Figure 8.21. Extra Control with Deadzone 
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8.2.4. Deadzone and Backlash Nonlinearities. As in the previous study, this  

final simulation study includes control deadzone, but additionally adds output backlash to 

the tilt angle as described in Section 7.5.3. The states are shown in Figure 8.22. Once 

again, the optimal control for the linear system is ineffective in driving the system with 

nonlinearities to the desired trajectory. With compounding nonlinearities the control is 

even less effective than in the previous study. However, it is shown that the neural 

network based extra control is helpful in driving the system states closer to the desired 

trajectory. What is important to note is that the extra control formulation is not intended 

to compensate for these nonlinearities, they are not smooth continuous functions as is the 

case for the unmodeled dynamics and parameter uncertainty. Even so, the extra control 

signal is helpful in the presence of these input and output nonlinearities. The control 

signals are shown in Figure 8.23.  

As a better comparison of the control under these various uncertainties a table is 

created. The controller effectiveness is quantified by summing the norms of the 

difference of the four system states and the desired trajectory. Lower scores indicate more 

effective controllers, as the system states are driven closer to the desired values. Table 8.3 

shows these control scores. It is shown that in all cases the extra control assists with the 

controller effectiveness, resulting in the most effective controller, performing on average 

53.1% better than LQR control, and even 37.3% better than the optimal LQR controller 

for the linear, or nominal, system. 

 

 

 

 

Table 8.3. Extra Control Effectiveness 

 Perturbed 

System LQR 

Control 

Perturbed 

System LQR + 

Extra Control 

Nominal System 

Optimal Control 

Parameter Uncertainty 248.92 123.07 240.72 

Unmodeled Dynamics 587.04 235.35 240.72 

Deadzone 358.42 181.53 326.10 

Deadzone and Backlash 1451.9 688.17 1434.5 
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Figure 8.22. Extra Control States with Deadzone and Backlash 

 

 

 

 

 

Figure 8.23. Extra Control with Deadzone and Backlash 
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8.3. IMPLEMENTATION RESULTS 

The DMSO implemented on the robot used the following parameters. 

 

0.05     4 4
.5K I


  

 

The DMSO is compared to the discrete Kalman filter, just as before in the 

simulations. The Kalman filter parameters are kept the same as before. The results are 

shown in Figure 8.24 along with the raw measurements. The tilt angle measurement is the 

output of the complementary filter. As before the Kalman filter and the DMSO both give 

very similar estimates. Figure 8.25 shows the states again zoomed in to see the 

differences between the Kalman filter and the DMSO. There are slight differences in the 

tilt angle between the two filters, but both closely match the output of the complementary 

filter measurement. The tilt rate is nearly identical between the two filters and the 

gyroscope measurements. In the position there is a greater difference, the Kalman filter 

has high frequency oscillations around the measurements, while the DMSO closely 

follows the measurements from the motor encoders. The velocity estimates are actually 

the opposite, the Kalman filter more closely matches the measurements from the encoder, 

while at points the DMSO has some larger oscillations than the Kalman filter. 

Figure 8.26 shows the reason for using the complementary filter. The raw 

accelerometer tilt angle measurements are displayed along with the three filters estimates. 

In this case the Kalman filter and the DMSO are using the raw accelerometer readings for 

the estimate, instead of using the output of the complementary filter. As is shown the 

accelerometer tilt angle measurement is extremely inaccurate, resulting in measurements 

over 1000% from the actual value, and actually causes both the Kalman filter and the 

DMSO to provide very noisy, inaccurate measurements of the tilt angle. Interestingly the 

complementary filter performs better than both filters that have knowledge of the system 

dynamics. This is due to the complementary filters sensor fusion of the raw accelerometer 

angle measurement, along with the integrated gyroscope measurements to obtain a more 

accurate estimate of the tilt angle. 

Lastly, the uncertainty estimates are shown in Figure 8.27. The uncertainty 

estimate oscillates just like it did in the simulation studies before, and they are of similar 
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magnitude. It is noted that before the uncertainty estimate was trending towards zero over 

time, where in the physical system the oscillations are statically stable. This is easily 

attributed to the difference in control between the simulations and the implemented 

system. In the simulations the controller is working perfectly to reduce the regulation 

error to zero over time, where in the physical system small oscillations around 1 degree 

from desired are obtained as the stable point. The motors used in this implementation, 

while better than the original, still have a deadzone. There is also a small amount of 

backlash in the gears, identified to be less than 1 degree. These facts in combination with 

the sensor noise, result in the stable oscillations shown. One may also note that the 

controller is also not working well in that the regulation error is not being driven to zero. 

Looking at Figure 8.24 at the position estimate, the controller stabilized the system 

around -0.05m. This is attributed to a small bias found in the tilt angle measurement, 

which is compensated by the negative position error in the LQR controller. Further work 

can definitely be done on the controller in the system, but it is not necessary to see the 

point of the DMSO. The state estimates of the DMSO are as accurate as the Kalman 

filter, with the added benefit of seeing the calculated uncertainty in the system. 

 

 

 

 

 

Figure 8.24. Implementation Test State Variables 
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Figure 8.25. Implementation Test State Variables Close Up 

 

 

 

 

 

Figure 8.26. Complementary Filter Comparison 
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Figure 8.27. Implementation Test Results Estimated Uncertainties 
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9. CONCLUSIONS 

This thesis presented the Discrete-time Modified State Observer (DMSO), a 

discrete-time neural network based observer for state and uncertainty estimation. The 

DMSO was derived for a class of general systems, and is widely applicable to many 

different problems in the aerospace community. In this thesis the DMSO was applied to a 

two wheeled inverted pendulum (TWIP) robot and shown using simulation studies to be 

effective in estimating the states of the system in the presence of parameter uncertainty, 

linearization and discretization errors, and measurement noise. Additionally the DMSO 

was implemented on a digital system and used to accurately estimate the system states in 

a physical TWIP robot. These tests using a simple system show the power of the 

technique, and allow for its use in more complex aerospace applications. 

A neural network based controller for a class of systems with unmatched 

uncertainties was proposed as well. Lyapunov stability analysis was used to ensure the 

stability and boundedness of the state tracking errors and the neural network estimation 

errors. Simulation studies were used to show the effectiveness of the neural network 

controller in the presence of parameter uncertainty, unmodeled dynamics, and actuator 

nonlinearities. Once again, these studies on a simple system show the effectiveness of the 

technique, and allow for further study on a number of more difficult problems. 

Future work should include implementing the neural network based controller in a 

physical system with unmatched uncertainties to test the effectiveness in a real system. 

The TWIP used in this thesis would be a good place to start. These simulations and tests 

with a TWIP show the effectiveness of both of the proposed techniques in a simple 

problem. Further work should include testing and implementation on a number of 

additional problems to show the robustness of the techniques.  
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